WO2018113388A1 - Dispositif de protection d'entraînement de moteur, procédé de protection contre les surtensions et climatiseur à onduleur - Google Patents

Dispositif de protection d'entraînement de moteur, procédé de protection contre les surtensions et climatiseur à onduleur Download PDF

Info

Publication number
WO2018113388A1
WO2018113388A1 PCT/CN2017/105418 CN2017105418W WO2018113388A1 WO 2018113388 A1 WO2018113388 A1 WO 2018113388A1 CN 2017105418 W CN2017105418 W CN 2017105418W WO 2018113388 A1 WO2018113388 A1 WO 2018113388A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
voltage
inverter
bus
motor
Prior art date
Application number
PCT/CN2017/105418
Other languages
English (en)
Chinese (zh)
Inventor
霍军亚
张国柱
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018113388A1 publication Critical patent/WO2018113388A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption

Definitions

  • the invention relates to the technical field of motor control, in particular to a motor drive protection device, an overvoltage protection method and an inverter air conditioner.
  • the DC bus voltage of the conventional variable frequency drive is in a stable state, and the inverter part is relatively independent from the input AC voltage, so that the control of the inverter part does not need to consider the instantaneous change of the input voltage, which is convenient for the realization of the control method.
  • this design method requires an electrolytic capacitor having a large capacitance value, so that the size of the driver becomes large and the cost is increased.
  • the life of electrolytic capacitors is limited, and its effective working time is often the bottleneck of the life of the drive.
  • the related scheme proposes a strategy of replacing electrolytic capacitors with small-capacity film capacitors or ceramic capacitors.
  • the PFC part is omitted, and the miniaturized capacitor can achieve cost reduction. It can eliminate the bottleneck of service life caused by electrolytic capacitors.
  • the capacitance of the film capacitor or ceramic capacitor on the DC bus voltage is very small, usually only 1%-2% of the capacity of the conventional high-voltage electrolytic capacitor.
  • the motor will Reverse power generation causes high voltage fluctuations in the DC bus voltage. Since the miniaturized capacitor cannot absorb high voltage fluctuations, the DC bus voltage exceeds the withstand voltage of the motor inverter module and the capacitor, and it is easy to overvoltage damage.
  • the main object of the present invention is to provide a motor drive protection device, an overvoltage protection method and an inverter air conditioner.
  • the purpose of the invention is to solve the problem that the DC bus voltage is excessive when a DC bus has a high voltage fluctuation in the motor drive device for miniaturization of the capacitor. High causes motor inverter module and capacitor overvoltage damage.
  • the present invention provides a motor drive protection device, and the motor drive protection device includes:
  • the rectifier performs full-wave rectification on an AC input voltage of an AC power source, and the two output ends of the rectifier are connected to a DC bus; a smoothing circuit and an inverter are sequentially connected in parallel with the DC bus, and the DC smoothing circuit includes a capacitor connected in parallel with the DC bus, and the AC input voltage outputs a pulsed DC bus voltage through the rectifier and the DC smoothing circuit.
  • the inverter is provided with a power supply; the arithmetic control unit controls the inverter to drive the motor to operate;
  • An overvoltage protection circuit located between the rectifier and the inverter and in parallel with the DC bus, comprising a controllable switch and a load in series with the controllable switch; a control end of the controllable switch and the operation
  • the control unit is connected, the operation control unit acquires the DC bus voltage value in real time, and when the DC bus voltage value exceeds a first preset value, the operation control unit controls the controllable switch to be turned on, so that the The load is connected to the overvoltage protection circuit to reduce the DC bus voltage value; when the DC bus voltage is lower than a second preset value, the operation control unit controls the controllable switch to be disconnected, so that the The load is disconnected from the overvoltage protection circuit;
  • the first preset value is greater than the second preset value.
  • the arithmetic control unit controls the controllable switch to be turned on by the PWM signal.
  • the capacitor of the DC smoothing circuit is a film capacitor or a ceramic capacitor with a capacitance of 10-30 uF.
  • the controllable switch comprises a first transistor
  • the load comprises a first resistor
  • a base of the first transistor is connected to the operation control part
  • an emitter of the first transistor is connected to the DC bus anode
  • One end of the first resistor is connected to the collector of the first transistor, and the other end is connected to the positive pole of the DC bus.
  • the operation control unit includes:
  • the input voltage phase detection phase-locked loop module is configured to obtain an instantaneous value of the voltage of the input AC power source, and calculate an input voltage phase estimation value according to the instantaneous value of the voltage of the AC power source;
  • a position/speed estimator for estimating a rotor position of the motor to obtain a rotor angle estimate and a motor speed estimate
  • a Q-axis given current value calculation module configured to calculate a Q-axis given current value according to the motor target speed value, the motor speed estimated value, and the input voltage phase estimated value;
  • a D-axis given current value calculation module configured to calculate a D-axis given current value according to a maximum output voltage of the inverter and an output voltage amplitude of the inverter
  • a current controller configured to obtain a Q-axis given voltage value and a D-axis given voltage value according to the Q-axis given current value, the D-axis given current value, and the Q-axis actual current and the D-axis actual current, And generating a duty control signal according to the Q axis given voltage value and the D axis given voltage value and the rotor angle estimation value, and controlling the motor by controlling the inverter.
