WO2018110938A1 - 열가소성 수지 조성물 및 이로부터 제조된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 제조된 성형품 Download PDF

Info

Publication number
WO2018110938A1
WO2018110938A1 PCT/KR2017/014536 KR2017014536W WO2018110938A1 WO 2018110938 A1 WO2018110938 A1 WO 2018110938A1 KR 2017014536 W KR2017014536 W KR 2017014536W WO 2018110938 A1 WO2018110938 A1 WO 2018110938A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
formula
weight
equation
Prior art date
Application number
PCT/KR2017/014536
Other languages
English (en)
French (fr)
Inventor
박동현
권영철
양윤정
오현지
이은주
함민경
Original Assignee
롯데첨단소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170169178A external-priority patent/KR101980018B1/ko
Application filed by 롯데첨단소재(주) filed Critical 롯데첨단소재(주)
Publication of WO2018110938A1 publication Critical patent/WO2018110938A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article produced therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent weather resistance (color resistance), mar resistance, antibacterial property, impact resistance and the like and a molded article produced therefrom.
  • thermoplastic resin rubber-modified aromatic vinyl copolymer resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin) are excellent in mechanical properties, processability, appearance characteristics, etc. It is widely used as interior / exterior materials for automobiles and exterior materials for construction.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • home appliances made of such rubber-modified aromatic styrene-based copolymer resins may have a yellowing phenomenon and various life scratches as time passes, and various bacteria may grow on the surface.
  • thermoplastic resin composition having excellent weather resistance (color resistance), mar resistance, antibacterial property, and the like.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in weather resistance (color resistance), mar resistance, antibacterial property, impact resistance and the like.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition may include about 100 parts by weight of a thermoplastic resin including about 20 wt% to about 65 wt% of an acrylate rubber-modified vinyl graft copolymer and about 35 wt% to about 80 wt% of an aromatic vinyl copolymer copolymer; About 0.3 to about 6 parts by weight of the siloxane compound represented by Formula 1; And from about 0.3 to about 6 parts by weight of zinc oxide having an average particle size of about 0.3 to about 3 ⁇ m and a specific surface area BET of about 1 to about 10 m 2 / g:
  • R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms
  • R 3 and R 4 are each independently an alkylene group having 2 to 15 carbon atoms
  • a 1 and A 2 are each independently It is a reading time group, an epoxy group, or a dialkoxy aryl group, and the average value of n is 10-80.
  • the acrylate rubber-modified vinyl graft copolymer may be a graft polymerized monomer mixture including an aromatic vinyl monomer and a vinyl cyanide monomer in an acrylate rubber polymer.
  • the aromatic vinyl copolymer resin may be a polymer of an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer.
  • the siloxane compound represented by Formula 1 is A 1 and A 2 is a dialkoxyaryl group, and the average value of n may be 30 to 40.
  • the siloxane compound may include at least one of a compound represented by Formula 1a, a compound represented by Formula 1b, a compound represented by Formula 1c, and a compound represented by Formula 1d.
  • an average value of n is 20 to 60, and each R independently represents an alkyl group having 1 to 10 carbon atoms.
  • the zinc oxide may have a size ratio (B / A) of peak A in the 370 to 390 nm region and peak B in the 450 to 600 nm region when measured by photo luminescence. have.
  • the zinc oxide has a peak position 2 ⁇ of 35 to 37 ° when analyzed by X-ray diffraction (XRD), and crystallite size according to Equation 1 below. ) Value can be from about 1,000 to about 2,000 mm 3:
  • K is a shape factor
  • is an X-ray wavelength
  • is an FWHM value of an X-ray diffraction peak
  • is a peak position value. (peak position degree).
  • the weight ratio of the siloxane compound and the zinc oxide may be about 1: 0.1 to about 1: 4.
  • the thermoplastic resin composition measures an initial color (L 0 * , a 0 * , b 0 * ) using a colorimeter on a 50 mm ⁇ 90 mm ⁇ 3 mm sized injection specimen, and measures the injection specimen.
  • the weather resistance test for 3,000 hours, and after the test using a colorimeter to measure the color (L 1 * , a 1 * , b 1 * ) and then the color change calculated according to the following equation (2) ⁇ E) may be less than or equal to about 3.5:
  • Equation 2 ⁇ L * is the difference between the L * values before and after the test (L 1 * -L 0 * ), ⁇ a * is the difference between the a * values before and after the test (a 1 * -a 0 * ), ⁇ b * Is the difference between the values of b * before and after the test (b 1 * -b 0 * ).
  • thermoplastic resin composition may have a gloss difference ( ⁇ Gloss (60 °)) of about 17 or less according to Equation 3 below:
  • Equation 3 G 0 is 60 ° mirror glossiness measured by a friction fastness tester (crockmeter) according to ASTM D523 for a 10 cm ⁇ 15 cm size specimen, G 10 is a 10 times the back cloth for the same specimen After 60 ° mirror glossiness measured in the same way.
  • thermoplastic resin composition is inoculated with Staphylococcus aureus and Escherichia coli on a 5 cm ⁇ 5 cm size specimen, based on JIS Z 2801 antimicrobial evaluation method, and measured after incubation at 35 ° C. and RH 90% for 24 hours.
  • the antimicrobial activity can be about 2 to about 6 and about 2 to about 6, respectively.
  • Another aspect of the invention relates to a molded article.
  • the molded article is formed from the thermoplastic resin composition.
  • the present invention has the effect of providing the thermoplastic resin composition excellent in weather resistance (color resistance), mar resistance, antibacterial property, impact resistance and the like and a molded article formed therefrom.
  • thermoplastic resin composition includes (A) a thermoplastic resin comprising (A1) an acrylate rubber-modified vinyl graft copolymer and (A2) an aromatic vinyl copolymer resin; (B) siloxane compounds; And (C) zinc oxide.
  • thermoplastic resin (A) thermoplastic resin
  • thermoplastic resin of the present invention may be a rubber-modified vinyl copolymer resin containing (A1) acrylate rubber-modified vinyl graft copolymer and (A2) aromatic vinyl-based copolymer resin.
  • An acrylate rubber-modified vinyl graft copolymer according to an embodiment of the present invention is capable of improving weather resistance, impact resistance, chemical resistance, etc. of the thermoplastic resin composition.
  • the monomer mixture including the vinyl cyanide monomer may be graft polymerized.
  • the acrylate rubber-modified vinyl graft copolymer may be obtained by graft polymerization of a monomer mixture comprising an aromatic vinyl monomer and a vinyl cyanide monomer in an acrylate rubber polymer.
  • the monomer mixture may further include a monomer that imparts processability and heat resistance, thereby graft polymerization.
  • the polymerization may be carried out by known polymerization methods such as emulsion polymerization and suspension polymerization.
  • the acrylate rubber-modified vinyl graft copolymer may form a core (rubber polymer) -shell (copolymer of monomer mixture) structure, but is not limited thereto.
  • examples of the acrylate-based rubbery polymers include alkyl (meth) acrylate rubbers, copolymers of alkyl (meth) acrylates and aromatic vinyl compounds. These may be used alone or in combination of two or more thereof.
  • alkyl acrylate rubbers of 2 to 10 carbon atoms copolymers of alkyl acrylates and styrene of 2 to 10 carbon atoms, combinations thereof, and the like may be used.
  • butyl acrylate rubber, butyl acrylate and styrene may be used. Copolymers of these, combinations thereof and the like can be used.
  • the copolymer of the alkyl (meth) acrylate and the aromatic vinyl compound may be polymerized from about 70 to about 90% by weight of the alkyl (meth) acrylate and about 10 to about 30% by weight of the aromatic vinyl compound, This is not restrictive.
  • the acrylate rubber polymer may have an average particle diameter (Z-average) of about 0.1 to about 0.5 ⁇ m, for example, about 0.15 to about 0.4 ⁇ m.
  • the thermoplastic resin composition may have excellent weather resistance, impact resistance, chemical resistance, and the like.
  • the acrylate rubbery polymer may be a mixture of two or more acrylate rubbery polymers having different average particle diameters.
  • About 60% by weight may be a mixture having a mixed bimodal particle size distribution, but is not limited thereto.
  • the acrylate rubbery polymer in the form of a mixture it is possible to obtain a thermoplastic resin composition having a uniform impact resistance properties.
