WO2018099187A1 - Procédé de commande et dispositif de commande pour système d'entraînement de moteur et climatiseur à fréquence variable - Google Patents

Procédé de commande et dispositif de commande pour système d'entraînement de moteur et climatiseur à fréquence variable Download PDF

Info

Publication number
WO2018099187A1
WO2018099187A1 PCT/CN2017/105300 CN2017105300W WO2018099187A1 WO 2018099187 A1 WO2018099187 A1 WO 2018099187A1 CN 2017105300 W CN2017105300 W CN 2017105300W WO 2018099187 A1 WO2018099187 A1 WO 2018099187A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
axis
voltage
inverter
current
Prior art date
Application number
PCT/CN2017/105300
Other languages
English (en)
Chinese (zh)
Inventor
霍军亚
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018099187A1 publication Critical patent/WO2018099187A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/15Power factor Correction [PFC] circuit generating the DC link voltage for motor driving inverter

Definitions

  • the invention relates to the technical field of motor control, in particular to a control method, a control device and an inverter air conditioner of a motor drive system.
  • the conventional passive PFC (power factor correction) scheme variable frequency drive is widely used due to its advantages of low cost and high reliability.
  • Its passive PFC scheme uses the full bridge to rectify the AC voltage and then pass the large electrolysis.
  • the smoothing effect of the capacitor makes the DC bus voltage stable, but when the load of the driving motor is increased and the inverter part needs to output high power, the ripple on the DC bus voltage with the same phase as the input power AC voltage appears.
  • the ripple voltage affects the working life of the large electrolytic capacitor, which in turn affects the operational stability of the variable frequency drive.
  • variable frequency control stability In order to ensure that the large electrolytic capacitor meets the requirements of variable frequency control stability, it is mainly realized by the following two methods: (1) reducing the output power of the variable frequency controller; and (2) increasing the capacity of the large electrolytic capacitor.
  • (1) reducing the output power of the variable frequency controller By reducing the output power of the inverter controller, it is impossible to obtain a stable high-power output with an increased load; and increasing the capacity of the large electrolytic capacitor increases the cost accordingly.
  • the main object of the present invention is to provide a control method for a motor drive system, which aims to solve the problem that the motor drive system of the passive PFC scheme generates ripple due to an increase in output power, thereby causing the life of the electrolytic capacitor to be shortened to affect the operation of the motor drive system. Stable Sex.
  • the present invention provides a control method for a motor drive system including a rectifier, a passive PFC circuit, a DC smoothing circuit, an inverter, an arithmetic control unit, and a motor, the rectifier pairing
  • the input voltage is full-wave rectified, the passive PFC circuit having a reactor connected in series with the output of the rectifier, the AC input voltage outputting a DC bus voltage through the rectifier, a passive PFC circuit, a DC smoothing circuit
  • the inverter provides power, and the arithmetic control unit controls the inverter to drive the motor to operate, wherein the control method comprises the following steps:
  • a control signal is generated according to the voltage fluctuation amount, the DC bus voltage value, and the three-phase current value to control the inverter of the motor drive system to drive the motor to operate.
  • control unit generates a control signal according to the voltage fluctuation amount, the DC bus voltage value, and the three-phase current value to control the inverter of the motor drive system, and specifically includes:
  • the PWM control signal is generated according to the d-axis given voltage value, the q-axis given voltage value, the DC bus voltage value, and the motor rotor angle estimation value to control the inverter.
  • the step of acquiring the initial value of the q-axis current comprises:
  • the difference is calculated and PI control is performed to obtain the initial value of the q-axis current.
  • the obtaining is based on a DC bus voltage value and an output voltage amplitude of the inverter
  • the d-axis given current value steps include:
  • the d-axis current initial value is subjected to a clipping process to obtain the d-axis given current value.
  • the step of calculating the q-axis current compensation amount by the voltage fluctuation amount comprises:
  • PI control is performed according to the amount of voltage fluctuation to obtain a q-axis current compensation amount.
  • the present invention also provides a control device for a motor drive system, the control device comprising:
  • a current detecting module for detecting a three-phase current value of the driving motor
  • a voltage detecting module configured to detect a DC bus voltage value of the motor driving system
  • An average voltage obtaining module configured to obtain an average voltage value according to the DC bus voltage value
  • a voltage fluctuation quantity acquisition module configured to acquire a voltage fluctuation amount according to the DC bus voltage value and the average voltage value
  • the control signal generating module generates a control signal according to the voltage fluctuation amount, the DC bus voltage value and the three-phase current value to control the inverter of the motor drive system to drive the motor to operate.
  • control signal generating module specifically includes:
  • a q-axis current compensation calculator configured to calculate a q-axis current compensation amount according to the voltage fluctuation amount
  • the q-axis current initial value obtaining unit is configured to perform a difference calculation according to the motor target speed value and the actual motor speed estimation value, and then perform PI control to obtain an initial value of the q-axis current;