  • the Q-axis given current value calculation module comprises:
  • a second PI regulator configured to perform PI adjustment on a difference between the motor target speed value and the motor speed estimated value to output a torque amplitude reference value
  • a waveform generator for generating an output variable according to the input voltage phase estimate
  • An initial current calculation unit configured to multiply the output variable by the torque amplitude reference value and divide by the motor torque coefficient to obtain an initial value of the Q axis given current value
  • a capacitor current compensation unit configured to generate a compensation current according to the input voltage phase estimation value
  • a superimposing unit configured to superimpose the compensation current to the Q-axis given current value initial value to obtain the Q-axis given current value.
  • the D-axis given current value calculation module comprises:
  • a field weakening controller configured to calculate a maximum output voltage of the inverter and an output voltage amplitude of the inverter to obtain an initial value of a D-axis given current value
  • a limiting unit configured to perform a limiting process on the initial value of the D-axis given current value to obtain the D-axis given current value.
  • the present invention also provides an inverter air conditioner including the above-described motor drive protection device.
  • the present invention also provides an overvoltage protection method for an inverter air conditioner, and the overvoltage protection method of the inverter air conditioner includes the following steps:
  • the arithmetic control unit controls the controllable switch to be turned on by the PWM signal.
  • the motor drive protection device of the motor drive system provided by the invention increases the overvoltage protection circuit by the motor drive protection device, and the overvoltage protection circuit is connected in parallel on the DC bus, and the arithmetic control unit obtains the DC bus voltage value by the DC bus voltage.
  • the operation control unit controls the controllable switch to be turned on so that the load is connected to the overvoltage protection circuit to reduce the DC bus voltage value; when the DC bus voltage is lower than the second preset value, the operation control unit controls The controllable switch is disconnected such that the load is disconnected from the overvoltage protection circuit, wherein the first preset value is greater than the second preset value, such that for the miniaturized motor drive device, for high voltage fluctuations on the DC bus,
  • the real-time access of the overvoltage protection circuit causes the high voltage fluctuation of the DC bus to be absorbed by the overvoltage protection circuit, so that the DC ripple voltage is kept below the safe voltage value, avoiding overvoltage on the DC ripple voltage and causing the inverter and DC
  • the filter capacitor in the smoothing circuit is damaged, thereby improving the operational reliability of the entire motor drive circuit.
  • FIG. 1 is a schematic structural view of a motor drive protection device according to the present invention.
  • FIG. 2 is a schematic structural view of an operation control unit of a motor drive protection device according to the present invention
  • FIG. 3 is a schematic structural view of a voltage phase detection phase-locked loop module of a motor drive protection device according to the present invention
  • FIG. 4 is a flow chart of an overvoltage protection method for an inverter air conditioner of the present invention.
  • FIG. 1 is a schematic structural view of a motor drive protection device provided by the present invention. For convenience of description, only parts related to the embodiment are shown, as shown in the figure:
  • a motor drive protection device includes an AC input power source 1, a rectifier 2, a DC smoothing circuit 3, an overvoltage protection circuit 4, an inverter 5, an arithmetic control unit 7, and a motor 6.
  • the motor driving device wherein the rectifier 2 is connected to the AC input power source 1, the full bridge rectification consisting of the diodes D1-D4, rectifying the AC input voltage 1, the two output ends of the rectifier are connected to the DC bus, the DC smoothing circuit 3, the inverter 5
  • the DC smoothing circuit 3 is sequentially connected in parallel with the DC bus; the DC smoothing circuit 3 includes a capacitor C1 connected in parallel with the DC bus.
  • the DC voltage outputted by the rectifier is filtered by the DC smoothing circuit and is a pulsating DC bus voltage, which cannot be filtered to be stable.
  • the DC bus voltage, the pulsating DC bus voltage supplies the working power of the inverter 5, and the inverter 5 controls the six switching tubes S1-S6 through the arithmetic control unit 7, and outputs the three-phase current driving motor 6 to operate.
  • the inverter 5 is composed of an inverter module, that is, an IPM (Intelligent Power Module).
  • the capacitor in the DC smoothing circuit 3 of the above motor driving device is much smaller than the capacitor in the DC smoothing circuit of other motor driving devices, generally only 1% to 2% of the capacitance value, and the capacitance is 10-30 uF, such as 20uF, because its capacitance value is small, it can be selected as film capacitor or ceramic capacitor, while the total capacity of capacitors in other DC smoothing circuits can generally reach 800uF, generally large-capacity electrolytic capacitors, so it is simply referred to as capacitor miniaturized driving device.
  • the motor drive device based on the miniaturization of the capacitor has the main difference compared with other motor drive devices having a large capacitance.
  • the DC bus voltage in the capacitor miniaturized motor drive device is a ripple voltage, and the voltage is periodically fluctuating. Large capacity
  • the DC bus voltage in the motor drive unit is a stable voltage, and there is no periodic fluctuation corresponding to the ripple voltage.
  • the overvoltage protection circuit 4 of the motor drive protection device is connected in parallel to the DC bus, before the inverter 5, after the DC smoothing circuit 3, or after the rectifier 2, and the overvoltage protection circuit 4 can control the switch 402 and