  • the content of the acrylate-based rubbery polymer may be about 30 to about 70% by weight, for example about 40 to about 60% by weight of the total 100% by weight of the acrylate-based rubber-modified vinyl graft copolymer
  • the content of the monomer mixture is about 30 to about 70% by weight, for example about 40 to about 100% by weight of the total acrylate rubber-modified vinyl graft copolymer 60 weight percent.
  • the thermoplastic resin composition may have excellent weather resistance, impact resistance, chemical resistance, and the like.
  • the aromatic vinyl monomer may be graft copolymerized to the rubbery polymer, styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene, Monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene, etc. can be illustrated. These may be used alone or in combination of two or more thereof.
  • the aromatic vinyl monomer may be included in an amount of about 10 wt% to about 90 wt%, for example, about 40 wt% to about 90 wt% in 100 wt% of the monomer mixture. In the above range, the processability, colorability, etc. of the thermoplastic resin composition may be excellent.
  • the vinyl cyanide monomer is copolymerizable with the aromatic vinyl system, and may include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like. It can be illustrated. These may be used alone or in combination of two or more thereof. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide monomer may be about 10 wt% to about 90 wt%, for example about 10 wt% to about 60 wt%, in 100 wt% of the monomer mixture. In the above range, the chemical resistance, mechanical properties, and the like of the thermoplastic resin composition may be excellent.
  • monomers for imparting processability and heat resistance may include, but are not limited to, (meth) acrylic acid, maleic anhydride, N-substituted maleimide, and the like.
  • the content may be about 15% by weight or less, for example about 0.1 to about 10% by weight of 100% by weight of the monomer mixture. In the above range, processability and heat resistance can be imparted to the thermoplastic resin composition without deteriorating other physical properties.
  • the acrylate rubber-modified vinyl graft copolymer may include an acrylate-styrene-acrylonitrile graft copolymer (g-ASA) and the like.
  • g-ASA acrylate-styrene-acrylonitrile graft copolymer
  • the acrylate rubber-modified vinyl graft copolymer is about 20 to about 60 weight in 100% by weight of the total thermoplastic resin (acrylate-based rubber-modified vinyl graft copolymer and aromatic vinyl-based copolymer resin) %, For example from about 25 to about 50% by weight. In the above range, the weather resistance, impact resistance, balance of physical properties of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl copolymer resin according to one embodiment of the present invention may be an aromatic vinyl copolymer resin used in a conventional rubber-modified vinyl copolymer resin.
  • the aromatic vinyl copolymer resin may be a polymer of a monomer mixture including a monomer copolymerizable with the aromatic vinyl monomer such as an aromatic vinyl monomer and a vinyl cyanide monomer.
  • the aromatic vinyl copolymer resin may be obtained by mixing an aromatic vinyl monomer and a monomer copolymerizable with an aromatic vinyl monomer, and then polymerizing them, and the polymerization may be emulsion polymerization, suspension polymerization, bulk polymerization, or the like. It can be carried out by a known polymerization method of.
  • the aromatic vinyl monomers include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene, monochlorostyrene, dichlorostyrene, dibromostyrene , Vinylnaphthalene and the like can be used. These can be applied individually or in mixture of 2 or more types.
  • the content of the aromatic vinyl monomer may be about 20 to about 90 wt%, for example about 30 to about 80 wt%, of 100 wt% of the total aromatic vinyl copolymer resin. In the above range, the impact resistance, fluidity, and the like of the thermoplastic resin composition may be excellent.
  • the monomer copolymerizable with the aromatic vinyl monomer for example, acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like.
  • Vinyl cyanide monomers and the like can be used, and can be used alone or in combination of two or more.
  • the content of the monomer copolymerizable with the aromatic vinyl monomer may be about 10 wt% to about 80 wt%, for example, about 20 wt% to about 70 wt% of the total 100 wt% of the aromatic vinyl copolymer copolymer resin. In the above range, the impact resistance, fluidity, and the like of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl copolymer resin has a weight average molecular weight (Mw) of about 10,000 to about 300,000 g / mol, for example, about 15,000 to about 150,000 g / mol, as measured by gel permeation chromatography (GPC). Can be. In the above range, the mechanical strength, moldability, and the like of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl copolymer resin may be included in about 35 to about 80% by weight, for example about 50 to about 75% by weight of 100% by weight of the total thermoplastic resin. Impact resistance, fluidity (molding processability) and the like of the thermoplastic resin composition in the above range may be excellent.
  • the siloxane compound according to one embodiment of the present invention may increase mar resistance by lowering the surface friction coefficient of the thermoplastic resin composition (sample).
  • the thermoplastic resin composition for example, it may be represented by the following formula (1).
  • R 1 and R 2 may be each independently an alkyl group having 1 to 5 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, a butyl group, or the like, and specifically, may be a methyl group.
  • R 3 and R 4 may each independently be an alkylene group having 2 to 15 carbon atoms, for example, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, and the like.
  • a 1 and A 2 may each independently be a glycidoxy group, an epoxy group, or a dialkoxyaryl group.
  • the mean value of n may be 10 to 80, for example 20 to 60.
  • the siloxane compound represented by Formula 1 may be a siloxane compound in which A 1 and A 2 are dialkoxyaryl groups and an average value of n is 30 to 40.
  • the siloxane compound may have a weight average molecular weight of about 2,500 to about 4,000 g / mol, and a polydispersity index (PDI) of about 1.5 to about 2.5.
  • the siloxane compound may be prepared by reacting a siloxane compound (precursor) represented by the following formula (2) with a compound (functional group) represented by the following formula (3).
  • the siloxane compound of Chemical Formula 2 may be prepared by controlling n through a reaction of a linear siloxane having n of 0 and a cyclic siloxane, but is not limited thereto.
  • a 3 may be a glycidoxy group, an epoxy group, or a dialkoxyaryl group
  • a 3 and R 5 may be A 1 and A 2 of the siloxane compound of Formula 1, respectively.
  • R 3 and R 4 may be A 1 and A 2 of the siloxane compound of Formula 1, respectively.
  • the reaction can be carried out in the presence of a catalyst.
  • a catalyst containing platinum may be used.
  • the amount of the catalyst used may be, for example, about 10 to about 500 ppm, for example about 50 to about 150 ppm, based on the entire reactant.
  • the reaction may be performed in an organic solvent, and examples of the organic solvent may include, but are not limited to, 1,2-dichloroethane, toluene, xylene, dichlorobenzene, mixed solvents thereof, and the like.
  • organic solvent may include, but are not limited to, 1,2-dichloroethane, toluene, xylene, dichlorobenzene, mixed solvents thereof, and the like.
  • 1,2-dichloroethane 1,2-dichloroethane
  • toluene toluene
  • xylene xylene
  • dichlorobenzene dichlorobenzene
  • mixed solvents thereof and the like.
  • the reaction may control the reaction temperature and reaction time according to the reactivity of the reactants (Formula 2 and Formula 3).
  • the reaction may be performed at a reaction temperature of about 60 to about 140 ° C., specifically about 110 to about 120 ° C., for about 2 to about 12 hours, for example about 3 to about 5 hours, but is not limited thereto. It doesn't work.
  • the siloxane compound may be represented by the following Chemical Formulas 1a to 1d, but is not limited thereto.
  • n 10 to 80, for example, 20 to 60, specifically 30 to 40, and each R independently represents an alkyl group having 1 to 10 carbon atoms.
  • the siloxane compound may be included in an amount of about 0.3 to about 6 parts by weight, such as about 0.5 to about 5 parts by weight, specifically about 1 to about 3 parts by weight, based on about 100 parts by weight of the thermoplastic resin.
  • the siloxane compound is contained in an amount of less than about 0.3 part by weight based on about 100 parts by weight of the thermoplastic resin, there is a fear that the scratch resistance of the thermoplastic resin composition may be lowered, and when it exceeds about 6 parts by weight, the impact resistance of the thermoplastic resin composition is increased. There exists a possibility that weather resistance, antibacterial property, etc. may fall.
  • Zinc oxide of the present invention is to improve the antimicrobial properties, weather resistance, etc. of the thermoplastic resin composition
  • the average particle size measured by a particle size analyzer may be about 0.3 to about 3 ⁇ m, for example about 0.5 to about 2 ⁇ m
  • the specific surface area BET may be about 1 to about 10 m 2 / g, for example about 1 to about 7 m 2 / g, and the purity may be about 99% or more. When it is out of the said range, there exists a possibility that antibacterial property, weather resistance, etc. of a thermoplastic resin composition may fall.
  • the zinc oxide has a size ratio (B / A) of peak A in the 370 to 390 nm region and peak B in the 450 to 600 nm region when measured by photo luminescence, eg, For example, about 0.1 to about 1.
