WO2018110086A1 - 基板処理装置、排出方法およびプログラム - Google Patents

基板処理装置、排出方法およびプログラム Download PDF

Info

Publication number
WO2018110086A1
WO2018110086A1 PCT/JP2017/038126 JP2017038126W WO2018110086A1 WO 2018110086 A1 WO2018110086 A1 WO 2018110086A1 JP 2017038126 W JP2017038126 W JP 2017038126W WO 2018110086 A1 WO2018110086 A1 WO 2018110086A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gas supply
separation tank
steam
gas
Prior art date
Application number
PCT/JP2017/038126
Other languages
English (en)
French (fr)
Inventor
直樹 豊村
聴 今村
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to US16/088,691 priority Critical patent/US10438820B2/en
Priority to KR1020187031584A priority patent/KR101961604B1/ko
Priority to SG11201808513PA priority patent/SG11201808513PA/en
Priority to CN201780026476.4A priority patent/CN109075053B/zh
Publication of WO2018110086A1 publication Critical patent/WO2018110086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67219Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one polishing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Definitions

  • This technology relates to a substrate processing apparatus, a discharge method, and a program.
  • a substrate processing apparatus is used to perform various processes on a substrate (wafer) such as a semiconductor substrate.
  • An example of this substrate processing apparatus is a polishing apparatus that polishes a substrate such as a wafer using CMP technology (see Patent Document 1).
  • a polishing apparatus using the CMP technique includes a polishing unit for performing a polishing process on a substrate, a cleaning unit for performing a cleaning process on the substrate, a drying unit for performing a drying process on the cleaned substrate, a substrate passing to the polishing unit, and a drying unit.
  • a load / unload unit for receiving the dried substrate is provided.
  • the polishing apparatus includes a transfer unit that transfers the substrate between the polishing unit, the cleaning unit, and the load / unload unit. The polishing apparatus sequentially performs various processes of polishing, cleaning, and drying while the substrate is transferred by the transfer unit.
  • the suction stage used in the cleaning tank of the cleaning unit is provided with a vacuum suction line for vacuum suction of the substrate.
  • the vacuum suction line draws the atmosphere and the cleaning water remaining on the substrate from the vacuum suction through-holes, so it is necessary to separate these moisture in a steam-water separation tank . Therefore, a steam / water separation tank is connected to the vacuum adsorption line (see Patent Document 1).
  • a substrate processing apparatus includes a first valve that is provided between a gas supply source and a gas / water separation tank and opens and closes a flow path of a gas supplied from the gas supply source, and the gas / water separation
  • a second valve that opens and closes a flow path of the liquid discharged from the tank outlet
  • a controller that controls the first valve and the second valve, the outlet of the steam separator tank Is communicated with a discharge port of a cleaning chamber for cleaning the substrate, and the control unit is configured in advance since the first valve is open and gas cannot be discharged from the steam / water separation tank. Control is performed such that the first valve is closed after a set gas supply time has elapsed, and the second valve is closed after the first valve is closed.
  • 1 is a plan view illustrating an overall configuration of a substrate processing apparatus 100 according to an embodiment of the present technology. It is the schematic which shows the structure of piping of the 1st cleaning chamber 190 and the 2nd cleaning chamber 192. It is a figure which shows the relationship between drainage required time and gas supply time for every pressure of the gas of a gas supply source. It is a flowchart which shows an example of the flow of the process which concerns on the waste_water
  • the liquid discharge port of the steam / water separation tank communicates with the drain port of the cleaning chamber via the drain pipe.
  • gas for example, pressurized nitrogen
  • continuously supplying the gas to the steam-water separation tank may cause the contaminated atmosphere and / or liquid to flow back into the cleaning chamber and contaminate the substrate.
  • the substrate processing apparatus which concerns on the 1st aspect of one Embodiment is provided between the gas supply source and the steam separation tank, and is the 1st valve which opens and closes the flow path of the gas supplied from the said gas supply source
  • a second valve that opens and closes the flow path of the liquid discharged from the discharge port of the steam separator
  • a controller that controls the first valve and the second valve.
  • the discharge port of the water separation tank communicates with the discharge port of the cleaning chamber for cleaning the substrate, and the control unit is in a state where the first valve is open and gas cannot be discharged from the steam / water separation tank.
  • the first valve is closed after a predetermined gas supply time has elapsed since the time has elapsed, and the second valve is closed after the first valve is closed.
  • the trigger of drainage can be given by supplying gas to the steam-water separation tank during the gas supply time, the liquid accumulated in the steam-water separation tank can be drained naturally thereafter. Can do. Further, since the gas is supplied to the steam separator only during the gas supply time, the backflow of the contaminated atmosphere and / or liquid into the cleaning chamber can be suppressed, and there is a risk of contamination of the substrate in the cleaning chamber. Can be reduced.
  • the substrate processing apparatus which concerns on the 2nd aspect of one Embodiment is a substrate processing apparatus which concerns on a 1st aspect, Comprising:
  • the said gas supply time is more than the minimum gas supply time required for draining.
  • the minimum gas supply time is set according to at least the gas pressure of the gas supply source.
  • the trigger for drainage from the steam-water separation tank can be provided.
  • the substrate processing apparatus which concerns on the 3rd aspect of one Embodiment is a substrate processing apparatus which concerns on a 2nd aspect, Comprising:
  • the said minimum gas supply time is further the said gas supply source, the said steam separation tank, It is set according to the cross-sectional area inside the minimum inner diameter portion of the pipe connecting the two.
  • the minimum gas supply time can be set appropriately, and the gas is supplied to the steam-water separation tank for a time longer than the minimum gas supply time. Can be given.
  • the substrate processing apparatus which concerns on the 4th aspect of one Embodiment is a substrate processing apparatus which concerns on the 2nd or 3rd aspect, Comprising:
  • the said gas-water separation tank is further filled with the said minimum gas supply time. It is set according to the minimum volume of gas that needs to be supplied to trigger drainage.
  • the minimum gas supply time can be set to a time that can supply an amount of gas that can discharge the amount of liquid when the steam-water separation tank is full, a time longer than this minimum gas supply time, Since gas is supplied to the steam-water separation tank, the trigger for drainage from the steam-water separation tank can be provided regardless of the amount of liquid in the steam-water separation tank.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to fourth aspects, wherein the gas of the gas supply source is supplied to the adsorption stage of the cleaning chamber.
  • the gas discharge port of the gas / water separation tank can communicate with the adsorption stage of the cleaning chamber, and the pressure of the gas supply source can peel the substrate from the adsorption stage of the cleaning chamber and Is set in a range that does not jump.
  • the substrate jumping means that the substrate suddenly leaves the suction stage, and if the substrate jumps unintentionally from the stage, there is a concern that the substrate may be damaged.
  • a substrate processing apparatus is the substrate processing apparatus according to the fifth aspect, wherein the substrate is a wafer having a diameter of 300 mm, and the pressure of the gas supply source is 0. 05 to 0.15 MPa.
  • the wafer in the case of a wafer having a diameter of 300 mm, the wafer can be peeled off from the suction stage VS1, and the wafer can be raised to a receiving position where the transfer robot receives it.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to sixth aspects, wherein the second valve is turned on when the first valve is closed. The time until closing is set according to the time required for drainage set according to the gas pressure of the gas supply source.