  • the load 401 of the controllable switch 402 is connected in series, and the control end of the controllable switch 402 is connected to the operation control unit 7.
  • the controllable switch 402 is a high-power transistor such as a MOS tube or an IGBT, and the load 401 can be a resistive device, such as a high-power device. resistance.
  • the controllable switch includes a first transistor S7
  • the load 402 includes a first resistor R2
  • the base of the first transistor S7 is connected to the operation control unit
  • the first transistor The emitter is connected to the negative electrode of the DC bus
  • one end of the first resistor R2 is connected to the collector of the first transistor S7
  • the other end is connected to the positive pole of the DC bus.
  • the first resistor R2 is connected to the overvoltage protection circuit 4. Since the first resistor R2 is a high-power resistor, it can bear a part of the load corresponding to the power supply provided by the DC bus, and then share a part of the operating current. When the voltage on the busbar is excessively high, the access of the first resistor R2 can share the current caused by the excessive voltage fluctuation of the DC bus, thereby reducing the fluctuation voltage of the excessive portion.
  • the calculation control unit 7 obtains the DC bus voltage value through the voltage detection circuit.
  • the voltage detection circuit is a prior art, and is not described herein.
  • the operation control unit 7 controls the controllable switch.
  • the conduction of 402 causes the load 401 to be connected to the overvoltage protection circuit 4. Since the overvoltage protection circuit 4 assumes a part of the DC bus voltage supplied to the inverter, the DC bus voltage can be lowered; when the DC bus voltage is lower than the second
  • the operation control unit controls the controllable switch to be disconnected such that the load is disconnected from the overvoltage protection circuit, wherein the first preset value is greater than the second preset value.
  • the first preset value and the second preset value may be determined according to a specific experiment. For example, the first preset value is set to 480V, and the second preset value is set to 460V, and the over-voltage protection circuit 4 can perform real-time DC ripple.
  • the overvoltage of the presence of voltage acts as a regulator.
  • the capacitor in the DC smoothing circuit is small, and the high voltage peak appearing on the DC bus can not be smoothly stabilized. For example, when the motor runs at a high speed due to power failure or other abnormality, the motor continues to run under the stop. Reverse power generation causes the DC bus voltage to rise and high voltage fluctuations occur, and this high voltage fluctuation cannot be
  • the capacitor of the smoothing circuit is absorbed, so when the DC ripple voltage has a high voltage value, the DC bus is connected through the voltage protection circuit 4, so that the high voltage fluctuation of the DC bus is absorbed by the overvoltage protection circuit, so that the DC ripple voltage is kept safe. Below the voltage value, the overvoltage at the DC ripple voltage is prevented from causing damage to the filter capacitor C1 in the inverter and the DC smoothing circuit 3, thereby improving the operational reliability of the entire motor drive circuit.
  • the arithmetic control unit 7 controls the controllable switch 402 to be turned on so that the load 401 is connected to the overvoltage protection circuit 4, the arithmetic control unit 7 can control the switch 402 to be turned on by the PWM signal, for example, with a high-level duty ratio. 50%, the PWM signal with a period of 10KHz controls the conduction of the switch 402. Since the switch 402 is in the intermittent switching state when the PWM is controlled, the average current passing through the switch is smaller than that with a constant conduction state, such as high power.
  • the PWM control switch 402 with a flat duty ratio of 50% passes the current theory to control the current of the switch 402 to be turned on at a constant high level, and the current through the 402 is relatively high, so that the PWM is relatively high.
  • Control switch 402 can reduce the average current through the switch at a time, thereby reducing the size of the device used to control switch 402, and using a relatively small current power tube to reduce cost.
  • the overvoltage protection circuit is connected in parallel on the DC busbar by the motor drive protection device, and the operation control unit obtains the DC bus voltage value by the DC bus voltage value.
  • the operation control unit controls the controllable switch to be turned on so that the load is connected to the overvoltage protection circuit to reduce the DC bus voltage value;
  • the operation control unit controls Disconnecting the control switch causes the load to be disconnected from the overvoltage protection circuit, wherein the first predetermined value is greater than the second predetermined value, such that in the miniaturized motor drive device, for high voltage fluctuations on the pulsating DC bus voltage
  • the overvoltage protection circuit Through the real-time access of the overvoltage protection circuit, the high voltage fluctuation of the pulsating DC bus voltage is absorbed by the overvoltage protection circuit, so that the pulsating DC bus voltage is kept below the safe voltage value, avoiding the pulsating DC bus voltage. Overvoltage causes damage to the filter
  • FIG. 2 A schematic diagram of the structure of the operation control unit of the second embodiment of the motor drive protection device.
  • the operation control unit 7 includes:
  • the input voltage phase detecting phase-locked loop module 71 is configured to obtain an instantaneous value of the voltage of the input AC power source, and calculate an input voltage phase estimated value according to the instantaneous value of the voltage of the AC power source;
  • a position/speed estimator 74 for estimating a rotor position of the motor to obtain a rotor angle estimate and a motor speed estimate;
  • the Q-axis given current value calculation module 72 is configured to calculate a Q-axis given current value according to the motor target speed value, the motor speed estimated value, and the input voltage phase estimated value;