  • the weather resistance of the thermoplastic resin composition may be more excellent in the above range.
  • the zinc oxide has a peak position 2 ⁇ of 35 to 37 ° in X-ray diffraction (XRD) analysis, and the measured FWHM value (full of diffraction peaks).
  • the crystallite size value calculated by applying the Scherrer's equation (Equation 1) based on the width at Half Maximum may be about 1,000 to about 2,000 GPa, for example, about 1,200 to about 1,800 GPa. In the above range, the initial color of the thermoplastic resin composition, weather resistance, antibacterial and the like can be excellent.
  • Equation 1 K is a shape factor, ⁇ is an X-ray wavelength, ⁇ is an FWHM value, and ⁇ is a peak position degree.
  • the zinc oxide is dissolved in zinc in the form of metal, vaporized by heating to about 850 to about 1,000 ° C., for example, about 900 to about 950 ° C., followed by injection of oxygen gas and about 20 to about 30 After cooling to °C, if necessary, the heat treatment for about 30 minutes to about 150 minutes at about 700 to about 800 °C while injecting nitrogen / hydrogen gas into the reactor, and then cooled to room temperature (20 to 30 °C) It can manufacture.
  • the zinc oxide may be included in an amount of about 0.3 to about 6 parts by weight, for example about 0.5 to about 5 parts by weight, specifically about 0.5 to about 2.5 parts by weight, based on about 100 parts by weight of the thermoplastic resin.
  • the zinc oxide is included in less than about 0.3 part by weight based on about 100 parts by weight of the thermoplastic resin, the antimicrobial properties, weather resistance, etc. of the thermoplastic resin composition may be lowered.
  • the zinc oxide is more than about 6 parts by weight, flaws of the thermoplastic resin composition may occur. There exists a possibility that resistance etc. may fall.
  • the weight ratio (siloxane compound: zinc oxide) of the siloxane compound and the zinc oxide is about 1: 0.1 to about 1: 4, for example about 1: 0.17 to about 1: 4, specifically about 1: 0.4 To about 1: 1.67.
  • the thermoplastic resin composition may be more excellent in antibacterial, scratch resistance and the like.
  • the thermoplastic resin composition according to one embodiment of the present invention may further include an additive included in a conventional thermoplastic resin composition.
  • the additives may include, but are not limited to, flame retardants, fillers, antioxidants, anti drip agents, lubricants, mold release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, mixtures thereof, and the like.
  • the content may be about 0.001 to about 40 parts by weight, for example about 0.1 to about 10 parts by weight, based on about 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin composition according to an embodiment of the present invention may be in the form of pellets mixed with the components and melt-extruded at about 200 to about 280 ° C, for example, about 220 to about 250 ° C, using a conventional twin screw extruder. Can be.
  • the thermoplastic resin composition measures an initial color (L 0 * , a 0 * , b 0 * ) using a colorimeter on a 50 mm ⁇ 90 mm ⁇ 3 mm sized injection specimen, and measures the injection specimen.
  • the weather resistance test for 3,000 hours, and after the test using a colorimeter to measure the color (L 1 * , a 1 * , b 1 * ) and then the color change calculated according to the following equation (2) ⁇ E) may be about 3.5 or less, for example about 0.5 to about 3.5, specifically about 2.0 to about 3.3.
  • Equation 2 ⁇ L * is the difference between the L * values before and after the test (L 1 * -L 0 * ), ⁇ a * is the difference between the a * values before and after the test (a 1 * -a 0 * ), ⁇ b * Is the difference between the values of b * before and after the test (b 1 * -b 0 * ).
  • thermoplastic resin composition may have a gloss difference ( ⁇ Gloss (60 °)) of about 17 or less, for example, about 0 to about 15, according to Equation 3 below.
  • Equation 3 G 0 is 60 ° mirror glossiness measured by a friction fastness tester (crockmeter) according to ASTM D523 for a 10 cm ⁇ 15 cm size specimen, G 10 is a 10 times the back cloth for the same specimen After 60 ° mirror glossiness measured in the same way.
  • the thermoplastic resin composition is inoculated with Staphylococcus aureus and Escherichia coli on a 5 cm ⁇ 5 cm size specimen, based on JIS Z 2801 antimicrobial evaluation method, and measured after incubation at 35 ° C. and RH 90% for 24 hours.
  • the antimicrobial activity may be about 2 to about 6 and about 2 to about 6, for example about 2.5 to about 6 and about 2.5 to about 6, specifically about 4.5 to about 6 and about 4.5 to about 6.
  • the thermoplastic resin composition has a notched Izod impact strength of about 1/8 "thick specimens measured in accordance with ASTM D256 of about 30 to about 40 kgfcm / cm, for example about 32 to about 40 kgfcm / cm.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be prepared in a pellet form, and the prepared pellet may be manufactured into various molded products (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such molding methods are well known by those skilled in the art.
  • the molded article is excellent in weather resistance, antibacterial properties, scratch resistance, impact resistance, flowability (molding processability), the balance of physical properties thereof, and the like, it is useful as an interior / exterior material of the electrical / electronic products, for example, an internal material for a refrigerator.
  • thermoplastic resin (A) thermoplastic resin
  • a rubber modified vinyl copolymer resin including 40 wt% of the following (A1) acrylate rubber modified aromatic vinyl graft copolymer and 60 wt% of (A2) aromatic vinyl copolymer resin was used.
  • a butyl acrylate rubber having a 45-wt% Z-average of 310 nm was used with g-ASA graft copolymerized with 55 wt% of styrene and acrylonitrile (weight ratio 75/25).
  • SAN resin (weight average molecular weight: 130,000 g / mol) polymerized with 68% by weight of styrene and 32% by weight of acrylonitrile was used.
  • the siloxane compound (R: methyl group, average value of n: 20) represented by following General formula (1b) was used.
  • Average particle size (unit: ⁇ m): Average particle size was measured using a particle size analyzer (Beckman coulter LS 13 320 Particle size analyzer).
  • BET specific surface area (unit: m 2 / g): using a nitrogen gas adsorption method, it was measured for BET surface area.
  • Purity (Unit:%): Purity was measured using TGA thermal analysis with weight remaining at 800 ° C.
  • PL size ratio (B / A) According to the photo luminescence measuring method, a spectrum of light emitted by a He-Cd laser (Kimmon, 30mW) having a wavelength of 325 nm at room temperature is measured by a CCD detector. The temperature of the CCD detector was maintained at -70 ° C. The size ratio (B / A) of the peak A in the 370 to 390 nm region and the peak B in the 450 to 600 nm region was measured.
  • the injection specimen was subjected to PL analysis by injecting a laser into the specimen without any treatment, and the zinc oxide powder was placed in a pelletizer having a diameter of 6 mm and pressed to produce a flat specimen. It was.
  • Equation 1 K is a shape factor, ⁇ is an X-ray wavelength, ⁇ is an FWHM value, and ⁇ is a peak position degree.
  • Equation 2 ⁇ L * is the difference between the L * values before and after the test (L 1 * -L 0 * ), ⁇ a * is the difference between the a * values before and after the test (a 1 * -a 0 * ), ⁇ b * Is the difference between the values of b * before and after the test (b 1 * -b 0 * ).
  • Equation 3 G 0 is 60 ° mirror glossiness measured by a friction fastness tester (crockmeter) according to ASTM D523 for a 10 cm ⁇ 15 cm size specimen, G 10 is a 10 times the back cloth for the same specimen After 60 ° mirror glossiness measured in the same way.
  • Antibacterial activity value In accordance with JIS Z 2801 antimicrobial evaluation method, 5 cm ⁇ 5 cm size specimen was inoculated with Staphylococcus aureus and E. coli, and measured after culturing for 24 hours at 35 °C, RH 90% conditions.
  • Notched Izod impact strength (unit: kgf ⁇ cm / cm): Notched Izod impact strength was measured on a 1/8 "thick specimen in accordance with ASTM D256.
