WO2018110230A1 - 半導体スイッチの制御装置、電源システム - Google Patents

半導体スイッチの制御装置、電源システム Download PDF

Info

Publication number
WO2018110230A1
WO2018110230A1 PCT/JP2017/041975 JP2017041975W WO2018110230A1 WO 2018110230 A1 WO2018110230 A1 WO 2018110230A1 JP 2017041975 W JP2017041975 W JP 2017041975W WO 2018110230 A1 WO2018110230 A1 WO 2018110230A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
switch
switch element
control
terminal
Prior art date
Application number
PCT/JP2017/041975
Other languages
English (en)
French (fr)
Inventor
昂史 今里
笹尾 英亨
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201780077846.7A priority Critical patent/CN110073600B/zh
Priority to JP2018556525A priority patent/JPWO2018110230A1/ja
Priority to US16/462,667 priority patent/US10855271B2/en
Publication of WO2018110230A1 publication Critical patent/WO2018110230A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • H03K17/164Soft switching using parallel switching arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • the present invention relates to a semiconductor switch control device and a power supply system mounted on a vehicle.
  • an auxiliary battery (usually a lead-acid battery) is mounted on a vehicle, and the auxiliary battery supplies power to a starter motor and various electrical components.
  • a mechanical relay is generally used as a switch for turning on / off the auxiliary battery.
  • a semiconductor switch for example, a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor)
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • MOSFET on / off control is generally performed by inputting a drive signal to the gate of the MOSFET and turning on / off a control switch provided between the gate and source of the MOSFET.
  • the control switch includes, for example, a PNP transistor in which the emitter is connected to the gate of the MOSFET and the collector is connected to the source of the MOSFET.
  • the switch for controlling the MOSFET is constituted by a PNP transistor
  • the on / off of the MOSFET is controlled depending on whether or not the base of the PNP transistor is conducted to the ground.
  • the bidirectional switch When the bidirectional switch is turned off, if the gate potential of the bidirectional switch swings to a negative potential, the PNP transistor is turned off during the turn-off of the bidirectional switch. As a result, the operation stops when the bidirectional switch is half-on, the on-resistance of the MOSFET remains high, and the conduction loss increases. If the specification of the MOSFET is low, it may lead to failure.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for preventing the operation from being stopped midway when a semiconductor switch that cuts off a large current is turned off.
  • a control device for a semiconductor switch is a control device that drives a semiconductor switch element, and supplies a drive signal to a gate terminal or a base terminal of the semiconductor switch element.
  • the signal line is connected to the source terminal or the emitter terminal of the semiconductor switch element.
  • the first control switch controlled to be in an ON state, the signal line, and the source terminal or emitter terminal of the semiconductor switch element are connected in parallel with the first control switch, and the source terminal or emitter terminal A second control switch that is turned on when the potential becomes a negative potential.
  • FIG. 1 is a diagram for explaining a vehicle power supply system according to an embodiment of the present invention.
  • the vehicle power supply system includes a lead storage battery 13 and a sub battery system 10 that reinforces the lead storage battery 13.
  • a starter 14, an alternator 15, and an electrical component 16 are mounted as members related thereto.
  • the starter 14 is a motor for starting the engine.
  • the starter 14 is rotated by the electric power supplied from the lead storage battery 13 and starts the engine.
  • an ignition switch (not shown) is turned on by the driver's operation, electric power is supplied from the lead storage battery 13 to the starter 14 via the feeder line L1, and the starter 14 is started.
  • the alternator 15 generates electricity by the rotational energy of the crankshaft of the engine.
  • the alternator 15 supplies the generated power to the lead storage battery 13 and / or the sub-battery system 10 via the feeder line L1.
  • the electrical component 16 is a generic name indicating various electric loads (auxiliaries) mounted in a vehicle such as a headlight, a power steering, an oil pump, a car navigation system, and an audio.
  • the starter 14 and the alternator 15 are drawn separately from the electrical component 16.
  • the electrical component 16 is driven by electric power supplied from the lead storage battery 13 and / or the sub battery system 10 via the feeder line L1.
  • the lead storage battery 13 is a main battery for storing the power generated by the alternator 15 and supplying power to the starter 14 and the electrical component 16.
  • the sub-battery system 10 includes a nickel metal hydride storage battery 11, a control device 12, and a first switch device SW1.
  • the nickel metal hydride storage battery 11 is a sub-battery for storing the electric power generated by the alternator 15 and supplying power to the electrical component 16.
  • the capacity of the nickel hydride storage battery 11 is designed to be smaller than the capacity of the lead storage battery 13.
  • the lead storage battery 13 and the nickel metal hydride storage battery 11 are connected in parallel.
  • the lead storage battery 13 is relatively inexpensive, can operate in a relatively wide temperature range, has advantages such as high output, and is widely used as a storage battery for vehicles. However, there are disadvantages such as low charge / discharge energy efficiency, weakness against overdischarge, and short cycle life.
  • the nickel metal hydride storage battery 11 has advantages such as relatively high charge / discharge energy efficiency, strong overcharge and overdischarge, a wide use temperature range, a wide SOC (State (Of Charge) range, and a relatively long cycle life. .
  • a lithium ion storage battery may be used instead of the nickel metal hydride storage battery 11.
  • a lithium ion storage battery is a high-performance storage battery with high energy density and charge / discharge energy efficiency. However, strict voltage / temperature management is required. Further, instead of the nickel metal hydride storage battery 11, a capacitor such as an electric double layer capacitor or a lithium ion capacitor may be used.
  • the first switch device SW1 is inserted between the positive electrode of the nickel metal hydride storage battery 11 and the power supply line L1.
  • the second switch device SW2 is inserted between the connection point of the lead storage battery 13 and the connection point of the nickel metal hydride storage battery 11 of the power supply line L1.
  • the control device 12 monitors the voltage, current, and temperature of the nickel metal hydride storage battery 11, manages the state of the nickel metal hydride storage battery 11, and controls charging and discharging of the nickel metal hydride storage battery 11. Specifically, based on the voltage, current, and temperature, SOC (State Of Charge) management and SOH (State Of Health) management of the nickel metal hydride storage battery 11 are performed. Moreover, if the control apparatus 12 detects an overvoltage, an undervoltage, an overcurrent, or temperature abnormality, it will turn off 1st switch apparatus SW1 and will stop charging / discharging. When it is desired to electrically disconnect the lead storage battery 13 and the nickel metal hydride storage battery 11, the control device 12 turns off the second switch device SW2 and disconnects them.
  • SOC State Of Charge
  • SOH Sttate Of Health
  • FIG. 2 is a diagram illustrating a configuration example 1 of the sub battery system 10 using the semiconductor switch.
  • Configuration example 1 is an example in which an n-channel MOSFET is used.
  • the first current cut-off switch M1 and the second current cut-off switch M2 are configured by two n-channel MOSFETs connected in series.
  • the source terminal of the first current cutoff switch M1 and the source terminal of the second current cutoff switch M2 are connected, the drain terminal of the first current cutoff switch M1 is the feeder line L1, and the drain terminal of the second current cutoff switch M2 is the nickel metal hydride storage battery. 11 positive terminals are respectively connected.
  • the gate terminal of the first current cutoff switch M1 and the gate terminal of the second current cutoff switch M2 are commonly connected to the gate signal line L2.
  • a first parasitic diode D1 is formed between the source and drain of the first current cutoff switch M1, and a second parasitic diode D2 is formed between the source and drain of the second current cutoff switch M2. Since a parasitic diode is generated in a MOSFET, only one unidirectional current can be cut off. Therefore, two MOSFETs are connected in series in opposite directions to form a bidirectional switch. Hereinafter, it is assumed that an n-channel MOSFET having a threshold voltage of 4V is used.
  • the negative electrode terminal of the nickel metal hydride storage battery 11 and the ground terminal of the control device 12 are connected to the vehicle chassis in a non-insulated manner.
  • an auxiliary battery of a vehicle is connected to a chassis.
  • the high voltage traction battery is installed in a state insulated from the chassis.
  • a predetermined constant voltage Vc is applied to the gate signal line L2.
  • the voltage of the nickel-metal hydride storage battery 11 is 12V
  • the threshold voltages of the first current cutoff switch M1 and the second current cutoff switch M2 are 4V.
  • the voltage of the gate signal line L2 needs to be set to a sufficiently large voltage with respect to 12V.
  • the voltage is set to 25V.
  • the constant voltage Vc of 25 V is generated by boosting the voltage of the nickel hydride storage battery 11 or the lead storage battery 13 with a DC-DC converter (not shown).
  • a resistor RL indicates a resistor for limiting the current of the gate signal line L2. Note that the resistor RL may not be provided if it is not necessary to limit the current.
  • the control device 12 includes a first control switch Q1, a second control switch Q2, a third control switch Q3, and a fourth control switch Q4.
  • the first control switch Q1 is a PNP bipolar transistor
  • the second control switch Q2 is an NPN bipolar transistor
  • the third control switch Q3 is an NPN bipolar transistor
  • the fourth control switch Q4 is a PNP type. Bipolar transistors are used.
  • the emitter terminal of the first control switch Q1 is connected to the gate signal line L2, the collector terminal of the first control switch Q1 is connected to the common source terminal of the first current cutoff switch M1 and the second current cutoff switch M2, and the base of the first control switch Q1.
  • the terminals are respectively connected to the collector terminal of the third control switch Q3 via the first resistor R1.
  • the emitter terminal of the second control switch Q2 is the common source terminal of the first current cutoff switch M1 and the second current cutoff switch M2, the collector terminal of the second control switch Q2 is the gate signal line L2, and the base of the second control switch Q2 The terminals are respectively connected to the ground via the second resistor R2.
  • the first control switch Q1 and the second control switch Q2 are connected in parallel.
  • the emitter terminal of the third control switch Q3 is connected to the ground, and the base terminal of the third control switch Q3 is connected to the input source of the second control signal V2 via the third resistor R3.
  • the fourth control switch Q4 is inserted into the gate signal line L2.
  • the fourth control switch Q4 emitter terminal is connected to the source of the constant voltage Vc, and the base terminal of the fourth control switch Q4 is connected to the input source of the first control signal V1 via the fourth resistor R4.
  • the collector terminal of the fourth control switch Q4 is connected to the first current cutoff switch M1, the gate terminal of the second current cutoff switch M2, the emitter terminal of the first control switch Q1, and the second control switch Q2 via the resistor RL . Connected to the collector terminal.
  • the input source of the first control signal V1 and the second control signal V2 is composed of, for example, a microcomputer (not shown).
  • the microcomputer determines the levels of the first control signal V1 and the second control signal V2 in accordance with an instruction from the ECU on the vehicle side and whether or not an abnormality has occurred in the nickel-metal hydride storage battery 11.
  • the microcomputer sets the first control signal V1 to the low level and the second control signal V2 to the low level. Control each level.
  • the fourth control switch Q4 is controlled to be in the on state
  • the third control switch Q3 is in the off state