  • a discharge method is a method of discharging a liquid in a steam / water separation tank in a substrate processing apparatus, and is provided between a gas supply source and a steam / water separation tank, and the gas After a predetermined gas supply time has elapsed since the first valve that opens and closes the flow path of the gas supplied from the supply source is open and the gas cannot be discharged from the steam / water separation tank A step of closing the first valve, and a step of closing a second valve that opens and closes a flow path of the liquid discharged from the discharge port of the steam separator after the first valve is closed.
  • the trigger of drainage can be given by supplying gas to the steam-water separation tank during the gas supply time, the liquid accumulated in the steam-water separation tank can be drained naturally thereafter. Can do. Further, since the gas is supplied to the steam separator only during the gas supply time, the backflow of the contaminated atmosphere and / or liquid into the cleaning chamber can be suppressed, and there is a risk of contamination of the substrate in the cleaning chamber. Can be reduced.
  • a program according to a ninth aspect of an embodiment is a first program for opening and closing a flow path of a gas provided between a gas supply source and a steam separation tank and supplied from the gas supply source.
  • a program for controlling the first valve to close after the gas supply time has elapsed and to close the second valve after closing the first valve.
  • the trigger of drainage can be given by supplying gas to the steam-water separation tank during the gas supply time, the liquid accumulated in the steam-water separation tank can be drained naturally thereafter. Can do. Further, since the gas is supplied to the steam separator only during the gas supply time, the backflow of the contaminated atmosphere and / or liquid into the cleaning chamber can be suppressed, and there is a risk of contamination of the substrate in the cleaning chamber. Can be reduced.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing apparatus 100 according to an embodiment of the present technology.
  • the substrate processing apparatus 100 includes a substantially rectangular housing 1, and the interior of the housing 1 includes a load / unload unit 2, a polishing unit 3, and a cleaning unit 4 by partition walls 1a and 1b. It is divided into.
  • the load / unload unit 2, the polishing unit 3, and the cleaning unit 4 are assembled independently and exhausted independently.
  • the cleaning unit 4 is divided into a first cleaning chamber 190, a first transfer chamber 191, a second cleaning chamber 192, a second transfer chamber 193, and a drying chamber 194.
  • the first cleaning chamber 190 and the second cleaning chamber 192 are arranged in a state where they are stacked in two upper and lower stages.
  • the substrate processing apparatus 100 includes a control unit 5 that controls the substrate processing operation.
  • the load / unload unit 2 includes two or more (four in this embodiment) front load units 20 on which wafer cassettes for stocking a large number of wafers (substrates) are placed. These front load portions 20 are arranged adjacent to the housing 1 and are arranged along the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus 100.
  • the front load unit 20 can be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod).
  • SMIF and FOUP are sealed containers capable of maintaining an environment independent of the external space by accommodating a wafer cassette inside and covering with a partition wall.
  • a traveling mechanism 21 is laid along the front load unit 20 in the load / unload unit 2, and a transfer robot (loader) that can move along the arrangement direction of the wafer cassette on the traveling mechanism 21. 22 is installed.
  • the transfer robot 22 can access the wafer cassette mounted on the front load unit 20 by moving on the traveling mechanism 21.
  • the transfer robot 22 has two upper and lower hands. The upper hand is used to return the processed wafer to the wafer cassette, and the lower hand is used to remove the unprocessed wafer from the wafer cassette. The upper and lower hands can be used properly.
  • the lower hand of the transfer robot 22 is configured to be able to reverse the wafer by rotating around its axis.
  • the load / unload unit 2 is an area where it is necessary to maintain the cleanest state, the inside of the load / unload unit 2 is more than the outside of the substrate processing apparatus 100, the polishing unit 3, and the cleaning unit 4. It is constantly maintained at a high pressure.
  • the polishing unit 3 is the most dirty region because slurry is used as the polishing liquid. Therefore, a negative pressure is formed inside the polishing unit 3, and the pressure is maintained lower than the internal pressure of the cleaning unit 4.
  • the load / unload unit 2 is provided with a filter fan unit (not shown) having a clean air filter such as a HEPA filter, a ULPA filter, or a chemical filter. From the filter fan unit, particles, toxic vapor, Clean air from which toxic gases have been removed is constantly blowing out.
  • the polishing unit 3 is a region where the wafer is polished (flattened), and includes a first polishing unit 3A, a second polishing unit 3B, a third polishing unit 3C, and a fourth polishing unit 3D.
  • the first polishing unit 3A, the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D are arranged along the longitudinal direction of the substrate processing apparatus 100 as shown in FIG.
  • the first polishing unit 3A holds a table 30A to which a polishing pad 10 having a polishing surface is attached, and holds the wafer and polishes the wafer while pressing the wafer against the polishing pad 10 on the table 30A.
  • a dresser 33A for performing dressing and an administr 34A for injecting a fluid onto the polishing surface and sucking a fluid on the polishing surface are provided.
  • the fluid is a gas (for example, nitrogen gas), a mixed fluid of a liquid (for example, pure water) and a gas (for example, nitrogen gas), or a liquid (for example, pure water).
  • the fluid may be a mist of liquid.
  • the second polishing unit 3B includes a table 30B to which the polishing pad 10 is attached, a top ring (polishing head) 31B, a polishing liquid supply nozzle 32B, a dresser 33B, and an administer 34B.
  • the 3 polishing unit 3C includes a table 30C to which the polishing pad 10 is attached, a top ring (polishing head) 31C, a polishing liquid supply nozzle 32C, a dresser 33C, and an administer 34C, and a fourth polishing unit 3D. Includes a table 30D to which the polishing pad 10 is attached, a top ring (polishing head) 31D, a polishing liquid supply nozzle 32D, a dresser 33D, and an administer 34D.
  • a transfer mechanism for transferring the wafer will be described.
  • a first linear transporter 6 is disposed adjacent to the first polishing unit 3A and the second polishing unit 3B.
  • the first linear transporter 6 has four transfer positions along the direction in which the first polishing unit 3A and the second polishing unit 3B are arranged (first transfer position TP1, second transfer in order from the load / unload unit side). This is a mechanism for transferring the wafer between position TP2, third transfer position TP3, and fourth transfer position TP4.
  • a second linear transporter 7 is disposed adjacent to the third polishing unit 3C and the fourth polishing unit 3D.
  • the second linear transporter 7 has three transfer positions along the direction in which the third polishing unit 3C and the fourth polishing unit 3D are arranged (the fifth transfer position TP5 and the sixth transfer in order from the load / unload unit side). This is a mechanism for transferring the wafer between the position TP6 and the seventh transfer position TP7).
  • the wafer is transferred to the first polishing unit 3A and the second polishing unit 3B by the first linear transporter 6.
  • the top ring 31A of the first polishing unit 3A moves between the polishing position and the second transport position TP2 by the swing operation of the top ring head (not shown). Therefore, the wafer is transferred to the top ring 31A at the second transfer position TP2.