  • a D-axis given current value calculation module 73 configured to calculate a D-axis given current value according to the maximum output voltage of the inverter and the output voltage amplitude of the inverter;
  • the current controller 75 is configured to obtain a Q-axis given voltage value and a D-axis given voltage value according to the Q-axis given current value, the D-axis given current value, and the Q-axis actual current and the D-axis actual current, according to the Q-axis.
  • a duty control signal is generated for a given voltage value and a given voltage value of the D axis, and an estimated value of the rotor angle, and the motor is controlled by controlling the inverter.
  • the input voltage phase detection phase locked loop module 71 may include a cosine calculator 714, a first multiplier 711, a low pass filter 712, a first PI regulator 713, and an integrator 715.
  • the cosine calculator 714 The cosine calculation is performed on the input voltage phase estimation value ⁇ ge of the previous calculation period to obtain a first calculation value
  • the first multiplier 711 is configured to multiply the voltage instantaneous value Vac of the AC power source by the first calculation value to obtain a second Calculated.
  • the low pass filter 712 is configured to low pass filter the second calculated value to obtain a third calculated value, wherein the bandwidth of the low pass filter 712 is lower than the voltage frequency of the alternating current power source, in an embodiment of the invention, The bandwidth of the low pass filter 712 is lower than 1/5 of the voltage frequency ⁇ g of the AC power source.
  • the first PI regulator 713 is configured to perform PI adjustment on the third calculated value to output a fourth calculated value, and the integrator 715 is configured to perform integral calculation on the sum of the fourth calculated value and the voltage frequency ⁇ g of the alternating current power source to obtain a current calculation period.
  • the input voltage phase estimate ⁇ ge is configured to perform integral calculation on the sum of the fourth calculated value and the voltage frequency ⁇ g of the alternating current power source to obtain a current calculation period.
  • the position/speed estimator 74 is used to estimate the rotor position of the motor to obtain a rotor angle estimate ⁇ est and a motor speed estimate ⁇ est .
  • the motor of the embodiment of the present invention may be a motor without a position sensor.
  • the above-described functions of the position/speed estimator 74 may be implemented by flux linkage observation.
  • an estimated value of the effective magnetic flux of the compressor motor in the directions of the two-phase stationary coordinate system ⁇ and ⁇ axes can be calculated according to the voltages V ⁇ , V ⁇ and the currents I ⁇ and I ⁇ on the two-phase stationary coordinate system. Specifically, it is calculated as follows according to the following formula (1):
  • V ⁇ and V ⁇ are the voltages in the ⁇ and ⁇ axis directions, respectively
  • I ⁇ and I ⁇ are the currents in the ⁇ and ⁇ axis directions, respectively.
  • L q is the q-axis flux linkage of the motor.
  • K p_pll and K i_pll are proportional integration parameters
  • ⁇ err is the deviation angle estimation value
  • ⁇ f is the bandwidth of the speed low-pass filter.
  • the Q-axis given current value calculation module 72 is configured to calculate the Q-axis given current value Iqref from the motor target rotational speed value ⁇ ref, the motor speed estimated value ⁇ est, and the input voltage phase estimated value ⁇ ge.
  • the Q-axis given current value calculation module 72 includes a second PI regulator, a waveform generator, an initial current calculation unit, a capacitance current compensation unit, and a superposition unit.
  • the second PI regulator is configured to perform PI adjustment on the difference between the motor target rotational speed value ⁇ ref and the motor speed estimated value ⁇ est to output a torque amplitude reference value T0
  • the waveform generator is configured to generate an output variable according to the input voltage phase estimated value ⁇ ge Wf.
  • the initial current calculation unit is configured to multiply the output variable Wf by the torque amplitude reference value T0 and divide it by the motor torque coefficient Kt to obtain a Q-axis given current value initial value Iq0.
  • Capacitance current compensation unit for The compensation current Iqcom is generated according to the input voltage phase estimation value ⁇ ge, and the superimposing unit is configured to superimpose the compensation current Iqcom on the Q-axis given current value initial value Iq0 to obtain the Q-axis given current value Iqref.
  • the waveform generator can calculate an output variable according to the following formula:
  • W f ( ⁇ ge ) is an output variable generated from the input voltage phase estimated value ⁇ ge
  • ⁇ ge is an input voltage phase estimated value
  • ⁇ d is a set phase parameter
  • the capacitor current compensation unit can calculate the compensation current according to the following formula:
  • I qcom is the compensation current
  • ⁇ ge is the input voltage phase estimation value
  • ⁇ d is the set phase parameter
  • C is the capacitance value connected in parallel between the input terminals of the inverter
  • V acmag is the voltage amplitude of the AC power source.
  • ⁇ g is the voltage frequency of the AC power source
  • K t is the motor torque factor
  • ⁇ e is the motor rotor speed.
  • the set phase parameter ⁇ d may be a phase corresponding to the current dead zone, and specifically may be 0.1 to 0.2 rad.
  • the D-axis given current value calculation module 73 is configured to calculate the D-axis given current value Idref according to the maximum output voltage Vmax of the inverter and the output voltage amplitude V1 of the inverter.
  • the D-axis given current value calculation module 73 includes a field weakening controller and a limiting unit, wherein the field weakening controller is used for the maximum output voltage Vmax of the inverter and the output of the inverter.
