WO2018113773A1 - 一种电池微短路的检测方法及装置 - Google Patents
一种电池微短路的检测方法及装置 Download PDFInfo
- Publication number
- WO2018113773A1 WO2018113773A1 PCT/CN2017/117965 CN2017117965W WO2018113773A1 WO 2018113773 A1 WO2018113773 A1 WO 2018113773A1 CN 2017117965 W CN2017117965 W CN 2017117965W WO 2018113773 A1 WO2018113773 A1 WO 2018113773A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- target
- value
- time
- target battery
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of battery management, and in particular, to a method and an apparatus for detecting a micro short circuit of a battery.
- Secondary batteries are also called rechargeable batteries or batteries.
- the secondary batteries are affected by factors such as battery raw materials or battery usage, and may cause safety problems such as thermal runaway, overcharge or overdischarge.
- thermal runaway is the final form of battery safety problem, and one of the main causes of thermal runaway is the micro short circuit of the battery.
- the micro short circuit of the battery mainly includes micro short circuit caused by external factors and micro short circuit caused by internal structural change of the battery.
- the micro-short circuit caused by the internal structure change of the battery has a long evolution process, the initial phenomenon of the micro-short circuit of the battery is not significant, and the diagnosis of the micro-short circuit of the battery is easily confused with the problem of loose bolts of the battery, and the identification is difficult.
- the equivalent internal resistance Zi of each single cell is calculated by collecting the terminal voltage Ui of each single cell in the secondary battery and the output current I of the single cell, and the difference between the Zen and the reference resistance is obtained.
- ⁇ Zi determines whether a single cell has a micro short circuit.
- the reference resistance is an average value of the equivalent internal resistance of all the single cells in the battery pack. If the number of single cells connected in series in the battery pack is large, the prior art micro short circuit detection method calculates the equivalent internal resistance of each single cell in real time, and the battery management system (English: Battery Management System, BMS) has high hardware requirements and is difficult to implement. In addition, as the battery pack ages, the inconsistency of each single cell in the battery pack increases.
- the micro-short circuit When the micro-short circuit is judged by the ⁇ Zi value, it is easy to judge the battery inconsistency as a micro-short circuit, and it is easy to cause a failure such as contact resistance.
- the internal resistance change is falsely reported as a micro-short circuit, the probability of misjudgment is high, and the applicability is poor.
- Embodiments of the present invention provide a method and a device for detecting a micro short circuit of a battery, which can improve the accuracy of battery micro short circuit detection, enhance the applicability of battery micro short circuit detection, and reduce the false positive rate of battery failure.
- the first aspect provides a method for detecting a micro short circuit of a battery, which may include:
- the embodiment of the invention uses a virtual reference battery to simulate the working state of the target battery. Under the same given excitation conditions, the response of the virtual reference battery is the same as the response of the target battery. Therefore, by comparing the difference between the virtual reference battery and the battery parameter value of the target battery during the working process of the target battery, it is determined whether the target battery has a micro short circuit, and the operation is simple. Even small signs of short circuit in the battery can be detected by comparing the difference of the parameter values, so that the micro short circuit state of the battery can be monitored from a small short circuit, the detection accuracy of the short circuit in the battery is improved, and the false positive rate of the battery failure is reduced. It can be monitored from the early stage of battery short circuit to better prevent the danger of battery thermal runaway caused by micro short circuit of single battery.
- the target battery parameter value includes a target terminal voltage value of the target battery, a current value of the target battery, and a temperature parameter value of the target battery;
- the initial battery parameter value of the virtual reference battery includes an initial battery power value of the virtual reference battery;
- the length of time between the specified time and the initial time is ⁇ T0;
- the calculating a difference between the target battery parameter value and the reference battery parameter value, and determining, according to the difference, that the target battery is micro-short-circuit comprises:
- the embodiment of the invention can determine the difference between the remaining battery power of the reference virtual battery and the target battery under the excitation condition of the same temperature, and determine the difference between the remaining battery powers by the battery parameter values such as the terminal voltage value and the current value of the battery.
- the battery is slightly shorted.
- the specified time includes a first time and a second time, and a time between the second time and the first time
- the length is ⁇ T1;
- the power difference value includes a first power difference value corresponding to the first time and a second power difference value corresponding to the second time;
- the determining that the target battery is micro-short according to the power difference value comprises:
- the leakage current value is greater than or equal to the preset current threshold, it is determined that the target battery is slightly shorted.
- the embodiment of the invention can detect the difference between the remaining power of the reference virtual battery and the target battery at any two moments in the working process of the battery, and calculate the leakage of the target battery by the difference between the two remaining power difference values corresponding to the two moments.
- Current value The leakage current value is more intuitive and clear to determine the micro-short-circuit state of the target battery, and the judgment is more accurate and the applicability is higher.
- the specified time includes a first time and a second time, and a time between the second time and the first time
- the length is ⁇ T1;
- the power difference value includes a first power difference value corresponding to the first time and a second power difference value corresponding to the second time;
- the determining that the target battery is micro-short according to the power difference value comprises:
- the magnitude of the micro short circuit resistance is less than a preset resistance threshold, it is determined that the target battery is slightly shorted.
- the micro short circuit resistance of the target battery can be further calculated.
- the micro short circuit resistance is more intuitive and clear to determine the micro short circuit state of the target battery, which increases the diversity of the battery micro short circuit detection mode and has high flexibility.
- the resistance value of the micro short circuit of the target battery can also be quantitatively detected, the judgment is more accurate, the false positive rate of the battery failure is reduced, and the applicability is higher.
- the target battery parameter value includes a target terminal voltage value of the target battery, a current value of the target battery, and a temperature parameter value of the target battery;
- the initial battery parameter value of the virtual reference battery includes an initial battery power value of the virtual reference battery
- the length of time between the specified time and the initial time is ⁇ T0;
- the calculating a difference between the target battery parameter value and the reference battery parameter value, and determining, according to the difference, that the target battery is micro-short-circuit comprises:
- the battery voltage value such as the terminal voltage value and the current value of the target battery can be used to determine the difference between the reference terminal voltage of the virtual battery and the target battery under the excitation condition of the same temperature. It is determined that the target battery is micro-short-circuited, the detection of the terminal voltage is simple, the implementation is small, and the applicability of the battery micro-short detection is enhanced.
- the determining, by the voltage difference, that the target battery is micro-short-circuit comprises:
- the embodiment of the present invention can determine that the target battery has a micro short circuit under the scenario that the difference between the reference voltage of the virtual battery and the target battery is greater than the preset voltage threshold, and determine the target battery according to the comparison result between the terminal voltage difference and the preset voltage threshold.
- a micro-short circuit occurs, which improves the detection flexibility of the battery micro-short circuit and is more applicable.
- the determining, by the voltage difference, that the target battery is micro-short-circuit comprises:
- the difference between the reference virtual battery and the target battery is determined according to the difference between the reference virtual battery and the target battery, and the power difference is determined by the voltage difference, and then the target battery is determined by the power difference.
- the short circuit enhances the diversity of the detection mode of the battery micro short circuit, improves the flexibility of the battery micro short circuit detection, and has higher applicability.
- the determining the virtual state according to the reference remaining power amount and the current value The reference terminal voltage value of the reference battery at the specified time includes:
- the embodiment of the invention can consider the influence of environmental factors such as temperature on the component parameters of the equivalent circuit included in the virtual reference battery in consideration of determining the terminal voltage value of the reference virtual battery, thereby further improving the simulation accuracy of the virtual reference battery and the target battery. Improves the detection accuracy of the micro short circuit of the target battery.
- the virtual reference battery is based on an electrochemical parameter or a physical parameter of the target battery, through mathematics, etc.
- the embodiment of the invention can establish a virtual battery model in various ways, obtain a virtual reference battery by modeling, simulate the target battery through the virtual reference battery to determine whether the target battery is operating normally, and has flexible operation and strong applicability.
- a second aspect provides a device for detecting a micro short circuit of a battery, which may include:
- Obtaining a module configured to acquire a target initial battery parameter value of the target battery at an initial moment, and determine a reference initial battery parameter value of the virtual reference battery at the initial moment, where the virtual reference battery is given the same excitation condition
- the response is the same as the response of the target battery
- the acquiring module is further configured to acquire a target battery parameter value of the target battery at a specified time
- a determining module configured to determine, according to the target battery parameter value acquired by the acquiring module and the reference initial battery parameter, a reference battery parameter value of the virtual reference battery at the specified time;
- a calculation module configured to calculate a difference between the target battery parameter value obtained by the obtaining module and the reference battery parameter value determined by the determining module
- the determining module is further configured to determine that the target battery is micro-short according to the difference calculated by the calculating module.
- the target battery parameter value includes a target terminal voltage value of the target battery, a current value of the target battery, and a temperature parameter value of the target battery;
- the initial battery parameter value of the virtual reference battery includes an initial battery power value of the virtual reference battery;
- the length of time between the specified time and the initial time is ⁇ T0;
- the determining module is used to:
- the calculation module is used to:
- the determining module is configured to determine that the target battery is micro-short according to the power difference calculated by the calculating module.
- the specified time includes a first time and a second time, and a time between the second time and the first time
- the length is ⁇ T1;
- the power difference value includes a first power difference value corresponding to the first time and a second power difference value corresponding to the second time;
- the determining module is used to:
- the leakage current value is greater than or equal to the preset current threshold, it is determined that the target battery is slightly shorted.
- the specified time includes a first time and a second time, and a time between the second time and the first time
- the length is ⁇ T1;
- the power difference value includes a first power difference value corresponding to the first time and a second power difference value corresponding to the second time;
- the calculation module is used to:
- the determining module is used to:
- the calculated size of the micro short circuit resistance is less than a preset resistance threshold, it is determined that the target battery is slightly shorted.
- the target battery parameter value includes a target terminal voltage value of the target battery, a current value of the target battery, and a temperature parameter value of the target battery;
- the initial battery parameter value of the virtual reference battery includes an initial battery power value of the virtual reference battery
- the length of time between the specified time and the initial time is ⁇ T0;
- the determining module is used to:
- the calculation module is used to:
- the determining module is further configured to determine that the target battery is micro-short according to the voltage difference calculated by the calculating module.
- the determining module is configured to:
- the calculation module calculates that the voltage difference is greater than a preset voltage threshold, determining that the target battery is slightly short-circuited.
- the determining module is configured to:
- the determining module is configured to:
- the virtual reference battery is based on an electrochemical parameter or a physical parameter of the target battery, by using mathematics, etc.
- an embodiment of the present invention provides a terminal device, including: a memory and a processor;
- the memory is for storing a set of program codes
- the processor is configured to invoke program code stored in the memory to perform the method provided by the first aspect above.
- a battery model such as an equivalent circuit model and an electrochemical model can be used as a virtual reference battery, and the working state of the target battery can be simulated by the virtual reference battery, and then the difference can be determined by the difference between the battery parameter values of the virtual reference battery and the target battery. Whether the battery is slightly shorted.
- the embodiment of the invention can collect the battery parameter values such as the terminal voltage value and the working current value of the target battery, and further calculate the battery parameters such as the remaining battery capacity of the target battery, the terminal voltage of the virtual reference battery, and the remaining power, and then can pass the virtual reference battery.
- the difference between the terminal voltage or the remaining power of the target battery determines that the target battery has a micro short circuit, and the amount of data to be stored and the amount of calculation of the data are small, which reduces the difficulty of detecting the micro short circuit of the battery, and has high applicability.
- the micro short circuit resistance value can be estimated according to the leakage current value of the target battery, and the micro short circuit condition of the target battery can be detected before the target battery has not undergone a serious micro short circuit, and the micro detection can be detected in advance.
- the micro short circuit and the quantitative result can improve the accuracy of the micro short circuit detection and reduce the false positive rate of the battery failure, thereby achieving the purpose of early prevention and improving the safety of the battery.
- FIG. 1 is a schematic structural diagram of a battery micro short circuit detecting system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a model of a virtual reference battery according to an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of a micro short circuit detecting unit according to an embodiment of the present invention.
- FIG. 4 is a schematic flow chart of a method for detecting a micro short circuit of a battery according to an embodiment of the present invention
- FIG. 5 is a schematic structural diagram of a device for detecting a micro short circuit of a battery according to an embodiment of the present invention.
- the method for detecting the short circuit of the battery provided by the embodiment of the present invention can be applied to the terminal device, and the terminal device can be built in the existing BMS, or can be a device including the existing BMS, and can be determined according to actual application scenarios. There is no limit here.
- the terminal device may also be referred to as a user equipment (English: user equipment, UE), a mobile station (English: mobile station, MS), a mobile terminal (English: mobile terminal), and the like.
- the terminal device may also be a portable device such as a portable, a pocket, a handheld, a computer built-in or a vehicle.
- the terminal device may be a mobile phone (or "cellular" phone), or a computer with mobile nature, or an electric car or the like.
- the method for detecting the micro short circuit of the battery provided by the embodiment of the present invention can also be applied to other devices using the secondary battery, which is not limited herein.
- the target battery to be detected in the embodiment of the present invention may be a single battery in a series of battery packs, or may be a single battery that operates independently, and may be determined according to a practical application scenario, and is not limited herein.
- the battery micro short circuit detecting system provided by the embodiment of the present invention may be a battery micro short circuit detecting system included in the terminal device, or may be a battery micro short circuit system built in an existing BMS, which may be determined according to an actual application scenario. This is not a limitation.
- the battery micro short circuit detecting system provided by the embodiment of the invention includes a target battery, a monitoring management unit of the target battery, a virtual reference battery, and a micro short circuit detecting unit.
- the target battery may be a battery that requires micro short circuit detection.
- the monitoring management unit of the target battery may be an existing monitoring and management unit included in the BMS or the BMS, and may be determined according to the actual application scenario, and is not limited herein.
- the monitoring management unit may be configured to record working state data of the target battery, including battery parameters such as a terminal voltage value, an operating current value, or a temperature parameter value of the target battery at each charging and discharging time.
- the micro short circuit detecting unit is configured to determine, according to a difference between the virtual reference battery and the battery parameter value of the target battery, whether the target battery is slightly short-circuited, and the short-circuit resistance value of the target battery is slightly short-circuited.
- the micro short circuit detecting unit is further configured to calculate a terminal voltage value, a remaining power value, and a battery device parameter value after the aging of the virtual reference battery, and may be determined according to an actual application scenario, and is not limited herein.
- the BMS system can record the terminal voltage value of the target battery, the operating current value, the temperature value and other battery parameters in real time, and use the working current value and temperature value of the target battery as the input of the reference virtual battery.
- the virtual reference battery generates a reference terminal voltage value related to the battery parameter such as the input current value and the temperature value under the excitation of the battery parameters such as the input current and the given temperature.
- the micro short circuit detecting unit can compare the actual terminal voltage of the target battery (which can be set as the target terminal voltage) and the reference terminal voltage of the virtual reference battery to obtain a difference voltage, and thereby determine whether the target battery has a micro short circuit according to the difference voltage.