  • the top ring 31B of the second polishing unit 3B moves between the polishing position and the third transfer position TP3, and the delivery of the wafer to the top ring 31B is performed at the third transfer position TP3.
  • the top ring 31C of the third polishing unit 3C moves between the polishing position and the sixth transfer position TP6, and the delivery of the wafer to the top ring 31C is performed at the sixth transfer position TP6.
  • the top ring 31D of the fourth polishing unit 3D moves between the polishing position and the seventh transfer position TP7, and the delivery of the wafer to the top ring 31D is performed at the seventh transfer position TP7.
  • a lifter 11 for receiving a wafer from the transfer robot 22 is disposed at the first transfer position TP1.
  • the wafer is transferred from the transfer robot 22 to the first linear transporter 6 through the lifter 11.
  • a shutter (not shown) is provided between the lifter 11 and the transfer robot 22 in the partition wall 1a. When the wafer is transferred, the shutter is opened so that the wafer is transferred from the transfer robot 22 to the lifter 11. It has become.
  • a swing transporter 12 is arranged between the first linear transporter 6, the second linear transporter 7, and the cleaning unit 4.
  • the swing transporter 12 has a hand that can move between the fourth transfer position TP4 and the fifth transfer position TP5, and transfers the wafer from the first linear transporter 6 to the second linear transporter 7. Is performed by the swing transporter 12.
  • the wafer is transferred to the third polishing unit 3C and / or the fourth polishing unit 3D by the second linear transporter 7. Further, on the side of the swing transporter 12, a temporary placement table 180 for a wafer W installed on a frame (not shown) is disposed. As shown in FIG. 1, the temporary placement table 180 is disposed adjacent to the first linear transporter 6 and is positioned between the first linear transporter 6 and the cleaning unit 4. The wafer W polished by the polishing unit 3 is placed on the temporary table 180 via the swing transporter 12, and then the wafer W is transferred to the cleaning unit 4 by the transfer robot of the cleaning unit 4.
  • the cleaning unit 4 is divided into a first cleaning chamber 190 for cleaning the substrate, a first transfer chamber 191, a second cleaning chamber 192 for cleaning the substrate, a second transfer chamber 193, and a drying chamber 194. .
  • a plurality of primary cleaning modules arranged along the vertical direction are arranged.
  • a plurality of secondary cleaning modules arranged in the vertical direction are arranged in the second cleaning chamber 192.
  • the primary and secondary cleaning modules are cleaning machines that clean a wafer using a cleaning liquid.
  • a plurality of drying modules arranged in the vertical direction are arranged.
  • the plurality of drying modules are isolated from each other.
  • a filter fan unit that supplies clean air to the drying module is provided on the top of the drying module.
  • Each cleaning module and drying module is fixed to a frame (not shown) via bolts or the like.
  • FIG. 2 is a schematic diagram showing the configuration of the piping of the first cleaning chamber 190 and the second cleaning chamber 192.
  • the substrate processing apparatus 100 includes a steam / water separation tank AWS that communicates with the gas supply source GS via a pipe PP ⁇ b> 1.
  • the gas supply source GS for example, compressed nitrogen is accumulated, and the compressed nitrogen can be supplied to the steam-water separation tank AWS via the pipe PP1.
  • the substrate processing apparatus 100 includes a steam / water separation tank AWS ′ communicating with the gas supply source GS ′ via the pipe PP1 ′.
  • compressed nitrogen is accumulated in the gas supply source GS ′, and the compressed nitrogen can be supplied to the steam-water separation tank AWS ′ via the pipe PP1 ′.
  • the substrate processing apparatus 100 includes a pipe PP1 and a first valve B1.
  • the pipe PP1 communicates the gas supply source GS and the steam / water separation tank AWS.
  • the first valve B1 is provided between the gas supply source GS and the steam / water separation tank AWS (here, the pipe PP1 as an example) and opens and closes a gas flow path supplied from the gas supply source GS.
  • the substrate processing apparatus 100 includes a pipe PP1 ′ and a first valve B1 ′.
  • the pipe PP1 ′ connects the gas supply source GS ′ and the steam-water separation tank AWS ′.
  • the first valve B1 ′ is provided between the gas supply source GS ′ and the steam-water separation tank AWS ′ (here, the pipe PP1 ′ as an example) and is provided with a gas flow path supplied from the gas supply source GS ′. Open and close. Further, the substrate processing apparatus 100 includes a discharge port DA of the steam / water separation tank AWS, a discharge port DA ′ of the steam / water separation tank AWS ′, a discharge port D1 of the first cleaning chamber 190, and a discharge port D2 of the second cleaning chamber 192.
  • a pipe PP2 that communicates, a second valve B2 that opens and closes a flow path of liquid discharged from the outlet DA of the steam / water separation tank AWS, and a flow of liquid discharged from the outlet DA of the steam / water separation tank AWS ′ And a second valve B2 ′ for opening and closing the path.
  • the discharge port DA of the steam / water separation tank AWS and the discharge port DA ′ of the steam / water separation tank AWS ′ are discharged from the discharge port D1 of the first cleaning chamber 190 and the discharge port of the second cleaning chamber 192. Communicate with D2.
  • the discharge destination of the pipe PP2 communicates with the atmosphere.
  • a suction stage VS1 for sucking the wafer W As shown in FIG. 2, in the first cleaning chamber 190, a suction stage VS1 for sucking the wafer W, lift pins LP1 for moving the wafer W up and down, and the wafer W having reached a preset receiving position. And a sensor S1 for detecting.
  • the receiving position is a position where the transfer robot receives the wafer W. The sensor S1 notifies the control unit 5 of the detection result.
  • the suction stage VS1 is provided with a hole for vacuum-sucking the wafer W.
  • the substrate processing apparatus 100 is provided with a pipe PP3 branched in two from the air / water separation tank AWS.
  • One branch destination of the pipe PP3 is connected to the other end of the rotary joint RJ1.
  • the other branch destination of the pipe PP3 is connected to the water supply source WS.
  • the water supply source WS and the steam-water separation tank AWS are communicated.
  • One end of the rotary joint RJ1 communicates with a hole provided in the suction stage VS1.
  • suction stage VS1 and the steam-water separation tank AWS communicate. That is, the gas discharge port GA of the steam separation tank AWS can communicate with the adsorption stage VS1 of the first cleaning chamber 190 so that the gas of the gas supply source GS is supplied to the adsorption stage VS1 of the first cleaning chamber 190. .
  • the substrate processing apparatus 100 is provided with a pipe PP3 ′ branched in two from the steam / water separation tank AWS. One branch destination of the pipe PP3 ′ is connected to the other end of the rotary joint RJ2. Thereby, the other end part of rotary joint RJ2 and the steam-water separation tank AWS 'are connected.
  • the other branch destination of the pipe PP3 ′ is connected to the water supply source WS ′.
  • water supply source WS 'and the steam-water separation tank AWS' are connected.
  • One end of the rotary joint RJ2 communicates with a hole provided in the suction stage VS2.
  • a suction stage VS2 for sucking the wafer W ′, lift pins LP2 for moving the wafer W ′ up and down, and a wafer W ′ are set in advance.
  • a sensor S2 is provided for detecting the arrival at the receiving position.