  • the first control switch Q1 is controlled to be in the off state
  • the first current cutoff switch M1 and the second current cutoff switch M2 are connected to the gate terminals.
  • a constant voltage Vc 25 V
  • the microcomputer sets the first control signal V1 to the high level and the second control signal. V2 is controlled to a high level.
  • the fourth control switch Q4 is turned off, the third control switch Q3 is turned on, and the first control switch Q1 is turned on.
  • the gate-source of the first current cutoff switch M1 and the second current cutoff switch M2 is controlled. The interval is short-circuited via the first control switch Q1.
  • the microcomputer may be mounted on the substrate of the control device 12, or may be mounted on another substrate.
  • the first control signal V1 and the second control signal V2 may be generated by a hardware circuit.
  • the emitter and base of each bipolar transistor are drawn open, but in practice it is preferable to connect the emitter and base via a resistor or the like. In this case, the transistor can be kept off even when the base is open.
  • the first current cutoff switch M1 and the second current cutoff switch M2 are on
  • the first current cutoff switch M1 and the second current Consider a case where the current is cut off by turning off the cutoff switch M2.
  • the fourth control switch Q4 is switched from the on state to the off state
  • the third control switch Q3 is switched from the off state to the on state
  • the first control switch Q1 is switched from the off state to the on state.
  • the potentials of the source terminals of the first current cut-off switch M1 and the second current cut-off switch M2 swing to ⁇ 20V
  • the charge corresponding to the threshold voltage (4V) remains in the parasitic capacitance between the gate and the source. Therefore, the potential of the gate signal line L2 is pulled to -16V. Since the first control switch Q1 maintains the on state by drawing current from the base terminal to the ground, the on state cannot be maintained when the emitter terminal becomes a negative potential, and the first control switch Q1 is turned off.
  • the first capacitor in the half-on state in which the charge corresponding to the threshold voltage (4V) remains in the parasitic capacitance between the gate and the source.
  • the turn-off operation of the first current cutoff switch M1 and the second current cutoff switch M2 is stopped. In this state, the on-resistance remains high and the conduction loss increases. If the specification of the MOSFET is low, it may lead to failure.
  • a second control switch Q2 is added in parallel with the first control switch Q1.
  • the second control switch Q2 is automatically turned on when the potentials of the source terminals of the first current cutoff switch M1 and the second current cutoff switch M2 become negative. Since the negative electrode terminal of the nickel-metal hydride storage battery 11 and the ground terminal of the control device 12 are electrically connected via the chassis, it is possible to flow current from the ground terminal of the control device 12 to the base terminal of the second control switch Q2. it can.
  • the charge corresponding to the threshold voltage (4 V) remaining in the parasitic capacitance between the gate and the source of the first current cutoff switch M1 and the second current cutoff switch M2 can be continuously discharged, and the first current cutoff The switch M1 and the second current cut-off switch M2 can be quickly and completely turned off.
  • FIG. 3 is a diagram showing a configuration example 2 of the sub battery system 10 using the semiconductor switch.
  • Configuration example 2 is an example in which a p-channel MOSFET is used.
  • the first current cutoff switch M1 and the second current cutoff switch M2 are configured by two p-channel MOSFETs connected in series.
  • the voltage of the gate signal line L2 needs to be set to a sufficiently small voltage with respect to 12V.
  • an example in which the ground voltage is set is assumed.
  • an NPN bipolar transistor is used for the fourth control switch Q4. Further, the connection relationship between the emitter terminal and the collector terminal of the first control switch Q1 is reversed, and the emitter terminal of the first control switch Q1 is connected to the common source terminal of the first current cutoff switch M1 and the second current cutoff switch M2. The collector terminal of the control switch Q1 is connected to the gate signal line L2.
  • the fourth control switch Q4 emitter terminal is connected to the ground, and the base terminal of the fourth control switch Q4 is connected to the input source of the first control signal V1 via the fourth resistor R4.
  • the collector terminal of the fourth control switch Q4 via a resistor R L, first current blocking switch M1, the gate terminal of the second current cut-off switch M2, the collector terminal of the first control switch Q1, and the second control switch Q2n Connected to the collector terminal.
  • the microcomputer sets the first control signal V1 to the high level and the second control signal V2 to the low level. Control each level.
  • the fourth control switch Q4 is controlled to be in the on state
  • the third control switch Q3 is in the off state
  • the first control switch Q1 is controlled to be in the off state
  • the first current cutoff switch M1 and the second current cutoff switch M2 are connected to the gate terminals.
  • a ground voltage is applied.
  • the microcomputer sets the first control signal V1 to the low level and the second control signal. V2 is controlled to a high level.
  • the fourth control switch Q4 is turned off, the third control switch Q3 is turned on, and the first control switch Q1 is turned on.
  • the gate-source of the first current cutoff switch M1 and the second current cutoff switch M2 is controlled. The interval is short-circuited via the first control switch Q1.
  • the second control switch Q2 is added in parallel with the first control switch Q1.
  • the second control switch Q2 is automatically turned on when the potentials of the source terminals of the first current cutoff switch M1 and the second current cutoff switch M2 become negative.
  • the charge corresponding to the threshold voltage (4 V) remaining in the parasitic capacitance between the gate and the source of the first current cutoff switch M1 and the second current cutoff switch M2 can be continuously discharged, and the first current cutoff The switch M1 and the second current cut-off switch M2 can be quickly and completely turned off.
  • the first control switch Q1 that operates when the gate potentials of the first current cutoff switch M1 and the second current cutoff switch M2 are positive, the first current cutoff switch M1, and the first current cutoff switch M1.
  • a second control switch Q2 that operates when the gate potential of the two-current cutoff switch M2 is a negative potential is provided.
  • FIG. 4 is a diagram showing a modification of the configuration example 1 of FIG.
  • the order of connection of the first current cutoff switch M1 and the second current cutoff switch M2 may be switched. That is, the drains of n-channel MOSFETs may be connected.
  • a third diode D3 is provided between the gate signal line L2 and the source terminal of the first current cutoff switch M1
  • a fourth diode D4 is provided between the gate signal line L2 and the source terminal of the second current cutoff switch M2.
  • the order of connection of the first current cutoff switch M1 and the second current cutoff switch M2 shown in FIG. 3 may be switched.
  • At least one of the first control switch Q1 to the fourth control switch Q4 may be replaced with an FET.
  • An NPN transistor can be replaced with an n-channel FET, and a PNP transistor can be replaced with a p-channel FET.
  • the first control switch Q1 the potential difference between the gate and the source can be made closer to zero when a PNP transistor is used than when a p-channel FET is used.
  • IGBTs Insulated Gate Bipolar Transistors
  • the gate-emitter voltage of the IGBT is controlled by the first control switch Q1 and the second control switch Q2.
  • the conduction loss is increased as compared with the case where the FET is used, it is also possible to use bipolar transistors for the first current cutoff switch M1 and the second current cutoff switch M2. In this case, the base current of the bipolar transistor is controlled by the first control switch Q1 and the second control switch Q2.
  • the bidirectional switch in which the first current cutoff switch M1 and the second current cutoff switch M2 are connected in series and the control device that controls the bidirectional switch are used for on / off control of the auxiliary battery.
  • the bidirectional switch is used to block a large current, and if the circuit configuration is such that the ground of the main circuit including the bidirectional switch and the ground of the control device are commonly connected in a non-insulated manner, The control device can be applied.
  • a control device (12) for driving the semiconductor switch element (M1) The semiconductor switch element (M1) is connected between a signal line (L2) for supplying a drive signal to the gate terminal or base terminal of the semiconductor switch element (M1) and a source terminal or emitter terminal of the semiconductor switch element (M1), and the semiconductor
  • a second control switch connected in parallel with the first control switch (Q1) between the signal line and the source terminal or emitter terminal and turned on when the potential of the source terminal or emitter terminal becomes a negative potential. (Q2) and a semiconductor switch control device (12). According to this, when the semiconductor switch is turned off, it is possible to prevent the turn-off operation from being stopped halfway due to the negative potential of the source terminal or the emitter terminal.
  • a control device (12) for driving a bidirectional switch in which a first semiconductor switch element (M1) and a second semiconductor switch element (M2) are connected in series in opposite directions, A signal line (L2) for supplying a drive signal to the control terminal (M2) of the first semiconductor switch element (M1) and the second semiconductor switch element, the first semiconductor switch element (M1), and the second It is connected between the middle point or both ends of the semiconductor switch element (M2), and is controlled to the off state when controlling the bidirectional switch to the on state, and controlled to the on state when controlling the bidirectional switch to the off state.
  • the first semiconductor switch element (M1) and the second semiconductor switch element (M2) are n-channel FETs, The first control switch (Q1) has an emitter terminal connected to the signal line (L2), a base terminal connected to the ground via the third control switch (Q3), and a collector terminal connected to the first semiconductor switch element (M1).
  • the second control switch (Q2) has an emitter terminal connected to a source terminal of the first semiconductor switch element (M1) and a source terminal of the second semiconductor switch element (M2), a base terminal connected to the ground, and a collector terminal connected to the ground terminal.
  • 3. The semiconductor switch control device (12) according to item 2, wherein the control device (12) is an NPN transistor connected to the signal line (L2).
  • the first semiconductor switch element (M1) and the second semiconductor switch element (M2) are p-channel FETs,
  • the first control switch (Q1) has an emitter terminal at the source terminal of the first semiconductor switch element (M1) and a source terminal of the second semiconductor switch element (M2), and a base terminal at the third control switch (Q3).
  • a PNP transistor whose collector terminal is connected to the signal line (L2).
  • the second control switch (Q2) has an emitter terminal connected to a source terminal of the first semiconductor switch element (M1) and a source terminal of the second semiconductor switch element (M2), a base terminal connected to the ground, and a collector terminal connected to the ground terminal.
  • the semiconductor switch control device (12) according to item 2, wherein the control device (12) is an NPN transistor connected to the signal line (L2).
  • a bidirectional switch connected between the power storage unit (11) and the load (16), wherein the first semiconductor switch element (M1) and the second semiconductor switch element (M2) are connected in series in opposite directions;
  • a control device (12) according to any of claims 2 to 4 for controlling the bidirectional switch;
  • a power supply system (10) comprising: According to this, when the bidirectional switch is turned off, the potential at the middle point or both ends becomes a negative potential, so that the turn-off operation can be prevented from being stopped midway, and a highly reliable power supply system. (10) can be constructed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electronic Switches (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