  • Example One 2 3 4 5 (A) (parts by weight) 100 100 100 100 100 100 100 (B) (parts by weight) 3 5 0.5 3 3 (C) (part by weight) (C1) 2 2 2 5 0.5 (C2) - - - - - (C3) - - - - - (B): (C) (weight ratio) 1: 0.67 1: 0.4 1: 4 1: 1.67 1: 0.17 Color change ( ⁇ E) 2.2 3.2 2.4 2.2 3.3 Glossiness Difference ( ⁇ Gloss (60 °)) 2 0 15 10 0 Antibacterial activity level (E. coli) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 2.5 Antibacterial activity level (Staphococcus) 6 4.5 6 6 6 2.5 Notch Izod Impact Strength 35 33 37 32 37
  • thermoplastic resin composition of the present invention is excellent in weather resistance (color resistance), mar resistance, antibacterial property, impact resistance and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 아크릴레이트계 고무변성 비닐계 그라프트 공중합체 약 20 내지 약 65 중량% 및 방향족 비닐계 공중합체 수지 약 35 내지 약 80 중량%를 포함하는 열가소성 수지 약 100 중량부; 화학식 1로 표시되는 실록산 화합물 약 0.3 내지 약 6 중량부; 및 평균 입자 크기가 약 0.3 내지 약 3 ㎛이고, 비표면적 BET가 약 1 내지 약 10 m2/g인 산화아연 약 0.3 내지 약 6 중량부를 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물은 내후성(내변색성), 흠저항성(mar resistance), 항균성, 내충격성 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 제조된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 제조된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 내후성(내변색성), 흠저항성(mar resistance), 항균성, 내충격성 등이 우수한 열가소성 수지 조성물 및 이로부터 제조된 성형품에 관한 것이다.
열가소성 수지로서, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지(ABS 수지) 등의 고무변성 방향족 비닐계 공중합체 수지는 기계적 물성, 가공성, 외관 특성 등이 우수하여, 전기/전자 제품의 내/외장재, 자동차 내/외장재, 건축용 외장재 등으로 널리 사용되고 있다.
그러나, 이러한 고무변성 방향족 스티렌계 공중합체 수지로 제조된 가전 제품 등은 사용 시간이 흐름에 따라, 황변 현상 및 다양한 생활 스크래치가 발생할 수 있으며, 표면에 각종 균이 번식하게 될 우려가 있다.
따라서, 내후성(내변색성), 흠저항성(mar resistance), 항균성 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 대한민국 등록특허 제10-1399390호 등에 개시되어 있다.
본 발명의 목적은 내후성(내변색성), 흠저항성(mar resistance), 항균성, 내충격성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 아크릴레이트계 고무변성 비닐계 그라프트 공중합체 약 20 내지 약 65 중량% 및 방향족 비닐계 공중합체 수지 약 35 내지 약 80 중량%를 포함하는 열가소성 수지 약 100 중량부; 하기 화학식 1로 표시되는 실록산 화합물 약 0.3 내지 약 6 중량부; 및 평균 입자 크기가 약 0.3 내지 약 3 ㎛이고, 비표면적 BET가 약 1 내지 약 10 m2/g인 산화아연 약 0.3 내지 약 6 중량부를 포함한다:
[화학식 1]
Figure PCTKR2017014536-appb-I000001
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R3 및 R4는 각각 독립적으로 탄소수 2 내지 15의 알킬렌기이고, A1 및 A2는 각각 독립적으로 글리시독시기, 에폭시기, 또는 디알콕시아릴기이며, n의 평균값은 10 내지 80이다.
구체예에서, 상기 아크릴레이트계 고무변성 비닐계 그라프트 공중합체는 아크릴레이트계 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 중합체일 수 있다.
구체예에서, 상기 화학식 1로 표시되는 실록산 화합물은 A1 및 A2가 디알콕시아릴기이고, n의 평균값은 30 내지 40일 수 있다.
구체예에서, 상기 실록산 화합물은 하기 화학식 1a로 표시되는 화합물, 하기 화학식 1b로 표시되는 화합물, 하기 화학식 1c로 표시되는 화합물 및 하기 화학식 1d로 표시되는 화합물 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물:
[화학식 1a]
Figure PCTKR2017014536-appb-I000002
[화학식 1b]
Figure PCTKR2017014536-appb-I000003
[화학식 1c]
Figure PCTKR2017014536-appb-I000004
[화학식 1d]
Figure PCTKR2017014536-appb-I000005
상기 화학식 1a, 1b, 1c 및 1d에서, n의 평균값은 20 내지 60이고, R은 각각 독립적으로 탄소수 1 내지 10의 알킬기이다.
구체예에서, 상기 산화아연은 광 발광(Photo Luminescence) 측정 시, 370 내지 390 nm 영역의 피크 A와 450 내지 600 nm 영역의 피크 B의 크기비(B/A)가 약 0 내지 약 1일 수 있다.
구체예에서, 상기 산화아연은 X선 회절(X-ray diffraction, XRD) 분석 시, 피크 위치(peak position) 2θ 값이 35 내지 37° 범위이고, 하기 식 1에 의한 미소결정의 크기(crystallite size) 값이 약 1,000 내지 약 2,000 Å일 수 있다:
[식 1]
미소결정 크기(D) =
Figure PCTKR2017014536-appb-I000006
상기 식 1에서, K는 형상 계수(shape factor)이고, λ는 X선 파장(X-ray wavelength)이고, β는 X선 회절 피크(peak)의 FWHM 값(degree)이며, θ는 피크 위치 값(peak position degree)이다.
구체예에서, 상기 실록산 화합물 및 상기 산화아연의 중량비는 약 1 : 0.1 내지 약 1 : 4일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 50 mm × 90 mm × 3 mm 크기 사출 시편에 대해 색차계를 사용하여 초기 색상(L0 *, a0 *, b0 *)을 측정하고, 상기 사출 시편을 SAE J 1960에 의거하여, 3,000 시간 동안 내후성 테스트하고, 색차계를 사용하여 테스트 후 색상(L1 *, a1 *, b1 *)을 측정한 다음, 하기 식 2에 따라 산출한 색상 변화(ΔE)가 약 3.5 이하일 수 있다:
[식 2]
색상 변화(ΔE) =
Figure PCTKR2017014536-appb-I000007
상기 식 2에서, ΔL*는 테스트 전후의 L* 값의 차이(L1 *-L0 *)이고, Δa*는 테스트 전후의 a* 값의 차이(a1 *- a0 *) 이며, Δb*는 테스트 전후의 b* 값의 차이(b1 *- b0 *)이다.
구체예에서, 상기 열가소성 수지 조성물은 하기 식 3에 의한 광택도 차이(ΔGloss(60°))가 약 17 이하일 수 있다:
[식 3]
ΔGloss(60°) = |G10 - G0
상기 식 3에서, G0은 10 cm × 15 cm 크기 시편에 대해 ASTM D523에 의거하여 마찰 견뢰도 시험기(crockmeter)로 측정한 60° 경면 광택도이고, G10은 동일 시편에 대해 백면포 10회 마찰 후 동일방법으로 측정한 60° 경면 광택도이다.
구체예에서, 상기 열가소성 수지 조성물은 JIS Z 2801 항균 평가법에 의거하여, 5 cm × 5 cm 크기 시편에 황색포도상구균 및 대장균을 접종하고, 35℃, RH 90% 조건에서 24시간 배양 후, 측정한 항균 활성치가 각각 약 2 내지 약 6 및 약 2 내지 약 6일 수 있다.
본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
본 발명은 내후성(내변색성), 흠저항성(mar resistance), 항균성, 내충격성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A1) 아크릴레이트계 고무변성 비닐계 그라프트 공중합체 및 (A2) 방향족 비닐계 공중합체 수지를 포함하는 (A) 열가소성 수지; (B) 실록산 화합물; 및 (C) 산화아연을 포함한다.
(A) 열가소성 수지
본 발명의 열가소성 수지는 (A1) 아크릴레이트계 고무변성 비닐계 그라프트 공중합체 및 (A2) 방향족 비닐계 공중합체 수지를 포함하는 고무변성 비닐계 공중합체 수지일 수 있다.