- the difference between the remaining battery power of the target battery and the remaining power of the reference virtual battery may be determined according to a parameter such as a terminal voltage value of the target battery, and whether the target battery has a micro short circuit is determined by the difference of the remaining power.
- the virtual reference battery may be a battery model established by mathematical equivalent or electrochemical modeling based on electrochemical parameters or physical parameters of the target battery.
- the virtual reference battery is the equivalent battery model of the target battery, ie, the response (ie, output) of the virtual reference battery is the same as the response of the target battery when the given excitation conditions (ie, inputs) are the same.
- the above excitation conditions may include working current, temperature, pressure, and the like.
- FIG. 2 it is a schematic diagram of a model of a virtual reference battery according to an embodiment of the present invention.
- the virtual reference battery provided by the embodiment of the present invention may adopt a virtual battery model of a first-order Thevenin equivalent circuit, including components such as resistors R 0 , R 1 , and capacitor C 1 .
- the virtual battery model can correct its own battery state (State: Charge, SOC) by the ampere-time integration method, and the RC terminal voltage in the equivalent circuit is obtained by integrating the current.
- State Charge, SOC
- the initialization of the virtual reference battery needs to be performed at the beginning of the life cycle of the virtual reference battery.
- the target battery at this time can be calculated according to the terminal voltage of the target battery at t0 (set to V B_real ), the operating current (set to i B ), and the temperature (set to Temp B ).
- Open circuit voltage (set to OCV(t0)), SOC(t0), and corresponding resistors R 0 (t0), R 1 (t0), capacitor C 1 (t0), and capacitor C 1 in the first-order Thevenin circuit
- the terminal voltages V C1 (t0) at both ends, and the above-mentioned OCV(t0), SOC(t0), i B , Temp B , R 0 (t0), R 1 (t0), C 1 (t0), V C1 (t0) is used as an initialization parameter of the virtual battery model shown in FIG. 2.
- the values of the battery parameters such as the terminal voltage, the operating current, the temperature, and the SOC of the virtual reference battery are consistent with the values of the battery parameters of the target battery at this time.
- the above consistency is the same or nearly the same.
- the difference between the value of the battery parameter of the virtual reference battery and the value of the battery parameter of the target battery is within a preset difference range, the difference range is an allowable error range, or the difference is The impact of the management of the target battery is negligible.
- the virtual battery model is initialized, it is only necessary to receive the operating current, temperature and other parameter values of the target battery, thereby obtaining parameter values such as the remaining power of the virtual reference battery and the terminal voltage. If there is no short circuit in the target battery, the values of the battery parameters such as the remaining battery capacity and terminal voltage of the virtual reference battery and the battery parameters such as the remaining battery capacity and terminal voltage of the target battery are consistent at any charge and discharge time (the agreement here is not the same) The mathematics is exactly the same, but the index values are similar, the size difference is within the scope allowed by the project, etc.).
- the change trend of the battery parameter value such as the remaining battery capacity of the target battery may be due to the short circuit of the battery and the virtual battery.
- the battery parameters such as remaining power vary in different trends.
- the specific performance may include: the short circuit resistance will accelerate the decrease of the remaining battery capacity of the target battery, so that the difference between the remaining power value of the reference virtual battery and the remaining power value of the target battery gradually increases, and the difference between the voltage values of the two terminals will also follow. Gradually increase.
- the embodiment of the present invention can identify the difference trend of the battery parameter by the difference between the remaining power of the reference virtual battery and the remaining power of the target battery, or the difference between the terminal voltage of the virtual battery and the terminal voltage of the target battery. Determine if there is a micro short circuit in the target battery.
- the virtual reference battery can also be implemented using an electrochemical model.
- the above electrochemical model may specifically be a P2D model or other models in the prior literature, and is not limited herein.
- the embodiment of the present invention will be described by taking a P2D model as an example.
- the model is only exemplary and is intended to explain the embodiments of the present invention without limiting the embodiments of the present invention.
- the method and apparatus for detecting a micro short circuit of the battery provided by the embodiment of the present invention will be specifically described below by taking the virtual battery model of the equivalent circuit shown in FIG. 2 as an example.
- FIG. 3 is a schematic structural diagram of a micro short circuit detecting unit according to an embodiment of the present invention.
- the micro short circuit detecting unit provided by the embodiment of the present invention may include: a memory 100, a processor 200, a display 300, and the like.
- the memory 100 stores a set of program codes for realizing the identification of the charge and discharge state of the virtual reference battery, the detection of the charge and discharge current magnitude, the detection of the terminal voltage level, the estimation of the battery power, the recording of the charging time, and the target. Operation of calculation of battery micro short circuit resistance.
- the processor 200 is configured to read program code in the memory 100 and then execute the method defined by the program code. For example, the processor 200 can read an operation of a micro short circuit detection of a battery by reading program code stored in the memory 100.
- Processor 200 can include one or more processors, for example, processor 200 can include one or more central processors. When the processor 200 includes a plurality of processors, the plurality of processors may be integrated on the same chip, or may each be a separate chip. A processor may include one or more processing cores. The following embodiments are all described by taking a multi-core as an example. However, the method for detecting a micro-short circuit of the battery provided by the embodiment of the present invention may also be applied to a single-core processor, which may be applied according to an actual application. The scenario needs are determined and there are no restrictions here.
- Memory 100 also stores other data than the program code, and other data may include data generated after the processor executes the above program code, such as a terminal voltage value during charging of the virtual reference battery.
- Memory 100 generally includes memory and external memory.
- the memory can be random access memory (RAM), read only memory (ROM), and cache (CACHE).
- the external storage can be a hard disk, a CD, a USB disk, a floppy disk, or a tape drive.
- the program code is usually stored on the external memory, and the processor loads the program code from the external memory into the memory before executing the processing.
- FIG. 4 is a schematic flow chart of a method for detecting a micro short circuit of a battery according to an embodiment of the present invention.
- the method provided by the embodiment of the present invention includes the following steps:
- the micro short circuit detecting unit (the embodiment of the present invention will be described with the terminal device as the execution main body, hereinafter referred to as the terminal), and the existing BMS can be used to collect the charging and discharging data of the target battery during normal operation of the battery system. Further, the battery parameter value of the target battery at any time can be determined according to the charge and discharge data collected by the BMS.
- the terminal when the terminal detects the state of the target battery (ie, whether a micro short circuit occurs), the battery parameter value of the target battery at the initial time (ie, the target initial battery parameter value may be obtained from the charging and discharging data collected by the BMS. ).
- the terminal can also directly detect the battery parameter value of the initial time of the target battery, which can be determined according to the actual application scenario, and is not limited herein. Further, the terminal may determine the battery parameter value of the virtual reference battery at the initial time according to the target initial battery parameter value of the target battery (ie, refer to the initial battery parameter value).
- the initial time may be an initialization time of the virtual reference battery, or may be any time after the virtual reference battery is initialized, and at this moment, the reference initial battery parameter value of the virtual reference battery and the target initial battery parameter value of the target battery the same. Since the virtual reference battery and the target battery have the same battery parameter value at the initial moment, if there is a difference between the virtual reference battery and the battery parameter value of the target battery at any time after the initial time, the target battery can be determined according to the difference. A micro short circuit has occurred.
- the initial moment may also be any moment after the virtual reference battery is initialized, and between the reference initial battery parameter value of the virtual reference battery and the target initial battery parameter value of the target battery.
- the reference initial battery parameter value and the target initial battery parameter value may be calculated by the battery parameter value of the target battery when the virtual reference battery is initialized, and may be based on the virtual reference battery and the target battery at any time after the initial time. The trend of the difference in the value of the battery parameter determines whether the target battery is slightly short-circuited.
- the target initial battery parameter value may include an initial SOC, a terminal voltage value, a temperature parameter value, an operating current value, and the like of the target battery.
- the reference initial battery parameter values may include the initial SOC of the virtual reference battery, the terminal voltage value, the temperature parameter value, and the component parameter value in the equivalent circuit, and may be determined according to actual application scenario requirements, and are not limited herein.
- the terminal may acquire a battery parameter value (ie, a target battery parameter value) of the target battery at a certain time (ie, a specified time) after the initial time during the charging and discharging operation of the target battery.
- the terminal may obtain the target battery parameter value from the data recorded by the BMS, or may detect it by itself.
- the embodiment of the present invention will be described by taking the method of obtaining data from the BMS as an example, and details are not described herein again.
- the target battery parameter value may include: a terminal voltage value of the target battery (ie, a target terminal voltage value), an operating current value of the target battery, and a temperature parameter value (or simply a temperature value) of the target battery.
- the terminal when the terminal determines whether the target battery is slightly short-circuited by the difference between the virtual reference battery and the remaining battery power of the target battery, the terminal can obtain the battery parameter such as the terminal voltage value of the target battery at a certain moment, and can be determined by combining the battery parameter values at the initial time. The difference between the virtual reference battery and the remaining battery capacity of the target battery.
- the terminal may acquire battery parameters of the target battery at any two moments after the initial time (ie, the specified time includes the first specified time and the second specified time) during the charging and discharging operation of the target battery.
- Value ie, the first target battery parameter value and the second target battery parameter value.
- the first target battery parameter value or the second target battery parameter value may also include a terminal voltage value of the target battery (ie, a target terminal voltage value), an operating current value of the target battery, and a temperature parameter value of the target battery (or simply referred to as a temperature). Value) and so on.
- the leakage current value may be calculated by acquiring two sets of battery parameter values at the first specified time and the second specified time. Micro short circuit resistance value. If the terminal determines whether the target battery is slightly short-circuited by the difference between the virtual reference battery and the remaining battery power of the target battery, the terminal voltage value of the target battery can be obtained at two moments (such as the first designated time and the second specified time). The battery parameters are determined, and then the difference trend is determined according to the difference between the virtual reference battery and the remaining battery capacity of the target battery at each moment, and the target battery is determined to be slightly short-circuited by the difference change trend.
- the terminal may determine, according to the target battery parameter value and the reference initial battery parameter of the virtual reference battery, the battery corresponding to the virtual reference battery at the specified time. Parameter value (ie reference battery parameter value). Further, the terminal may determine whether the target battery is slightly short-circuited according to the difference between the reference battery parameter value and the target battery parameter value.
- the terminal may select the target battery and the virtual reference battery according to the specified time.
- the difference in battery parameter values determines if a slight short circuit has occurred in the target battery.
- the terminal may record the terminal voltage value of the target battery (ie, the target terminal voltage value, denoted as V B_real ), the operating current value (denoted as i B ), and the temperature parameter value (recorded as time interval Ts). T B ).
- the length of time between the specified time and the initial time may be set to ⁇ T0, where ⁇ T0 may be one or more Ts, and an embodiment of the present invention will be described by taking one Ts as an example.
- the terminal may determine, according to the current value of the target battery and the temperature parameter value of the target battery, a battery power change value of the virtual reference battery in the above ⁇ T0, and further determine the virtual reference battery according to the initial battery power value of the virtual reference battery.
- Remaining power ie reference to remaining battery.
- the above ⁇ T0 is equal to Ts
- the virtual remaining power is recorded as SOC virtua l (t 0 +T s )
- the initial battery value of the virtual reference battery is recorded as SOC virtua l (t 0 ).
- t0 is an initial time
- ⁇ is a charge/discharge efficiency of a target battery (also a virtual reference battery)
- C B is a capacity of the target battery (also a virtual reference battery) at a current temperature (ie, a full charge voltage value).
- the remaining power of the virtual reference battery may be compared with the remaining power of the target battery (ie, the target remaining power), according to The difference between the remaining battery capacity and the target remaining battery capacity is determined to determine whether the target battery is slightly short-circuited.
- the remaining power of the target may be calculated according to the terminal voltage and the operating current of the target battery detected at the specified time, and the operation is simple.
- the target battery has a micro short circuit.
- the difference B is greater than the difference A or If the difference between the difference B and the difference A is greater than the preset error range value, it can be determined that the target battery has a micro short circuit.
- the terminal may further determine a leakage current value of the target battery according to a difference of remaining power of the target battery at any two moments after the initialization time, and further determine, according to the leakage current value, whether the target battery has occurred.
- Micro short circuit after the initialization time of the virtual reference battery, the two specified times of the target battery parameters of the target battery are respectively recorded as the first time and the second time, and the time length between the first time and the second time is ⁇ T1.
- the terminal may calculate, according to the foregoing implementation manner, the difference between the virtual reference battery and the remaining battery capacity of the target battery (ie, the first power difference value), and the second time, the remaining reference power of the virtual reference battery and the target battery.
- the difference (ie the second power difference).
- the leakage current value I leak of the target battery may be determined according to the difference between the first power difference value and the second power difference value (ie, the target difference value) and the above ⁇ T1. For example, if the first moment is T c , the second moment is T c + ⁇ T1, the first electric quantity difference is ⁇ C Tc , and the second electric quantity difference is ⁇ C Tc+ ⁇ T1 , then
- I leak ( ⁇ C Tc + ⁇ T1 - ⁇ C Tc ) / ⁇ T1
- the micro short circuit described in the embodiment of the present invention may include a micro short circuit occurring inside the target battery or between the positive and negative terminals.
- the definition of the short circuit severity of the above-mentioned micro short circuit is related to the battery power of the battery or the shape of the battery, and is also related to the detection requirement of the actual application scenario, and may be determined according to the requirements of the actual application scenario, and is not limited herein.
- the difference between the difference between the virtual reference battery and the remaining battery power of the target battery is used to determine the short circuit state of the battery, and even a small indication of the short circuit in the battery can be detected from the difference in the battery power.
- the internal short circuit state of the single battery can be monitored from a small short circuit, the detection accuracy of the short circuit in the battery can be improved, the false positive rate of the battery failure can be reduced, and the risk of battery thermal runaway caused by the internal short circuit of the single battery can be prevented as early as possible.
- the terminal can determine the micro short circuit state of the target battery through the leakage current value more intuitively and clearly.
- the terminal may set a preset current for determining a leakage current value of the target battery to be slightly short-circuited according to battery performance parameters such as battery performance stability or voltage detection accuracy of the battery cells of the battery pack. Threshold. After the terminal obtains the leakage current value of the target battery, the leakage current value of the target battery can be compared with the preset current threshold. If the leakage current value of the target battery is greater than or equal to the preset current threshold, it may be determined that the target battery has a micro short circuit. If the leakage current value of the target battery is less than the preset current threshold, it can be determined that the target battery is not slightly short-circuited.
- battery performance parameters such as battery performance stability or voltage detection accuracy of the battery cells of the battery pack. Threshold.
- the preset current threshold may be set according to a self-discharge current value in a normal working state of the battery.
- the self-discharge current value of the battery is related to the characteristics of the battery itself, and the preset current threshold may be greater than the self-discharge current value of the battery.
- the preset current threshold is related to battery performance parameters such as battery performance stability and voltage detection accuracy. If the battery performance stability is poor and the voltage detection accuracy is low, the preset current threshold may be set to a larger value to avoid Factors such as poor voltage detection accuracy cause misjudgment of battery micro-short circuit.