大電流を遮断する半導体スイッチをターンオフする際に、その途中で動作が停止することを防止するために、半導体スイッチ素子(M1)を駆動する制御装置(12)において、第1制御スイッチ(Q1)は、半導体スイッチ素子(M1)のゲート端子またはベース端子に駆動信号を供給するための信号線(L2)と、半導体スイッチ素子(M1)のソース端子またはエミッタ端子との間に接続されている。半導体スイッチ素子(M1)をオフ状態に制御するときオン状態に制御される。第2制御スイッチ(Q2)は、信号線(L2)とソース端子またはエミッタ端子との間に、第1制御スイッチ(Q1)と並列に接続され、前記ソース端子またはエミッタ端子の電位が負電位になったときターンオンする。

Description

半導体スイッチの制御装置、電源システム
 本発明は、車両に搭載される、半導体スイッチの制御装置、電源システムに関する。
 現在、車両には補機バッテリ(通常、鉛蓄電池)が搭載されており、補機バッテリは、スタータモータや各種の電装品に電力を供給する。補機バッテリをオン/オフするためのスイッチには、メカリレーを使用することが一般的である。近年、メカリレーと比較して騒音が小さい半導体スイッチ(例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor))を使用することが試みられている。MOSFETには寄生ダイオードが存在するため、MOSFETを双方向スイッチとして使用するには、2つのMOSFETを逆向きに直列に接続する必要がある(例えば、特許文献1参照)。
 MOSFETのオン/オフ制御は、MOSFETのゲートに駆動信号を入力するとともに、MOSFETのゲート-ソース間に設けた制御スイッチのオン/オフにより行われるのが一般的である。当該制御スイッチは例えば、MOSFETのゲートにエミッタが、MOSFETのソースにコレクタがそれぞれ接続されるPNP型トランジスタで構成される。
特開2016-164015号公報
 双方向スイッチを構成する2つのMOSFETに大電流が流れている状態で、双方向スイッチをターンオフさせる際、電流変化に起因する電線のインダクタンス成分により、双方向スイッチの電位が瞬間的に負電位に振れることがある。
 上述のように、MOSFETを制御するスイッチをPNP型トランジスタで構成する場合、PNP型トランジスタのベースをグラウンドに導通させるか否かにより、MOSFETのオン/オフを制御している。この構成では、PNP型トランジスタのエミッタ電位(=MOSFETのゲート電位)が正電位であることを前提としている。
 双方向スイッチをターンオフさせる際に、双方向スイッチのゲート電位が負電位に振れた場合、双方向スイッチのターンオフの途中でPNP型トランジスタがオフしてしまう。
これにより、双方向スイッチがハーフオンの状態で動作が停止してしまい、MOSFETのオン抵抗が高止まりして導通損失が増加する。MOSFETの仕様が低い場合、故障に至る場合もある。
 本発明はこうした状況に鑑みなされたものであり、その目的は、大電流を遮断する半導体スイッチをターンオフする際に、その途中で動作が停止することを防止する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の半導体スイッチの制御装置は、半導体スイッチ素子を駆動する制御装置であって、前記半導体スイッチ素子のゲート端子またはベース端子に駆動信号を供給するための信号線と、前記半導体スイッチ素子のソース端子またはエミッタ端子との間に接続され、前記半導体スイッチ素子をオン状態に制御するときオフ状態に制御され、前記半導体スイッチ素子をオフ状態に制御するときオン状態に制御される第1制御スイッチと、前記信号線と、前記半導体スイッチ素子のソース端子またはエミッタ端子との間に、前記第1制御スイッチと並列に接続され、前記ソース端子またはエミッタ端子の電位が負電位になったときターンオンする第2制御スイッチと、を備える。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、大電流を遮断する半導体スイッチをターンオフする際に、その途中で動作が停止することを防止することができる。
本発明の実施の形態に係る車両電源システムを説明するための図である。 半導体スイッチを用いたサブバッテリシステムの構成例1を示す図である。 半導体スイッチを用いたサブバッテリシステムの構成例2を示す図である。 図2の構成例1の変形例を示す図である。
 図1は、本発明の実施の形態に係る車両電源システムを説明するための図である。車両電源システムは、鉛蓄電池13と、鉛蓄電池13を補強するサブバッテリシステム10を備える。鉛蓄電池13及びサブバッテリシステム10が搭載される車両には、それらに関連する部材として、スタータ14、オルタネータ15及び電装品16が搭載される。
 スタータ14はエンジン始動用のモータである。スタータ14は、鉛蓄電池13から供給される電力により回転し、エンジンを始動させる。運転者の操作によりイグニッションスイッチ(不図示)がオンされると、鉛蓄電池13から給電線L1を介してスタータ14に電力が供給され、スタータ14が始動する。オルタネータ15は、エンジンのクランク軸の回転エネルギーにより発電する。オルタネータ15は、発電した電力を給電線L1を介して、鉛蓄電池13及び/又はサブバッテリシステム10に供給する。
 電装品16は、ヘッドライト、パワーステアリング、オイルポンプ、カーナビゲーションシステム、オーディオなどの車両内に搭載される各種電気負荷(補機)を示す総称である。なお本明細書では説明の便宜上、スタータ14、オルタネータ15は電装品16と別に描いている。電装品16は、鉛蓄電池13及び/又はサブバッテリシステム10から給電線L1を介して供給される電力により駆動される。
 鉛蓄電池13は、オルタネータ15により発電された電力を蓄え、スタータ14及び電装品16に給電するためのメインバッテリである。サブバッテリシステム10は、ニッケル水素蓄電池11、制御装置12、及び第1スイッチ装置SW1を含む。ニッケル水素蓄電池11は、オルタネータ15により発電された電力を蓄え、電装品16に給電するためのサブバッテリである。ニッケル水素蓄電池11の容量は、鉛蓄電池13の容量より小さく設計される。鉛蓄電池13とニッケル水素蓄電池11は並列接続される。
 鉛蓄電池13は比較的安価、比較的広い温度範囲で動作可能、高出力などの長所があり、車両用の蓄電池として広く普及している。ただし充放電エネルギー効率が低い、過放電に弱い、サイクル寿命が短いなどの短所がある。ニッケル水素蓄電池11は、充放電エネルギー効率が比較的高い、過充電および過放電に強い、使用温度範囲が広い、SOC(State Of Charge)範囲が広い、サイクル寿命が比較的長いなどの長所がある。
 なお、ニッケル水素蓄電池11の代わりにリチウムイオン蓄電池を用いてもよい。リチウムイオン蓄電池は、エネルギー密度および充放電エネルギー効率が高く、高性能な蓄電池である。ただし、厳格な電圧・温度管理が必要となる。またニッケル水素蓄電池11の代わりに、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタを用いてもよい。
 ニッケル水素蓄電池11の正極と給電線L1との間に、第1スイッチ装置SW1が挿入される。給電線L1の、鉛蓄電池13の接続点とニッケル水素蓄電池11の接続点の間に、第2スイッチ装置SW2が挿入される。