  • a q-axis given current value operation unit configured to obtain a q-axis given current value according to the q-axis current compensation amount and the initial value of the q-axis current;
  • a d-axis given current value operation unit configured to calculate a d-axis given current value according to the DC bus voltage value and an output voltage amplitude of the inverter
  • the dq axis current operation unit is configured to perform coordinate transformation on the three-phase current to obtain an actual current value of the d-axis and an actual current value of the q-axis;
  • the dq axis voltage operation unit is configured to calculate the d-axis given current value and the d-axis actual current value and the q-axis given current value and the q-axis actual current value respectively to obtain the d-axis given voltage value and the q-axis given voltage. value;
  • the PWM operation unit is configured to generate a PWM control signal to control the inverter according to the d-axis given voltage value, the q-axis given voltage value, the DC bus voltage value, and the motor rotor angle estimation value.
  • the q-axis current compensation calculator is further configured to:
  • PI control is performed according to the amount of voltage fluctuation to obtain a q-axis current compensation amount.
  • the d-axis given current value operation unit specifically includes:
  • a voltage amplitude calculation subunit configured to calculate an output voltage amplitude of the inverter according to a previous d-axis given voltage value and a q-axis given voltage value
  • the maximum output voltage value calculation sub-unit is configured to calculate the maximum output voltage value of the inverter according to the DC bus voltage value
  • a field weakening control subunit configured to calculate an initial value of the d-axis current according to a maximum output voltage of the inverter and an output voltage amplitude of the inverter
  • the limiting subunit is configured to perform a limiting process on the initial value of the d-axis current to obtain the d-axis given current value.
  • the present invention also provides an inverter air conditioner comprising the control device of the motor drive system.
  • the control method of the motor drive system detects the DC bus voltage value and the three-phase current value of the drive motor, and obtains an average voltage value according to the DC bus voltage, and then obtains the voltage fluctuation amount according to the DC bus voltage value and the average voltage value. Finally, the inverter of the motor drive system is controlled according to the voltage fluctuation amount, the DC bus voltage value and the three-phase current value generating control signals to drive the motor to operate.
  • the control method provided by the invention can detect the fluctuation of the DC bus voltage in real time, and adjust the Iq current value in the motor drive system in real time by detecting the fluctuation, thereby finally controlling the motor, thereby reducing the straightness
  • the fluctuation of the bus voltage makes it possible to realize high-power output without increasing the electrolytic capacitor, and solves the problem that the output power of the inverter is too large when the load is too large in the motor drive system of the passive PFC scheme.
  • the occurrence of the ripple voltage on the DC bus voltage causes the working life of the large electrolytic filter capacitor on the DC bus to decrease, which in turn affects the stability of the entire motor drive system.
  • FIG. 1 is a schematic structural diagram of a circuit of a motor drive system according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for controlling a motor drive system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a control device of a motor drive system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of signal generation of a voltage fluctuation amount acquisition module in a control device of a motor drive system according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a control signal generating module in a control device of a motor drive system according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a d-axis given current value operation unit in a control device for a motor drive system according to an embodiment of the present invention.
  • the motor drive system includes a rectifier 2, a passive PFC circuit 3, a DC smoothing circuit 4, an inverter 5, an arithmetic control unit 7, and a motor 6.
  • the passive PFC circuit 3 has a reactor L connected in series with the output terminal of the rectifier, and may further include a first capacitor C1 and a diode D5.
  • the DC smoothing circuit 4 is composed of a second capacitor C2, and the rectifier 2 is composed of diodes D1-D4. Full-bridge rectification, rectifying AC input voltage 1 and converting it to straight The pulsating voltage is connected in series to the reactor L on the rear side of the rectifier.
  • the first end of the reactor L is connected to the positive output terminal of the rectifier, the second end of the reactor L is connected to the anode of the diode D5, and the first capacitor C1 is connected in parallel to the reactor L.
  • the second capacitor C2 is connected in parallel with the cathode terminal of the diode and the cathode terminal of the rectifier, and the reactor L utilizes the characteristic of the current charge and discharge hysteresis voltage of the inductor to improve the power factor of the rectifier output current.
  • Capacitor C1 is a small-capacity filter capacitor that suppresses harmonics in the circuit.
  • the second capacitor is a large-capacity electrolytic capacitor that smoothes the DC ripple voltage output from the rectifier.
  • Diode D5 uses its isolation to increase the charging voltage on the second capacitor. Further increase the power factor.
  • the AC input voltage outputs a DC bus voltage through the rectifier 2, the passive PFC circuit 3, and the DC smoothing circuit 4, and supplies DC power to the inverter 5, and the arithmetic control unit 7 controls the inverter switch S1-through the control command.
  • S6 performs switching control to drive the motor 6 to operate, and the motor 6 is a permanent magnet synchronous motor, including a compressor for the inverter air conditioner.