  • the voltage amplitude V1 is calculated to obtain a D-axis given current value initial value Id0, and the limiting unit is used to limit the D-axis given current value initial value Id0. To obtain the D-axis given current value Idref.
  • the field weakening controller may calculate the D-axis given current value initial value Id0 according to the following formula:
  • V 1 is the output voltage amplitude of the inverter
  • v d is the D-axis voltage
  • v q is the Q-axis voltage
  • V max is the maximum output voltage of the inverter
  • V dc is the DC bus voltage of the motor.
  • the limiting unit obtains the D-axis given current value according to the following formula:
  • I dref is the given current value of the D axis
  • I demag is the motor demagnetization current limit value
  • the current controller 75 is configured to obtain a Q-axis given voltage value Vq and a D-axis given voltage value Vd according to the Q-axis given current value Iqref, the D-axis given current value Idref, and the Q-axis actual current Iq and the D-axis actual current Id.
  • the duty control signal is generated based on the Q-axis given voltage value Vq and the D-axis given voltage value Vd and the rotor angle estimated value ⁇ est, and the motor is controlled by controlling the inverter 5.
  • the three-phase current is coordinate-transformed to obtain the actual current values of the d-axis and the q-axis, as follows:
  • the motor is obtained in the two-phase stationary coordinate system ⁇ and ⁇ axis directions Current I ⁇ and I ⁇
  • the Park transformation is performed based on the rotor angle estimated value ⁇ est , and the actual current values I q and I d of the d-axis and the q-axis in the two-phase rotating coordinate system are calculated by the following formula.
  • I d I ⁇ cos ⁇ est +I ⁇ sin ⁇ est
  • the current controller 75 can calculate the Q axis given voltage value and the D axis given voltage value according to the following formula:
  • Vq is the given voltage value of the Q axis
  • Vd is the given voltage value of the D axis
  • Iqref is the given current value of the Q axis
  • Idref is the given current value of the D axis
  • Iq is the actual current of the Q axis
  • Id is the actual axis of the D axis.
  • the current, Kpd and Kid are the D-axis current control proportional gain and integral gain respectively
  • Kpq and Kiq are the Q-axis current control proportional gain and integral gain, respectively
  • is the motor speed
  • Ke is the motor back-emissivity coefficient
  • Ld and Lq are respectively D Axis and Q-axis inductance
  • the Park inverse transformation of Vq and Vd according to the motor rotor angle estimation value ⁇ est can be performed to obtain the voltage values V ⁇ and V ⁇ on the fixed coordinate system.
  • the specific transformation formula is as follows:
  • Clark inverse transform can be performed according to the voltage values V ⁇ and V ⁇ on the fixed coordinate system to obtain the three-phase voltages Vu, Vv, and Vw, and the specific conversion formula is as follows:
  • the duty ratio calculation unit can calculate the duty ratio according to the DC bus voltage and the three-phase voltage, and obtain the duty control signal, that is, the three-phase duty ratios Du, Dv, and Dw, and the specific calculation formula is as follows:
  • Vdc is the DC bus voltage
  • the switching tube of the inverter is controlled according to the three-phase duty ratios D u , D v , D w to realize the control of the motor.
  • the present invention also provides an inverter air conditioner, including the above-mentioned motor drive protection device, and the motor of the inverter air conditioner may be a DC fan or a compressor.
  • the motor of the inverter air conditioner may be a DC fan or a compressor.
  • the inverter air conditioner provided by the embodiment of the invention increases the overvoltage protection circuit by connecting the overvoltage protection circuit to the DC bus.
  • the calculation control unit obtains the DC bus voltage value when the DC bus voltage value exceeds the first preset value.
  • the operation control unit controls the controllable switch to be turned on so that the load is connected to the overvoltage protection circuit to reduce the DC bus voltage value; when the DC bus voltage is lower than the second preset value, the operation control unit controls the controllable switch to be disconnected so that the load is from The overvoltage protection circuit is disconnected, wherein the first preset value is greater than the second preset value, so that the inverter air conditioner for miniaturizing the motor drive device for the application capacitor is protected against overvoltage by a high voltage fluctuation on the DC bus.
  • the real-time access of the circuit causes the high-voltage fluctuation of the DC bus to be absorbed by the over-voltage protection circuit, so that the pulsating DC bus voltage is kept below the safe voltage value, avoiding overvoltage on the pulsating DC bus voltage and causing the inverter and The filter capacitor in the DC smoothing circuit is damaged, which improves the operational reliability of the entire inverter air conditioner.
  • FIG. 4 is a flowchart of an overvoltage protection method for an inverter air conditioner according to an embodiment of the present invention, and the overvoltage protection method of the inverter air conditioner includes the following steps:
  • the DC bus voltage value is detected in real time, and when the DC bus voltage value exceeds the first preset value, the controllable switch is controlled to be turned on so that the load is connected to the overvoltage protection circuit.
  • the control controllable switch is disconnected to disconnect the load from the overvoltage protection circuit, wherein the first preset value is greater than the second preset
  • the value causes the high-voltage fluctuation of the pulsating DC bus voltage to be overvoltaged by the real-time access of the overvoltage protection circuit when the high voltage fluctuation occurs on the DC bus for the inverter air conditioner of the application capacitor miniaturized motor drive device.
  • the protection circuit absorbs, so that the pulsating DC bus voltage is kept below the safe voltage value, avoiding overvoltage on the pulsating DC bus voltage, causing damage to the filter capacitor in the inverter and the DC smoothing circuit, improving the operation of the entire inverter air conditioner. reliability.