 制御装置12は、ニッケル水素蓄電池11の電圧、電流、及び温度を監視して、ニッケル水素蓄電池11の状態を管理し、ニッケル水素蓄電池11の充放電を制御する。具体的には電圧、電流、及び温度をもとに、ニッケル水素蓄電池11のSOC(State Of Charge)管理、及びSOH(State Of Health)管理を行う。また制御装置12は、過電圧、過小電圧、過電流または温度異常を検出すると、第1スイッチ装置SW1をターンオフして充放電を停止させる。また、鉛蓄電池13とニッケル水素蓄電池11を電気的に遮断したいとき、制御装置12は第2スイッチ装置SW2をターンオフして両者を解列する。
 第1スイッチ装置SW1及び第2スイッチ装置SW2には双方向の電流が流れるため、メカリレーが使用されることが一般的であった。しかしながら、メカリレーには物理的な接点があるため、スイッチング時に騒音が発生する。そこで2つのMOSFETを直列接続した半導体スイッチを用いることが試みられている。なお、図1等に示す実施の形態では、第1スイッチ装置SW1及び第2スイッチ装置SW2には双方向の電流が流れることを想定しているが、実施の形態の構成によっては単方向にのみ電流が流れる場合もある。
そのような実施の形態においては、流れる電流の向きに対応した半導体スイッチのみを設ける構成としてもよい。
 図2は、半導体スイッチを用いたサブバッテリシステム10の構成例1を示す図である。構成例1はnチャンネル型のMOSFETを使用する例である。第1電流遮断スイッチM1及び第2電流遮断スイッチM2は、直列接続された2つのnチャンネル型のMOSFETで構成される。
 第1電流遮断スイッチM1のソース端子と第2電流遮断スイッチM2のソース端子が接続され、第1電流遮断スイッチM1のドレイン端子が給電線L1、第2電流遮断スイッチM2のドレイン端子がニッケル水素蓄電池11の正極端子にそれぞれ接続される。第1電流遮断スイッチM1のゲート端子及び第2電流遮断スイッチM2のゲート端子は、ゲート信号線L2に共通接続される。第1電流遮断スイッチM1のソース-ドレイン間に第1寄生ダイオードD1が形成され、第2電流遮断スイッチM2のソース-ドレイン間に第2寄生ダイオードD2が形成される。MOSFETでは寄生ダイオードが発生するため、1つでは単方向の電流しか遮断することができない。そこで2つのMOSFETを逆向きに直列接続して双方向スイッチを構成する。以下、閾値電圧が4Vのnチャンネル型のMOSFETを使用する例を想定する。
 ニッケル水素蓄電池11の負極端子と、制御装置12のグラウンド端子は、車両のシャーシに非絶縁で接続される。一般的に、車両の補機バッテリはシャーシに接続される。なお、高圧のトラクションバッテリはシャーシから絶縁された状態で設置される。
 図2では制御装置12のブロック内に、第1電流遮断スイッチM1及び第2電流遮断スイッチM2の駆動に関する構成要素のみを描いている。ゲート信号線L2には、所定の定電圧Vcが印加される。本構成例では、ニッケル水素蓄電池11の電圧が12V、第1電流遮断スイッチM1及び第2電流遮断スイッチM2の閾値電圧が4Vを想定している。ゲート信号線L2の電圧は、12Vに対して十分に大きな電圧が設定される必要がある。本構成例では、25Vに設定される例を想定する。25Vの定電圧Vcは、ニッケル水素蓄電池11または鉛蓄電池13の電圧をDC-DCコンバータ(不図示)で昇圧することにより生成される。抵抗Rはゲート信号線L2の電流を制限するための抵抗を示している。なお、電流を制限する必要がなければ、抵抗Rを設けなくても良い。
 制御装置12は、第1制御スイッチQ1、第2制御スイッチQ2、第3制御スイッチQ3及び第4制御スイッチQ4を含む。本構成例では、第1制御スイッチQ1にPNP型のバイポーラトランジスタ、第2制御スイッチQ2にNPN型のバイポーラトランジスタ、第3制御スイッチQ3にNPN型のバイポーラトランジスタ、及び第4制御スイッチQ4にPNP型のバイポーラトランジスタがそれぞれ使用される。
 第1制御スイッチQ1のエミッタ端子はゲート信号線L2に、第1制御スイッチQ1のコレクタ端子は第1電流遮断スイッチM1及び第2電流遮断スイッチM2の共通ソース端子に、第1制御スイッチQ1のベース端子は第1抵抗R1を介して第3制御スイッチQ3のコレクタ端子にそれぞれ接続される。
 第2制御スイッチQ2のエミッタ端子は第1電流遮断スイッチM1及び第2電流遮断スイッチM2の共通ソース端子に、第2制御スイッチQ2のコレクタ端子はゲート信号線L2に、第2制御スイッチQ2のベース端子は第2抵抗R2を介してグラウンドにそれぞれ接続される。第1制御スイッチQ1と第2制御スイッチQ2は並列接続の関係にある。
 第3制御スイッチQ3のエミッタ端子はグラウンドに、第3制御スイッチQ3のベース端子は第3抵抗R3を介して、第2制御信号V2の入力源にそれぞれ接続される。第4制御スイッチQ4はゲート信号線L2に挿入される。第4制御スイッチQ4エミッタ端子は定電圧Vcの発生源に、第4制御スイッチQ4のベース端子は第4抵抗R4を介して、第1制御信号V1の入力源にそれぞれ接続される。第4制御スイッチQ4のコレクタ端子は、抵抗Rを介して、第1電流遮断スイッチM1、第2電流遮断スイッチM2のゲート端子、第1制御スイッチQ1のエミッタ端子、及び第2制御スイッチQ2のコレクタ端子に接続される。
 第1制御信号V1、第2制御信号V2の入力源は例えば、マイクロコンピュータ(不図示)で構成される。当該マイクロコンピュータは、車両側のECUからの指示、及びニッケル水素蓄電池11の異常発生の有無に応じて、第1制御信号V1及び第2制御信号V2のレベルを決定する。
 第1電流遮断スイッチM1及び第2電流遮断スイッチM2で構成される双方向スイッチをオン状態に制御するとき、当該マイクロコンピュータは、第1制御信号V1をローレベルに、第2制御信号V2をローレベルにそれぞれ制御する。これにより、第4制御スイッチQ4がオン状態、第3制御スイッチQ3がオフ状態、第1制御スイッチQ1がオフ状態に制御され、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート端子に定電圧Vc(25V)が印加される。これにより、ゲート-ソース間の寄生容量に電荷がチャージされ、オン抵抗が低下してドレイン-ソース間が導通する。
 反対に、第1電流遮断スイッチM1及び第2電流遮断スイッチM2で構成される双方向スイッチをオフ状態に制御するとき、当該マイクロコンピュータは、第1制御信号V1をハイレベルに、第2制御信号V2をハイレベルにそれぞれ制御する。これにより、第4制御スイッチQ4がオフ状態、第3制御スイッチQ3がオン状態、第1制御スイッチQ1がオン状態に制御され、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート-ソース間が第1制御スイッチQ1を介してショートされる。この経路により、ゲート-ソース間の寄生容量にチャージされた電荷が早くディスチャージされ、オン抵抗が上昇してドレイン-ソース間が遮断する。
 なお当該マイクロコンピュータは、制御装置12の基板に実装されてもよいし、別の基板に実装されてもよい。また当該マイクロコンピュータの代わりに、ハードウェア回路で第1制御信号V1及び第2制御信号V2が生成されてもよい。なお図2では、各バイポーラトランジスタのエミッタ-ベース間をオープンした状態で描いているが、実際にはエミッタ-ベース間を、抵抗等を介して接続しておくことが好ましい。この場合、ベースがオープンになっても、トランジスタがオフ状態を維持することができる。