  • control method of the motor drive system includes the following steps:
  • the DC bus voltage V dc of the motor drive system can be detected by the circuit structure of the voltage dividing resistor, and the three-phase current Iu, v, w of the motor is detected by a single-resistor or three-resistor sampling circuit structure. Belongs to the prior art.
  • the average voltage value V dc — ave of the period of time can be obtained by detecting the instantaneous value of the DC bus voltage value V dc for a predetermined period of time and then averaging.
  • S40 Generate a control signal according to the voltage fluctuation amount, the DC bus voltage value, and the three-phase current value to control the inverter of the motor drive system to drive the motor to operate.
  • controlling the inverter of the motor drive system according to the voltage fluctuation amount, the DC bus voltage value, and the three-phase current value generating control signal specifically includes:
  • the PWM control signal is generated according to the d-axis given voltage value, the q-axis given voltage value, the DC bus voltage value, and the motor rotor angle estimation value to control the inverter.
  • ⁇ V dc voltage fluctuation amount calculated q-axis current compensation amount according to the time I q_com1 by performing PI control of the voltage fluctuation amount ⁇ V dc, calculated q-axis current compensation amount I q_com1.
  • the initial value I q0 of the q-axis current can be obtained by calculating the difference between the motor target speed value ⁇ m * and the actual motor speed value ⁇ m and then performing PI control.
  • the actual motor speed value ⁇ m can pass through a position sensor such as a Hall switch in the motor. Detected, or for the motor without position sensor, the actual motor speed value ⁇ m is the estimated value. At this time, the acquisition of ⁇ m is as follows:
  • the rotor angle estimation value ⁇ est of the motor and the actual motor speed value ⁇ m are obtained by the flux linkage observation method. Specifically, first, an estimated value of the effective magnetic flux of the compressor motor in the directions of the two-phase stationary coordinate system ⁇ and ⁇ axes can be calculated according to the voltages V ⁇ , V ⁇ and the currents I ⁇ and I ⁇ on the two-phase stationary coordinate system. Specifically calculated according to formula (1) as follows:
  • V ⁇ and V ⁇ are the voltages in the ⁇ and ⁇ axis directions, respectively
  • I ⁇ and I ⁇ are the currents in the ⁇ and ⁇ axis directions, respectively.
  • L q is the q-axis flux linkage of the motor.
  • K p_pll and K i_pll are proportional integration parameters
  • ⁇ err is the deviation angle estimation value
  • ⁇ f is the bandwidth of the speed low-pass filter.
  • the q-axis current compensation amount I q_com1 and the q-axis current initial value I q0 are added to obtain a q-axis given current value I qref .
  • the weak magnetic control is performed on the difference between the maximum output voltage V max of the inverter and the output voltage amplitude V 1 of the inverter to obtain the initial value I d0 of the d-axis given current value; the initial value of the given current value of the d-axis I D0 performs clipping processing to obtain a d-axis given current value I dref .
  • the initial value I d0 of the d-axis given current value can be calculated by the following formula (3):
  • V d and V q are the d-axis given voltage value and the q-axis given voltage value, respectively, and V dc is the DC bus voltage of the motor drive system.
  • the d-axis given current value I dref is calculated by the following formula (4):
  • I demag is the motor demagnetization current limit value.
  • the coordinate transformation of the three-phase current to obtain the actual current values of the d-axis and the q-axis specifically includes:
  • I d I ⁇ cos ⁇ e +I ⁇ sin ⁇ e
  • q axis given current value and d, q axis actual current value to obtain the d, q axis given voltage value can be calculated by the following formula (7):
  • Vq is the Q axis given voltage
  • Vd is the D axis given voltage
  • Iqref is the Q axis given current
  • Idref is the D axis given current
  • Iq is the Q axis actual current
  • Id is the D axis actual current
  • Kpd and Kid is the D-axis current control proportional gain and integral gain respectively
  • Kpq and Kiq are Q-axis current control proportional gain and integral gain
  • is the motor speed
  • Ke is the motor back-EMF coefficient
  • Ld and Lq are D-axis and Q-axis respectively.
  • the PWM control signal is generated to control the inverter as follows:
  • V ⁇ and V ⁇ After obtaining the given voltage value Vq of the Q axis and the given voltage value Vd of the D axis, the inverse inverse transformation of Vq and Vd according to the rotor angle ⁇ of the motor can be performed, and the voltage command on the fixed coordinate system is calculated by the following formula (8).
  • V ⁇ and V ⁇ After obtaining the given voltage value Vq of the Q axis and the given voltage value Vd of the D axis, the inverse inverse transformation of Vq and Vd according to the rotor angle ⁇ of the motor can be performed, and the voltage command on the fixed coordinate system is calculated by the following formula (8).
  • is the rotor angle of the motor, and the above-mentioned estimated rotor angle ⁇ e can be taken here .
  • the Clark inverse transform is performed on the voltages V ⁇ and V ⁇ on the two-phase stationary coordinate system to obtain three-phase voltage values V u , V v , V w , which are calculated by the following formula (9):
  • the duty ratio calculation can be performed according to the DC bus voltage V dc and the three-phase voltage values V u , V v , V w to obtain a PWM control signal, that is, the three-phase duty ratios D u , D v , D w , specifically Calculated by the following formula (10):
  • the switching tube of the inverter is controlled according to the three-phase duty ratios D u , D v , D w to realize the control of the motor.