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

La présente invention concerne un dispositif de protection d'entraînement de moteur, un procédé de protection contre les surtensions et un climatiseur à onduleur. Un circuit de protection contre les surtensions (4) est ajouté au dispositif de protection d'entraînement de moteur. Le circuit de protection contre les surtensions (4) est connecté en parallèle à un bus de courant continu. Une section de commande de fonctionnement (7) obtient une valeur de tension du bus de courant continu. Lorsque la valeur de tension du bus de courant continu dépasse une première valeur préétablie, la section de commande de fonctionnement (7) commande à un commutateur pouvant être commandé de s'allumer, de telle sorte qu'une charge est connectée au circuit de protection contre les surtensions (4) de manière à réduire la valeur de tension du bus de courant continu ; lorsque la tension du bus de courant continu est inférieure à une seconde valeur préétablie, la section de commande de fonctionnement (7) commande au commutateur commandé de s'éteindre, de telle sorte que la charge est déconnectée du circuit de protection contre les surtensions (4). Par conséquent, la fluctuation haute tension de la tension pulsatoire du bus de courant continu est absorbée par le circuit de protection contre les surtensions (4), évitant qu'un onduleur (5) et un condensateur de filtrage dans un circuit de lissage de courant continu (3) ne soient endommagés par la tension pulsatoire du bus de courant continu.
PCT/CN2017/105418 2016-12-19 2017-10-09 Dispositif de protection d'entraînement de moteur, procédé de protection contre les surtensions et climatiseur à onduleur WO2018113388A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611181749.6 2016-12-19
CN201611181749.6A CN106505527A (zh) 2016-12-19 2016-12-19 电机驱动保护装置、过压保护方法及变频空调器

Publications (1)

Publication Number Publication Date
WO2018113388A1 true WO2018113388A1 (fr) 2018-06-28

Family

ID=58333284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105418 WO2018113388A1 (fr) 2016-12-19 2017-10-09 Dispositif de protection d'entraînement de moteur, procédé de protection contre les surtensions et climatiseur à onduleur

Country Status (2)

Country Link
CN (1) CN106505527A (fr)
WO (1) WO2018113388A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856536A (zh) * 2018-12-26 2019-06-07 湖南福德电气有限公司 一种中压负载柜
CN111308159A (zh) * 2019-12-02 2020-06-19 广东美的制冷设备有限公司 空调器的电流估算方法、装置、空调器及存储介质
CN112838751A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电机控制器的主动泄放电路及其泄放控制方法
CN113054887A (zh) * 2019-12-28 2021-06-29 南京德朔实业有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN113366752A (zh) * 2019-01-30 2021-09-07 大金工业株式会社 功率转换装置
CN113726230A (zh) * 2021-05-24 2021-11-30 核工业理化工程研究院 一种基于瞬时功率反馈的闭环i/f控制方法及其变频器控制系统
CN114070133A (zh) * 2020-08-04 2022-02-18 美的威灵电机技术(上海)有限公司 驱动装置、控制方法、电器设备和存储介质