 以上の回路構成において、ニッケル水素蓄電池11が大電流を充放電している状態(第1電流遮断スイッチM1及び第2電流遮断スイッチM2はオン状態)から、第1電流遮断スイッチM1及び第2電流遮断スイッチM2をターンオフして電流を遮断する場合を考える。上記制御により、第4制御スイッチQ4がオン状態からオフ状態へ、第3制御スイッチQ3がオフ状態からオン状態へ、第1制御スイッチQ1がオフ状態からオン状態にそれぞれ切り替えられる。
 当該制御により、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のそれぞれのゲート-ソース間がショートされた後、ゲート-ソース間の寄生容量の放電が進み、ゲート-ソース間の電圧が閾値電圧(4V)を下回ると第1電流遮断スイッチM1及び第2電流遮断スイッチM2がターンオフを開始する。その瞬間、ドレイン-ソース間に流れていた電流が急激に絞られ、当該電流を維持しようとする電線(ワイヤーハーネス)のインダクタンス成分により、第1電流遮断スイッチM1及び第2電流遮断スイッチM2の電位が負電位に振れる(負サージが発生する)場合がある。
 例えば、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のソース端子の電位が-20Vに振れたとき、ゲート-ソース間の寄生容量には閾値電圧(4V)に相当する電荷が残留しているため、ゲート信号線L2の電位が-16Vに引っ張られる。第1制御スイッチQ1は、ベース端子からグラウンドに電流を引き込むことによりオン状態を維持しているため、エミッタ端子が負電位になるとオン状態を維持できなくなり、ターンオフしてしまう。
 従来の第2制御スイッチQ2が設けられない構成では、第1制御スイッチQ1がオフ状態になると、ゲート-ソース間の寄生容量に閾値電圧(4V)に相当する電荷が残留したハーフオンの状態で第1電流遮断スイッチM1及び第2電流遮断スイッチM2のターンオフ動作が停止してしまう。この状態では、オン抵抗が高止まりして導通損失が増加する。
MOSFETの仕様が低い場合、故障に至る場合もある。
 そこで本構成例では第1制御スイッチQ1と並列に、第2制御スイッチQ2を追加している。第2制御スイッチQ2は第1電流遮断スイッチM1及び第2電流遮断スイッチM2のソース端子の電位が負電位になると、自動的にターンオンする。ニッケル水素蓄電池11の負極端子と、制御装置12のグラウンド端子はシャーシを介して電気的に接続されているため、制御装置12のグラウンド端子から第2制御スイッチQ2のベース端子に電流を流し込むことができる。これにより、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート-ソース間の寄生容量に残留している閾値電圧(4V)に相当する電荷を引き続きディスチャージすることができ、第1電流遮断スイッチM1及び第2電流遮断スイッチM2を迅速かつ完全にオフすることができる。
 図3は、半導体スイッチを用いたサブバッテリシステム10の構成例2を示す図である。構成例2はpチャンネル型のMOSFETを使用する例である。第1電流遮断スイッチM1及び第2電流遮断スイッチM2は、直列接続された2つのpチャンネル型のMOSFETで構成される。
 構成例2ではゲート信号線L2の電圧が、12Vに対して十分に小さな電圧が設定される必要がある。本構成例では、グラウンド電圧に設定される例を想定する。構成例2では、第4制御スイッチQ4にNPN型のバイポーラトランジスタが使用される。また第1制御スイッチQ1のエミッタ端子とコレクタ端子の接続関係が逆になり、第1制御スイッチQ1のエミッタ端子が第1電流遮断スイッチM1及び第2電流遮断スイッチM2の共通ソース端子に、第1制御スイッチQ1のコレクタ端子がゲート信号線L2にそれぞれ接続される。
 第4制御スイッチQ4エミッタ端子はグラウンドに、第4制御スイッチQ4のベース端子は第4抵抗R4を介して、第1制御信号V1の入力源にそれぞれ接続される。第4制御スイッチQ4のコレクタ端子は、抵抗Rを介して、第1電流遮断スイッチM1、第2電流遮断スイッチM2のゲート端子、第1制御スイッチQ1のコレクタ端子、及び第2制御スイッチQ2nのコレクタ端子に接続される。
 第1電流遮断スイッチM1及び第2電流遮断スイッチM2で構成される双方向スイッチをオン状態に制御するとき、上記マイクロコンピュータは、第1制御信号V1をハイレベルに、第2制御信号V2をローレベルにそれぞれ制御する。これにより、第4制御スイッチQ4がオン状態、第3制御スイッチQ3がオフ状態、第1制御スイッチQ1がオフ状態に制御され、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート端子にグラウンド電圧が印加される。これにより、ゲート-ソース間の寄生容量に電荷がチャージされ、オン抵抗が低下してドレイン-ソース間が導通する。
 反対に、第1電流遮断スイッチM1及び第2電流遮断スイッチM2で構成される双方向スイッチをオフ状態に制御するとき、当該マイクロコンピュータは、第1制御信号V1をローレベルに、第2制御信号V2をハイレベルにそれぞれ制御する。これにより、第4制御スイッチQ4がオフ状態、第3制御スイッチQ3がオン状態、第1制御スイッチQ1がオン状態に制御され、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート-ソース間が第1制御スイッチQ1を介してショートされる。この経路により、ゲート-ソース間の寄生容量にチャージされた電荷が早くディスチャージされ、オン抵抗が上昇してドレイン-ソース間が遮断する。
 構成例2においもて第1制御スイッチQ1と並列に、第2制御スイッチQ2を追加している。第2制御スイッチQ2は第1電流遮断スイッチM1及び第2電流遮断スイッチM2のソース端子の電位が負電位になると、自動的にターンオンする。これにより、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート-ソース間の寄生容量に残留している閾値電圧(4V)に相当する電荷を引き続きディスチャージすることができ、第1電流遮断スイッチM1及び第2電流遮断スイッチM2を迅速かつ完全にオフすることができる。
 以上説明したように本実施の形態では、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート電位が正電位のときに動作する第1制御スイッチQ1と、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のゲート電位が負電位のときに動作する第2制御スイッチQ2を設ける。これにより、第1電流遮断スイッチM1及び第2電流遮断スイッチM2のターンオフの途中で動作が停止することを防止することができる。従って導通損失の増加を抑えることができ、MOSFETの故障を防止することもできる。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 図4は、図2の構成例1の変形例を示す図である。図4に示すように、第1電流遮断スイッチM1及び第2電流遮断スイッチM2の接続の順番を入れ替えても良い。即ち、nチャンネルMOSFETのドレイン同士が接続される形態でもよい。この場合、ゲート信号線L2と第1電流遮断スイッチM1のソース端子との間に第3ダイオードD3が、ゲート信号線L2と第2電流遮断スイッチM2のソース端子との間に第4ダイオードD4がそれぞれ挿入される。なお、構成例1と同様、図3に示されている第1電流遮断スイッチM1及び第2電流遮断スイッチM2の接続の順番を入れ替えても良い。