  • the control method of the motor drive system detects the DC bus voltage value and the three-phase current value of the drive motor, and obtains an average voltage value according to the DC bus voltage, and then obtains the voltage fluctuation amount according to the DC bus voltage value and the average voltage value. Finally, the inverter of the motor drive system is controlled according to the voltage fluctuation amount, the DC bus voltage value and the three-phase current value generating control signals to drive the motor to operate.
  • the control method provided by the invention can detect the fluctuation of the DC bus voltage in real time, and adjust the Iq current value in the motor drive system in real time by detecting the fluctuation, and finally control the motor, thereby reducing the fluctuation of the DC bus voltage, realizing the Realize high-power output when the electrolytic capacitor is increased, and solve the problem in the passive PFC scheme motor drive system when the load is too large
  • the output power of the transformer is too large, causing the ripple voltage on the DC bus voltage to cause the working life of the large electrolytic filter capacitor on the DC bus to decrease, which in turn affects the stability of the entire motor drive system.
  • the invention also provides a control device for a motor drive system.
  • control device of the motor drive system includes:
  • the current detecting module 10 is configured to detect a three-phase current value of the driving motor
  • the voltage detecting module 20 is configured to detect a DC bus voltage value of the motor driving system
  • the average voltage obtaining module 30 is configured to obtain an average voltage value according to the DC bus voltage value
  • the voltage fluctuation amount acquisition module 40 is configured to obtain a voltage fluctuation amount according to the DC bus voltage value and the average voltage value;
  • the control signal generating module 50 generates a control signal according to the voltage fluctuation amount, the DC bus voltage value, and the three-phase current value to control the inverter of the motor drive system to drive the motor to operate.
  • the current detecting module 10 can detect the DC bus voltage V dc of the motor driving system through the circuit structure of the voltage dividing resistor, and detect the three-phase current Iu, v, w of the motor through a single-resistor or three-resistor sampling circuit structure. These circuit structures belong to the prior art.
  • the average voltage acquisition module 30 can obtain the instantaneous voltage value V dc — ave of the period of time by detecting the instantaneous value of the DC bus voltage value V dc for a predetermined period of time and then averaging.
  • the voltage fluctuation amount acquisition module 40 obtains the voltage fluctuation amount ⁇ V dc by calculating the difference from the DC bus voltage V dc after detecting the average value V dc — ave of the DC bus voltage.
  • control signal generating module 50 specifically includes:
  • a q-axis current compensation calculation unit 501 configured to calculate a q-axis current compensation amount according to the voltage fluctuation amount
  • the q-axis current initial value obtaining unit 502 is configured to perform a difference calculation according to the motor target speed value and the actual motor speed estimation value, and then perform PI control to obtain an initial value of the q-axis current;
  • a q-axis given current value operation unit 503 for using the q-axis current compensation amount and The initial values of the q-axis currents are added to obtain a given current value of the q-axis;
  • the d-axis given current value operation unit 504 is configured to calculate a d-axis given current value according to the DC bus voltage value and the output voltage amplitude of the inverter;
  • the dq axis current operation unit 505 is configured to perform coordinate transformation on the three-phase current to obtain the d-axis and q-axis actual current values;
  • the dq axis voltage operation unit 506 is configured to calculate the d-axis given current value and the d-axis actual current value and the q-axis given current value and the q-axis actual current value respectively to obtain the d-axis given voltage value and the q-axis given Voltage value;
  • the PWM operation unit 507 is configured to generate a PWM control signal to control the inverter according to the d-axis given voltage value, the q-axis given voltage value, the DC bus voltage value, and the motor rotor angle estimation value.
  • ⁇ V dc voltage fluctuation amount calculated q-axis current compensation amount according to the time I q_com1 by performing PI control of the voltage fluctuation amount ⁇ V dc, calculated q-axis current compensation amount I q_com1.
  • the initial q-axis current value acquiring unit 502 acquires the initial value of the q-axis current I q0, it is possible, and the difference between the motor actual speed ⁇ m then calculated by the target motor speed value ⁇ m * PI control is obtained, wherein the actual value of the motor speed ⁇ m It can be detected by a position sensor in the motor, such as a Hall switch, or for a motor without a position sensor, the actual motor speed value ⁇ m is an estimated value. At this time, the acquisition of ⁇ m is as follows:
  • the rotor angle estimation value ⁇ est of the motor and the actual motor speed value ⁇ m are obtained by the flux linkage observation method. Specifically, first, an estimated value of the effective magnetic flux of the compressor motor in the directions of the two-phase stationary coordinate system ⁇ and ⁇ axes can be calculated according to the voltages V ⁇ , V ⁇ and the currents I ⁇ and I ⁇ on the two-phase stationary coordinate system.
  • the specific calculation formula is as follows:
  • V ⁇ and V ⁇ are the voltages in the ⁇ and ⁇ axis directions, respectively
  • I ⁇ and I ⁇ are the currents in the ⁇ and ⁇ axis directions, respectively.
  • R is the stator resistance
  • L q is the q-axis flux linkage of the compressor motor.
  • K p_pll and K i_pll are proportional integration parameters
  • ⁇ err is the deviation angle estimation value
  • ⁇ f is the bandwidth of the speed low-pass filter.
  • the q-axis given current value operation unit 503 adds the q-axis current compensation amount I q_com1 and the q-axis current initial value I q0 to obtain the q-axis given current value I qref .