  • the receiving position is a position where the transfer robot receives the wafer W ′.
  • the sensor S2 notifies the control unit 5 of the detection result.
  • the suction stage VS2 is provided with a hole for vacuum-sucking the wafer W '. Further, a rotary joint RJ2 whose one end communicates with a hole provided in the suction stage VS2 is provided, and the other end of the rotary joint RJ2 communicates with the air / water separation tank AWS 'through a pipe PP3'. Thereby, the hole of adsorption
  • the substrate processing apparatus 100 is provided with a third valve B3.
  • the third valve B3 is provided between the steam-water separation tank AWS and the first cleaning chamber 190 (here, the pipe PP3), and the adsorption stage VS1 of the steam-water separation tank AWS and the first cleaning chamber 190. Open and close the flow path between.
  • the substrate processing apparatus 100 is provided with a third valve B3 ′.
  • the third valve B3 ′ is provided between the steam-water separation tank AWS ′ and the second cleaning chamber 192 (here, the pipe PP3 ′ as an example), and between the steam-water separation tank AWS ′ and the second cleaning chamber 192.
  • the flow path between the adsorption stages VS2 is opened and closed.
  • the substrate processing apparatus 100 includes a vacuum generator VAC and a pipe PP ⁇ b> 4 that communicates the vacuum generator VAC and the steam / water separation tank AWS. Further, the substrate processing apparatus 100 is provided with a fourth valve B4.
  • the fourth valve B4 is provided between the vacuum generator VAC and the steam / water separation tank AWS (here, the pipe PP4), and a flow path between the vacuum generator VAC and the steam / water separation tank AWS. Open and close. Thereby, the wafer W can be adsorbed to the adsorption stage VS1 by opening the third valve B3 and a fourth valve B4 described later.
  • the substrate processing apparatus 100 includes a vacuum generator VAC ′ and a pipe PP4 ′ that communicates the vacuum generator VAC ′ with the steam-water separation tank AWS ′. Further, the substrate processing apparatus 100 is provided with a fourth valve B4 ′.
  • the fourth valve B4 ′ is provided between the vacuum generator VAC ′ and the steam / water separation tank AWS ′ (here, the pipe PP4 ′ as an example), and the vacuum generator VAC ′ and the steam / water separation tank AWS ′. Open and close the flow path between. Accordingly, the wafer W ′ can be sucked to the suction stage VS2 by opening the third valve B3 ′ and a fourth valve B4 ′ described later.
  • the substrate processing apparatus 100 includes a fifth valve B5.
  • the fifth valve B5 is provided on the water supply source WS side from the branch point DP in the pipe PP3. Pure water (DIW) is stored in the water supply source WS, and pure water (DIW) can be supplied from the water supply source WS to the steam / water separation tank AWS.
  • the substrate processing apparatus 100 includes a fifth valve B5 ′.
  • the fifth valve B5 ′ is provided on the water supply source WS side from the branch point DP ′ in the pipe PP3 ′. Pure water (DIW) is stored in the water supply source WS ′, and the pure water (DIW) can be supplied from the water supply source WS ′ to the steam / water separation tank AWS.
  • the control unit 5 controls the first valve B1, the second valve B2, the third valve B3, the fourth valve B4, and the fifth valve B5. Similarly, the control unit 5 controls the first valve B1 ', the second valve B2', the third valve B3 ', the fourth valve B4', and the fifth valve B5 '. The control unit 5 controls the lift pins LP1 and LP2.
  • control unit 5 when discharging liquid
  • the processing of the control unit 5 relating to the drainage of the steam-water separation tanks AWS and AWS ′ is the same, the liquid collected in the steam-water separation tank AWS is discharged for the steam-water separation tank AWS as a representative.
  • the process of the control part 5 at the time of doing is demonstrated.
  • the control unit 5 closes the first valve B1 after a preset gas supply time has elapsed since the first valve B1 is open and gas cannot be discharged from the steam / water separation tank AWS. Control is performed so that the second valve B2 is closed after the first valve B1 is closed. Specific processing will be described later with reference to FIG.
  • the trigger of drainage can be given by supplying gas to the steam-water separation tank AWS during the gas supply time, the liquid accumulated in the steam-water separation tank AWS can be drained naturally thereafter. it can. Further, since the gas is supplied to the steam separation tank AWS only during the gas supply time, the backflow of the contaminated atmosphere and / or liquid into the first cleaning chamber 190 can be suppressed, and the first cleaning chamber The risk of contamination of the substrate in 190 can be reduced.
  • FIG. 3 is a diagram illustrating an example of a relationship between drainage required time and gas supply time for each gas pressure of the gas supply source.
  • the gas of the gas supply source is nitrogen and the capacity of the steam / water separation tank AWS is 600 ml
  • the time required for discharging 200 ml of liquid accumulated in the steam / water separation tank AWS is the time required for drainage. is there.
  • the relationship when the gas pressure P of the gas supply source in FIG. 3 is 0.08 MPa is obtained by experiments.
  • the relationship when the gas pressure P of the gas supply source in FIG. 3 is 0.05, 0.10, 0.15 is predicted from the following calculation formula.
  • the drainage time is determined for each gas pressure P of the gas supply source. Therefore, the drainage time is determined according to the gas pressure P of the gas pressure of the gas supply source GS.
  • the time required for drainage is 4.5 seconds from FIG.
  • the time from when the first valve B1 is closed to when the second valve B2 is closed is set according to the required drainage time set according to the gas pressure of the gas supply source GS.
  • the discharge destination of the pipe PP2 communicates with the atmosphere, and the downstream pressure P L is 0. Therefore, (P L +0.1) / (P L +0.1) ⁇ 0.5 is satisfied. It holds. Therefore, the gas flow rate q can be calculated by the choke flow, and the gas flow rate q (L / min) is derived from the following equation (2).
  • P is the gas pressure (MPa) of the gas supply source
  • S is the cross-sectional area inside the minimum inner diameter portion of the pipe PP1 connecting the gas supply source GS and the steam separation tank AWS
  • t is temperature (° C.).
  • the cross-sectional area S inside the smallest inner diameter portion of the pipe PP1 is 12.56 mm 2 as an example, and the temperature t is 20 ° C.
  • the gas flow rate q is proportional to the gas pressure of the gas supply source and the cross-sectional area inside the minimum inner diameter portion of the pipe PP1.
  • the gas supply time is longer than the minimum gas supply time necessary for draining. Since the gas flow rate q is proportional to the gas pressure P of the gas supply source from the equation (2), the minimum gas supply time is inversely proportional to the gas pressure P of the gas supply source. Therefore, the minimum gas supply time according to the present embodiment is set according to at least the gas pressure of the gas supply source. Thereby, since gas can be supplied to the steam-water separation tank AWS for a time longer than the minimum gas supply time, the trigger of the waste_water
  • the minimum gas supply time is the inner cutoff of the minimum inner diameter portion of the pipe PP1. It is inversely proportional to the area S. From this, the minimum gas supply time according to the present embodiment is further set according to the cross-sectional area inside the minimum inner diameter portion of the pipe PP1 that connects between the gas supply source GS and the steam-water separation tank AWS. Has been. Thereby, since the minimum gas supply time can be set appropriately and the gas is supplied to the steam-water separation tank AWS for a time longer than the minimum gas supply time, the trigger of drainage from the steam-water separation tank AWS is given. be able to.