- the setting of the preset current threshold can also be related to the tradeoff between the developer's false positive rate of the detection algorithm used for battery micro-short detection and the need for the primary identified micro-short level. If the false positive rate of the detection algorithm is required to be low, the preset current threshold may be appropriately increased; if it is required to identify the micro-short state of the target battery from a very small micro short circuit of the battery cell to be tested, the threshold may be appropriately lowered, specifically According to the actual application scenario, there is no limitation here.
- the terminal may further correct the leakage current value that may have a negative value to improve the calculation accuracy of the leakage current value. Specifically, if the calculated leakage current value is less than zero, the length of ⁇ T1 can be increased and the leakage current value of the target battery can be recalculated. That is, the terminal can reselect two specified moments so that the length of time between the two specified moments is large, and then recalculate according to parameters such as the remaining battery capacity of the virtual reference battery and the target battery at the two designated times of reselection. The leakage current value of the target battery is obtained.
- the comparison threshold of the leakage current value of the target battery may only affect the calculation accuracy of the leakage current value, and does not affect the function of calculating the leakage current value. Therefore, the leakage current value is
- the comparison threshold can also be selected as other non-zero constants, which can be determined according to the actual application scenario requirements, and is not limited herein.
- the average voltage value of the target battery over the time length corresponding to the above ⁇ T1 may be calculated, and the target battery is calculated according to the leakage current value and the average voltage value.
- Micro short circuit resistance Assuming that the average voltage value of the target battery in ⁇ T1 is V avg and the micro short circuit resistance of the target battery is R ISC , then:
- the micro short circuit state of the target battery is determined more intuitively and clearly by the micro short circuit resistance, and the resistance value of the micro short circuit of the target battery can be quantitatively detected by the calculation of the micro short circuit resistance.
- the micro short circuit resistance of the target battery can be calculated according to the average voltage of the target battery.
- the leakage current value of the target battery includes a leakage current value after the correction.
- the terminal may record the voltage value of the target battery at each voltage sampling time according to the length of time between the second time and the first time through the BMS.
- the BMS can collect the voltage value of the target battery according to the preset voltage sampling period during the charging and discharging process of the target battery, wherein the preset voltage sampling period can be the voltage collection period of the existing BMS, and no limitation is imposed thereon.
- the terminal can obtain the voltage value of the target battery at each voltage sampling time from the voltage value of the target battery recorded by the BMS, thereby calculating the average voltage value of the target battery. If the target battery is in the online state for the length of time between the second time and the first time, the N voltage sampling moments included in the time length between the second time and the first time may be determined according to the preset voltage sampling period. .
- the first voltage sampling time of the N voltage sampling times is the voltage sampling time closest to the first time, that is, the time when the BMS collects the voltage value of the target battery according to the existing voltage collection period.
- the BMS can continuously collect the voltage value of the target battery at other voltage sampling times over the length of time according to the voltage collection period described above, and the last voltage sampling time is the voltage sampling time closest to the second time.
- the length of time between two adjacent voltage sampling instants of the N voltage sampling instants is equal to the voltage sampling period of the BMS, that is, the preset voltage sampling period.
- the BMS collects the respective collection times of the voltage values of the single cells in the normal working state.
- the BMS does not collect the voltage value of the target battery during the period when the target battery is interrupted. For example, after the BMS collects the voltage value of each target battery at the voltage collection time closest to the first moment, the target battery fails, BMS The voltage value of the target battery cannot be collected and recorded. After the target battery returns to normal operation, the BMS can continue to collect and record the voltage value of the target battery.
- the N voltage value sampling moments (assuming N1) included between the second time and the first time are less than the time length between the second time and the first time, and the target battery is online.
- the sampling time of the N voltage values included between the second time and the first time (assumed to be N2). That is, N1 is smaller than N2.
- the terminal may calculate an average voltage value of the target battery at ⁇ T1 according to the voltage value of the target battery at each voltage sampling time. If the target battery is one of the battery cells in the battery pack, the terminal may sequentially calculate the battery pack of the target battery in the Kth voltage sampling time of each of the two adjacent voltage sampling times. The average value of the first voltage of each battery cell is set to U(kT), and the second voltage average value of each battery cell in the battery pack at the K-1th voltage sampling time is set to U M ((k-1) )))).
- the terminal can calculate an average value of the voltage values of the individual cells in the battery pack at the first voltage sampling time, and an average value of the voltage values of the respective unit cells in the battery pack at the second voltage sampling time. . Further, the terminal scales the first voltage average value and the second voltage average value according to the preset filter coefficient, and accumulates the scaling value of the first voltage average value and the scaling value of the battery group voltage value to obtain the Kth The average value of the voltage at the time of voltage sampling (set to U M (kT)). As shown in the following expression, the terminal can calculate the average voltage of the battery pack at the Kth voltage sampling time:
- U M (kT) is the approximate value of the voltage of the battery cells (including the target battery) of the battery pack at this moment
- U M ((k-1)T) is the voltage of the single battery of the battery pack at the previous moment.
- the approximate average value, U(kT) is the average voltage value of the voltage values of the individual cells collected at this time.
- ⁇ is the filter coefficient, which can be taken as 0.0001.
- the terminal can calculate a voltage average value of the voltage values of the individual cells in the battery pack at the second voltage sampling time (specifically, the voltage approximation of the battery cells of the battery pack at the previous time), and The voltage average value of the voltage values of the respective unit cells in the battery pack at the time of the three voltage samplings (specifically, the average voltage value of the voltage values of the respective unit cells collected at the time of the above time). Further, based on the expression of U M (kT) described above, the average value of the voltages of the cells of the battery pack when K is equal to 3 (i.e., the approximate average voltage of the cells of the battery pack at the time of the above) can be calculated.
- the average value of the voltages at each voltage acquisition time is calculated in turn.
- K is equal to N
- the average value of the voltage at the Kth voltage sampling time can be determined as the length of time between the second time and the first time.
- the average value of the voltage is described below with U M .
- micro short circuit resistance of the target battery may be determined as R ISC in combination with the leakage current value of the target battery:
- R ISC is the micro short circuit resistance of the single battery i (ie, the target battery)
- I ds is the leakage current value of the target battery (ie, I Leak )
- Inf represents no short circuit.
- the terminal voltage value of the virtual reference battery may be determined according to the SOC of the virtual reference battery (ie, Reference terminal voltage value). Further, after the terminal determines the terminal voltage value of the virtual reference battery, the micro short circuit of the target battery may be determined by the difference between the terminal voltage values of the target battery and the virtual reference battery.
- the reference battery parameter of the virtual reference battery generally includes the following parameters:
- the target battery will age as the usage time increases.
- the battery parameters of the virtual reference battery need to be updated. Includes individual component parameters in the equivalent circuit model.
- the step of updating the battery parameters of the virtual reference battery may include:
- Step 1 Obtain the aging parameters of the target battery.
- Step 2 Update the battery parameters of the virtual reference battery by using the aging parameter of the target battery.
- the battery parameters of the virtual reference battery to be updated include battery charging and discharging efficiency, battery full charge, SOC-OCV relationship at different temperatures, relationship between SOC, T B and R0, R1, C1, and the like.
- the battery parameter of the virtual reference battery is updated, according to the working current of the target battery (equivalent to the working current of the virtual reference battery), the remaining power and the terminal voltage value of the virtual reference battery are continuously updated, and the specific steps include:
- Step 1 Modulate the SOC of the virtual battery according to the integrated value of the working current of the virtual reference battery and the current capacity of the virtual battery:
- t0 is the initial time
- ⁇ is the charge/discharge efficiency of the target battery (also referred to as the virtual reference battery) at the current temperature
- CB is the capacity of the target battery (also the virtual reference battery) at the current temperature.
- Step 2 Update the corresponding OCV in the equivalent circuit of the virtual reference battery according to the SOC of the virtual reference battery:
- OCV virtua l (t 0 +T s ) f1(SOC virtua l (t 0 +T s )
- the above OCVvirtual(t0+Ts) is the OCV of the equivalent circuit at the current time (ie, the specified time t0+Ts).
- Step 3 According to the OCV of the virtual reference battery, the resistance value and the capacitance value in the equivalent circuit are updated:
- R 1 (t 0 +T s ) g2(OCV virtua l (t 0 +T s )
- R0(t0+Ts), R1(t0+Ts), and C1(t0+Ts) are current resistance values and capacitance values.
- Step 4 Update the terminal voltage across the resistor and capacitor in the equivalent circuit:
- V R0 (t 0 +T s ) R 0 (t 0 +T s ) ⁇ i B (t 0 +T s )
- Step 5 Update the terminal voltage of the virtual reference battery:
- V B_virtual0 (t 0 +T s ) OCV virtual (t 0 +T s )-V R0 (t 0 +T s )-V C1 (t 0 +T s )
- V B_virtual0 is the terminal voltage V B (ie, the reference terminal voltage value) in the equivalent circuit shown in FIG. 2 .
- the above calculation form is only one form of virtual battery model update.
- the electrochemical model can be used to update the aging condition of the virtual battery and the terminal voltage and capacity parameters.
- the effect of battery aging on battery performance is generally in months and years, and the impact of battery operating current on battery residual power and terminal voltage is generally measured in seconds and minutes. Therefore, in practical applications, the above
- the parameter update caused by battery aging and the remaining power and terminal voltage update caused by the operating current can take different calculation time intervals. For example, the calculation interval of the remaining power and the terminal voltage update may be selected as a shorter time interval, and the update interval of the battery parameter update caused by the aging may select a longer time interval, which may be determined according to the actual application scenario, and is not Make restrictions.
- the terminal voltage of the virtual reference battery may be compared with the terminal voltage of the target battery, according to the terminal.
- the difference in voltage determines if the target battery is slightly shorted.
- the terminal may preset a preset voltage threshold for determining whether the target battery is slightly short-circuited. If the voltage difference between the terminal voltage of the virtual reference battery and the target battery is greater than or equal to the preset voltage threshold, it may be determined that the target battery has a micro short circuit. If the voltage difference between the terminal voltage of the virtual reference battery and the target battery is less than the preset voltage threshold, it may be determined that the target battery is not slightly short-circuited.
- the virtual reference battery and the target battery may also be determined according to the voltage difference value and the operating current value of the virtual reference battery. The difference in the remaining battery power. If the above-mentioned power difference is greater than the preset power threshold, it may be determined that the target battery has a micro-short circuit; otherwise, it may be determined that the target battery is not slightly short-circuited.
- the virtual reference battery may also adopt an implementation of an electrochemical model such as P2D, thereby calculating a leakage current value and an internal short circuit resistance value of the virtual reference battery of the electrochemical model.
- the P2D model is taken as an example.
- the battery parameters of the virtual reference battery may include the model parameter solid particle radius R s , the solid and liquid phase diffusion coefficients D s , D e , and the liquid phase effective diffusion coefficient. The specific surface area a s of the particles, the total surface area A of the battery, the effective conductivity ⁇ eff of the solid phase ions, and the effective diffusion conductivity ⁇ eff of the liquid phase ions.
- the liquid phase volume fractions of the liquid phase, the positive and negative electrodes, and the diaphragm are ⁇ e , ⁇ e, n , ⁇ e, p , ⁇ e, sep , and the thicknesses of the positive and negative electrodes and the diaphragm are: ⁇ p , ⁇ n , ⁇ sep , t + is the number of lithium ion migration, apparent mass transfer coefficient ⁇ , active material equilibrium potential
- the resistance of the diaphragm is R SEI , wherein the above model parameters can be obtained by measurement before modeling.
- model parameters of the virtual battery, the solid phase, the liquid phase and the solid particle surface ion concentration are C s , C e , C s, surf , the local current density j f , and the solid-liquid potential distributions are ⁇ s , ⁇ e , respectively.
- the main reaction activation overpotential ⁇ act , the exchange current density i 0 and other state values and the output value V t and SOC can be jointly solved by the partial differential equation described in the following process:
- the initial value condition is:
- the boundary conditions are:
- the initial value condition is:
- the boundary conditions are:
- the boundary conditions are:
- the boundary conditions are:
- V(t) ⁇ s (L,t)- ⁇ s (0,t)(20)
- the terminal jointly solves the parameter values of the terminal voltages V(t) and SOC of the virtual reference battery according to the above equations (1) to (20).
- the terminal may determine whether the target battery is slightly short-circuited according to the battery parameter value such as the terminal voltage or the SOC. For details, refer to the corresponding equivalent circuit model. The implementation method will not be described here.
- a battery model such as an equivalent circuit model and an electrochemical model can be used as a virtual reference battery, and the working state of the target battery can be simulated by the virtual reference battery, and then the difference can be determined by the difference between the battery parameter values of the virtual reference battery and the target battery. Whether the battery is slightly shorted.
- the embodiment of the invention can determine the battery voltage value such as the terminal voltage value and the working current value of the target battery through the data collected by the BMS, and further calculate the battery parameters such as the remaining battery power of the target battery, the terminal voltage of the virtual reference battery, and the remaining power.
- the target battery may be slightly short-circuited by the difference between the virtual reference battery and the target battery's terminal voltage or remaining power.
- the embodiment of the invention performs the detection of the leakage current through the data collected by the BMS, and does not need to additionally increase the sensor, and the amount of data to be stored and the calculation amount of the data are small, which reduces the detection difficulty of the micro short circuit of the battery, and has high applicability.
- the micro short circuit resistance value can be estimated according to the leakage current value of the target battery, and the micro short circuit condition of the target battery can be detected before the target battery has not undergone a serious micro short circuit, and the micro detection can be detected in advance.
- the micro short circuit and the quantitative result can improve the accuracy of the micro short circuit detection and reduce the false positive rate of the battery failure, thereby achieving the purpose of early prevention and improving the safety of the battery.
- FIG. 5 is a schematic structural diagram of a device for detecting a micro short circuit of a battery according to an embodiment of the present invention.
- the detecting device provided by the embodiment of the invention includes:
- the obtaining module 51 is configured to acquire a target initial battery parameter value of the target battery at an initial moment, and determine a reference initial battery parameter value of the virtual reference battery at the initial moment, where the virtual reference battery is given the same excitation condition The response is the same as the response of the target battery.
- the obtaining module 51 is further configured to acquire a target battery parameter value of the target battery at a specified time.
- the determining module 52 is configured to determine, according to the target battery parameter value acquired by the acquiring module and the reference initial battery parameter, a reference battery parameter value of the virtual reference battery at the specified time.
- the calculating module 53 is configured to calculate a difference between the target battery parameter value acquired by the acquiring module and the reference battery parameter value determined by the determining module.
- the determining module 52 is further configured to determine that the target battery is micro-short according to the difference calculated by the calculating module.
- the target battery parameter value includes a target terminal voltage value of the target battery, a current value of the target battery, and a temperature parameter value of the target battery; an initial battery of the virtual reference battery The initial battery power value of the virtual reference battery is included in the parameter value;
- the length of time between the specified time and the initial time is ⁇ T0;
- the determining module 52 is configured to:
- the calculation module 53 is configured to:
- the determining module 52 is configured to determine that the target battery is micro-short according to the power difference value calculated by the calculating module.