  • the d-axis given current value operation unit 504 is further shown in FIG. 6.
  • the d-axis given current value operation unit 504 further includes a voltage amplitude calculation sub-unit 5041, a maximum output voltage value calculation sub-unit 5042, and a field weakening control sub-unit 5043.
  • the limiting subunit 5044, the d-axis given current value operation unit 504 calculates the d-axis given current value of the compressor motor according to the maximum output voltage of the inverter and the output voltage amplitude of the inverter, specifically including :
  • the field weakening control sub-unit 5043 performs field weakening control on the difference between the maximum output voltage V max of the inverter and the output voltage amplitude V 1 of the inverter to obtain an initial value I d0 of the d-axis given current value; the limiting subunit 5044 performs a limiting process on the initial value I d0 of the d-axis given current value to obtain a d-axis given current value I dref .
  • the weak magnetic control sub-unit 5043 can calculate the initial value I d0 of the d-axis given current value by the following formula (3):
  • K i is an integral control coefficient
  • the voltage amplitude calculation subunit 5041 passes the formula Calculating the output voltage amplitude V 1 of the inverter
  • the maximum output voltage value calculation subunit 5042 passes the formula
  • the maximum output voltage V max , V d and V q of the inverter are calculated as the d-axis given voltage value and the q-axis given voltage value, respectively, and V dc is the DC bus voltage of the motor drive system.
  • the limiting sub-unit 5044 performs limiting processing according to the initial value I d0 of the d-axis given current value, and calculates the d-axis given current value I dref by the following formula (4):
  • I demag is the motor demagnetization current limit value.
  • the dq axis current operation unit 505 performs coordinate transformation on the three-phase current to obtain the actual current values of the d-axis and the q-axis, and specifically includes:
  • the dq axis voltage operation unit 506 obtains the d and q axis given voltage values according to the d, q axis given current value and the d and q axis actual current values, which can be calculated by the following formula (7):
  • Vq is the Q axis given voltage
  • Vd is the D axis given voltage
  • Iqref is the Q axis given current
  • Idref is the D axis given current
  • Iq is the Q axis actual current
  • Id is the D axis actual current
  • Kpd and Kid is the D-axis current control proportional gain and integral gain respectively
  • Kpq and Kiq are Q-axis current control proportional gain and integral gain
  • is the motor speed
  • Ke is the motor back-EMF coefficient
  • Ld and Lq are D-axis and Q-axis respectively.
  • the PWM operation unit 507 generates a PWM control signal according to the d, q axis given voltage value, the DC bus voltage value, and the motor rotor angle estimation value as follows:
  • the Park inverse transform can be performed on Vq and Vd according to the motor rotor angle ⁇ , and the voltage commands V ⁇ and V ⁇ on the fixed coordinate system are calculated by the following formula (8):
  • is the rotor angle of the motor, and the above-mentioned estimated rotor angle ⁇ e can be taken here .
  • the Clark inverse transform is performed on the voltages V ⁇ and V ⁇ on the two-phase stationary coordinate system to obtain three-phase voltage commands V u , V v , V w , which are calculated by the following formula (9):
  • the duty ratio calculation can be performed according to the DC bus voltage V dc and the three-phase voltage commands V u , V v , V w to obtain a PWM control signal, that is, the three-phase duty ratios D u , D v , D w , specifically Calculated by the following formula (10):
  • the switching tube of the inverter is controlled according to the three-phase duty ratios D u , D v , D w to realize the control of the motor.
  • the DC bus voltage value and the three-phase current value of the drive motor are detected, and the average voltage value is obtained according to the DC bus voltage, and then the voltage fluctuation is obtained according to the DC bus voltage value and the average voltage value.
  • the inverter of the motor drive system is controlled according to the voltage fluctuation amount, the DC bus voltage value and the three-phase current value to generate a control signal to drive the motor to operate.
  • the control method provided by the invention can detect the fluctuation of the DC bus voltage in real time, and adjust the Iq current value in the motor drive system in real time by detecting the fluctuation, and finally control the motor, thereby reducing the fluctuation of the DC bus voltage, realizing the
  • the high-power output is realized when the electrolytic capacitor is increased, and the passive PFC scheme is applied to the motor drive system.
  • the load is too large, the output power of the inverter is too large, causing a ripple voltage on the DC bus voltage to cause DC.
  • the working life of the large electrolytic filter capacitor on the busbar is reduced, which in turn affects the stability of the entire motor drive system.
  • the present invention also provides an inverter air conditioner, including the above-mentioned control device of the motor drive system, and the motor of the inverter air conditioner may be a DC fan or a compressor.
  • the motor of the inverter air conditioner may be a DC fan or a compressor.
  • the inverter air conditioner provided by the embodiment of the invention can detect the fluctuation of the DC bus voltage in real time, and adjust the Iq current value in the motor drive system in real time by detecting the fluctuation, thereby reducing the fluctuation of the DC bus voltage, thereby achieving no increase
  • large electrolytic capacitors high-power output is realized, and the passive PFC scheme is solved in the motor drive system.
  • the load is too large, the output power of the inverter is too large, causing a waveform voltage on the DC bus voltage to cause a DC bus.
  • the working life of the large electrolytic filter capacitor is reduced, which in turn affects the stability of the entire motor drive system.