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器
CN107086544B (zh) * 2017-05-10 2019-03-08 广东美的暖通设备有限公司 过压保护电路、三相驱动电机和空调器
CN107101345B (zh) * 2017-06-02 2020-09-11 广东美的制冷设备有限公司 空调器及其压缩机停机控制方法和计算机可读存储介质
CN107196633A (zh) * 2017-06-23 2017-09-22 广东美的制冷设备有限公司 交流负载的开关控制装置、交流控制系统和制冷设备
CN109291913B (zh) * 2017-07-25 2022-06-07 宇通客车股份有限公司 一种混合动力汽车超速状态下的电压保护方法
CN107681939B (zh) * 2017-10-30 2024-04-26 广东美的制冷设备有限公司 电机控制系统、变频空调器
CN107681929B (zh) * 2017-10-30 2023-11-28 广东美的制冷设备有限公司 电机控制系统、变频空调器
CN107947120A (zh) * 2017-11-24 2018-04-20 珠海格力节能环保制冷技术研究中心有限公司 一种过压保护装置、方法、电源模块及电力拖动控制系统
CN109951126B (zh) 2017-12-20 2020-12-11 广州汽车集团股份有限公司 控制直流母线放电方法、系统、计算机设备及存储介质
CN108199576B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108054913B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108023473B (zh) * 2018-01-29 2023-10-31 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108123593B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108322128A (zh) * 2018-03-09 2018-07-24 奥克斯空调股份有限公司 一种电机驱动保护装置、过压保护方法、装置及空调器
CN110966172B (zh) * 2018-09-30 2021-05-11 广东威灵汽车部件有限公司 电动汽车、压缩机及压缩机的控制方法、装置
CN111256281B (zh) * 2018-11-30 2021-10-22 广东美的制冷设备有限公司 运行控制方法及系统、压缩机和空调器
CN109660183B (zh) * 2018-12-24 2021-03-12 哈尔滨工业大学 一种电容小型化电机驱动装置
CN110207341B (zh) * 2019-01-16 2024-04-19 广东美的制冷设备有限公司 驱动控制电路和空调器
CN111463767B (zh) * 2019-01-21 2022-10-21 广东美的制冷设备有限公司 供电保护电路板和空调器
CN111463766A (zh) * 2019-01-21 2020-07-28 广东美的制冷设备有限公司 供电保护电路板和空调器
CN111463768A (zh) * 2019-01-21 2020-07-28 广东美的制冷设备有限公司 供电保护电路板及空调器
CN111697812B (zh) * 2019-03-13 2022-03-04 青岛海尔智能技术研发有限公司 变频设备及其pfc电路的控制方法和装置、存储介质
CN110594953A (zh) 2019-09-09 2019-12-20 广东美的暖通设备有限公司 压缩机驱动装置、压缩机压力保护方法及空调器
CN110572023B (zh) * 2019-09-29 2021-06-22 英麦科(厦门)微电子科技有限公司 Pfc电路及其输入电容的电流补偿方法和电源转换电路
CN111049118A (zh) * 2020-01-07 2020-04-21 珠海格力电器股份有限公司 用电电路的过压保护装置、方法和具有过压保护的电路
CN111277198B (zh) * 2020-02-25 2023-06-06 广东三华钒音科技有限公司 用于变频电机驱动的控制装置和家电设备
CN113346804B (zh) * 2020-03-02 2023-06-13 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
CN112524854B (zh) * 2020-12-09 2022-09-06 青岛海尔空调器有限总公司 变频空调器中压缩机的控制方法与变频空调器
CN112670956B (zh) * 2021-01-18 2023-08-04 佛山市顺德区美的电子科技有限公司 空调器的过压保护方法、装置和空调器
CN112865653A (zh) * 2021-01-27 2021-05-28 上海应用技术大学 一种新型变交轴电压单电流调节器弱磁控制方法
CN113691173A (zh) * 2021-07-23 2021-11-23 江苏东成工具科技有限公司 一种电流控制方法
CN114034902A (zh) * 2021-09-28 2022-02-11 海信(山东)空调有限公司 相电压检测方法、装置、变频空调器及其控制方法及装置
CN114583936A (zh) * 2022-03-21 2022-06-03 无锡雷利电子控制技术有限公司 基于直流母线电容的电路保护方法、车载控制器控制系统
CN115242092A (zh) * 2022-08-18 2022-10-25 阳光电源股份有限公司 飞跨电容三电平dcdc变换器、光伏系统及控制方法
CN115912267B (zh) * 2022-11-09 2023-11-21 成都哈工驱动科技有限公司 基于伺服驱动的共直流母线对拖装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169880A (ja) * 1997-08-28 1999-03-09 Toshiba Corp インバータ制御装置
US20030081440A1 (en) * 2001-10-25 2003-05-01 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
CN201341015Y (zh) * 2009-01-21 2009-11-04 襄樊航力机电技术发展有限公司 自励发电机过压保护器
CN104242347A (zh) * 2014-09-23 2014-12-24 国家电网公司 一种风电变流器的高电压穿越方法
CN204794030U (zh) * 2015-06-17 2015-11-18 广东美的制冷设备有限公司 过压保护装置及无电解电容电机驱动系统
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936796B1 (fr) * 2006-12-22 2011-11-23 Fuji Electric Co., Ltd. Dispositif d'inverseur
DE112008003666B4 (de) * 2008-02-20 2012-06-14 Merstech Inc. Magnetenergie-Wiederherstellschalter mit Schutzschaltung
CN201629719U (zh) * 2010-02-02 2010-11-10 北京科技大学 一种机器人用异步电动机用伺服驱动装置
CN102480245B (zh) * 2010-11-30 2016-04-06 Ls产电株式会社 逆变器
US9041327B2 (en) * 2013-06-12 2015-05-26 Rockwell Automation Technologies, Inc. Method and apparatus for overvoltage protection and reverse motor speed control for motor drive power loss events
CN105978433B (zh) * 2016-05-31 2018-12-18 广东美的制冷设备有限公司 电容小型化的电机驱动装置和变频空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169880A (ja) * 1997-08-28 1999-03-09 Toshiba Corp インバータ制御装置
US20030081440A1 (en) * 2001-10-25 2003-05-01 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
CN201341015Y (zh) * 2009-01-21 2009-11-04 襄樊航力机电技术发展有限公司 自励发电机过压保护器
CN104242347A (zh) * 2014-09-23 2014-12-24 国家电网公司 一种风电变流器的高电压穿越方法
CN204794030U (zh) * 2015-06-17 2015-11-18 广东美的制冷设备有限公司 过压保护装置及无电解电容电机驱动系统
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856536A (zh) * 2018-12-26 2019-06-07 湖南福德电气有限公司 一种中压负载柜
CN113366752A (zh) * 2019-01-30 2021-09-07 大金工业株式会社 功率转换装置
US11979097B2 (en) 2019-01-30 2024-05-07 Daikin Industries, Ltd. Power conversion device
EP3896836A4 (fr) * 2019-01-30 2022-08-24 Daikin Industries, Ltd. Dispositif de conversion de puissance
CN112838751A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电机控制器的主动泄放电路及其泄放控制方法
CN112838751B (zh) * 2019-11-22 2023-04-07 比亚迪股份有限公司 一种电机控制器的主动泄放电路及其泄放控制方法
CN111308159A (zh) * 2019-12-02 2020-06-19 广东美的制冷设备有限公司 空调器的电流估算方法、装置、空调器及存储介质
CN113054887B (zh) * 2019-12-28 2024-01-05 南京泉峰科技有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN113054887A (zh) * 2019-12-28 2021-06-29 南京德朔实业有限公司 一种电动工具的过压保护电路、方法以及电动工具
CN114070133A (zh) * 2020-08-04 2022-02-18 美的威灵电机技术(上海)有限公司 驱动装置、控制方法、电器设备和存储介质
CN114070133B (zh) * 2020-08-04 2023-09-15 美的威灵电机技术(上海)有限公司 驱动装置、控制方法、电器设备和存储介质
CN113726230B (zh) * 2021-05-24 2024-03-08 核工业理化工程研究院 一种基于瞬时功率反馈的闭环i/f控制方法及其变频器控制系统
CN113726230A (zh) * 2021-05-24 2021-11-30 核工业理化工程研究院 一种基于瞬时功率反馈的闭环i/f控制方法及其变频器控制系统