(A1) 아크릴레이트계 고무변성 방향족 비닐계 그라프트 공중합체
본 발명의 일 구체예에 따른 아크릴레이트계 고무변성 비닐계 그라프트 공중합체는 열가소성 수지 조성물의 내후성, 내충격성, 내화학성 등을 향상시킬 수 있는 것으로서, 아크릴레이트계 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다. 예를 들면, 상기 아크릴레이트계 고무변성 비닐계 그라프트 공중합체는 아크릴레이트계 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물을 그라프트 중합하여 얻을 수 있으며, 필요에 따라, 상기 단량체 혼합물에 가공성 및 내열성을 부여하는 단량체를 더욱 포함시켜 그라프트 중합할 수 있다. 상기 중합은 유화중합, 현탁중합 등의 공지의 중합방법에 의하여 수행될 수 있다. 또한, 상기 아크릴레이트계 고무변성 비닐계 그라프트 공중합체는 코어(고무질 중합체)-쉘(단량체 혼합물의 공중합체) 구조를 형성할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 아크릴레이트계 고무질 중합체로는 알킬 (메타)아크릴레이트 고무, 알킬(메타)아크릴레이트 및 방향족 비닐계 화합물의 공중합체 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 탄소수 2 내지 10의 알킬아크릴레이트 고무, 탄소수 2 내지 10의 알킬아크릴레이트 및 스티렌의 공중합체, 이들의 조합 등이 사용될 수 있고, 구체적으로, 부틸아크릴레이트 고무, 부틸아크릴레이트 및 스티렌의 공중합체, 이들의 조합 등이 사용될 수 있다. 여기서, 상기 알킬(메타)아크릴레이트 및 방향족 비닐계 화합물의 공중합체는 알킬(메타)아크릴레이트 약 70 내지 약 90 중량% 및 방향족 비닐계 화합물 약 10 내지 약 30 중량%가 중합된 것일 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 아크릴레이트계 고무질 중합체(고무 입자)는 평균입경(Z-평균)이 약 0.1 내지 약 0.5 ㎛, 예를 들면 약 0.15 내지 약 0.4 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내후성, 내충격성, 내화학성 등이 우수할 수 있다.
구체예에서, 상기 아크릴레이트계 고무질 중합체는 평균입경이 다른 2종 이상의 아크릴레이트계 고무질 중합체가 혼합된 것일 수 있다. 예를 들면, 평균입경이 약 0.1 내지 약 0.2 ㎛인 제1 아크릴레이트계 고무질 중합체 약 40 내지 약 80 중량% 및 평균입경이 약 0.2 ㎛ 초과 약 0.5 ㎛ 이하인 제2 아크릴레이트계 고무질 중합체 약 20 내지 약 60 중량%가 혼합된 바이모달 입자 크기 분포를 갖는 혼합물일 수 있으나, 이에 제한되지 않는다. 혼합물 형태의 아크릴레이트계 고무질 중합체 사용 시, 균일한 내충격 물성을 갖는 열가소성 수지 조성물을 얻을 수 있다.
구체예에서, 상기 아크릴레이트계 고무질 중합체의 함량은 아크릴레이트계 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 30 내지 약 70 중량%, 예를 들면 약 40 내지 약 60 중량%일 수 있고, 상기 단량체 혼합물(방향족 비닐계 단량체 및 시안화 비닐계 단량체 포함)의 함량은 아크릴레이트계 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 30 내지 약 70 중량%, 예를 들면 약 40 내지 약 60 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내후성, 내충격성, 내화학성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체는 상기 고무질 중합체에 그라프트 공중합될 수 있는 것으로서, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 40 내지 약 90 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 가공성, 착색성 등이 우수할 수 있다.
구체예에서, 상기 시안화 비닐계 단량체는 상기 방향족 비닐계와 공중합 가능한 것으로서, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 10 내지 약 60 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내약품성, 기계적 특성 등이 우수할 수 있다.
구체예에서, 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, 무수말레인산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.
구체예에서, 상기 아크릴레이트계 고무변성 비닐계 그라프트 공중합체로는 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(g-ASA) 등을 예시할 수 있다.
구체예에서, 상기 아크릴레이트계 고무변성 비닐계 그라프트 공중합체는 전체 열가소성 수지(아크릴레이트계 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지) 100 중량% 중 약 20 내지 약 60 중량%, 예를 들면 약 25 내지 약 50 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내후성, 내충격성, 이들의 물성 발란스 등이 우수할 수 있다.
(A2) 방향족 비닐계 공중합체 수지
본 발명의 일 구체예에 따른 방향족 비닐계 공중합체 수지는 통상적인 고무변성 비닐계 공중합체 수지에 사용되는 방향족 비닐계 공중합체 수지일 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 시안화 비닐계 단량체 등의 상기 방향족 비닐계 단량체와 공중합 가능한 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 방향족 비닐계 단량체와 공중합 가능한 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체로는 예를 들면, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등의 시안화 비닐계 단량체 등을 사용할 수 있으며, 단독 또는 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 300,000 g/mol, 예를 들면, 약 15,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 강도, 성형성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 전체 열가소성 수지 100 중량% 중, 약 35 내지 약 80 중량%, 예를 들면 약 50 내지 약 75 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(성형 가공성) 등이 우수할 수 있다.
(B) 실록산 화합물
본 발명의 일 구체예에 따른 실록산 화합물은 열가소성 수지 조성물(시편)의 표면 마찰계수를 낮춤으로써, 흠저항성(mar resistance)을 증가시킬 수 있는 것이다. 예를 들면, 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2017014536-appb-I000008
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬기, 예를 들면 메틸기, 에틸기, 프로필기, 부틸기 등일 수 있고, 구체적으로 메틸기일 수 있다. R3 및 R4는 각각 독립적으로 탄소수 2 내지 15의 알킬렌기, 예를 들면, 에틸렌기, 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기 등일 수 있다. A1 및 A2는 각각 독립적으로 글리시독시기, 에폭시기, 또는 디알콕시아릴기일 수 있다. n의 평균값은 10 내지 80, 예를 들면 20 내지 60일 수 있다.
구체예에서, 상기 화학식 1로 표시되는 실록산 화합물은 A1 및 A2가 디알콕시아릴기이고, n의 평균값은 30 내지 40인 실록산 화합물일 수 있다. 또한, 상기 실록산 화합물은 중량평균분자량이 약 2,500 내지 약 4,000 g/mol이고, 다분산 지수(PDI)가 약 1.5 내지 약 2.5일 수 있다.
구체예에서, 상기 실록산 화합물은 하기 화학식 2로 표시되는 실록산 화합물(전구체)에 하기 화학식 3으로 표시되는 화합물(관능기)을 반응시켜 제조할 수 있다.
[화학식 2]
Figure PCTKR2017014536-appb-I000009
상기 화학식 2에서, R1, R2 및 n의 평균값은 상기 화학식 1에서 정의한 바와 같다.
상기 화학식 2의 실록산 화합물은 n이 0인 선형 실록산과 환형 실록산 등의 반응을 통해 n을 조절함으로써 제조할 수 있으나, 이에 제한되지 않는다.
[화학식 3]
Figure PCTKR2017014536-appb-I000010
상기 화학식 3에서, A3는 글리시독시기, 에폭시기, 또는 디알콕시아릴기일 수 있고, R5는 말단이 이중 결합인 탄소수 2 내지 15의 탄화수소기, 예를 들면, 비닐기(CH2=CH-), 알릴기(CH2=CH-CH2-) 등일 수 있다.
여기서, 상기 화학식 3으로 표시되는 화합물로는 A3 및 R5가 각각 상이한 2종 이상의 화합물을 사용할 수 있으며, 반응 후, A3 및 R5는 각각 상기 화학식 1의 실록산 화합물의 A1 및 A2와 R3 및 R4를 나타낼 수 있다.
구체예에서, 상기 반응은 촉매 존재 하에 수행될 수 있다. 상기 촉매로는 백금을 포함하는 촉매를 사용할 수 있다. 예를 들면, 상기 촉매는 백금 원소 자체 또는 백금을 포함하는 화합물일 수 있고, 구체적으로는, H2PtCl6, Pt2{[(CH2=CH)Me2Si]2O}3, Rh[(cod)2]BF4, Rh(PPh3)4Cl, Pt/C 등을 단독 또는 혼합하여 사용할 수 있지만, 이에 제한되는 것은 아니다. 더욱 구체적으로는, Pt/C, 예를 들면 10% Pt/C을 사용할 수 있다. 상기 촉매의 사용량은 반응물 전체에 대하여, 예를 들면, 약 10 내지 약 500 ppm, 예를 들면 약 50 내지 약 150 ppm일 수 있다.
상기 반응은 유기 용매에서 수행될 수 있으며, 상기 유기 용매로는 1,2-디클로로에탄, 톨루엔, 자일렌, 디클로로벤젠, 이들의 혼합 용매 등을 예시할 수 있지만, 이에 제한되는 것은 아니다. 예를 들면 톨루엔에서 수행될 수 있다.
또한, 상기 반응은 반응물(화학식 2와 화학식 3)의 반응성에 따라 반응 온도와 반응 시간을 조절할 수 있다. 예를 들면, 상기 반응은 반응 온도 약 60 내지 약 140℃, 구체적으로 약 110 내지 약 120℃에서, 약 2 내지 약 12시간, 예를 들면 약 3 내지 약 5시간 동안 수행될 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 실록산 화합물은 하기 화학식 1a 내지 1d로 표시될 수 있으나, 이에 제한되지 않는다.