Abstract

L'invention concerne un procédé de commande et un dispositif de commande pour un système d'entraînement de moteur, et un climatiseur à fréquence variable. Au moyen de la détection d'une valeur de tension de bus CC et d'une valeur de courant triphasé permettant d'entraîner un moteur (S10), et selon une valeur de tension de bus CC, une valeur de tension moyenne est acquise (S20) ; ensuite, en fonction de la valeur de tension de bus CC et de la valeur de tension moyenne, un degré de fluctuation de tension est acquis (S30) ; et enfin, un signal de commande est généré en fonction du degré de fluctuation de tension, de la valeur de tension de bus CC et de la valeur de courant triphasé de manière à commander un onduleur du système d'entraînement de moteur, amenant ainsi le moteur à fonctionner (S40). Le procédé de commande peut détecter la fluctuation d'une tension de bus CC en temps réel, et régler une valeur de courant Iq dans le système d'entraînement de moteur en temps réel par détection de ladite fluctuation, ce qui permet de réduire le degré de fluctuation de la tension de bus CC.
PCT/CN2017/105300 2016-11-30 2017-10-09 Procédé de commande et dispositif de commande pour système d'entraînement de moteur et climatiseur à fréquence variable WO2018099187A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611088247.9 2016-11-30
CN201611088247.9A CN106559026B (zh) 2016-11-30 2016-11-30 一种电机驱动系统的控制方法、控制装置和变频空调器

Publications (1)

Publication Number Publication Date
WO2018099187A1 true WO2018099187A1 (fr) 2018-06-07

Family

ID=58445489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105300 WO2018099187A1 (fr) 2016-11-30 2017-10-09 Procédé de commande et dispositif de commande pour système d'entraînement de moteur et climatiseur à fréquence variable

Country Status (2)