- the specified time includes a first time and a second time, and a length of time between the second time and the first time is ⁇ T1;
- the power difference value includes a first power difference value corresponding to the first time and a second power difference value corresponding to the second time;
- the determining module 52 is configured to:
- the leakage current value is greater than or equal to the preset current threshold, it is determined that the target battery is slightly shorted.
- the specified time includes a first time and a second time, and a length of time between the second time and the first time is ⁇ T1;
- the power difference value includes a first power difference value corresponding to the first time and a second power difference value corresponding to the second time;
- the calculation module 53 is configured to:
- the determining module 52 is configured to:
- the calculated size of the micro short circuit resistance is less than a preset resistance threshold, it is determined that the target battery is slightly shorted.
- the target battery parameter value includes a target terminal voltage value of the target battery, a current value of the target battery, and a temperature parameter value of the target battery;
- the initial battery parameter value of the virtual reference battery includes an initial battery power value of the virtual reference battery
- the length of time between the specified time and the initial time is ⁇ T0;
- the determining module 52 is configured to:
- the calculation module 53 is configured to:
- the determining module is further configured to determine that the target battery is micro-short according to the voltage difference calculated by the calculating module.
- the determining module 52 is configured to:
- the calculation module calculates that the voltage difference is greater than a preset voltage threshold, determining that the target battery is slightly short-circuited.
- the determining module 52 is configured to:
- the determining module 52 is configured to:
- the virtual reference battery is a battery model established by mathematical equivalent or electrochemical modeling based on electrochemical parameters or physical parameters of the target battery, and the battery model includes an equivalent circuit module. Or an electrochemical model.
- the device for detecting the short circuit of the battery may be the terminal device provided by the embodiment of the present invention, and the implementation manner described in each step of the method for detecting the micro short circuit of the battery may be performed by using various modules built therein.
- the specific implementation process refer to the implementation manners described in the foregoing steps, and details are not described herein again.
- a battery model such as an equivalent circuit model and an electrochemical model can be used as a virtual reference battery, and the working state of the target battery can be simulated by the virtual reference battery, and then the difference can be determined by the difference between the battery parameter values of the virtual reference battery and the target battery. Whether the battery is slightly shorted.
- the embodiment of the invention can determine the battery voltage value such as the terminal voltage value and the working current value of the target battery through the data collected by the BMS, and further calculate the battery parameters such as the remaining battery power of the target battery, the terminal voltage of the virtual reference battery, and the remaining power.
- the target battery may be slightly short-circuited by the difference between the virtual reference battery and the target battery's terminal voltage or remaining power.
- the embodiment of the invention performs the detection of the leakage current through the data collected by the BMS, and does not need to additionally increase the sensor, and the amount of data to be stored and the calculation amount of the data are small, which reduces the detection difficulty of the micro short circuit of the battery, and has high applicability.
- the micro short circuit resistance value can be estimated according to the leakage current value of the target battery, and the micro short circuit condition of the target battery can be detected before the target battery has not undergone a serious micro short circuit, and the micro detection can be detected in advance.
- the micro short circuit and the quantitative result can improve the accuracy of the micro short circuit detection and reduce the false positive rate of the battery failure, thereby achieving the purpose of early prevention and improving the safety of the battery.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
一种电池微短路的检测方法及装置,所述方法包括:获取目标电池在初始时刻的目标初始电池参数值,并确定虚拟参考电池在所述初始时刻的参考初始电池参数值,在给定相同的激励条件下,所述虚拟参考电池的响应与所述目标电池的响应相同;获取目标电池在指定时刻的目标电池参数值;根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值;计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路。采用本实施例,具有可提高电池微短路检测的准确性,增强电池微短路检测的适用性,降低电池故障的误判率的优点。
Description
本发明涉及电池管理领域,尤其涉及一种电池微短路的检测方法及装置。
二次电池又称为充电电池或蓄电池,二次电池的使用过程中受到电池原材料、或者电池使用方式等因素影响,可能出现热失控、过充电或者过放电等安全问题。其中热失控是电池安全问题的最终表现形式,而导致热失控的主要原因之一就是电池的微短路。电池的微短路主要包括外部因素引发的微短路和电池内部结构变化自引发的微短路等。其中,电池内部结构变化自引发的微短路具有一个漫长的演化过程,电池的微短路初期现象不显著,而且电池微短路的诊断容易与电池的螺栓松动等问题混淆,识别难度大。由多个单体电池组成的电池组中某个单体电池出现微短路的现象具有偶然性,加大了从电池组中识别出现微短路的单体电池的难度。然而,电池微短路的后期可能导致电池热失控等严重的安全问题,电池微短路的检测是亟待解决的电池安全问题之一。
现有技术通过采集二次电池组中每个单体电池的端电压Ui以及单体电池的输出电流I,计算每个单体电池的等效内阻Zi,并通过Zi与基准电阻的差值ΔZi确定单体电池是否出现微短路。其中,基准电阻为电池组中所有单体电池的等效内阻的平均值。若电池组中串联的单体电池的数量较多,则现有技术的微短路检测方式实时计算各个单体电池的等效内阻的计算量大,对电池管理系统(英文:Battery Management System,BMS)的硬件要求高,实现难度大。此外,随着电池组的老化,电池组中各个单体电池的不一致性会增加,用ΔZi值判断电池微短路时容易将电池的不一致性判断为微短路,而且容易将接触电阻等故障导致的内阻变化误报为微短路,误判概率高,适用性差。
发明内容
本发明实施例提供一种电池微短路的检测方法及装置,可提高电池微短路检测的准确性,增强电池微短路检测的适用性,降低电池故障的误判率。
第一方面提供了一种电池微短路的检测方法,其可包括:
获取目标电池在初始时刻的目标初始电池参数值,并确定虚拟参考电池在所述初始时刻的参考初始电池参数值,在给定相同的激励条件下,所述虚拟参考电池的响应与所述目标电池的响应相同;
获取目标电池在指定时刻的目标电池参数值;
根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值;
计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路。
本发明实施例采用虚拟参考电池来仿真目标电池的工作状态,在给定的激励条件相同 的情况下,虚拟参考电池的响应与目标电池的响应相同。因此可通过比较目标电池工作过程中,虚拟参考电池与目标电池的电池参数值的差值确定目标电池是否发生了微短路,操作简单。即使是电池内短路的微小迹象也可以通过比较参数值的差值检测得到,从而可从微小短路开始监控电池的微短路状态,提高了电池内短路的检测精确性,降低电池故障的误判率,可从电池短路的早期开始监控,更好地预防单体电池的微短路带来电池热失控等危险。
结合第一方面,在第一种可能的实现方式中,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;
所述指定时刻与所述初始时刻之间的时间长度为ΔT0;
所述根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值包括:
根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;
所述计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路包括:
根据所述目标端电压值计算所述目标电池的目标剩余电量,并计算所述目标剩余电量与所述参考剩余电量的电量差值;
根据所述电量差值确定所述目标电池发生微短路。
本发明实施例可通过电池的端电压值和电流值等电池参数值,确定在相同温度的激励条件下,参考虚拟电池和目标电池的剩余电池电量的差值,通过剩余电池电量的差值确定电池发生微短路。通过电池的剩余电量的比较来确定目标电池是否发生了微短路等故障,操作简单,适用性高。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;
所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;
所述根据所述电量差值确定所述目标电池发生微短路包括:
计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;
若所述漏电流值大于或者等于预设电流阈值,则确定所述目标电池发生微短路。
本发明实施例可在电池工作过程中的任意两个时刻,检测参考虚拟电池和目标电池的剩余电量的差值,通过两个时刻对应的两个剩余电量差值的差值计算目标电池的漏电流值。通过漏电流值更加直观明了地确定目标电池的微短路状态,判断更精确,适用性更高。
结合第一方面第一种可能的实现方式,在第三种可能的实现方式中,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;
所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量 差值;
所述根据所述电量差值确定所述目标电池发生微短路包括:
计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;
计算所述目标电池在所述时间长度上的平均电压值,并结合所述漏电流值确定所述目标电池的微短路电阻;
若所述微短路电阻的大小小于预设电阻阈值,则确定所述目标电池发生微短路。
本发明实施例获取得到目标电池的漏电流值之后,可进一步计算目标电池的微短路电阻。通过微短路电阻更加直观明了地确定目标电池的微短路状态,增加了电池微短路检测方式的多样性,灵活性高。通过微短路电阻的计算也可定量检测出目标电池的微短路的电阻阻值,判断更精确,降低了电池故障的误判率,适用性更高。
结合第一方面,在第四种可能的实现方式中,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;
所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;
所述指定时刻与所述初始时刻之间的时间长度为ΔT0;
所述根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值包括:
根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;
根据所述参考剩余电量和所述电流值确定所述虚拟参考电池在所述指定时刻的参考端电压值;
所述计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路包括:
计算所述目标端电压值与所述参考端电压值的电压差值,并根据所述电压差值确定所述目标电池发生微短路。
本发明实施例可通过目标电池的端电压值和电流值等电池参数值,确定在相同温度的激励条件下,参考虚拟电池的端电压值,通过参考虚拟电池与目标电池的端电压的差值确定目标电池发生微短路,端电压的检测简单,实现难度小,增强了电池微短路检测的适用性。
结合第一方面第四种可能的实现方式,在第五种可能的实现方式中,所述根据所述电压差值确定所述目标电池发生微短路包括:
若所述电压差值大于预设电压阈值,则确定所述目标电池发生微短路。
本发明实施例可在参考虚拟电池与目标电池的端电压的差值大于预设电压阈值的场景下确定目标电池发生了微短路,根据端电压差值与预设电压阈值的比较结果确定目标电池发生微短路,提高了电池微短路的检测灵活性,适用性更高。
结合第一方面第四种可能的实现方式,在第六种可能的实现方式中,所述根据所述电压差值确定所述目标电池发生微短路包括:
根据所述电压差值和所述目标电池的电流值计算所述虚拟参考电池和所述目标电池的剩余电量的电量差值;
若所述电量差值大于预设电量阈值,则确定所述目标电池发生微短路。
本发明实施例可根据参考虚拟电池与目标电池的端电压的差值,确定参考虚拟电池与目标电池的电量差值,通过电压差值确定电量差值,进而通过电量差值确定目标电池发生微短路,增强了电池微短路的检测方式的多样性,提高了电池微短路检测灵活性的,适用性更高。
结合第一方面第五种可能的实现方式或者第一方面第六种可能的实现方式,在第七种可能的实现方式中,所述根据所述参考剩余电量和所述电流值确定所述虚拟参考电池在所述指定时刻的参考端电压值包括:
根据所述参考剩余电量确定所述虚拟参考电池的元件参数,所述虚拟参考电池中包含等效电路,所述元件参数为所述等效电路上的元件在所述温度参数值下的参数值;
根据所述电流值和所述元件参数确定所述元件的端电压值,并根据所述元件的端电压值确定所述虚拟参考电池的参考端电压值。
本发明实施例可将温度等环境因素对虚拟参考电池包含的等效电路的元件参数的影响考虑到参考虚拟电池的端电压值的确定中,进一步提高了虚拟参考电池与目标电池的仿真准确性,提高了目标电池的微短路的检测准确性。
结合第一方面至第一方面第七种可能的实现方式中任一种,在第八种可能的实现方式中,所述虚拟参考电池为基于目标电池的电化学参数或者物理参数,通过数学等效或者电化学建模等途径建立的电池模型,所述电池模型包括等效电路模块或者电化学模型。
本发明实施例可采用多种方式建立虚拟电池模型,通过建模的方式得到虚拟参考电池,通过虚拟参考电池仿真目标电池以判断目标电池是否正常运作,操作灵活,适用性强。
第二方面提供了一种电池微短路的检测装置,其可包括:
获取模块,用于获取目标电池在初始时刻的目标初始电池参数值,并确定虚拟参考电池在所述初始时刻的参考初始电池参数值,在给定相同的激励条件下,所述虚拟参考电池的响应与所述目标电池的响应相同;
所述获取模块,还用于获取目标电池在指定时刻的目标电池参数值;
确定模块,用于根据所述获取模块获取的所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值;
计算模块,用于计算所述获取模块获取的所述目标电池参数值与所述确定模块确定的所述参考电池参数值的差值;
所述确定模块,还用于根据所述计算模块计算得到的所述差值确定所述目标电池发生微短路。
结合第二方面,在第一种可能的实现方式中,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;
所述指定时刻与所述初始时刻之间的时间长度为ΔT0;
所述确定模块用于:
根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;
所述计算模块用于:
根据所述目标端电压值计算所述目标电池的目标剩余电量,并计算所述目标剩余电量与所述参考剩余电量的电量差值;
所述确定模块用于根据所述计算模块计算得到的所述电量差值确定所述目标电池发生微短路。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;
所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;
所述确定模块用于:
计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;
若所述漏电流值大于或者等于预设电流阈值,则确定所述目标电池发生微短路。
结合第二方面第一种可能的实现方式,在第三种可能的实现方式中,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;
所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;
所述计算模块用于:
计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;
计算所述目标电池在所述时间长度上的平均电压值,并结合所述漏电流值确定所述目标电池的微短路电阻;
所述确定模块用于:
若所述计算计算得到的所述微短路电阻的大小小于预设电阻阈值,则确定所述目标电池发生微短路。
结合第二方面,在第四种可能的实现方式中,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;
所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;
所述指定时刻与所述初始时刻之间的时间长度为ΔT0;
所述确定模块用于:
根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;
根据所述参考剩余电量和所述电流值确定所述虚拟参考电池在所述指定时刻的参考端电压值;
所述计算模块用于:
计算所述目标端电压值与所述参考端电压值的电压差值;
所述确定模块还用于根据所述计算模块计算的所述电压差值确定所述目标电池发生微短路。
结合第二方面第四种可能的实现方式,在第五种可能的实现方式中,所述确定模块用于:
在所述计算模块计算得到所述电压差值大于预设电压阈值时,确定所述目标电池发生微短路。
结合第二方面第四种可能的实现方式,在第六种可能的实现方式中,所述确定模块用于:
根据所述电压差值和所述目标电池的电流值计算所述虚拟参考电池和所述目标电池的剩余电量的电量差值;
若所述电量差值大于预设电量阈值,则确定所述目标电池发生微短路。
结合第二方面第五种可能的实现方式或者第二方面第六种可能的实现方式,在第七种可能的实现方式中,所述确定模块用于:
根据所述参考剩余电量确定所述虚拟参考电池的元件参数,所述虚拟参考电池中包含等效电路,所述元件参数为所述等效电路上的元件在所述温度参数值下的参数值;
根据所述电流值和所述元件参数确定所述元件的端电压值,并根据所述元件的端电压值确定所述虚拟参考电池的参考端电压值。
结合第二方面至第二方面第七种可能的实现方式中任一种,在第八种可能的实现方式中,所述虚拟参考电池为基于目标电池的电化学参数或者物理参数,通过数学等效或者电化学建模等途径建立的电池模型,所述电池模型包括等效电路模块或者电化学模型。
第三方面,本发明实施例提供了一种终端设备,包括:存储器和处理器;
所述存储器用于存储一组程序代码;
所述处理器用于调用所述存储器中存储的程序代码执行上述第一方面提供的方法。
本发明实施例可采用等效电路模型和电化学模型等电池模型作为虚拟参考电池,通过虚拟参考电池仿真目标电池的工作状态,进而可通过虚拟参考电池与目标电池的电池参数值的差异判断目标电池是否发生微短路。本发明实施例可以采集目标电池的端电压值以及工作电流值等电池参数值,进而可计算目标电池的剩余电量、虚拟参考电池的端电压以及剩余电量等电池参数,进而可通过虚拟参考电池与目标电池的端电压或者剩余电量的差异确定目标电池发生了微短路,所需存储的数据量和数据的计算量较小,降低了电池微短路的检测难度,适用性高。进一步的,本发明实施例可根据目标电池的漏电流值估计出其微短路电阻阻值,可以在目标电池尚未发生严重的微短路之前对目标电池的微短路情况进行检测,可提前检测到微小的微短路,并给出定量结果,可提高微短路检测的准确性,降低电池故障的误判率,从而达到提前预防的目的,提高电池的安全性。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附 图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的电池微短路检测系统的结构示意图;
图2是本发明实施例提供的虚拟参考电池的模型示意图;
图3是本发明实施例提供的微短路检测单元的结构示意图;
图4是本发明实施例提供的电池微短路的检测方法的流程示意图;
图5是本发明实施例提供的电池微短路的检测装置的结构示意图。
本发明实施例提供的电池微短路的检测方法可应用于终端设备,上述终端设备具体可内置于现有的BMS中,也可为包含现有的BMS的设备,具体可根据实际应用场景需求确定,在此不做限制。该终端设备也可称之为用户设备(英文:user equipment,UE)、移动台(英文:mobile station,MS)、移动终端(英文:mobile terminal)等。上述终端设备还可以是便携式、袖珍式、手持式、计算机内置式或者车载式等移动装置。例如,终端设备可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机、或电动汽车等。应理解的是,除了终端设备以外,本发明实施例提供的电池微短路的检测方法也可以应用于其他使用二次电池的装置中,在此不做限制。本发明实施例中所描述的待检测的目标电池可以是串联电池组中的某个单体电池,也可为独立工作的单个电池,具体可根据实际应用场景确定,在此不做限制。
参见图1,是本发明实施例提供的电池微短路检测系统的结构示意图。本发明实施例提供的电池微短路检测系统可为上述终端设备中包含的电池微短路检测系统,也可为内置于现有的BMS中的电池微短路系统,具体可根据实际应用场景确定,在此不做限制。本发明实施例提供的电池微短路检测系统包括目标电池、目标电池的监控管理单元、虚拟参考电池以及微短路检测单元等。其中,上述目标电池具体可为需要进行微短路检测的电池。上述目标电池的监控管理单元具体可为现有的BMS或者BMS中包含的相关监控管理单元,具体可根据实际应用场景确定,在此不做限制。上述监控管理单元可用于记录目标电池的工作状态数据,包括各个充放电时刻上目标电池的端电压值、工作电流值或者温度参数值等电池参数。上述微短路检测单元用于根据虚拟参考电池与目标电池的电池参数值的差异确定目标电池是否发生微短路,以及目标电池发生微短路的短路电阻值的计算等。其中,上述微短路检测单元还用于计算虚拟参考电池的端电压值、剩余电量值以及老化后的电池器件参数值等,具体可根据实际应用场景确定,在此不做限制。
在目标电池的充放电过程中,BMS系统可实时记录目标电池的端电压值及工作电流值、温度值等电池参数,并将目标电池的工作电流值、温度值作为参考虚拟电池的输入。虚拟参考电池在输入电流、给定温度等电池参数的激励下,会产生与该输入电流值以及温度值等电池参数相关的参考端电压值。微短路检测单元可比较目标电池的实际端电压(可设为目标端电压)和虚拟参考电池的参考端电压,得到一个差值电压,进而可根据差值电压确定目标电池是否发生了微短路。进一步的,本发明实施例也可根据目标电池的端电压值等 参数确定目标电池的剩余电量与参考虚拟电池的剩余电量的差值,通过剩余电量的差异确定目标电池是否发生了微短路。
上述虚拟参考电池可为基于目标电池的电化学参数或者物理参数,通过数学等效或者电化学建模等途径建立的电池模型。虚拟参考电池为目标电池的等效电池模型,即,在给定的激励条件(即输入)相同时,虚拟参考电池的响应(即输出)与目标电池的响应相同。其中,上述激励条件可包括工作电流、温度以及压力等。
在一些可行的实施方式中,参见图2,是本发明实施例提供的虚拟参考电池的模型示意图。本发明实施例提供的虚拟参考电池可采用一阶戴维南等效电路的虚拟电池模型,其中包括电阻R
0、R
1和电容C
1等元件。该虚拟电池模型可用安时积分法对自身的电池电量(英文:State of Charge,SOC)进行修正,等效电路中的RC端电压通过对电流的积分获得。
在一些可行的实施方式中,为了保障虚拟参考电池对目标电池的仿真准确性,使得虚拟参考电池可以实时反映目标电池的状态,需要在虚拟参考电池的生命周期初期进行虚拟参考电池的初始化。虚拟参考电池初始化(假设t0时刻)时,可根据t0时刻目标电池的端电压(设为V
B_real)、工作电流(设为i
B)、温度(设为Temp
B),计算得到此时目标电池的开路电压(设为OCV(t0))、SOC(t0),以及对应的一阶戴维南电路中的电阻R
0(t0)、R
1(t0)、电容C
1(t0),以及电容C
1两端的端电压V
C1(t0),并将上述所述OCV(t0)、SOC(t0)、i
B、Temp
B、R
0(t0)、R
1(t0)、C
1(t0)、V
C1(t0)作为图2所示的虚拟电池模型的初始化参数。
需要说明的是,虚拟参考电池初始化完成之后,虚拟参考电池的端电压、工作电流、温度以及SOC等电池参数的值,与目标电池此时的各电池参数的值保持一致。其中,上述保持一致指代相同或者近乎相同。其中,上述近乎相同指代虚拟参考电池的电池参数的值与目标电池的电池参数的值的差值在预设的差值范围内,该差值范围为允许的误差范围,或者该差值对目标电池的管理的影响可以忽略不计。
虚拟电池模型一旦初始化完成,则可只需接收目标电池的工作电流、温度等参数值,进而可获得虚拟参考电池的剩余电量以及端电压等参数值。若目标电池不存在短路,则在任意充放电时刻,虚拟参考电池的剩余电量、端电压等电池参数的值和目标电池的剩余电量、端电压等电池参数的值保持一致(此处的一致并非数学上的完全相同,而是指数值相近,大小差异在工程允许的范围内等)。若目标电池存在短路现象,则即使在初始化时刻参考虚拟电池和目标电池的各电池参数的值都保持一致,目标电池的剩余电量等电池参数值的变化趋势会因为电池内短路而与虚拟电池的剩余电量等电池参数的变化趋势不同。具体表现可包括:短路电阻会加快目标电池的剩余电量的下降,使得参考虚拟电池的剩余电量值与目标电池的剩余电量值的差值逐渐增加,同时二者端电压值的差距也会随之逐渐增大。因此,本发明实施例可通过识别参考虚拟电池的剩余电量与目标电池的剩余电量的差异变化趋势,或者参考虚拟电池的端电压与目标电池的端电压的差异变化趋势等电池参数的差异变化趋势判断目标电池是否存在微短路。
在一些可行的实施方式中,虚拟参考电池还可采用电化学模型的实现方式。其中,上述电化学模型具体可为现有文献中的P2D模型或者其他模型,在此不做限制。本发明实施例将以P2D模型为例进行说明,该模型仅是示例性的,旨在用于解释本发明实施例而不对 本发明实施例进行限制。
下面将以图2所示的等效电路的虚拟电池模型为例,结合图3至图5对本发明实施例提供的电池微短路的检测方法及装置进行具体描述。
参见图3,是本发明实施例提供的微短路检测单元的结构示意图。如图3所示,本发明实施例提供的微短路检测单元可包括:存储器100、处理器200以及显示器300等。其中,存储器100存储一组程序代码,该程序代码用于实现虚拟参考电池的充放电状态的辨识、充放电电流大小的检测、端电压大小的检测、电池电量的估计、充电时间的记录以及目标电池微短路电阻的计算等操作。处理器200用于读取存储器100中的程序代码,然后执行程序代码定义的方法。例如,处理器200可读取存储器100中存储的程序代码执行电池的微短路检测等操作。
处理器200可以包括一个或多个处理器,例如,处理器200可以包括一个或多个中央处理器。当处理器200包括多个处理器时,这多个处理器可以集成在同一块芯片上,也可以各自为独立的芯片。一个处理器可以包括一个或多个处理核,以下实施例均以多核为例来介绍,但是本发明实施例提供的电池微短路的检测方法也可以应用于单核处理器,具体可根据实际应用场景需求确定,在此不做限制。
另外,存储器100还存储有除程序代码之外的其他数据,其他数据可包括处理器执行上述程序代码之后产生的数据,例如虚拟参考电池充电过程中的端电压值等。存储器100一般包括内存和外存。内存可以为随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)等。外存可以为硬盘、光盘、USB盘、软盘或磁带机等。程序代码通常被存储在外存上,处理器在执行处理前会将程序代码从外存加载到内存。
参见图4,是本发明实施例提供的电池微短路的检测方法的流程示意图。本发明实施例提供的方法包括步骤:
S401,获取目标电池在初始时刻的目标初始电池参数值,并确定虚拟参考电池在所述初始时刻的参考初始电池参数值。
在一些可行的实施方式中,微短路检测单元(本发明实施例将以终端设备为执行主体进行说明,以下简称终端)可通过现有的BMS采集电池系统正常运行时目标电池的充放电数据,进而可根据BMS采集的充放电数据确定任一时刻目标电池的电池参数值。
在一些可行的实施方式中,终端检测目标电池的状态(即是否发生微短路)时,可从BMS采集到的充放电数据中获取目标电池在初始时刻的电池参数值(即目标初始电池参数值)。终端也可直接检测目标电池的初始时刻的电池参数值,具体可根据实际应用场景确定,在此不做限制。进一步的,终端可根据目标电池的目标初始电池参数值确定虚拟参考电池在初始时刻的电池参数值(即参考初始电池参数值)。其中,上述初始时刻可为虚拟参考电池的初始化时刻,也可为虚拟参考电池初始化之后的任意一个时刻,并且在该时刻,虚拟参考电池的参考初始电池参数值与目标电池的目标初始电池参数值相同。由于初始时刻虚拟参考电池与目标电池的电池参数值相同,因此在初始时刻之后的任意时刻,若虚拟参考电池与目标电池的电池参数值之间存在差值,则可根据差值确定目标电池是否发生微短路。
进一步的,在一些可行的实施方式中,上述初始时刻也可为虚拟参考电池初始化之后 的任意一个时刻,并且此时虚拟参考电池的参考初始电池参数值和目标电池的目标初始电池参数值之间存在差值。此时,上述参考初始电池参数值和目标初始电池参数值均可通过虚拟参考电池初始化时目标电池的电池参数值计算得到,并且在初始时刻之后的任意时刻,可根据虚拟参考电池与目标电池的电池参数值的差值的变化趋势确定目标电池是否发生微短路。
具体实现中,上述目标初始电池参数值中可包括目标电池的初始SOC、端电压值、温度参数值以及工作电流值等。上述参考初始电池参数值中可包括虚拟参考电池的初始SOC、端电压值、温度参数值以及等效电路中的元件参数值等,具体可根据实际应用场景需求确定,在此不做限制。
S402,获取目标电池在指定时刻的目标电池参数值。
在一些可行的实施方式中,终端可在目标电池的充放电工作过程中,获取目标电池在初始时刻之后的某个时刻(即指定时刻)的电池参数值(即目标电池参数值)。具体的,终端可从BMS记录的数据中获取上述目标电池参数值,也可自行检测得到。本发明实施例将以从BMS记录的数据中获取的方式为例进行说明,下面不再赘述。其中,上述目标电池参数值可包括:目标电池的端电压值(即目标端电压值)、目标电池的工作电流值以及目标电池的温度参数值(或简称温度值)等。例如,终端通过虚拟参考电池与目标电池的剩余电量的差值判断目标电池是否发生微短路时,可获取某个时刻目标电池的端电压值等电池参数,进而可结合初始时刻的电池参数值确定虚拟参考电池与目标电池的剩余电量的差值。