[화학식 1a]
Figure PCTKR2017014536-appb-I000011
[화학식 1b]
Figure PCTKR2017014536-appb-I000012
[화학식 1c]
Figure PCTKR2017014536-appb-I000013
[화학식 1d]
Figure PCTKR2017014536-appb-I000014
상기 화학식 1a, 1b, 1c 및 1d에서, n의 평균값은 10 내지 80, 예를 들면 20 내지 60, 구체적으로 30 내지 40이고, R은 각각 독립적으로 탄소수 1 내지 10의 알킬기이다.
구체예에서, 상기 실록산 화합물은 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.3 내지 약 6 중량부, 예를 들면 약 0.5 내지 약 5 중량부, 구체적으로 약 1 내지 약 3 중량부로 포함될 수 있다. 상기 실록산 화합물이 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.3 중량부 미만 포함될 경우, 열가소성 수지 조성물의 흠저항성 등이 저하될 우려가 있고, 약 6 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성, 내후성, 항균성 등이 저하될 우려가 있다.
(C) 산화아연
본 발명의 산화아연은 열가소성 수지 조성물의 항균성, 내후성 등을 향상시킬 수 있는 것으로서, 입도분석기로 측정한 평균 입자 크기가 약 0.3 내지 약 3 ㎛, 예를 들면 약 0.5 내지 약 2 ㎛일 수 있고, 비표면적 BET가 약 1 내지 약 10 m2/g, 예를 들면 약 1 내지 약 7 m2/g일 수 있으며, 순도가 약 99% 이상일 수 있다. 상기 범위를 벗어날 경우, 열가소성 수지 조성물의 항균성, 내후성 등이 저하될 우려가 있다.
구체예에서, 상기 산화 아연은 광 발광(Photo Luminescence) 측정 시, 370 내지 390 nm 영역의 피크 A와 450 내지 600 nm 영역의 피크 B의 크기비(B/A)가 약 0 내지 약 1, 예를 들면 약 0.1 내지 약 1일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내후성이 더 우수할 수 있다.
구체예에서, 상기 산화아연은 X선 회절(X-ray diffraction, XRD) 분석 시, 피크 위치(peak position) 2θ 값이 35 내지 37° 범위이고, 측정된 FWHM 값(회절 피크(peak)의 Full width at Half Maximum)을 기준으로 Scherrer's equation(하기 식 1)에 적용하여 연산된 미소결정의 크기(crystallite size) 값이 약 1,000 내지 약 2,000 Å, 예를 들면 약 1,200 내지 약 1,800 Å일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 초기 색상, 내후성, 항균성 등이 우수할 수 있다.
[식 1]
미소결정 크기(D) =
Figure PCTKR2017014536-appb-I000015
상기 식 1에서, K는 형상 계수(shape factor)이고, λ는 X선 파장(X-ray wavelength)이고, β는 FWHM 값(degree)이며, θ는 피크 위치 값(peak position degree)이다.
구체예에서, 상기 산화아연은 금속형태의 아연을 녹인 후, 약 850 내지 약 1,000℃, 예를 들면 약 900 내지 약 950℃로 가열하여 증기화시킨 후, 산소 가스를 주입하고 약 20 내지 약 30℃로 냉각한 다음, 필요 시, 반응기에 질소/수소 가스를 주입하면서, 약 700 내지 약 800℃에서 약 30분 내지 약 150분 동안 열처리를 진행한 후, 상온(20 내지 30℃)으로 냉각하여 제조할 수 있다.
구체예에서, 상기 산화아연은 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.3 내지 약 6 중량부, 예를 들면 약 0.5 내지 약 5 중량부, 구체적으로 약 0.5 내지 약 2.5 중량부로 포함될 수 있다. 상기 산화아연이 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.3 중량부 미만 포함될 경우, 열가소성 수지 조성물의 항균성, 내후성 등이 저하될 우려가 있고, 약 6 중량부를 초과할 경우, 열가소성 수지 조성물의 흠저항성 등이 저하될 우려가 있다.
구체예에서, 상기 실록산 화합물 및 상기 산화아연의 중량비(실록산 화합물 : 산화아연)는 약 1 : 0.1 내지 약 1 : 4, 예를 들면 약 1 : 0.17 내지 약 1 : 4, 구체적으로 약 1 : 0.4 내지 약 1 : 1.67일 수 있다. 상기 범위에서 열가소성 수지 조성물의 항균성, 흠저항성 등이 더 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 난연제, 충진제, 산화 방지제, 적하 방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 열가소성 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 200 내지 약 280℃, 예를 들면 약 220 내지 약 250℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 50 mm × 90 mm × 3 mm 크기 사출 시편에 대해 색차계를 사용하여 초기 색상(L0 *, a0 *, b0 *)을 측정하고, 상기 사출 시편을 SAE J 1960에 의거하여, 3,000 시간 동안 내후성 테스트하고, 색차계를 사용하여 테스트 후 색상(L1 *, a1 *, b1 *)을 측정한 다음, 하기 식 2에 따라 산출한 색상 변화(ΔE)가 약 3.5 이하, 예를 들면 약 0.5 내지 약 3.5, 구체적으로 약 2.0 내지 약 3.3일 수 있다.
[식 2]
색상 변화(ΔE) =
Figure PCTKR2017014536-appb-I000016
상기 식 2에서, ΔL*는 테스트 전후의 L* 값의 차이(L1 *-L0 *)이고, Δa*는 테스트 전후의 a* 값의 차이(a1 *- a0 *) 이며, Δb*는 테스트 전후의 b* 값의 차이(b1 *- b0 *)이다.
구체예에서, 상기 열가소성 수지 조성물은 하기 식 3에 의한 광택도 차이(ΔGloss(60°))가 약 17 이하, 예를 들면 약 0 내지 약 15일 수 있다.
[식 3]
ΔGloss(60°) = |G10 - G0
상기 식 3에서, G0은 10 cm × 15 cm 크기 시편에 대해 ASTM D523에 의거하여 마찰 견뢰도 시험기(crockmeter)로 측정한 60° 경면 광택도이고, G10은 동일 시편에 대해 백면포 10회 마찰 후 동일방법으로 측정한 60° 경면 광택도이다.
구체예에서, 상기 열가소성 수지 조성물은 JIS Z 2801 항균 평가법에 의거하여, 5 cm × 5 cm 크기 시편에 황색포도상구균 및 대장균을 접종하고, 35℃, RH 90% 조건에서 24시간 배양 후, 측정한 항균 활성치가 각각 약 2 내지 약 6 및 약 2 내지 약 6, 예를 들면 약 2.5 내지 약 6 및 약 2.5 내지 약 6, 구체적으로 약 4.5 내지 약 6 및 약 4.5 내지 약 6일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 30 내지 약 40 kgf·cm/cm, 예를 들면 약 32 내지 약 40 kgf·cm/cm일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 내후성, 항균성, 흠저항성, 내충격성, 유동성(성형 가공성), 이들의 물성 발란스 등이 우수하므로, 전기/전자 제품의 내/외장재, 예를 들면 냉장고용 내상용 소재 등으로 유용하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 열가소성 수지
하기 (A1) 아크릴레이트계 고무변성 방향족 비닐계 그라프트 공중합체 40 중량% 및 (A2) 방향족 비닐계 공중합체 수지 60 중량%를 포함하는 고무변성 비닐계 공중합체 수지를 사용하였다.
(A1) 아크릴레이트계 고무변성 방향족 비닐계 그라프트 공중합체
45 중량%의 Z-평균이 310 nm인 부틸아크릴레이트 고무에 55 중량%의 스티렌 및 아크릴로니트릴(중량비: 75/25)가 그라프트 공중합된 g-ASA를 사용하였다.
(A2) 방향족 비닐계 공중합체 수지
스티렌 68 중량% 및 아크릴로니트릴 32 중량%가 중합된 SAN 수지(중량평균분자량: 130,000 g/mol)를 사용하였다.
(B) 실록산 화합물
하기 화학식 1b로 표시되는 실록산 화합물(R: 메틸기, n의 평균값: 20)을 사용하였다.