 上述の実施の形態において、第1制御スイッチQ1-第4制御スイッチQ4の少なくとも1つをFETに置き換えてもよい。NPN型のトランジスタについてはnチャンネル型のFETに、PNP型のトランジスタについてはpチャンネル型のFETにそれぞれ置き換えることができる。なお第1制御スイッチQ1については、PNP型のトランジスタを使用した方が、pチャンネル型のFETを使用するより、ゲート-ソース間の電位差をよりゼロに近づけることができる。
 また第1電流遮断スイッチM1及び第2電流遮断スイッチM2にIGBT(Insulated Gate Bipolar Transistor)を使用してもよい。この場合、IGBTのゲート-エミッタ間の電圧を、第1制御スイッチQ1と第2制御スイッチQ2により制御する。なおFETを使用する場合より導通損失が増加するが、第1電流遮断スイッチM1及び第2電流遮断スイッチM2にバイポーラトランジスタを使用することも可能である。この場合、バイポーラトランジスタのベース電流を、第1制御スイッチQ1と第2制御スイッチQ2により制御する。
 上述の実施の形態では、第1電流遮断スイッチM1及び第2電流遮断スイッチM2を直列接続した双方向スイッチと、双方向スイッチを制御する制御装置を、補機バッテリのオン/オフ制御に使用する例を説明した。この点、当該双方向スイッチで大電流を遮断する用途であり、当該双方向スイッチを含む主回路のグラウンドと、当該制御装置のグラウンドが非絶縁で共通接続されている回路構成であれば、上述の制御装置を適用可能である。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 半導体スイッチ素子(M1)を駆動する制御装置(12)であって、
 前記半導体スイッチ素子(M1)のゲート端子またはベース端子に駆動信号を供給するための信号線(L2)と、前記半導体スイッチ素子(M1)のソース端子またはエミッタ端子との間に接続され、前記半導体スイッチ素子(M1)をオン状態に制御するときオフ状態に制御され、前記半導体スイッチ素子(M1)をオフ状態に制御するときオン状態に制御される第1制御スイッチ(Q1)と、
 前記信号線と前記ソース端子またはエミッタ端子との間に、前記第1制御スイッチ(Q1)と並列に接続され、前記ソース端子またはエミッタ端子の電位が負電位になったときターンオンする第2制御スイッチ(Q2)と、を備えることを特徴とする半導体スイッチの制御装置(12)。
 これによれば、半導体スイッチがターンオフする際に、前記ソース端子またはエミッタ端子の電位が負電位になることにより、ターンオフ動作が途中で停止することを防止することができる。
[項目2]
 第1半導体スイッチ素子(M1)と第2半導体スイッチ素子(M2)が互いに逆向きに直列接続された双方向スイッチを駆動する制御装置(12)であって、
 前記第1半導体スイッチ素子(M1)及び前記第2半導体スイッチ素子の制御端子(M2)に駆動信号を供給するための信号線(L2)と、前記第1半導体スイッチ素子(M1)と前記第2半導体スイッチ素子(M2)の中点または両端との間に接続され、前記双方向スイッチをオン状態に制御するときオフ状態に制御され、前記双方向スイッチをオフ状態に制御するときオン状態に制御される第1制御スイッチ(Q1)と、
 前記信号線と前記中点または両端との間に、前記第1制御スイッチ(Q1)と並列に接続され、前記中点または両端の電位が負電位になったときターンオンする第2制御スイッチ(Q2)と、を備えることを特徴とする半導体スイッチの制御装置(12)。
 これによれば、双方向スイッチがターンオフする際に、前記中点または両端の電位が負電位になることにより、ターンオフ動作が途中で停止することを防止することができる。
[項目3]
 前記第1半導体スイッチ素子(M1)および前記第2半導体スイッチ素子(M2)は、nチャンネル型のFETであり、
 前記第1制御スイッチ(Q1)は、エミッタ端子が前記信号線(L2)に、ベース端子が第3制御スイッチ(Q3)を介してグラウンドに、コレクタ端子が前記第1半導体スイッチ素子(M1)のソース端子および前記第2半導体スイッチ素子(M2)のソース端子に、それぞれ接続されたPNP型のトランジスタであり、
 前記第2制御スイッチ(Q2)は、エミッタ端子が前記第1半導体スイッチ素子(M1)のソース端子および前記第2半導体スイッチ素子(M2)のソース端子に、ベース端子が前記グラウンドに、コレクタ端子が前記信号線(L2)に、それぞれ接続されたNPN型のトランジスタであることを特徴とする項目2に記載の半導体スイッチの制御装置(12)。
 これによれば、双方向スイッチがターンオフする際に、前記第1半導体スイッチ素子(M1)のソース端子および前記第2半導体スイッチ素子(M2)のソース端子の電位が負電位になったとき、第2制御スイッチ(Q2)が自動的にターンオンすることにより、双方向スイッチのターンオフ動作が途中で停止することを防止することができる。
[項目4]
 前記第1半導体スイッチ素子(M1)および前記第2半導体スイッチ素子(M2)は、pチャンネル型のFETであり、
 前記第1制御スイッチ(Q1)は、エミッタ端子が前記第1半導体スイッチ素子(M1)のソース端子および前記第2半導体スイッチ素子(M2)のソース端子に、ベース端子が第3制御スイッチ(Q3)を介してグラウンドに、コレクタ端子が前記信号線(L2)に、それぞれ接続されたPNP型のトランジスタであり、
 前記第2制御スイッチ(Q2)は、エミッタ端子が前記第1半導体スイッチ素子(M1)のソース端子および前記第2半導体スイッチ素子(M2)のソース端子に、ベース端子が前記グラウンドに、コレクタ端子が前記信号線(L2)に、それぞれ接続されたNPN型のトランジスタであることを特徴とする項目2に記載の半導体スイッチの制御装置(12)。
 これによれば、双方向スイッチがターンオフする際に、前記第1半導体スイッチ素子(M1)のソース端子および前記第2半導体スイッチ素子(M2)のソース端子の電位が負電位になったとき、第2制御スイッチ(Q2)が自動的にターンオンすることにより、双方向スイッチのターンオフ動作が途中で停止することを防止することができる。
[項目5]
 車両内の負荷(16)に電力を供給するための蓄電部(11)と、
 前記蓄電部(11)と前記負荷(16)との間に接続され、第1半導体スイッチ素子(M1)と第2半導体スイッチ素子(M2)が互いに逆向きに直列接続された双方向スイッチと、
 前記双方向スイッチを制御する請求項2から4のいずれかに記載の制御装置(12)と、
 を備えることを特徴とする電源システム(10)。
 これによれば、双方向スイッチがターンオフする際に、前記中点または両端の電位が負電位になることにより、ターンオフ動作が途中で停止することを防止することができ、信頼性の高い電源システム(10)を構築することができる。
[項目6]
 前記蓄電部(11)のグラウンドと、前記制御装置(12)のグラウンドが前記車両のシャーシに非絶縁で接続されることを特徴とする項目5に記載の電源システム(10)。
 これによれば、双方向スイッチがターンオフする際に、前記中点または両端の電位が負電位になったとき、第2制御スイッチ(Q2)を介した閉ループを形成することができる。
 10 サブバッテリシステム、 11 ニッケル水素蓄電池、 12 制御装置、 13 鉛蓄電池、 14 スタータ、 15 オルタネータ、 16 電装品、 L1 給電線、 L2 ゲート信号線、 SW1 第1双方向スイッチ、 SW2 第2双方向スイッチ、 M1 第1電流遮断スイッチ、 M2 第2電流遮断スイッチ、 D1 第1寄生ダイオード、 D2 第2寄生ダイオード、 Q1 第1制御スイッチ、 Q2 第2制御スイッチ、 Q3 第3制御スイッチ、 Q4 第4制御スイッチ、 R1 第1抵抗、 R2 第2抵抗、 R3 第3抵抗、 R4 第4抵抗。