  • the gas volume (minimum supply volume) that is minimum required to supply the trigger for drainage depends on the amount of liquid present in the steam separator tank AWS. For this reason, even if the minimum gas supply time is further determined in accordance with the minimum volume of gas to be supplied to provide a trigger for drainage when the steam separation tank AWS is full, Good.
  • the volume of gas (for example, nitrogen) that is minimum required to supply drainage when the steam / water separation tank AWS is full is the volume of the steam / water separation tank (for example, 0.6 L). Therefore, when the volume of the steam-water separation tank is 0.6 L, for example, it is 3.16 ( ⁇ 0.6 ⁇ 5.27) L.
  • the minimum gas supply time can be set to a time during which the gas / water separation tank AWS can supply an amount of gas that can discharge the amount of liquid when the water is full. Since it supplies to the steam-water separation tank AWS, the trigger of the waste_water
  • gas for example, nitrogen
  • the detection part which detects the quantity of the liquid which exists in the steam-water separation tank AWS.
  • the detection unit is, for example, a liquid level sensor provided inside the air / water separation tank AWS.
  • the gas supply time which concerns on this embodiment may be set by the control part 5 according to the quantity of the liquid which exists in the steam-water separation tank AWS detected by the detection part.
  • the control unit 5 may set the gas supply time such that the gas supply time becomes longer as the amount of liquid present in the water / water separation tank AWS is larger. Thereby, since the gas supply time which can give a drainage trigger can be set appropriately, a liquid can be drained from the steam-water separation tank AWS.
  • the controller 5 controls to open the second valve B2 and the third valve B3 in order to peel the substrate from the suction stage VS1 of the first cleaning chamber 190.
  • the pressure of the gas supply source GS is set within a range in which the substrate can be peeled off from the adsorption stage VS1 of the first cleaning chamber 190 and the substrate does not jump.
  • the substrate jumping means that the substrate suddenly leaves the suction stage, and if the substrate jumps unintentionally from the stage, there is a concern that the substrate may be damaged. Thereby, the substrate can be peeled off from the suction stage VS1, and the substrate can be raised to the receiving position where the transfer robot 22 receives it.
  • the pressure that can be removed from the adsorption stage VS1 was 0.05 MPa or more.
  • the pressure at which the wafer does not jump was 0.15 MPa or less. Therefore, in the case of a wafer having a diameter of 300 mm, the pressure P of the gas supply source is 0.05 to 0.15 MPa.
  • FIG. 4 is a flowchart showing an example of a processing flow relating to drainage of the steam-water separation tank AWS.
  • FIG. 4 shows an example in which the wafer is cleaned in the first cleaning chamber 190.
  • Step S101 First, the control unit 5 controls to close the fourth valve B4. As a result, the vacuum in the first cleaning chamber 190 is released.
  • Step S102 Next, the control unit 5 controls to open the fifth valve B5. Thereby, the pipe PP3 is filled with water.
  • Step S103 the controller 5 controls to close the fifth valve B5 and open the first valve B1 and the third valve B3. Thereby, while being pushed by nitrogen gas, water pushes the wafer W, and the wafer W is pushed by nitrogen gas. As a result, the wafer W is peeled off from the suction stage VS1.
  • Step S104 the controller 5 controls the wafer W to be lifted by the lift pins LP1. As a result, the wafer W is separated from the suction stage VS1.
  • Step S105 the control unit 5 determines whether or not the wafer W has reached the receiving position based on the detection result of the sensor S1.
  • Step S106 When the wafer W reaches the receiving position in step S104, the control unit 5 controls to close the third valve B3 and open the second valve B2. Again, the first valve B1 remains open. Since the second valve B2 is opened, drainage from the steam separator tank AWS starts.
  • Step S107 the control unit 5 determines whether or not a preset gas supply time has elapsed since the third valve B3 was closed.
  • Step S108 When a preset gas supply time has elapsed since the third valve B3 was closed in Step S107, the control unit 5 controls to close the first valve B1. However, if the process of peeling off the wafer is not necessary, the third valve B3 is not required to be opened in the first place, so the third valve B3 is closed in advance, and the third valve B3 in step S106 is closed. There is no process. In that case, there is no process up to step S106, and the control unit 5 starts from controlling to open the first valve B1 and the second valve B2, and from the time when the first valve B1 is opened. Count time.
  • the controller 5 counts the time from when the first valve B1 is open and the gas cannot be discharged from the steam / water separation tank AWS. In this way, the control unit 5 starts when the first valve B1 is open and gas cannot be discharged from the steam / water separation tank AWS (for example, when the third valve B3 is closed in step S107).
  • the first valve B1 is controlled to be closed after a preset gas supply time has elapsed.
  • Step S109 the control unit 5 determines whether or not a predetermined period has elapsed since the first valve B1 was closed.
  • the predetermined period is set according to the required drainage time set according to the gas pressure of the gas supply source GS. That is, the predetermined period is set so that the total time of the gas supply time and the predetermined period becomes equal to or longer than the required drainage time.
  • Step S110 When the period predetermined in Step S109 has further elapsed, the control unit 5 controls the second valve B2 to be closed.
  • the substrate processing apparatus 100 is provided between the gas supply source GS and the gas / water separation tank AWS and opens and closes the flow path of the gas supplied from the gas supply source GS. Is provided.
  • the substrate processing apparatus 100 further includes a second valve B2 that opens and closes the flow path of the liquid discharged from the discharge port DA of the air / water separation tank AWS.
  • the substrate processing apparatus 100 includes a control unit 5 that controls the first valve B1 and the second valve B2.
  • the outlet DA of the steam-water separation tank AWS communicates with the outlets of the first cleaning chamber 190 and the second cleaning chamber 192 that clean the substrate.
  • control unit 5 opens the first valve B1 after a predetermined gas supply time has elapsed from when the first valve B1 is open and gas cannot be discharged from the steam / water separation tank AWS. Control is performed so that the second valve B2 is closed after the first valve B1 is closed.
  • a strainer is provided at each of the drains of the first cleaning chamber 190 and the second cleaning chamber 192, and the strainer collects residues (debris from the substrate and dust) generated in the cleaning tank. If the gas is continuously supplied to the steam separation tank, this gas is supplied to the drain outlets of the first cleaning chamber 190 and the second cleaning chamber 192 via the drain pipe, and the strainer blows off due to the pressure of the gas. There was also a problem of fear. On the other hand, according to the substrate processing apparatus 100 according to the present embodiment, the backflow of the contaminated atmosphere and / or liquid into the first cleaning chamber 190 or the second cleaning chamber 192 can be suppressed. The probability of blowing off can be reduced.
  • the substrate processing apparatus 100 is configured to include two cleaning chambers, the first cleaning chamber 190 and the second cleaning chamber 192.
  • the present invention is not limited to this. It is good also as a structure provided with the above washing
  • first cleaning chamber 190 and the second cleaning chamber 192 are arranged in a state where they are stacked in two upper and lower stages, but not limited to this, the first cleaning chamber 190 and the second cleaning chamber 192 are arranged separately in the horizontal direction without being stacked. Also good.