[화학식 1b]
Figure PCTKR2017014536-appb-I000017
(C) 산화아연
(C1) 하기 표 1의 평균 입자 크기, BET 표면적, 순도, 광 발광(Photo Luminescence) 측정 시, 370 내지 390 nm 영역의 피크 A와 450 내지 600 nm 영역의 피크 B의 크기비 (B/A) 및 미소결정의 크기(crystallite size) 값을 갖는 산화아연을 사용하였다.
(C2) 하기 표 1의 평균 입자 크기, BET 표면적, 순도, 광 발광(Photo Luminescence) 측정 시, 370 내지 390 nm 영역의 피크 A와 450 내지 600 nm 영역의 피크 B의 크기비(B/A) 및 미소결정의 크기(crystallite size) 값을 갖는 산화아연을 사용하였다.
(C3) 하기 표 1의 평균 입자 크기, BET 표면적, 순도, 광 발광(Photo Luminescence) 측정 시, 370 내지 390 nm 영역의 피크 A와 450 내지 600 nm 영역의 피크 B의 크기비(B/A) 및 미소결정의 크기(crystallite size) 값을 갖는 산화아연을 사용하였다.
(C1) (C2) (C3)
평균 입자 크기 (㎛) 0.6 1.1 1.1
BET 표면적 (m2/g) 6 40 15
순도 (%) 99 96 99
PL 크기비(B/A) 0.28 1.17 6.49
미소결정 크기 (Å) 1467 141 1027
물성 측정 방법
(1) 평균 입자 크기(단위: ㎛): 입도분석기(Beckman coulter LS 13 320 Particle size analyzer)를 사용하여, 평균 입자 크기를 측정하였다.
(2) BET 표면적(단위: m2/g): 질소가스 흡착법을 사용하여, BET 표면적을 측정하였다.
(3) 순도 (단위: %): TGA 열분석법을 사용하여, 800℃ 온도에서 잔류하는 무게를 가지고 순도를 측정하였다.
(4) PL 크기비(B/A): 광 발광(Photo Luminescence) 측정법에 따라, 실온에서 325 nm 파장의 He-Cd laser (KIMMON사, 30mW)를 시편에 입사해서 발광되는 스펙트럼을 CCD detector를 이용하여 검출하였으며, 이때 CCD detector의 온도는 -70℃ 를 유지하였다. 370 내지 390 nm 영역의 피크 A와 450 내지 600 nm 영역의 피크 B의 크기비(B/A)를 측정하였다. 여기서, 사출 시편은 별도의 처리 없이 레이저(laser)를 시편에 입사시켜 PL 분석을 진행하였고, 산화아연 파우더는 6 mm 직경의 펠렛타이저(pelletizer)에 넣고 압착하여 편평하게 시편을 제작한 뒤 측정하였다.
(5) 미소결정 크기(crystallite size, 단위: Å): 고분해능 X-선 회절분석기(High Resolution X-Ray Diffractometer, 제조사: X'pert사, 장치명: PRO-MRD)을 사용하였으며, 피크 위치(peak position) 2θ 값이 35 내지 37° 범위이고, 측정된 FWHM 값(회절 피크(peak)의 Full width at Half Maximum)을 기준으로 Scherrer's equation(하기 식 1)에 적용하여 연산하였다. 여기서, 파우더 형태 및 사출 시편 모두 측정이 가능하며, 더욱 정확한 분석을 위하여, 사출 시편의 경우, 600℃, 에어(air) 상태에서 2시간 열처리하여 고분자 수지를 제거한 후, XRD 분석을 진행하였다.
[식 1]
미소결정 크기(D) =
Figure PCTKR2017014536-appb-I000018
상기 식 1에서, K는 형상 계수(shape factor)이고, λ는 X선 파장(X-ray wavelength)이고, β는 FWHM 값(degree)이며, θ는 피크 위치 값(peak position degree)이다.
실시예 1 내지 5 및 비교예 1 내지 6
상기 각 구성 성분을 하기 표 2 및 3에 기재된 바와 같은 함량으로 첨가한 후, 230℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=36, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 4시간 이상 건조 후, 6 Oz 사출기(성형 온도 230℃, 금형 온도: 60℃)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 2 및 3에 나타내었다.
물성 측정 방법
(1) 내후성 평가(색상 변화(ΔE)): 50 mm × 90 mm × 3 mm 크기 사출 시편에 대해 색차계(KONICA MINOLTA, CM-3700A)를 사용하여 초기 색상(L0 *, a0 *, b0 *)을 측정하고, 상기 사출 시편을 SAE J 1960에 의거하여, 3,000 시간 동안 내후성 테스트하고, 색차계를 사용하여 테스트 후 색상(L1 *, a1 *, b1 *)을 측정한 다음, 하기 식 2에 따라 색상 변화(ΔE)를 산출하였다.
[식 2]
색상 변화(ΔE) =
Figure PCTKR2017014536-appb-I000019
상기 식 2에서, ΔL*는 테스트 전후의 L* 값의 차이(L1 *-L0 *)이고, Δa*는 테스트 전후의 a* 값의 차이(a1 *- a0 *) 이며, Δb*는 테스트 전후의 b* 값의 차이(b1 *- b0 *)이다.
(2) 흠저항성(mar resistance) 평가: 하기 식 3에 따라, 마찰 전후 60° 경면 광택도 차이(ΔGloss(60°))를 산출하였다.
[식 3]
ΔGloss(60°) = |G10 - G0
상기 식 3에서, G0은 10 cm × 15 cm 크기 시편에 대해 ASTM D523에 의거하여 마찰 견뢰도 시험기(crockmeter)로 측정한 60° 경면 광택도이고, G10은 동일 시편에 대해 백면포 10회 마찰 후 동일방법으로 측정한 60° 경면 광택도이다.
(3) 항균 활성치: JIS Z 2801 항균 평가법에 의거하여, 5 cm × 5 cm 크기 시편에 황색포도상구균 및 대장균을 접종하고, 35℃, RH 90% 조건에서 24시간 배양 후, 측정하였다.
(4) 노치 아이조드 충격강도(단위: kgf·cm/cm): ASTM D256에 의거하여, 1/8" 두께의 시편에 대하여 노치 아이조드 충격강도를 측정하였다.
실시예
1 2 3 4 5
(A) (중량부) 100 100 100 100 100
(B) (중량부) 3 5 0.5 3 3
(C)(중량부) (C1) 2 2 2 5 0.5
(C2) - - - - -
(C3) - - - - -
(B):(C) (중량비) 1:0.67 1:0.4 1:4 1:1.67 1:0.17
색상 변화 (ΔE) 2.2 3.2 2.4 2.2 3.3
광택도 차이(ΔGloss(60°)) 2 0 15 10 0
항균 활성치(대장균) 6 6 6 6 2.5
항균 활성치(포도상구균) 6 4.5 6 6 2.5
노치 아이조드 충격강도 35 33 37 32 37
비교예
1 2 3 4 5 6
(A) (중량부) 100 100 100 100 100 100
(B) (중량부) 3 3 3 3 0.2 7
(C)(중량부) (C1) - - 0.1 7 2 2
(C2) 2 - - - - -
(C3) - 2 - - - -
(B):(C) (중량비) 1:0.67 1:0.67 1:0.03 1:2.33 1:10 1:0.29
색상 변화 (ΔE) 4.5 2.3 3.6 2.1 2.2 2.5
광택도 차이(ΔGloss(60°)) 5 3 0 18 20 0
항균 활성치(대장균) 1.5 1.5 0.5 6 6 5
항균 활성치(포도상구균) 1.5 1.5 0.5 6 6 4
노치 아이조드 충격강도 35 35 37 29 37 28
상기 결과로부터, 본 발명의 열가소성 수지 조성물은 내후성(내변색성), 흠저항성(mar resistance), 항균성, 내충격성 등이 모두 우수함을 알 수 있다.