在一些可行的实施方式中,终端可在目标电池的充放电工作过程中,获取目标电池在初始时刻之后的任意两个时刻(即指定时刻包括第一指定时刻和第二指定时刻)的电池参数值(即第一目标电池参数值和第二目标电池参数值)。其中,上述第一目标电池参数值或第二目标电池参数值也可包括目标电池的端电压值(即目标端电压值)、目标电池的工作电流值以及目标电池的温度参数值(或简称温度值)等。例如,若终端通过目标电池的漏电流值或者微短路电阻值来判断目标电池是否发生微短路,则可通过获取第一指定时刻和第二指定时刻的两组电池参数值来计算漏电流值或者微短路电阻值。若终端通过虚拟参考电池与目标电池的剩余电量的差值变化趋势判断目标电池是否发生微短路,则可获取某两个时刻(如第一指定时刻和第二指定时刻)目标电池的端电压值等电池参数,进而可根据每个时刻虚拟参考电池与目标电池的剩余电量的差值确定差值变化趋势,通过差值变化趋势确定目标电池是否发生微短路。
S403,根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值。
S404,计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路。
在一些可行的实施方式中,终端获取得到目标电池在指定时刻的目标电池参数值之后,可根据目标电池参数值以及虚拟参考电池的参考初始电池参数,确定虚拟参考电池在该指定时刻对应的电池参数值(即参考电池参数值)。进一步的,终端可根据参考电池参数值与目标电池参数值的差值判断目标电池是否发生微短路。
在一些可行的实施方式中,若初始时刻目标电池与虚拟参考电池的电池参数值相同, 即目标初始电池参数值与参考初始电池参数值相同,则终端可根据指定时刻目标电池与虚拟参考电池的电池参数值的差值确定目标电池是否发生了微短路。具体实现中,终端可以以时间长度为Ts的时间间隔记录目标电池的端电压值(即目标端电压值,记为V
B_real)、工作电流值(记为i
B)、温度参数值(记为T
B)。上述指定时刻与初始时刻之间的时间长度可设为ΔT0,其中,ΔT0可为一个或者多个Ts,本发明实施例将以一个Ts为例进行说明。
具体实现中,终端可根据目标电池的电流值和目标电池的温度参数值等确定虚拟参考电池在上述ΔT0内的电池电量变化值,进而可根据虚拟参考电池的初始电池电量值确定虚拟参考电池的剩余电量(即参考剩余电量)。假设上述ΔT0等于Ts,虚拟剩余电量记为SOC
virtua
l(t
0+T
s),虚拟参考电池的初始电池电量值记为SOC
virtua
l(t
0),则
其中,上述t0为初始时刻,η为目标电池(也为虚拟参考电池)的充放电效率,C
B为目标电池(也为虚拟参考电池)在当前温度下的容量(即满充电压值)。
在一些可行的实施方式中,终端计算得到虚拟参考电池的剩余电量(即参考剩余电量)之后,则可将虚拟参考电池的剩余电量与目标电池的剩余电量(即目标剩余电量)进行比较,根据参考剩余电量和目标剩余电量的差值确定目标电池是否发生微短路。具体实现中,上述目标剩余电量可根据指定时刻检测到的目标电池的端电压和工作电流计算得到,操作简单。若初始时刻虚拟参考电池与目标电池的电池电量相同,而该指定时刻虚拟参考电池与目标电池的剩余电量不一致或者差值大于误差范围值,则可确定目标电池发生了微短路。或者,若初始时刻虚拟参考电池与目标电池的电池电量之间存在差值A,而该指定时刻虚拟参考电池与目标电池的剩余电量之间存在差值B,并且差值B大于差值A或者差值B与差值A之间的差值大于预设误差范围值,则可确定目标电池发生了微短路。
在一些可行的实施方式中,终端还可根据目标电池在初始化时刻之后的任意两个时刻的剩余电量的差值,确定目标电池的漏电流值,进而可根据漏电流值确定目标电池是否发生了微短路。具体实现中,假设终端在虚拟参考电池的初始化时刻之后,记录目标电池的目标电池参数的两个指定时刻分别为第一时刻和第二时刻,第一时刻和第二时刻之间的时间长度为ΔT1。终端可根据上述实现方式计算上述第一时刻,虚拟参考电池与目标电池的剩余电量的差值(即第一电量差值),以及所述第二时刻,虚拟参考电池与目标电池的剩余电量的差值(即第二电量差值)。进一步的,可根据第一电量差值和第二电量差值之间的差值(即目标差值)和上述ΔT1确定目标电池的漏电流值I
leak。例如,若上述第一时刻即为T
c,第二时刻即为T
c+ΔT1,第一电量差值为ΔC
Tc,第二电量差值为ΔC
Tc+ΔT1,则有
I
leak=(ΔC
Tc+ΔT1-ΔC
Tc)/ΔT1
需要说明的是,本发明实施例中描述的微短路可包括目标电池内部或正负极端子间发生的微小短路。具体实现中,上述微小短路的短路严重程度的定义与电池的电池电量或者电池形状等相关,也跟实际应用场景的检测需求相关,具体可根据实际应用场景需求确定,在此不做限制。进一步的,本发明实施例采用虚拟参考电池与目标电池的剩余电量的差值之间的差值来判断电池的短路状态,即使是电池内短路的微小迹象也可从电池的电量差异来检测得到,从而可从微小短路开始监控单体电池的内短路状态,提高了电池内短路的检 测精确性,降低电池故障的误判率,尽早预防单体电池的内短路带来电池热失控等危险。终端可通过漏电流值更加直观明了地确定目标电池的微短路状态
在一些可行的实施方式中,终端可根据电池组的单体电池的电池性能稳定性或者电压检测精度等电池特性参数,设定用于确定目标电池是否发生微短路的漏电流值的预设电流阈值。终端获取得到目标电池的漏电流值之后,则可将目标电池的漏电流值与预设电流阈值进行比较。若目标电池的漏电流值大于或者等于上述预设电流阈值,则可确定目标电池发生了微短路。若目标电池的漏电流值小于预设电流阈值,则可确定目标电池没有发生微短路。具体的,上述预设电流阈值可根据电池正常工作状态下的自放电电流值设定。其中,电池自放电电流值与电池本身特性有关,预设电流阈值可大于电池自放电电流值。具体实现中,预设电流阈值与电池性能稳定性以及电压检测精度等电池特性参数有关,若电池性能稳定性差,电压检测精度低,则可将预设电流阈值设为较大值,以避免因为电压检测精度差等因素造成电池微短路的误判。此外,预设电流阈值的设定还可与开发者对电池微短路检测所采用的检测算法的误判率以及主要识别的微短路程度的需求之间的权衡相关。若要求检测算法的误判率低,可适当提高预设电流阈值;若要求从待测电池单体的非常微小的微短路开始识别目标电池的微短路状态,则可适当降低此阈值,具体可根据实际应用场景确定,在此不做限制。
进一步的,在一些可行的实施方式中,终端获取得到目标电池的漏电流值之后,还可对可能出现负值的漏电流值进行修正,以提高漏电流值的计算精度。具体的,若计算得到的漏电流值小于零,则可加大ΔT1的长度并重新计算目标电池的漏电流值。即,终端可重新选择两个指定时刻使得两个指定时刻之间的时间长度较大,并根据虚拟参考电池和目标电池在重新选择的两个指定时刻上对应的剩余电量等参数,进而重新计算得到目标电池的漏电流值。需要说明的是,本发明实施例将目标电池的漏电流值的比较阈值设定为零仅仅可能影响到漏电流值的计算精度,不影响漏电流值计算的功能,因此,上述漏电流值的比较阈值也可选定为其他非零的常数,具体可根据实际应用场景需求确定,在此不做限制。
在一些可行的实施方式中,终端计算得到目标电池的漏电流值之后,还可计算目标电池在上述ΔT1对应的时间长度上的平均电压值,根据上述漏电流值和平均电压值计算目标电池的微短路电阻。假设上述目标电池在ΔT1内的平均电压值为V
avg,目标电池的微短路电阻为R
ISC,则有:
R
ISC=V
avg/I
Leak
本发明实施例通过微短路电阻更加直观明了地确定目标电池的微短路状态,通过微短路电阻的计算也可定量检测出目标电池的微短路的电阻阻值等。终端确定了目标电池的漏电流值之后,则可根据目标电池的电压平均值计算目标电池的微短路电阻。其中,上述目标电池的漏电流值包括修正之后的漏电流值。具体实现中,终端可根据通过BMS记录第二时刻与第一时刻之间的时间长度上目标电池在每个电压采样时刻的电压值。具体的,BMS可在目标电池的充放电过程中,按照预设电压采样周期采集目标电池的电压值,其中,上述预设电压采样周期可为现有BMS的电压采集周期,在此不做限制。终端可从BMS记录 的目标电池的电压值中获取每个电压采样时刻上目标电池的电压值,进而可计算目标电池的平均电压值。若第二时刻与第一时刻之间的时间长度上目标电池均处于在线状态,则可按照预设电压采样周期确定第二时刻与第一时刻之间的时间长度上包含的N个电压采样时刻。其中,N个电压采样时刻中的第一个电压采样时刻为最接近于第一时刻的电压采样时刻,即BMS按照现有的电压采集周期采集目标电池的电压值时在该时间长度上的第一个采集时刻,接着可BMS按照上述电压采集周期连续采集在时间长度上其他电压采样时刻上目标电池的电压值,最后一个电压采样时刻为最接近于第二时刻的电压采样时刻。上述N个电压采样时刻中相邻两个电压采样时刻之间的时间长度等于BMS的电压采样周期,即上述预设电压采样周期。
需要说明的是,若在第二时刻和第一时刻之间目标电池出现故障,例如目标电池的外部供电设备故障而停止对目标电池供电使得目标电池出现断电等故障,则上述N个电压采样时刻为目标电池处于正常工作状态下BMS采集单体电池的电压值的各个采集时刻。目标电池处于工作状态中断的时间段内,BMS不对目标电池的电压值进行采集,例如BMS采集了最接近于第一时刻的电压采集时刻上各个目标电池的电压值之后,目标电池出现故障,BMS则无法对目标电池的电压值进行采集、记录。待目标电池恢复正常工作状态之后,BMS则可继续对目标电池的电压值进行采集、记录。在该应用场景中,第二时刻与第一时刻之间包含的N个电压值采样时刻(假设为N1)则少于上述第二时刻与第一时刻之间的时间长度上目标电池均处于在线状态的应用场景中,第二时刻与第一时刻之间包含的N个电压值采样时刻(假设为N2)。即N1小于N2。
在一些可行的实施方式中,若上述目标电池为独立工作的单个电池,则终端可根据各个电压采样时刻上目标电池的电压值计算在ΔT1上目标电池的平均电压值。若上述目标电池为电池组中的某一个单体电池,则终端可依次计算上述N个电压采样时刻中每两个相邻的电压采样时刻中第K个电压采样时刻包含目标电池的电池组中各电池单体的第一电压平均值,设为U(kT),以及第K-1个电压采样时刻电池组中各电池单体的第二电压平均值,设为U
M((k-1)T)。例如,当K等于2时,终端可计算第一个电压采样时刻电池组中各个单体电池的电压值的平均值,以及第二个电压采样时刻电池组中各个单元电池的电压值的平均值。进一步的,终端根据预设滤波系数对第一电压平均值和第二电压平均值值进行缩放,并将第一电压平均值的缩放值和电池组的电压值的缩放值进行累加以得到第K个电压采样时刻的电压平均值(设为U
M(kT))。如下表达式所示,终端可计算电池组在第K个电压采样时刻的电压平均值:
U
M(kT)=α·U(kT)+(1-α)·U
M((k-1)T)
其中,U
M(kT)为这一时刻电池组的单体电池(包括目标电池)的电压近似平均值,U
M((k-1)T)为上一时刻电池组的单体电池的电压近似平均值,U(kT)为这一时刻采集到的各个单体电池的电压值的平均电压值。而α为滤波系数,这里可以取为0.0001。
当K等于3时,终端可计算第二个电压采样时刻电池组中各个单体电池的电压值的电压平均值(具体可为上述上一时刻电池组的单体电池的电压近似值),以及第三个电压采样时刻电池组中各个单元电池的电压值的电压平均值(具体可为上述这一时刻采集到的各个 单体电池的电压值的平均电压值)。进而可根据上述U
M(kT)的表达式计算K等于3时电池组的单体电池的电压平均值(即上述这一时刻电池组的单体电池的电压近似平均值)。以此类推,依次计算各个电压采集时刻的电压平均值,当K等于N时,则可将第K个电压采样时刻的电压平均值确定为第二时刻和第一时刻之间的时间长度上的电压平均值,下面以U
M进行描述。
进一步的,可结合上述目标电池的漏电流值确目标电池的微短路电阻为R
ISC:
其中,R
ISC为单体电池i(即目标电池)的微短路电阻,I
ds为目标电池的漏电流值(即I
Leak),Inf代表无短路。通过目标电池的微短路电阻的计算可定量判断目标电池的微短路状态,判断准确率更高,适用性更强。
在一些可行的实施方式中,终端获取得到指定时刻虚拟参考电池的SOC(如上述SOC
virtual(t0+T
s))之后,可根据上述虚拟参考电池的SOC确定虚拟参考电池的端电压值(即参考端电压值)。进一步的,终端确定了虚拟参考电池的端电压值之后,则可通过目标电池与虚拟参考电池的端电压值的差异确定目标电池是否发生的微短路。
具体实现中,当参考虚拟电池采用上述图2所示的等效电路模型时,虚拟参考电池的参考电池参数通常包含以下参数:
虚拟参考电池的充放电效率η;
虚拟参考电池在当前状态下的满充电量C
B;
虚拟参考电池的SOC与开路电压(英文:Open Circuit Voltage,OCV)的关系式f1,f1通常近似为多项式;
关系式g1、g2和g3,其中,g1、g2、g3分别为SOC、温度T
B与R0、R1、C1的关系式,并且通常近似为多项式。
需要说明的是,在长期使用时,目标电池会随着使用时间的增大发生老化。此时,为了提高虚拟参考电池对目标电池的仿真准确性,根据目标电池的端电压、工作电流和温度等电池参数确定虚拟参考电池的电池参数时,需要对虚拟参考电池的电池参数进行更新,包括等效电路模型中各个元件参数。其中,对虚拟参考电池的电池参数进行更新的步骤可包括:
步骤一、获取目标电池的老化参数。
步骤二、利用目标电池的老化参数对虚拟参考电池的电池参数进行更新。
其中上述待更新的虚拟参考电池的电池参数包括电池充放电效率,电池满充量,SOC-OCV在不同温度下的关系,SOC、T
B与R0、R1、C1的关系式等。
当上述虚拟参考电池的电池参数更新之后,根据目标电池的工作电流(等效为虚拟参考电池的工作电流),继续对虚拟参考电池的剩余电量、端电压值进行更新,具体步骤包括:
步骤一、根据虚拟参考电池的工作电流的积分值和虚拟电池当前容量调制虚拟电池的SOC:
其中,上述t0为上述初始时刻,η为目标电池(也为虚拟参考电池)在当前温度下的充放电效率,CB为目标电池(也为虚拟参考电池)在当前温度下的容量。
步骤二、根据虚拟参考电池的SOC更新虚拟参考电池的等效电路中对应的OCV:
OCV
virtua
l(t
0+T
s)=f1(SOC
virtua
l(t
0+T
s)
其中,上述OCVvirtual(t0+Ts)为当前时刻(即指定时刻t0+Ts)等效电路的OCV。
步骤三、根据虚拟参考电池的OCV更新等效电路中的电阻值及电容值:
R
0(t
0+T
s)=g1(OCV
virtua
l(t
0+T
s)
R
1(t
0+T
s)=g2(OCV
virtua
l(t
0+T
s)
C
1(t
0+T
s)=g3(OCV
virtua
l(t
0+T
s)
其中,上述R0(t0+Ts)、R1(t0+Ts)、C1(t0+Ts)为当前时刻的电阻值和电容值。
步骤四、更新等效电路中电阻和电容两端的端电压:
V
R0(t
0+T
s)=R
0(t
0+T
s)×i
B(t
0+T
s)
步骤五、更新虚拟参考电池的端电压:
V
B_virtual0(t
0+T
s)=OCV
virtual(t
0+T
s)-V
R0(t
0+T
s)-V
C1(t
0+T
s)
其中,上述V
B_virtual0即为图2所示的等效电路中的端电压V
B(即参考端电压值)。
需要注意的是,上述的计算形式仅是虚拟电池模型更新的一种形式。除等效电路模型外,还可以采用电化学模型更新虚拟电池老化情况及端电压、容量参数。电池的老化对电池性能的影响一般以月、年为单位,而电池的工作电流对电池的剩余电量、端电压的影响则一般是以秒、分钟为单位,因此,在实际应用场景中,上述电池老化带来的参数更新和工作电流带来的剩余电量和端电压更新可以采取不同的计算时间间隔。例如,剩余电量和端电压更新的计算时间间隔可以选择较短的时间间隔,老化带来的电池参数更新的更新时间间隔可以选择较长的时间间隔,具体可根据实际应用场景确定,在此不做限制。
在一些可行的实施方式中,终端根据上述更新后的虚拟参考电池的电池参数确定了虚拟参考电池的端电压之后,则可将虚拟参考电池的端电压与目标电池的端电压进行比较,根据端电压的差值确定目标电池是否发生微短路。具体实现中,终端可预先设定用于确定目标电池是否发生微短路的预设电压阈值。若虚拟参考电池与目标电池的端电压的电压差值大于或者等于上述预设电压阈值,则可确定目标电池发生了微短路。若虚拟参考电池与目标电池的端电压的电压差值小于上述预设电压阈值,则可确定目标电池没有发生微短路。
进一步的,在一些可行的实施方式中,终端确定了虚拟参考电池和目标电池的端电压的电压差值之后,也可根据电压差值和虚拟参考电池的工作电流值确定虚拟参考电池与目标电池的剩余电量的电量差值。若上述电量差值大于预设电量阈值,则可确定目标电池发 生了微短路,否则,则可确定目标电池没有发生微短路。
进一步的,在一些可行的实施方式中,虚拟参考电池也可采用P2D等电化学模型的实现方式,进而可计算电化学模型的虚拟参考电池的漏电流值与内短路电阻值。本发明实施例以P2D模型为例进行说明,在该模型中,虚拟参考电池的电池参数可包括模型参数固体颗粒半径R
s,固、液相扩散系数D
s、D
e、液相有效扩散系数
颗粒比表面积a
s、电池总表面积A,固相离子有效电导率σ
eff、液相离子有效扩散电导率κ
eff等。液相、正负极及隔膜区域液相体积分数分别为ε
e、ε
e,n、ε
e,p、ε
e,sep,正负极、隔膜区域的厚度分别为:δ
p、δ
n、δ
sep,t
+为锂离子迁移数,表观传质系数α,活性材料平衡电势
隔膜的电阻为R
SEI,其中,上述这些模型参数可在建模前通过测量获取得到。
进一步的,虚拟电池的模型参数固相、液相及固体颗粒表面离子浓度分别为C
s、C
e、C
s,surf,局部电流密度j
f,固液相电势分布分别为φ
s、φ
e,主反应活化过电势η
act,交换电流密度i
0等状态值以及输出值V
t和SOC可用以下过程中描述的偏微分方程联合求解得到:
1)固相锂离子分布:
初值条件为:
c
s(x,t,r)=c
s,0|
t=0(2)
边界条件为:
2)液相锂离子浓度分布:
初值条件为:
c
e(x,t)|
t=0=c
s,0
边界条件为:
3)固相电势分布
边界条件为:
4)液相电势分布
边界条件为:
5)两相界面Bulter-volmer方程
V(t)=φ
s(L,t)-φ
s(0,t)(20)
终端根据上述等式(1)至(20)联合求解可得虚拟参考电池的端电压V(t)及SOC等参数值。
进一步的,终端求得虚拟参考电池的端电压或者SOC等电池参数值之后,则可根据上述端电压或者SOC等电池参数值确定目标电池是否发生微短路,具体可参见上述等效电路模型对应的实现方式,在此不再赘述。
本发明实施例可采用等效电路模型和电化学模型等电池模型作为虚拟参考电池,通过虚拟参考电池仿真目标电池的工作状态,进而可通过虚拟参考电池与目标电池的电池参数值的差异判断目标电池是否发生微短路。本发明实施例可以通过BMS采集到的数据确定目标电池的端电压值以及工作电流值等电池参数值,进而可计算目标电池的剩余电量、虚拟参考电池的端电压以及剩余电量等电池参数,进而可通过虚拟参考电池与目标电池的端电压或者剩余电量的差异确定目标电池发生了微短路。本发明实施例通过BMS采集到的数据进行漏电流的检测,不需要额外增加传感器,并且所需存储的数据量和数据的计算量较小,降低了电池微短路的检测难度,适用性高。进一步的,本发明实施例可根据目标电池的漏电流值估计出其微短路电阻阻值,可以在目标电池尚未发生严重的微短路之前对目标电池的微短路情况进行检测,可提前检测到微小的微短路,并给出定量结果,可提高微短路检测的准确性,降低电池故障的误判率,从而达到提前预防的目的,提高电池的安全性。