  • the present technology is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various techniques can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.
  • the diameter of the target substrate is not limited to 300 mm, and may be 450 mm, for example.
  • some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

気体供給源と気水分離槽との間に設けられ且つ気体供給源から供給される気体の流路を開閉する第1の弁と、気水分離槽の排出口から排出される液体の流路を開閉する第2の弁と、第1の弁と第2の弁を制御する制御部と、を備え、気水分離槽の排出口は、基板を洗浄する洗浄室の排出口と連通しており、制御部は、第1の弁が開いており且つ気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に第1の弁を閉じ、第1の弁を閉じた後に第2の弁を閉じるよう制御する。

Description

基板処理装置、排出方法およびプログラム 関連する出願
 本出願では、2016年12月12日に日本国に出願された特許出願番号2016-240315の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。
 本技術は、基板処理装置、排出方法およびプログラムに関する。
 半導体の微細化が進むにつれて、水平方向の寸法の縮小化とともに、垂直方向の構造も複雑化している。このため、半導体基板(ウエハ)表面を平坦化し、加工を容易にする技術の必要性が高まっている。このような平坦化技術の中で、とりわけ重要度を増しているのが、化学機械的研磨(Chemical Mechanical Polishing:CMP)技術である。半導体基板などの基板(ウエハ)に対して各種処理を行うために、基板処理装置が用いられる。この基板処理装置の一例として、CMP技術を用いて、ウエハなどの基板を研磨する研磨装置が挙げられる(特許文献1参照)。
 CMP技術を用いた研磨装置は、基板の研磨処理を行うための研磨部、基板の洗浄処理を行う洗浄部、洗浄した基板を乾燥処理する乾燥部、研磨部へ基板を受け渡すと共に乾燥部によって乾燥処理された基板を受け取るロード/アンロード部などを備えている。また、研磨装置は、研磨部、洗浄部及びロード/アンロード部間で基板の搬送を行う搬送部を備えている。研磨装置は、搬送部によって基板を搬送しながら、研磨、洗浄及び乾燥の各種処理を順次行うようになっている。
 洗浄部の洗浄槽等で使用される吸着ステージには、基板を真空吸着するために真空吸着ラインが設けられている。基板を真空吸着する際に真空吸着ラインには真空吸着用の貫通孔から大気と基板上に残っている洗浄水が吸引されるために、これらの水分を気水分離槽で分離する必要がある。そのため、真空吸着ラインには気水分離槽が接続されている(特許文献1参照)。
特開2015-150648号公報
 一実施の形態の基板処理装置は、気体供給源と気水分離槽との間に設けられ且つ前記気体供給源から供給される気体の流路を開閉する第1の弁と、前記気水分離槽の排出口から排出される液体の流路を開閉する第2の弁と、前記第1の弁と前記第2の弁を制御する制御部と、を備え、前記気水分離槽の排出口は、基板を洗浄する洗浄室の排出口と連通しており、前記制御部は、前記第1の弁が開いており且つ前記気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に前記第1の弁を閉じ、前記第1の弁を閉じた後に前記第2の弁を閉じるよう制御する。
本技術の実施形態に係る基板処理装置100の全体構成を示す平面図である。 第1洗浄室190と第2洗浄室192の配管の構成を示す概略図である。 気体供給源の気体の圧力毎の、排水所要時間と気体供給時間の関係を示す図である。 気水分離槽AWSの排水に係る処理の流れの一例を示すフローチャートである。
 気水分離槽の液体の排出口は、洗浄室の排水口とドレイン配管を介して連通している。この洗浄槽等で使用される吸着ステージに用いられる気水分離槽に溜まった液体を排出する際に、気体(例えば、加圧窒素)を連続的に気水分離槽に供給していた。しかし、気体を連続的に気水分離槽に供給することにより、汚染された雰囲気及び/または液体を洗浄室内へ逆流させてしまい、基板を汚染してしまうおそれがあった。
 [実施形態]
 洗浄室内の基板の汚染のおそれを低減することを可能とする基板処理装置、排出方法およびプログラムを提供することが望まれる。
 一実施の形態の第1の態様に係る基板処理装置は、気体供給源と気水分離槽との間に設けられ且つ前記気体供給源から供給される気体の流路を開閉する第1の弁と、前記気水分離槽の排出口から排出される液体の流路を開閉する第2の弁と、前記第1の弁と前記第2の弁を制御する制御部と、を備え、前記気水分離槽の排出口は、基板を洗浄する洗浄室の排出口と連通しており、前記制御部は、前記第1の弁が開いており且つ前記気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に前記第1の弁を閉じ、前記第1の弁を閉じた後に前記第2の弁を閉じるよう制御する。
 この構成によれば、気体供給時間の間、気体を気水分離槽に供給することにより、排水のきっかけを与えることができるので、その後に気水分離槽に蓄積された液体を自然排水することができる。また、気体供給時間の間しか、気体を気水分離槽に供給しないので、汚染された雰囲気及び/または液体の洗浄室内への逆流を抑制することができ、洗浄室内の基板の汚染のおそれを低減することができる。
 一実施の形態の第2の態様に係る基板処理装置は、第1の態様に係る基板処理装置であって、前記気体供給時間は、排水するのに必要な最低限の気体供給時間以上であり、前記最低限の気体供給時間は、少なくとも前記気体供給源の気体の圧力に応じて設定されている。
 この構成によれば、最低限の気体供給時間より長い時間、気体を気水分離槽に供給することができるので、気水分離槽からの排水のきっかけを与えることができる。
 一実施の形態の第3の態様に係る基板処理装置は、第2の態様に係る基板処理装置であって、前記最低限の気体供給時間は、更に前記気体供給源と前記気水分離槽との間を繋ぐ配管の最小の内径の部分の内側の断面積に応じて設定されている。
 この構成によれば、最低限の気体供給時間を適切に設定でき、この最低限の気体供給時間以上の時間、気体を気水分離槽に供給するので、気水分離槽からの排水のきっかけを与えることができる。
 一実施の形態の第4の態様に係る基板処理装置は、第2または3の態様に係る基板処理装置であって、前記最低限の気体供給時間は、更に、前記気水分離槽が満水のときに排水のきっかけを与えるのに供給することが最低限必要な気体の体積に応じて設定されている。
 この構成によれば、最低限の気体供給時間を気水分離槽が満水のときの液体の量を排出できる量の気体を供給できる時間に設定でき、この最低限の気体供給時間以上の時間、気体を気水分離槽に供給するので、気水分離槽内の液体の量に関わらず、気水分離槽からの排水のきっかけを与えることができる。