반면, BET 표면적 등이 본 발명의 범위를 벗어나는 산화 아연 (C2)를 사용한 비교예 1의 경우, 내후성 및 항균성 등이 저하됨을 알 수 있고, BET 표면적 등이 본 발명의 범위를 벗어나는 산화 아연 (C3)를 사용한 비교예 2의 경우, 항균성 등이 저하됨을 알 수 있다. 또한, 산화아연의 함량이 적을 경우(비교예 3), 항균성 및 내후성 등이 저하됨을 알 수 있고, 산화아연의 함량이 많을 경우(비교예 4), 흠저항성 등이 저하됨을 알 수 있다. 또한, 실록산 화합물의 함량이 적을 경우(비교예 5), 흠저항성 등이 저하됨을 알 수 있고, 실록산 화합물의 함량이 많을 경우(비교예 6), 내충격성 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (12)

  1. 아크릴레이트계 고무변성 비닐계 그라프트 공중합체 약 20 내지 약 65 중량% 및 방향족 비닐계 공중합체 수지 약 35 내지 약 80 중량%를 포함하는 열가소성 수지 약 100 중량부;
    하기 화학식 1로 표시되는 실록산 화합물 약 0.3 내지 약 6 중량부; 및
    평균 입자 크기가 약 0.3 내지 약 3 ㎛이고, 비표면적 BET가 약 1 내지 약 10 m2/g인 산화아연 약 0.3 내지 약 6 중량부를 포함하는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1]
    Figure PCTKR2017014536-appb-I000020
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R3 및 R4는 각각 독립적으로 탄소수 2 내지 15의 알킬렌기이고, A1 및 A2는 각각 독립적으로 글리시독시기, 에폭시기, 또는 디알콕시아릴기이며, n의 평균값은 10 내지 80이다.
  2. 제1항에 있어서, 상기 아크릴레이트계 고무변성 비닐계 그라프트 공중합체는 아크릴레이트계 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항에 있어서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항에 있어서, 상기 화학식 1로 표시되는 실록산 화합물은 A1 및 A2가 디알콕시아릴기이고, n의 평균값은 30 내지 40인 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항에 있어서, 상기 실록산 화합물은 하기 화학식 1a로 표시되는 화합물, 하기 화학식 1b로 표시되는 화합물, 하기 화학식 1c로 표시되는 화합물 및 하기 화학식 1d로 표시되는 화합물 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1a]
    Figure PCTKR2017014536-appb-I000021
    [화학식 1b]
    Figure PCTKR2017014536-appb-I000022
    [화학식 1c]
    Figure PCTKR2017014536-appb-I000023
    [화학식 1d]
    Figure PCTKR2017014536-appb-I000024
    상기 화학식 1a, 1b, 1c 및 1d에서, n의 평균값은 20 내지 60이고, R은 각각 독립적으로 탄소수 1 내지 10의 알킬기이다.
  6. 제1항에 있어서, 상기 산화아연은 광 발광(Photo Luminescence) 측정 시, 370 내지 390 nm 영역의 피크 A와 450 내지 600 nm 영역의 피크 B의 크기비(B/A)가 약 0 내지 약 1인 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항에 있어서, 상기 산화아연은 X선 회절(X-ray diffraction, XRD) 분석 시, 피크 위치(peak position) 2θ 값이 35 내지 37° 범위이고, 하기 식 1에 의한 미소결정의 크기(crystallite size) 값이 약 1,000 내지 약 2,000 Å인 것을 특징으로 하는 열가소성 수지 조성물:
    [식 1]
    미소결정 크기(D) =
    Figure PCTKR2017014536-appb-I000025
    상기 식 1에서, K는 형상 계수(shape factor)이고, λ는 X선 파장(X-ray wavelength)이고, β는 X선 회절 피크(peak)의 FWHM 값(degree)이며, θ는 피크 위치 값(peak position degree)이다.
  8. 제1항에 있어서, 상기 실록산 화합물 및 상기 산화아연의 중량비는 약 1 : 0.1 내지 약 1 : 4인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항에 있어서, 상기 열가소성 수지 조성물은 50 mm × 90 mm × 3 mm 크기 사출 시편에 대해 색차계를 사용하여 초기 색상(L0 *, a0 *, b0 *)을 측정하고, 상기 사출 시편을 SAE J 1960에 의거하여, 3,000 시간 동안 내후성 테스트하고, 색차계를 사용하여 테스트 후 색상(L1 *, a1 *, b1 *)을 측정한 다음, 하기 식 2에 따라 산출한 색상 변화(ΔE)가 약 3.5 이하인 것을 특징으로 하는 열가소성 수지 조성물:
    [식 2]
    색상 변화(ΔE) =
    Figure PCTKR2017014536-appb-I000026
    상기 식 2에서, ΔL*는 테스트 전후의 L* 값의 차이(L1 *-L0 *)이고, Δa*는 테스트 전후의 a* 값의 차이(a1 *- a0 *) 이며, Δb*는 테스트 전후의 b* 값의 차이(b1 *- b0 *)이다.
  10. 제1항에 있어서, 상기 열가소성 수지 조성물은 하기 식 3에 의한 광택도 차이(ΔGloss(60°))가 약 17 이하인 것을 특징으로 하는 열가소성 수지 조성물:
    [식 3]
    ΔGloss(60°) = |G10 - G0
    상기 식 3에서, G0은 10 cm × 15 cm 크기 시편에 대해 ASTM D523에 의거하여 마찰 견뢰도 시험기(crockmeter)로 측정한 60° 경면 광택도이고, G10은 동일 시편에 대해 백면포 10회 마찰 후 동일방법으로 측정한 60° 경면 광택도이다.
  11. 제1항에 있어서, 상기 열가소성 수지 조성물은 JIS Z 2801 항균 평가법에 의거하여, 5 cm × 5 cm 크기 시편에 황색포도상구균 및 대장균을 접종하고, 35℃, RH 90% 조건에서 24시간 배양 후, 측정한 항균 활성치가 각각 약 2 내지 약 6 및 약 2 내지 약 6인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2017/014536 2016-12-14 2017-12-12 열가소성 수지 조성물 및 이로부터 제조된 성형품 WO2018110938A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160170384 2016-12-14
KR10-2016-0170384 2016-12-14
KR10-2017-0169178 2017-12-11
KR1020170169178A KR101980018B1 (ko) 2016-12-14 2017-12-11 열가소성 수지 조성물 및 이로부터 제조된 성형품

Publications (1)

Publication Number Publication Date
WO2018110938A1 true WO2018110938A1 (ko) 2018-06-21

Family

ID=62559196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014536 WO2018110938A1 (ko) 2016-12-14 2017-12-12 열가소성 수지 조성물 및 이로부터 제조된 성형품

Country Status (1)

Country Link
WO (1) WO2018110938A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293414A1 (en) * 2000-02-15 2006-12-28 Rudiger Gorny Extruded article containing polycarbonate and multilayered pigment
KR100814362B1 (ko) * 2006-12-29 2008-03-18 제일모직주식회사 저온 충격강도 및 기계적 강도가 우수한폴리카보네이트-폴리실록산 공중합체 수지 조성물 및 그제조 방법
KR20080112035A (ko) * 2007-06-20 2008-12-24 주식회사 엘지화학 기계적 물성 및 내후성이 우수한 광확산 수지 조성물
KR20150050372A (ko) * 2013-10-30 2015-05-08 제일모직주식회사 내후성이 향상된 열가소성 수지 조성물
KR20160061877A (ko) * 2014-11-21 2016-06-01 삼성에스디아이 주식회사 열가소성 수지 조성물 및 이를 포함하는 성형품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293414A1 (en) * 2000-02-15 2006-12-28 Rudiger Gorny Extruded article containing polycarbonate and multilayered pigment
KR100814362B1 (ko) * 2006-12-29 2008-03-18 제일모직주식회사 저온 충격강도 및 기계적 강도가 우수한폴리카보네이트-폴리실록산 공중합체 수지 조성물 및 그제조 방법
KR20080112035A (ko) * 2007-06-20 2008-12-24 주식회사 엘지화학 기계적 물성 및 내후성이 우수한 광확산 수지 조성물
KR20150050372A (ko) * 2013-10-30 2015-05-08 제일모직주식회사 내후성이 향상된 열가소성 수지 조성물
KR20160061877A (ko) * 2014-11-21 2016-06-01 삼성에스디아이 주식회사 열가소성 수지 조성물 및 이를 포함하는 성형품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOLODZIEJCZAK-RADZIMSKA, A. ET AL.: "Zinc Oxide-From Synthesis to Application: A Review", MATERIALS, vol. 7, no. 4, 2014, pages 2833 - 2881, XP002731983 *

Similar Documents

Publication Publication Date Title
WO2018080013A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2016080675A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084484A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
WO2014035055A1 (ko) 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2015002427A1 (ko) 폴리오르가노실록산 화합물, 제조방법 및 이를 포함하는 코폴리카보네이트 수지
WO2019031694A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019190068A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018124594A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019066193A1 (ko) 내전리방사선성 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2019132371A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019124855A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019132575A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020138785A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021080215A1 (ko) 열가소성 수지 조성물
WO2018124592A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018110938A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2020004830A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022059896A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
WO2020138772A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881241

Country of ref document: EP

Kind code of ref document: A1