Country Link
CN (1) CN106559026B (fr)
WO (1) WO2018099187A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507239A (zh) * 2021-07-16 2021-10-15 中南大学 一种无物理刹车爬壁机器人用驱动系统及方法
CN113992099A (zh) * 2021-12-01 2022-01-28 北京国家新能源汽车技术创新中心有限公司 基于foc永磁同步电机弱磁失控控制方法、系统、计算机和存储介质
CN114221368A (zh) * 2021-11-15 2022-03-22 珠海格力智能装备有限公司 一种应用直流母线的能量回收控制系统及方法
CN114608160A (zh) * 2022-02-18 2022-06-10 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器
CN114696664A (zh) * 2020-12-25 2022-07-01 珠海拓芯科技有限公司 一种电机驱动系统及其控制方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559026B (zh) * 2016-11-30 2019-02-05 广东美的制冷设备有限公司 一种电机驱动系统的控制方法、控制装置和变频空调器
CN107432715B (zh) * 2017-09-08 2021-03-23 广东威灵电机制造有限公司 吸尘器、电机及其控制方法和控制装置
CN107681929B (zh) * 2017-10-30 2023-11-28 广东美的制冷设备有限公司 电机控制系统、变频空调器
CN108199576B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108054913B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108123593B (zh) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108023473B (zh) * 2018-01-29 2023-10-31 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
WO2019200592A1 (fr) 2018-04-19 2019-10-24 Abb Schweiz Ag Système et procédé de conversion de puissance
CN110034716B (zh) * 2019-03-07 2021-08-03 成都运达科技股份有限公司 一种低开关频率直线电机控制方法
CN111756302B (zh) * 2019-03-29 2022-06-17 安川电机(中国)有限公司 控制变频器输出电压的方法、装置、设备及真空系统
DE102019117369A1 (de) * 2019-06-27 2020-12-31 Ebm-Papst Mulfingen Gmbh & Co. Kg Schaltung und Verfahren zur Überwachung eines Zwischenkreiskondensators
CN110492822B (zh) * 2019-08-22 2022-09-16 青岛海尔空调电子有限公司 变频空调器及其弱磁控制限制电压设定方法和控制方法
CN112787496B (zh) * 2019-11-07 2021-12-31 广东美芝制冷设备有限公司 变频控制器及其控制方法和变频电器
CN111030442B (zh) * 2020-01-27 2023-02-28 广东希塔变频技术有限公司 控制方法、控制装置、pfc电路、电机驱动设备和空调器
CN113346821B (zh) * 2020-03-02 2022-07-12 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
CN112583319B (zh) * 2020-12-02 2022-03-18 美的威灵电机技术(上海)有限公司 电机的相电压检测方法、装置、电器和可读存储介质
CN112983823B (zh) * 2021-03-15 2023-07-14 珠海格力节能环保制冷技术研究中心有限公司 驱动控制装置、压缩机及压缩机的控制方法
CN112910232B (zh) * 2021-03-19 2022-04-19 青岛海信日立空调系统有限公司 空调系统
CN114069573B (zh) * 2021-11-05 2024-03-01 青岛海信日立空调系统有限公司 一种空调器
CN114244225B (zh) * 2021-12-03 2024-04-12 淮安威灵电机制造有限公司 电机的弱磁控制方法、装置、电机控制器及电机控制系统
CN114337417B (zh) * 2021-12-30 2023-10-31 海信空调有限公司 电机控制方法、空调器以及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164179A (ja) * 2001-11-20 2003-06-06 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2005130666A (ja) * 2003-10-27 2005-05-19 Daikin Ind Ltd インバータ制御方法及び多相電流供給回路
CN202435262U (zh) * 2012-01-18 2012-09-12 宁波奥克斯空调有限公司 用于变频空调的无源pfc电路
CN103858333A (zh) * 2011-09-30 2014-06-11 大金工业株式会社 电力转换装置
CN104934943A (zh) * 2015-06-17 2015-09-23 广东美的制冷设备有限公司 过压保护装置、过压保护方法及无电解电容电机驱动系统
CN105226720A (zh) * 2015-11-06 2016-01-06 山东建筑大学 永磁同步发电机组网侧变换器改进下垂控制方法
CN106063113A (zh) * 2014-03-05 2016-10-26 日本电产伺服有限公司 马达装置
CN106559026A (zh) * 2016-11-30 2017-04-05 广东美的制冷设备有限公司 一种电机驱动系统的控制方法、控制装置和变频空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718041B2 (ja) * 2000-11-22 2011-07-06 ダイキン工業株式会社 インバータ制御方法およびその装置
JP4357967B2 (ja) * 2002-03-22 2009-11-04 パナソニック株式会社 シンクロナスリラクタンスモータの制御装置
JP4988329B2 (ja) * 2006-12-28 2012-08-01 株式会社日立産機システム 永久磁石モータのビートレス制御装置
AU2009241150B2 (en) * 2008-04-28 2013-10-24 Daikin Industries,Ltd. Inverter control device and power conversion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164179A (ja) * 2001-11-20 2003-06-06 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2005130666A (ja) * 2003-10-27 2005-05-19 Daikin Ind Ltd インバータ制御方法及び多相電流供給回路
CN103858333A (zh) * 2011-09-30 2014-06-11 大金工业株式会社 电力转换装置
CN202435262U (zh) * 2012-01-18 2012-09-12 宁波奥克斯空调有限公司 用于变频空调的无源pfc电路
CN106063113A (zh) * 2014-03-05 2016-10-26 日本电产伺服有限公司 马达装置
CN104934943A (zh) * 2015-06-17 2015-09-23 广东美的制冷设备有限公司 过压保护装置、过压保护方法及无电解电容电机驱动系统
CN105226720A (zh) * 2015-11-06 2016-01-06 山东建筑大学 永磁同步发电机组网侧变换器改进下垂控制方法
CN106559026A (zh) * 2016-11-30 2017-04-05 广东美的制冷设备有限公司 一种电机驱动系统的控制方法、控制装置和变频空调器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696664A (zh) * 2020-12-25 2022-07-01 珠海拓芯科技有限公司 一种电机驱动系统及其控制方法
CN113507239A (zh) * 2021-07-16 2021-10-15 中南大学 一种无物理刹车爬壁机器人用驱动系统及方法
CN113507239B (zh) * 2021-07-16 2022-05-27 中南大学 一种无物理刹车爬壁机器人用驱动系统及方法
CN114221368A (zh) * 2021-11-15 2022-03-22 珠海格力智能装备有限公司 一种应用直流母线的能量回收控制系统及方法
CN113992099A (zh) * 2021-12-01 2022-01-28 北京国家新能源汽车技术创新中心有限公司 基于foc永磁同步电机弱磁失控控制方法、系统、计算机和存储介质
WO2023098181A1 (fr) * 2021-12-01 2023-06-08 北京国家新能源汽车技术创新中心有限公司 Procédé de commande d'emballement à affaiblissement de champ de moteur synchrone à aimant permanent à base de foc, ordinateur et support de stockage
CN113992099B (zh) * 2021-12-01 2024-03-22 北京国家新能源汽车技术创新中心有限公司 基于foc永磁同步电机弱磁失控控制方法、系统、计算机和存储介质
CN114608160A (zh) * 2022-02-18 2022-06-10 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器
CN114608160B (zh) * 2022-02-18 2023-12-15 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器