 一実施の形態の第5の態様に係る基板処理装置は、第1から4のいずれかの態様に係る基板処理装置であって、前記気体供給源の気体が前記洗浄室の吸着ステージに供給されるように前記気水分離槽の気体排出口は前記洗浄室の前記吸着ステージと連通可能であり、前記気体供給源の圧力は、基板を前記洗浄室の吸着ステージから剥がすことができ且つ前記基板が飛び跳ねない範囲で設定されている。
 なお、基板が飛び跳ねるとは、基板が吸着ステージから突発的に離脱してしまうことを意味しており、もし基板が意図せずにステージから飛び跳ねてしまうと、基板が損傷する懸念が生じうる。
 この構成によれば、基板を吸着ステージから剥がし、且つ基板が飛び跳ねないようにすることができる。
 一実施の形態の第6の態様に係る基板処理装置は、第5の態様に係る基板処理装置であって、前記基板は、直径300mmのウエハであり、前記気体供給源の圧力は、0.05~0.15MPaである。
 この構成によれば、直径300mmのウエハの場合において、当該ウエハを吸着ステージVS1から剥がし、且つ当該ウエハを搬送ロボットが受け取る受取位置まで上昇させることができる。
 一実施の形態の第7の態様に係る基板処理装置は、第1から6のいずれかの態様に係る基板処理装置であって、前記第1の弁を閉じた時から前記第2の弁を閉じるまでの時間は、前記気体供給源の気体の圧力に応じて設定された排水所要時間に応じて設定されている。
 この構成によれば、排水所要時間以上の時間、第2の弁を開けることができるので、気水分離槽に蓄積された液体を全て排出することができる。
 一実施の形態の第8の態様に係る排出方法は、基板処理装置における気水分離槽内の液体の排出方法であって、気体供給源と気水分離槽との間に設けられ且つ前記気体供給源から供給される気体の流路を開閉する第1の弁が開いており且つ前記気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に前記第1の弁を閉じる工程と、前記第1の弁を閉じた後に前記気水分離槽の排出口から排出される液体の流路を開閉する第2の弁を閉じる工程と、を有する。
 この構成によれば、気体供給時間の間、気体を気水分離槽に供給することにより、排水のきっかけを与えることができるので、その後に気水分離槽に蓄積された液体を自然排水することができる。また、気体供給時間の間しか、気体を気水分離槽に供給しないので、汚染された雰囲気及び/または液体の洗浄室内への逆流を抑制することができ、洗浄室内の基板の汚染のおそれを低減することができる。
 一実施の形態の第9の態様に係るプログラムは、コンピュータを、気体供給源と気水分離槽との間に設けられ且つ前記気体供給源から供給される気体の流路を開閉する第1の弁と、前記気水分離槽の排出口から排出される液体の流路を開閉する第2の弁を制御する制御部として機能させるためのプログラムであって、前記気水分離槽の排出口は、基板を洗浄する洗浄室の排出口と連通しており、前記制御部は、前記第1の弁が開いており且つ前記気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に前記第1の弁を閉じ、前記第1の弁を閉じた後に前記第2の弁を閉じるよう制御するプログラムである。
 この構成によれば、気体供給時間の間、気体を気水分離槽に供給することにより、排水のきっかけを与えることができるので、その後に気水分離槽に蓄積された液体を自然排水することができる。また、気体供給時間の間しか、気体を気水分離槽に供給しないので、汚染された雰囲気及び/または液体の洗浄室内への逆流を抑制することができ、洗浄室内の基板の汚染のおそれを低減することができる。
 以下、本技術の一実施形態に係る基板処理装置を図面に基づいて説明する。具体的には、基板処理装置の一例として、CMP技術を用いた研磨装置について説明する。なお、以下に説明する個別の構成要素を任意に組み合わせた技術についても、本技術が対象とする技術思想に含まれるものである。
 [全体概要]
 図1は本技術の実施形態に係る基板処理装置100の全体構成を示す平面図である。図1に示すように、この基板処理装置100は、略矩形状のハウジング1を備えており、ハウジング1の内部は隔壁1a,1bによってロード/アンロード部2と研磨部3と洗浄部4とに区画されている。これらのロード/アンロード部2、研磨部3、および洗浄部4は、それぞれ独立に組み立てられ、独立に排気される。洗浄部4は、第1洗浄室190と、第1搬送室191と、第2洗浄室192と、第2搬送室193と、乾燥室194とに区画されている。本実施形態では一例として、第1洗浄室190と第2洗浄室192とは、上下2段に積み重ねられた状態で配置されている。また、基板処理装置100は、基板処理動作を制御する制御部5を有している。
 [ロード/アンロード部]
 ロード/アンロード部2は、多数のウエハ(基板)をストックするウエハカセットが載置される2つ以上(本実施形態では4つ)のフロントロード部20を備えている。これらのフロントロード部20はハウジング1に隣接して配置され、基板処理装置100の幅方向(長手方向と垂直な方向)に沿って配列されている。フロントロード部20には、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載することができるようになっている。ここで、SMIF、FOUPは、内部にウエハカセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。
 また、ロード/アンロード部2には、フロントロード部20の並びに沿って走行機構21が敷設されており、この走行機構21上にウエハカセットの配列方向に沿って移動可能な搬送ロボット(ローダー)22が設置されている。搬送ロボット22は走行機構21上を移動することによってフロントロード部20に搭載されたウエハカセットにアクセスできるようになっている。搬送ロボット22は上下に2つのハンドを備えており、上側のハンドを処理されたウエハをウエハカセットに戻すときに使用し、下側のハンドを処理前のウエハをウエハカセットから取り出すときに使用して、上下のハンドを使い分けることができるようになっている。さらに、搬送ロボット22の下側のハンドは、その軸心周りに回転することで、ウエハを反転させることができるように構成されている。
 ロード/アンロード部2は最もクリーンな状態を保つ必要がある領域であるため、ロード/アンロード部2の内部は、基板処理装置100の外部、研磨部3、および洗浄部4のいずれよりも高い圧力に常時維持されている。研磨部3は研磨液としてスラリーを用いるため最もダーティな領域である。したがって、研磨部3の内部には負圧が形成され、その圧力は洗浄部4の内部圧力よりも低く維持されている。ロード/アンロード部2には、HEPAフィルタ、ULPAフィルタ、またはケミカルフィルタなどのクリーンエアフィルタを有するフィルタファンユニット(図示せず)が設けられており、このフィルタファンユニットからはパーティクルや有毒蒸気、有毒ガスが除去されたクリーンエアが常時吹き出している。
 [研磨部]
 研磨部3は、ウエハの研磨(平坦化)が行われる領域であり、第1研磨ユニット3A、第2研磨ユニット3B、第3研磨ユニット3C、第4研磨ユニット3Dを備えている。これらの第1研磨ユニット3A、第2研磨ユニット3B、第3研磨ユニット3C、および第4研磨ユニット3Dは、図1に示すように、基板処理装置100の長手方向に沿って配列されている。