Claims (6)

  1.  半導体スイッチ素子を駆動する制御装置であって、
     前記半導体スイッチ素子のゲート端子またはベース端子に駆動信号を供給するための信号線と、前記半導体スイッチ素子のソース端子またはエミッタ端子との間に接続され、前記半導体スイッチ素子をオン状態に制御するときオフ状態に制御され、前記半導体スイッチ素子をオフ状態に制御するときオン状態に制御される第1制御スイッチと、
     前記信号線と、前記半導体スイッチ素子のソース端子またはエミッタ端子との間に、前記第1制御スイッチと並列に接続され、前記ソース端子またはエミッタ端子の電位が負電位になったときターンオンする第2制御スイッチと、
     を備えることを特徴とする半導体スイッチの制御装置。
  2.  第1半導体スイッチ素子と第2半導体スイッチ素子が互いに逆向きに直列接続された双方向スイッチを駆動する制御装置であって、
     前記第1半導体スイッチ素子及び前記第2半導体スイッチ素子の制御端子に駆動信号を供給するための信号線と、前記第1半導体スイッチ素子と前記第2半導体スイッチ素子の中点または両端との間に接続され、前記双方向スイッチをオン状態に制御するときオフ状態に制御され、前記双方向スイッチをオフ状態に制御するときオン状態に制御される第1制御スイッチと、
     前記信号線と、前記中点または両端との間に、前記第1制御スイッチと並列に接続され、前記中点または両端の電位が負電位になったときターンオンする第2制御スイッチと、
     を備えることを特徴とする半導体スイッチの制御装置。
  3.  前記第1半導体スイッチ素子および前記第2半導体スイッチ素子は、nチャンネル型FETであり、
     前記第1制御スイッチは、エミッタ端子が前記信号線に、ベース端子が第3制御スイッチを介してグラウンドに、コレクタ端子が前記第1半導体スイッチ素子のソース端子および前記第2半導体スイッチ素子のソース端子に、それぞれ接続されたPNP型のトランジスタであり、
     前記第2制御スイッチは、エミッタ端子が前記第1半導体スイッチ素子のソース端子および前記第2半導体スイッチ素子のソース端子に、ベース端子が前記グラウンドに、コレクタ端子が前記信号線に、それぞれ接続されたNPN型のトランジスタであることを特徴とする請求項2に記載の半導体スイッチの制御装置。
  4.  前記第1半導体スイッチ素子および前記第2半導体スイッチ素子は、pチャンネル型FETであり、
     前記第1制御スイッチは、エミッタ端子が前記第1半導体スイッチ素子のソース端子および前記第2半導体スイッチ素子のソース端子に、ベース端子が第3制御スイッチを介してグラウンドに、コレクタ端子が前記信号線に、それぞれ接続されたPNP型のトランジスタであり、
     前記第2制御スイッチは、エミッタ端子が前記第1半導体スイッチ素子のソース端子および前記第2半導体スイッチ素子のソース端子に、ベース端子が前記グラウンドに、コレクタ端子が前記信号線に、それぞれ接続されたNPN型のトランジスタであることを特徴とする請求項2に記載の半導体スイッチの制御装置。
  5.  車両内の負荷に電力を供給するための蓄電部と、
     前記蓄電部と前記負荷との間に接続され、第1半導体スイッチ素子と第2半導体スイッチ素子が互いに逆向きに直列接続された双方向スイッチと、
     前記双方向スイッチを制御する請求項2から4のいずれかに記載の制御装置と、
     を備えることを特徴とする電源システム。
  6.  前記蓄電部のグラウンドと、前記制御装置のグラウンドが前記車両のシャーシに非絶縁で接続されることを特徴とする請求項5に記載の電源システム。
PCT/JP2017/041975 2016-12-15 2017-11-22 半導体スイッチの制御装置、電源システム WO2018110230A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780077846.7A CN110073600B (zh) 2016-12-15 2017-11-22 半导体开关的控制装置、电源系统
JP2018556525A JPWO2018110230A1 (ja) 2016-12-15 2017-11-22 半導体スイッチの制御装置、電源システム
US16/462,667 US10855271B2 (en) 2016-12-15 2017-11-22 Control device for semiconductor switch, and electrical power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016243780 2016-12-15
JP2016-243780 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110230A1 true WO2018110230A1 (ja) 2018-06-21