参见图5,是本发明实施例提供的电池微短路的检测装置的结构示意图。本发明实施例提供的检测装置包括:
获取模块51,用于获取目标电池在初始时刻的目标初始电池参数值,并确定虚拟参考电池在所述初始时刻的参考初始电池参数值,在给定相同的激励条件下,所述虚拟参考电池的响应与所述目标电池的响应相同。
所述获取模块51,还用于获取目标电池在指定时刻的目标电池参数值。
确定模块52,用于根据所述获取模块获取的所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值。
计算模块53,用于计算所述获取模块获取的所述目标电池参数值与所述确定模块确定的所述参考电池参数值的差值。
所述确定模块52,还用于根据所述计算模块计算得到的所述差值确定所述目标电池发生微短路。
在一些可行的实施方式中,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;
所述指定时刻与所述初始时刻之间的时间长度为ΔT0;
所述确定模块52用于:
根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟 参考电池的参考剩余电量;
所述计算模块53用于:
根据所述目标端电压值计算所述目标电池的目标剩余电量,并计算所述目标剩余电量与所述参考剩余电量的电量差值;
所述确定模块52用于根据所述计算模块计算得到的所述电量差值确定所述目标电池发生微短路。
在一些可行的实施方式中,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;
所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;
所述确定模块52用于:
计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;
若所述漏电流值大于或者等于预设电流阈值,则确定所述目标电池发生微短路。
在一些可行的实施方式中,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;
所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;
所述计算模块53用于:
计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;
计算所述目标电池在所述时间长度上的平均电压值,并结合所述漏电流值确定所述目标电池的微短路电阻;
所述确定模块52用于:
若所述计算计算得到的所述微短路电阻的大小小于预设电阻阈值,则确定所述目标电池发生微短路。
在一些可行的实施方式中,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;
所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;
所述指定时刻与所述初始时刻之间的时间长度为ΔT0;
所述确定模块52用于:
根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;
根据所述参考剩余电量和所述电流值确定所述虚拟参考电池在所述指定时刻的参考端电压值;
所述计算模块53用于:
计算所述目标端电压值与所述参考端电压值的电压差值;
所述确定模块还用于根据所述计算模块计算的所述电压差值确定所述目标电池发生微短路。
在一些可行的实施方式中,所述确定模块52用于:
在所述计算模块计算得到所述电压差值大于预设电压阈值时,确定所述目标电池发生微短路。
在一些可行的实施方式中,所述确定模块52用于:
根据所述电压差值和所述目标电池的电流值计算所述虚拟参考电池和所述目标电池的剩余电量的电量差值;
若所述电量差值大于预设电量阈值,则确定所述目标电池发生微短路。
在一些可行的实施方式中,所述确定模块52用于:
根据所述参考剩余电量确定所述虚拟参考电池的元件参数,所述虚拟参考电池中包含等效电路,所述元件参数为所述等效电路上的元件在所述温度参数值下的参数值;
根据所述电流值和所述元件参数确定所述元件的端电压值,并根据所述元件的端电压值确定所述虚拟参考电池的参考端电压值。
在一些可行的实施方式中,所述虚拟参考电池为基于目标电池的电化学参数或者物理参数,通过数学等效或者电化学建模等途径建立的电池模型,所述电池模型包括等效电路模块或者电化学模型。
具体实现中,上述电池微短路的检测装置具体可为本发明实施例提供的终端设备,可通过其内置的各个模块执行上述电池微短路的检测方法中各个步骤所描述的实现方式。具体实现过程可参见上述各个步骤中描述的实现方式,在此不再赘述。
本发明实施例可采用等效电路模型和电化学模型等电池模型作为虚拟参考电池,通过虚拟参考电池仿真目标电池的工作状态,进而可通过虚拟参考电池与目标电池的电池参数值的差异判断目标电池是否发生微短路。本发明实施例可以通过BMS采集到的数据确定目标电池的端电压值以及工作电流值等电池参数值,进而可计算目标电池的剩余电量、虚拟参考电池的端电压以及剩余电量等电池参数,进而可通过虚拟参考电池与目标电池的端电压或者剩余电量的差异确定目标电池发生了微短路。本发明实施例通过BMS采集到的数据进行漏电流的检测,不需要额外增加传感器,并且所需存储的数据量和数据的计算量较小,降低了电池微短路的检测难度,适用性高。进一步的,本发明实施例可根据目标电池的漏电流值估计出其微短路电阻阻值,可以在目标电池尚未发生严重的微短路之前对目标电池的微短路情况进行检测,可提前检测到微小的微短路,并给出定量结果,可提高微短路检测的准确性,降低电池故障的误判率,从而达到提前预防的目的,提高电池的安全性。
本发明的说明书、权利要求书以及附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或者单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或者单元,或可选地还包括对于这些过程、方法、系统、产品或设备固有的其他步骤或单元。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过 计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
Claims (14)
- 一种电池微短路的检测方法,其特征在于,包括:获取目标电池在初始时刻的目标初始电池参数值,并确定虚拟参考电池在所述初始时刻的参考初始电池参数值,在给定相同的激励条件下,所述虚拟参考电池的响应与所述目标电池的响应相同;获取目标电池在指定时刻的目标电池参数值;根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值;计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路。
- 如权利要求1所述的方法,其特征在于,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;所述指定时刻与所述初始时刻之间的时间长度为ΔT0;所述根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值包括:根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;所述计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路包括:根据所述目标端电压值计算所述目标电池的目标剩余电量,并计算所述目标剩余电量与所述参考剩余电量的电量差值;根据所述电量差值确定所述目标电池发生微短路。
- 如权利要求2所述的方法,其特征在于,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;所述根据所述电量差值确定所述目标电池发生微短路包括:计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;若所述漏电流值大于或者等于预设电流阈值,则确定所述目标电池发生微短路。
- 如权利要求2所述的方法,其特征在于,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;所述根据所述电量差值确定所述目标电池发生微短路包括:计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;计算所述目标电池在所述时间长度上的平均电压值,并结合所述漏电流值确定所述目标电池的微短路电阻;若所述微短路电阻的大小小于预设电阻阈值,则确定所述目标电池发生微短路。
- 如权利要求1所述的方法,其特征在于,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;所述指定时刻与所述初始时刻之间的时间长度为ΔT0;所述根据所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值包括:根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;根据所述参考剩余电量和所述电流值确定所述虚拟参考电池在所述指定时刻的参考端电压值;所述计算所述目标电池参数值与所述参考电池参数值的差值,并根据所述差值确定所述目标电池发生微短路包括:计算所述目标端电压值与所述参考端电压值的电压差值,并根据所述电压差值确定所述目标电池发生微短路。
- 如权利要求5所述的方法,其特征在于,所述根据所述电压差值确定所述目标电池发生微短路包括:若所述电压差值大于预设电压阈值,则所述目标电池发生微短路。
- 如权利要求5所述的方法,其特征在于,所述根据所述电压差值确定所述目标电池发生微短路包括:根据所述电压差值和所述目标电池的电流值计算所述虚拟参考电池和所述目标电池的剩余电量的电量差值;若所述电量差值大于预设电量阈值,则所述目标电池发生微短路。
- 一种电池微短路的检测装置,其特征在于,包括:获取模块,用于获取目标电池在初始时刻的目标初始电池参数值,并确定虚拟参考电池在所述初始时刻的参考初始电池参数值,在给定相同的激励条件下,所述虚拟参考电池 的响应与所述目标电池的响应相同;所述获取模块,还用于获取目标电池在指定时刻的目标电池参数值;确定模块,用于根据所述获取模块获取的所述目标电池参数值以及所述参考初始电池参数,确定所述虚拟参考电池在所述指定时刻的参考电池参数值;计算模块,用于计算所述获取模块获取的所述目标电池参数值与所述确定模块确定的所述参考电池参数值的差值;所述确定模块,还用于根据所述计算模块计算得到的所述差值确定所述目标电池发生微短路。
- 如权利要求8所述的检测装置,其特征在于,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;所述指定时刻与所述初始时刻之间的时间长度为ΔT0;所述确定模块用于:根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;所述计算模块用于:根据所述目标端电压值计算所述目标电池的目标剩余电量,并计算所述目标剩余电量与所述参考剩余电量的电量差值;所述确定模块用于根据所述计算模块计算得到的所述电量差值确定所述目标电池发生微短路。
- 如权利要求9所述的检测装置,其特征在于,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;所述确定模块用于:计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1的比值确定为所述目标电池的漏电流值;若所述漏电流值大于或者等于预设电流阈值,则确定所述目标电池发生微短路。
- 如权利要求9所述的检测装置,其特征在于,所述指定时刻包括第一时刻和第二时刻,所述第二时刻与所述第一时刻之间的时间长度为ΔT1;所述电量差值包括所述第一时刻对应的第一电量差值和所述第二时刻对应的第二电量差值;所述计算模块用于:计算所述第二电量差值和所述第一电量差值的目标差值,将所述目标差值与所述ΔT1 的比值确定为所述目标电池的漏电流值;计算所述目标电池在所述时间长度上的平均电压值,并结合所述漏电流值确定所述目标电池的微短路电阻;所述确定模块用于:若所述计算计算得到的所述微短路电阻的大小小于预设电阻阈值,则确定所述目标电池发生微短路。
- 如权利要求8所述的检测装置,其特征在于,所述目标电池参数值包括所述目标电池的目标端电压值、所述目标电池的电流值以及所述目标电池的温度参数值;所述虚拟参考电池的初始电池参数值中包括所述虚拟参考电池的初始电池电量值;所述指定时刻与所述初始时刻之间的时间长度为ΔT0;所述确定模块用于:根据所述目标电池的电流值和所述目标电池的温度参数值,确定所述虚拟参考电池在所述ΔT0内的电池电量变化值,并根据所述虚拟参考电池的初始电池电量值确定所述虚拟参考电池的参考剩余电量;根据所述参考剩余电量和所述电流值确定所述虚拟参考电池在所述指定时刻的参考端电压值;所述计算模块用于:计算所述目标端电压值与所述参考端电压值的电压差值;所述确定模块还用于根据所述计算模块计算的所述电压差值确定所述目标电池发生微短路。
- 如权利要求12所述的检测装置,其特征在于,如果计算模块计算得到所述电压差值大于预设电压阈值,则所述目标电池发生微短路。
- 如权利要求12所述的检测装置,其特征在于,所述确定模块用于:根据所述电压差值和所述目标电池的电流值计算所述虚拟参考电池和所述目标电池的剩余电量的电量差值;若所述电量差值大于预设电量阈值,则确定所述目标电池发生微短路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17883460.2A EP3550317B1 (en) | 2016-12-23 | 2017-12-22 | Method and device for detecting battery micro-short circuit |
US16/447,600 US11867765B2 (en) | 2016-12-23 | 2019-06-20 | Battery micro-short circuit detection method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611206987.8A CN108241102A (zh) | 2016-12-23 | 2016-12-23 | 一种电池微短路的检测方法及装置 |
CN201611206987.8 | 2016-12-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/447,600 Continuation US11867765B2 (en) | 2016-12-23 | 2019-06-20 | Battery micro-short circuit detection method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018113773A1 true WO2018113773A1 (zh) | 2018-06-28 |
Family
ID=62624537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/117965 WO2018113773A1 (zh) | 2016-12-23 | 2017-12-22 | 一种电池微短路的检测方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11867765B2 (zh) |
EP (1) | EP3550317B1 (zh) |
CN (1) | CN108241102A (zh) |
WO (1) | WO2018113773A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109164395A (zh) * | 2018-08-22 | 2019-01-08 | 杭州邦利检测技术有限公司 | 电动汽车用动力蓄电池安全试验方法 |
CN110626210A (zh) * | 2019-08-29 | 2019-12-31 | 蜂巢能源科技有限公司 | 锂电池微短路的识别方法及电池管理系统 |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10614146B2 (en) * | 2015-12-17 | 2020-04-07 | Siemens Aktiengesellschaft | Adaptive demand response method using batteries with commercial buildings for grid stability and sustainable growth |
TWI657639B (zh) | 2017-12-04 | 2019-04-21 | Industrial Technology Research Institute | 電池放電流程決定方法和系統 |
TWI649573B (zh) * | 2017-12-04 | 2019-02-01 | 財團法人工業技術研究院 | 電池內短路阻抗之偵測方法和系統 |
KR102318242B1 (ko) * | 2018-02-01 | 2021-10-27 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | 단말 장치 및 그 누전 검출 방법 |
JP6973213B2 (ja) * | 2018-03-16 | 2021-11-24 | トヨタ自動車株式会社 | 二次電池システム、及び二次電池制御方法 |
CN109142953B (zh) * | 2018-08-23 | 2022-02-18 | 维沃移动通信有限公司 | 漏电流监控方法及电子设备 |
CN109709485A (zh) * | 2019-02-01 | 2019-05-03 | 北京长城华冠汽车科技股份有限公司 | 动力电池的故障检测方法、装置、介质和电子设备 |
CN111856316B (zh) * | 2019-04-02 | 2021-10-26 | 华为技术有限公司 | 检测电池组内短路的方法及相关装置、电动车 |
US11525862B2 (en) * | 2019-04-08 | 2022-12-13 | Ningde Amperex Technology Limited | Methods, storage media, and electronic devices for calculating short-circuit current of battery |