Also Published As

Publication number Publication date
CN106559026A (zh) 2017-04-05
CN106559026B (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2018099187A1 (fr) Procédé de commande et dispositif de commande pour système d'entraînement de moteur et climatiseur à fréquence variable
WO2018113388A1 (fr) Dispositif de protection d'entraînement de moteur, procédé de protection contre les surtensions et climatiseur à onduleur
US9780683B2 (en) Power converter with a power buffer circuit whose buffered power is smaller than an AC component of a pulsating power
AU2012208179B2 (en) Power conversion apparatus
KR102546001B1 (ko) 모터 가변 주파수 구동 시스템 및 다중 분할 중앙 에어컨
AU2009309187B9 (en) Power conversion device
WO2013105187A1 (fr) Dispositif de commande d'onduleur
CN104767455B (zh) 一种混合励磁同步电机无位置传感器直接转矩控制方法
EP3422551A1 (fr) Dispositif de conversion de puissance, dispositif d'entraînement de moteur et réfrigérateur l'utilisant
JP2012151969A (ja) 電力変換装置
WO2016050045A1 (fr) Procédé de commande de climatiseur à fréquence variable
JP2013143878A (ja) インバータ制御装置
WO2016050047A1 (fr) Procédé et contrôleur de commande de climatiseur monophasé à fréquence variable
CN109900029B (zh) 压缩机控制系统及其方法
JP2012044830A (ja) 電力変換装置
JP4065375B2 (ja) モータ駆動装置及びモータ駆動方法
JP3773794B2 (ja) 電力変換装置
CN110971149A (zh) 用于电机减速的控制方法、控制装置及驱动电路
JP4596906B2 (ja) 電動機の制御装置
CN105634363B (zh) 一种单相到三相逆变电机驱动系统的高输入功率因数控制方法
Hiraide et al. Current harmonics reduction method of electrolytic capacitor-less diode rectifier using inverter-controlled IPM motor
CN109039191B (zh) 一种Quasi-Z源间接矩阵变换器优化运行的电机控制方法
JP2011205729A (ja) 電力変換装置
JP5741000B2 (ja) 電力変換装置
CN109660183B (zh) 一种电容小型化电机驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875967

Country of ref document: EP

Kind code of ref document: A1