Family

ID=62558318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041975 WO2018110230A1 (ja) 2016-12-15 2017-11-22 半導体スイッチの制御装置、電源システム

Country Status (4)

Country Link
US (1) US10855271B2 (ja)
JP (1) JPWO2018110230A1 (ja)
CN (1) CN110073600B (ja)
WO (1) WO2018110230A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010551A (ja) * 2018-07-11 2020-01-16 株式会社東芝 半導体装置
EP3858681A1 (en) * 2020-01-30 2021-08-04 Yazaki Corporation Vehicle power-supply system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002423B2 (ja) * 2018-08-24 2022-01-20 株式会社東芝 スイッチ回路
JP7265468B2 (ja) * 2019-12-17 2023-04-26 株式会社東芝 半導体集積回路、及び半導体集積回路の制御方法
JP7232208B2 (ja) * 2020-03-19 2023-03-02 株式会社東芝 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263213A (ja) * 1988-08-29 1990-03-02 Hitachi Ltd パワースイッチ回路
JP2011178384A (ja) * 2010-02-03 2011-09-15 Denso Corp 車載電源装置
WO2015189982A1 (ja) * 2014-06-13 2015-12-17 株式会社日立製作所 スイッチ回路およびこれを用いた超音波探触子ならびに超音波診断装置
WO2017086113A1 (ja) * 2015-11-17 2017-05-26 株式会社オートネットワーク技術研究所 スイッチ回路及び電源システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170815A (ja) * 1990-11-05 1992-06-18 Nissan Motor Co Ltd ハイサイド・スイッチ回路及び半導体装置
DE69433808T2 (de) * 1993-11-30 2005-06-09 Siliconix Inc., Santa Clara Vielfach-Spannungsversorgung und Verfahren zur Auswahl einer Spannungsquelle aus einer Vielzahl von Spannungsquellen
JP2011109423A (ja) * 2009-11-18 2011-06-02 Hitachi Ltd 高耐圧スイッチ回路およびそれを用いた半導体集積回路装置
JP2011146901A (ja) * 2010-01-14 2011-07-28 Denso Corp 駆動装置
JP5440201B2 (ja) * 2010-01-20 2014-03-12 パナソニック株式会社 双方向スイッチのゲート駆動装置
JP2013013044A (ja) * 2011-05-31 2013-01-17 Sanken Electric Co Ltd ゲートドライブ回路
JP2013026963A (ja) * 2011-07-25 2013-02-04 Denso Corp トランジスタ駆動回路
JP5961944B2 (ja) * 2011-08-18 2016-08-03 サンケン電気株式会社 ゲート駆動回路
JP5999987B2 (ja) * 2012-06-05 2016-09-28 ローム株式会社 パワーパス回路
JP5776658B2 (ja) * 2012-09-24 2015-09-09 トヨタ自動車株式会社 半導体駆動装置
JP6575230B2 (ja) * 2015-02-24 2019-09-18 富士電機株式会社 半導体素子の駆動装置
JP6380171B2 (ja) 2015-03-06 2018-08-29 株式会社デンソー 電源システム
JP6613899B2 (ja) * 2016-01-05 2019-12-04 富士電機株式会社 半導体素子の駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263213A (ja) * 1988-08-29 1990-03-02 Hitachi Ltd パワースイッチ回路
JP2011178384A (ja) * 2010-02-03 2011-09-15 Denso Corp 車載電源装置
WO2015189982A1 (ja) * 2014-06-13 2015-12-17 株式会社日立製作所 スイッチ回路およびこれを用いた超音波探触子ならびに超音波診断装置
WO2017086113A1 (ja) * 2015-11-17 2017-05-26 株式会社オートネットワーク技術研究所 スイッチ回路及び電源システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010551A (ja) * 2018-07-11 2020-01-16 株式会社東芝 半導体装置
JP7055714B2 (ja) 2018-07-11 2022-04-18 株式会社東芝 半導体装置
EP3858681A1 (en) * 2020-01-30 2021-08-04 Yazaki Corporation Vehicle power-supply system

Also Published As

Publication number Publication date
CN110073600A (zh) 2019-07-30
US20200083881A1 (en) 2020-03-12
US10855271B2 (en) 2020-12-01
JPWO2018110230A1 (ja) 2019-10-24
CN110073600B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2018110230A1 (ja) 半導体スイッチの制御装置、電源システム
US10819228B2 (en) Charge pump capacitor coupled to input, reference voltage for overvoltage
US10236776B2 (en) Inter-supply bidirectional DC-DC converter of a non-insulation type
CN108023583B (zh) 半导体开关控制装置
US10615787B2 (en) Switch drive circuit for switch reducing LC resonance
US9350238B2 (en) Power supply device for vehicle including a boosting converter circuit
JP2011254650A (ja) 電源装置
US9726136B2 (en) Device for maintaining voltage during startup for a motor vehicle
JP5966727B2 (ja) 電源システム
US11843274B2 (en) Charge control apparatus for controlling charging of an energy storage device via purality of charging paths connected in parallel anssociated energy storage appartus, and an associated charging method
JP6446485B2 (ja) スイッチボックス
JP2020014356A (ja) 半導体装置および電子制御装置
CN113924721A (zh) 车载电源系统
CN112534720B (zh) 驱动电路
JPWO2020059645A1 (ja) 電源制御装置、及び電源装置
WO2022030190A1 (ja) 電力変換器の制御回路
JP2018182888A (ja) 電源システム
JP2017147887A (ja) 電源システム
JP6626741B2 (ja) バッテリシステム制御装置
KR20210048851A (ko) 배터리 차단 장치 및 이를 포함하는 배터리 장치
JP6583161B2 (ja) 電圧変換回路
WO2017110497A1 (ja) 車載電源システム
WO2022145271A1 (ja) バックアップ電源制御システム、バックアップ電源システム、及び移動体
US10850691B2 (en) Management device and power supply system
WO2024062858A1 (ja) 電源入力回路及びそれを備えた車両用インバータ一体型電動圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880972

Country of ref document: EP

Kind code of ref document: A1