CN109991477B (zh) * | 2019-04-18 | 2021-02-19 | 北京经纬恒润科技股份有限公司 | 自放电电阻检测方法和装置 |
CN110336346B (zh) * | 2019-06-26 | 2021-07-09 | 南京中感微电子有限公司 | 带微短路检测的电池保护电路 |
CN110888072A (zh) * | 2019-11-28 | 2020-03-17 | Oppo广东移动通信有限公司 | 电池微短路的检测方法及装置、电子设备 |
CN111123118B (zh) * | 2019-12-30 | 2022-08-12 | Oppo广东移动通信有限公司 | 电池微短路的检测方法及装置、设备、存储介质 |
CN111142030B (zh) * | 2019-12-30 | 2022-02-25 | Oppo广东移动通信有限公司 | 用于内短路电流检测方法、装置、设备及可读存储介质 |
CN111198327B (zh) * | 2020-02-24 | 2021-02-02 | 北京理工大学 | 一种单体电池内短路故障自检测方法 |
CN111610456B (zh) * | 2020-04-29 | 2022-08-23 | 上海理工大学 | 一种区分电池微短路和小容量故障的诊断方法 |
CN111516551A (zh) * | 2020-06-01 | 2020-08-11 | 中国第一汽车股份有限公司 | 一种电池管理系统功能安全监控方法、装置及车辆 |
CN111929602B (zh) * | 2020-06-23 | 2023-06-16 | 上海理工大学 | 一种基于容量估计的单体电池漏电或微短路定量诊断方法 |
CN111679201B (zh) * | 2020-06-30 | 2022-06-14 | 重庆长安新能源汽车科技有限公司 | 一种动力电池包内短路的检测方法 |
CN112098893B (zh) * | 2020-09-18 | 2023-06-20 | 哈尔滨理工大学 | 一种适用于电动汽车的基于初始容量差异的电池内短路故障诊断方法 |
CN112098864B (zh) * | 2020-09-25 | 2023-10-20 | Oppo广东移动通信有限公司 | 漏电流检测方法、装置、电子设备和存储介质 |
CN112394291B (zh) * | 2020-11-05 | 2024-06-11 | 广汽埃安新能源汽车有限公司 | 一种电池热失控预警方法及装置 |
CN112698229B (zh) * | 2020-12-11 | 2024-05-14 | Oppo广东移动通信有限公司 | 短路电流检测方法、装置、可读存储介质及电子设备 |
WO2022126390A1 (zh) * | 2020-12-15 | 2022-06-23 | 东莞新能德科技有限公司 | 电池内短路侦测方法、电子装置和存储介质 |
KR20220089969A (ko) * | 2020-12-22 | 2022-06-29 | 삼성전자주식회사 | 배터리의 단락 검출 장치 및 방법 |
CN112858931A (zh) * | 2021-02-01 | 2021-05-28 | 重庆峘能电动车科技有限公司 | 电芯健康监测方法、终端设备及系统 |
CN112924873A (zh) * | 2021-02-04 | 2021-06-08 | 上海玫克生储能科技有限公司 | 电池包微短路的在线诊断方法及系统 |
CN113009378B (zh) * | 2021-03-08 | 2022-03-29 | 经纬恒润(天津)研究开发有限公司 | 一种电池微短路检测方法及装置 |
CN113135115B (zh) * | 2021-03-30 | 2022-12-13 | 广州小鹏汽车科技有限公司 | 检测电池系统短路的方法、装置、车辆及存储介质 |
JP2023018592A (ja) * | 2021-07-27 | 2023-02-08 | 株式会社デンソー | 電池監視装置、及びプログラム |
CN113884890A (zh) * | 2021-11-02 | 2022-01-04 | 轻橙时代(深圳)科技有限责任公司 | 一种动力电池内短路检测方法 |
CN113866646B (zh) * | 2021-11-15 | 2024-05-17 | 长沙理工大学 | 基于极化阻抗压升的电池簇不一致性在线监测方法 |
CN114062930B (zh) * | 2021-11-16 | 2023-06-09 | 蜂巢能源科技有限公司 | 一种电芯极耳异常接触的检测方法、装置和设备 |
CN114374003B (zh) * | 2021-12-13 | 2024-04-19 | 安徽力普拉斯电源技术有限公司 | 一种识别两轮车用深循环电池内化成充电微短路的方法 |
KR20230093913A (ko) | 2021-12-20 | 2023-06-27 | 삼성전자주식회사 | 배터리의 단락 검출 장치 및 방법 |
CN114757026B (zh) * | 2022-04-08 | 2024-06-07 | 昆明理工大学 | 一种全工况多尺度动力锂电池电化学耦合建模方法 |
CN114912327B (zh) * | 2022-05-27 | 2023-03-24 | 上海玫克生储能科技有限公司 | 电池电化学模型中电流密度的计算方法、装置及存储介质 |
KR20230171293A (ko) * | 2022-06-13 | 2023-12-20 | 삼성전자주식회사 | 배터리의 단락 검출 장치 및 방법 |
CN115508718B (zh) * | 2022-11-17 | 2023-03-21 | 中创新航科技股份有限公司 | 一种动力电池自放电的监测方法及装置 |
CN116027199B (zh) * | 2022-12-08 | 2023-09-29 | 帕诺(常熟)新能源科技有限公司 | 基于电化学模型参数辨识检测电芯全寿命内短路的方法 |
TWI845185B (zh) * | 2023-03-02 | 2024-06-11 | 華碩電腦股份有限公司 | 電池參數更新方法及系統 |
CN116298912B (zh) * | 2023-03-08 | 2023-12-12 | 上海玫克生储能科技有限公司 | 电池微短路电路模型的建立方法、系统、设备及介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6255803B1 (en) * | 1999-08-10 | 2001-07-03 | Matsushita Electric Industrial Co., Ltd. | Method for detecting minor short in cells and method for detecting cell short in cells |
CN1821801A (zh) * | 2005-02-18 | 2006-08-23 | 松下电器产业株式会社 | 二次电池的内部短路检测装置和检测方法、二次电池的电池组件及电子设备 |
CN101034141A (zh) * | 2000-05-23 | 2007-09-12 | 佳能株式会社 | 检测可再充电电池内部状态的方法、装置和带有该装置的设备 |
CN102104180A (zh) * | 2009-12-22 | 2011-06-22 | 三洋电机株式会社 | 蓄电池系统、具备它的车辆及蓄电池系统的内部短路检测方法 |
CN102576895A (zh) * | 2009-09-24 | 2012-07-11 | 丰田自动车株式会社 | 二次电池的制造方法 |
CN103636030A (zh) * | 2011-06-09 | 2014-03-12 | 罗伯特·博世有限公司 | 用于识别安全装置的触发的方法 |
CN104614630A (zh) * | 2015-01-19 | 2015-05-13 | 清华大学 | 一种电池微短路的识别方法 |
CN104614631A (zh) * | 2015-01-19 | 2015-05-13 | 清华大学 | 一种电池微短路的识别方法 |
CN104833919A (zh) * | 2014-07-16 | 2015-08-12 | 北汽福田汽车股份有限公司 | 动力电池健康状态的检测方法及系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5287872B2 (ja) * | 2009-09-25 | 2013-09-11 | トヨタ自動車株式会社 | 二次電池システム |
DE102009045526A1 (de) * | 2009-10-09 | 2011-04-14 | SB LiMotive Company Ltd., Suwon | Verfahren zur Initialisierung und des Betriebs eines Batteriemanagementsystems |
JP5744957B2 (ja) * | 2013-04-12 | 2015-07-08 | プライムアースEvエナジー株式会社 | 電池状態判定装置 |
US9194904B2 (en) * | 2013-06-20 | 2015-11-24 | GM Global Technology Operations LLC | Systems and methods for detecting leakage paths in a battery sensing circuit |
CN104035048A (zh) * | 2014-06-20 | 2014-09-10 | 上海出入境检验检疫局工业品与原材料检测技术中心 | 一种锂离子电池过充安全性能的热电检测方法及其装置 |
US10656195B2 (en) * | 2014-06-30 | 2020-05-19 | Celgard, Llc | System and method for differentiating shorting in a battery |
WO2016100919A1 (en) * | 2014-12-19 | 2016-06-23 | California Institute Of Technology | Improved systems and methods for management and monitoring of energy storage and distribution |
US10371754B2 (en) * | 2016-02-19 | 2019-08-06 | Cps Technology Holdings Llc | Systems and methods for real-time estimation of capacity of a rechargeable battery |
-
2016
- 2016-12-23 CN CN201611206987.8A patent/CN108241102A/zh active Pending
-
2017
- 2017-12-22 EP EP17883460.2A patent/EP3550317B1/en active Active
- 2017-12-22 WO PCT/CN2017/117965 patent/WO2018113773A1/zh unknown
-
2019
- 2019-06-20 US US16/447,600 patent/US11867765B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6255803B1 (en) * | 1999-08-10 | 2001-07-03 | Matsushita Electric Industrial Co., Ltd. | Method for detecting minor short in cells and method for detecting cell short in cells |
CN101034141A (zh) * | 2000-05-23 | 2007-09-12 | 佳能株式会社 | 检测可再充电电池内部状态的方法、装置和带有该装置的设备 |
CN1821801A (zh) * | 2005-02-18 | 2006-08-23 | 松下电器产业株式会社 | 二次电池的内部短路检测装置和检测方法、二次电池的电池组件及电子设备 |
CN102576895A (zh) * | 2009-09-24 | 2012-07-11 | 丰田自动车株式会社 | 二次电池的制造方法 |
CN102104180A (zh) * | 2009-12-22 | 2011-06-22 | 三洋电机株式会社 | 蓄电池系统、具备它的车辆及蓄电池系统的内部短路检测方法 |
CN103636030A (zh) * | 2011-06-09 | 2014-03-12 | 罗伯特·博世有限公司 | 用于识别安全装置的触发的方法 |
CN104833919A (zh) * | 2014-07-16 | 2015-08-12 | 北汽福田汽车股份有限公司 | 动力电池健康状态的检测方法及系统 |
CN104614630A (zh) * | 2015-01-19 | 2015-05-13 | 清华大学 | 一种电池微短路的识别方法 |
CN104614631A (zh) * | 2015-01-19 | 2015-05-13 | 清华大学 | 一种电池微短路的识别方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3550317A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109164395A (zh) * | 2018-08-22 | 2019-01-08 | 杭州邦利检测技术有限公司 | 电动汽车用动力蓄电池安全试验方法 |
CN110626210A (zh) * | 2019-08-29 | 2019-12-31 | 蜂巢能源科技有限公司 | 锂电池微短路的识别方法及电池管理系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3550317B1 (en) | 2022-02-02 |
CN108241102A (zh) | 2018-07-03 |
US11867765B2 (en) | 2024-01-09 |
EP3550317A1 (en) | 2019-10-09 |
US20190305384A1 (en) | 2019-10-03 |
EP3550317A4 (en) | 2020-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018113773A1 (zh) | 一种电池微短路的检测方法及装置 | |
WO2018059074A1 (zh) | 一种电池微短路的检测方法及装置 | |
KR102225667B1 (ko) | 배터리의 상태를 추정하는 방법 및 장치 | |
WO2021143592A1 (zh) | 电池等效电路模型的建立方法、健康状态估算方法及装置 | |
EP3018753B1 (en) | Battery control method based on ageing-adaptive operation window | |
US20170115355A1 (en) | Maximum capacity estimator for battery state of health and state of charge determinations | |
CN110506215A (zh) | 一种确定电池内短路的方法及装置 | |
US20210156923A1 (en) | Apparatus and method for testing performance of battery cell | |
CN103439666B (zh) | 一种锂离子电池容量衰退评估的几何方法 | |
CN104678316A (zh) | 锂离子电池荷电状态估算方法和装置 | |
JP7463008B2 (ja) | 電池セル診断装置および方法 | |
CN110795851A (zh) | 一种考虑环境温度影响的锂离子电池建模方法 | |
CN104535935A (zh) | 一种动力电池组的容量检测方法及装置 | |
US20230236252A1 (en) | Methods and devices for estimating state of charge of battery, and extracting charging curve of battery | |
US20150061686A1 (en) | Method for detecting lithium battery | |
CN112108400B (zh) | 一种预测软包电池循环性能的测试方法 | |
KR20220102454A (ko) | 배터리 시스템 진단 장치 및 방법 | |
CN113447821A (zh) | 评估电池荷电状态的方法 | |
CN112731185A (zh) | 锂离子电池的配组方法、配组装置和配组系统 | |
US12078682B2 (en) | Method and apparatus for estimating state of battery | |
EP4202466A1 (en) | Internal short circuit detection method for battery, electronic device, and storage medium | |
CN115754774A (zh) | 锂电池混联系统的soc电量预测方法、装置及计算机设备 | |
Yang et al. | Neural network based SOC estimation during cycle aging using voltage and internal resistance | |
KR20190115630A (ko) | 이차전지의 불량 검출을 위한 저전압 발현 수준 연산 시스템 및 검출 방법 | |
US20240133971A1 (en) | Method and system for estimating short circuit resistance in battery using open cell voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17883460 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017883460 Country of ref document: EP Effective date: 20190705 |