Also Published As

Publication number Publication date
CN106505527A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018113388A1 (fr) Dispositif de protection d'entraînement de moteur, procédé de protection contre les surtensions et climatiseur à onduleur
WO2018099187A1 (fr) Procédé de commande et dispositif de commande pour système d'entraînement de moteur et climatiseur à fréquence variable
US9780683B2 (en) Power converter with a power buffer circuit whose buffered power is smaller than an AC component of a pulsating power
AU2012208179B2 (en) Power conversion apparatus
KR102546001B1 (ko) 모터 가변 주파수 구동 시스템 및 다중 분할 중앙 에어컨
WO2012098875A1 (fr) Appareil de conversion d'électricité
JP2008113514A (ja) 電源回路、及びこれに用いる制御回路
EP3422551A1 (fr) Dispositif de conversion de puissance, dispositif d'entraînement de moteur et réfrigérateur l'utilisant
JP2009232591A (ja) 電動機駆動装置および空気調和機
JP5063379B2 (ja) 電力変換装置、及び電力変換装置用モジュール、並びに、空気調和機及び冷凍装置
CN109546913B (zh) 一种电容小型化电机驱动装置
US20110038192A1 (en) Converter control method
JP6075067B2 (ja) 電力変換装置
CN106208887A (zh) 无电解电容电机驱动系统及其控制方法、装置
EP2333943B1 (fr) Circuit d'alimentation électrique, dispositif de commande de moteur et réfrigération et climatiseur
JP4909857B2 (ja) コンバータ装置
CN110971149A (zh) 用于电机减速的控制方法、控制装置及驱动电路
Hiraide et al. Current harmonics reduction method of electrolytic capacitor-less diode rectifier using inverter-controlled IPM motor
JP2019057979A (ja) モータ制御装置及び空調機
CN109660183B (zh) 一种电容小型化电机驱动装置
JP6024262B2 (ja) 電力変換装置
WO2023105761A1 (fr) Dispositif de conversion de puissance, dispositif d'entraînement de moteur électrique et appareil applicable au cycle de réfrigération
WO2023105689A1 (fr) Dispositif de conversion de puissance, dispositif d'entraînement de moteur électrique et dispositif d'application de cycle de réfrigération
US20240011663A1 (en) Air conditioner
WO2024075163A1 (fr) Dispositif de conversion de puissance électrique, dispositif d'entraînement de moteur et dispositif d'application de cycle de réfrigération

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882865

Country of ref document: EP

Kind code of ref document: A1