 図1に示すように、第1研磨ユニット3Aは、研磨面を有する研磨パッド10が取り付けられたテーブル30Aと、ウエハを保持しかつウエハをテーブル30A上の研磨パッド10に押圧しながら研磨するためのトップリング(研磨ヘッド)31Aと、研磨パッド10に研磨液やドレッシング液(例えば、純水)を供給するための研磨液供給ノズル(研磨液供給部)32Aと、研磨パッド10の研磨面のドレッシングを行うためのドレッサ33Aと、研磨面に流体を噴射するとともに研磨面の上にある流体を吸引するアドマイザ34Aとを備えている。例えば、流体は、気体(例えば窒素ガス)、液体(例えば純水)と気体(例えば窒素ガス)の混合流体、液体(例えば純水)である。流体は、液体が霧状になったものでもよい。
 同様に、第2研磨ユニット3Bは、研磨パッド10が取り付けられたテーブル30Bと、トップリング(研磨ヘッド)31Bと、研磨液供給ノズル32Bと、ドレッサ33Bと、アドマイザ34Bとを備えており、第3研磨ユニット3Cは、研磨パッド10が取り付けられたテーブル30Cと、トップリング(研磨ヘッド)31Cと、研磨液供給ノズル32Cと、ドレッサ33Cと、アドマイザ34Cとを備えており、第4研磨ユニット3Dは、研磨パッド10が取り付けられたテーブル30Dと、トップリング(研磨ヘッド)31Dと、研磨液供給ノズル32Dと、ドレッサ33Dと、アドマイザ34Dとを備えている。
 [搬送機構]
 次に、ウエハを搬送するための搬送機構について説明する。図1に示すように、第1研磨ユニット3Aおよび第2研磨ユニット3Bに隣接して、第1リニアトランスポータ6が配置されている。この第1リニアトランスポータ6は、第1研磨ユニット3A,第2研磨ユニット3Bが配列する方向に沿った4つの搬送位置(ロード/アンロード部側から順番に第1搬送位置TP1、第2搬送位置TP2、第3搬送位置TP3、第4搬送位置TP4とする)の間でウエハを搬送する機構である。
 また、第3研磨ユニット3Cおよび第4研磨ユニット3Dに隣接して、第2リニアトランスポータ7が配置されている。この第2リニアトランスポータ7は、第3研磨ユニット3C、第4研磨ユニット3Dが配列する方向に沿った3つの搬送位置(ロード/アンロード部側から順番に第5搬送位置TP5、第6搬送位置TP6、第7搬送位置TP7とする)の間でウエハを搬送する機構である。
 ウエハは、第1リニアトランスポータ6によって第1研磨ユニット3A,第2研磨ユニット3Bに搬送される。上述したように、第1研磨ユニット3Aのトップリング31Aは、トップリングヘッド(不図示)のスイング動作により研磨位置と第2搬送位置TP2との間を移動する。したがって、トップリング31Aへのウエハの受け渡しは第2搬送位置TP2で行われる。同様に、第2研磨ユニット3Bのトップリング31Bは研磨位置と第3搬送位置TP3との間を移動し、トップリング31Bへのウエハの受け渡しは第3搬送位置TP3で行われる。第3研磨ユニット3Cのトップリング31Cは研磨位置と第6搬送位置TP6との間を移動し、トップリング31Cへのウエハの受け渡しは第6搬送位置TP6で行われる。第4研磨ユニット3Dのトップリング31Dは研磨位置と第7搬送位置TP7との間を移動し、トップリング31Dへのウエハの受け渡しは第7搬送位置TP7で行われる。
 第1搬送位置TP1には、搬送ロボット22からウエハを受け取るためのリフタ11が配置されている。ウエハはこのリフタ11を介して搬送ロボット22から第1リニアトランスポータ6に渡される。リフタ11と搬送ロボット22との間に位置して、シャッタ(図示せず)が隔壁1aに設けられており、ウエハの搬送時にはシャッタが開かれて搬送ロボット22からリフタ11にウエハが渡されるようになっている。また、第1リニアトランスポータ6と、第2リニアトランスポータ7と、洗浄部4との間にはスイングトランスポータ12が配置されている。このスイングトランスポータ12は、第4搬送位置TP4と第5搬送位置TP5との間を移動可能なハンドを有しており、第1リニアトランスポータ6から第2リニアトランスポータ7へのウエハの受け渡しは、スイングトランスポータ12によって行われる。ウエハは、第2リニアトランスポータ7によって第3研磨ユニット3Cおよび/または第4研磨ユニット3Dに搬送される。また、スイングトランスポータ12の側方には、図示しないフレームに設置されたウエハWの仮置き台180が配置されている。この仮置き台180は、図1に示すように、第1リニアトランスポータ6に隣接して配置されており、第1リニアトランスポータ6と洗浄部4との間に位置している。研磨部3で研磨されたウエハWはスイングトランスポータ12を経由して仮置き台180に載置され、その後、ウエハWは、洗浄部4の搬送ロボットによって洗浄部4に搬送される。
 [洗浄部]
 洗浄部4は、基板を洗浄する第1洗浄室190と、第1搬送室191と、基板を洗浄する第2洗浄室192と、第2搬送室193と、乾燥室194とに区画されている。第1洗浄室190内には、縦方向に沿って配列された複数の一次洗浄モジュールが配置されている。同様に、第2洗浄室192内には、縦方向に沿って配列された複数の二次洗浄モジュールが配置されている。一次及び二次洗浄モジュールは、洗浄液を用いてウエハを洗浄する洗浄機である。
 乾燥室194内には、縦方向に沿って配列された複数の乾燥モジュールが配置されている。これら複数の乾燥モジュールは互いに隔離されている。乾燥モジュールの上部には、清浄な空気を乾燥モジュールに供給するフィルタファン部が設けられている。各洗浄モジュールおよび乾燥モジュールは、図示しないフレームにボルトなどを介して固定されている。
 続いて、図2を用いて、第1洗浄室190と第2洗浄室192の配管の構成を説明する。図2は、第1洗浄室190と第2洗浄室192の配管の構成を示す概略図である。図2に示すように、基板処理装置100は、配管PP1を介して気体供給源GSに連通する気水分離槽AWSを備える。気体供給源GSには、例えば、圧縮窒素が蓄積されており、圧縮窒素を配管PP1を介して気水分離槽AWSに供給することができる。
 同様にして、基板処理装置100は、配管PP1’を介して気体供給源GS’に連通する気水分離槽AWS’を備える。気体供給源GS’には、例えば、圧縮窒素が蓄積されており、圧縮窒素を配管PP1’を介して気水分離槽AWS’に供給することができる。
 更に基板処理装置100は、配管PP1と、第1の弁B1を備える。配管PP1は、気体供給源GSと気水分離槽AWSとを連通する。第1の弁B1は、気体供給源GSと気水分離槽AWSとの間(ここでは一例として配管PP1)に設けられ且つ気体供給源GSから供給される気体の流路を開閉する。
 同様に、基板処理装置100は、配管PP1’と第1の弁B1’を備える。配管PP1’は、気体供給源GS’と気水分離槽AWS’とを連通する。第1の弁B1’は、気体供給源GS’と気水分離槽AWS’との間(ここでは一例として配管PP1’)に設けられ且つ気体供給源GS’から供給される気体の流路を開閉する。
 更に基板処理装置100は、気水分離槽AWSの排出口DA、気水分離槽AWS’の排出口DA’、第1洗浄室190の排出口D1、及び第2洗浄室192の排出口D2と連通する配管PP2と、気水分離槽AWSの排出口DAから排出される液体の流路を開閉する第2の弁B2と、気水分離槽AWS’の排出口DAから排出される液体の流路を開閉する第2の弁B2’とを備える。配管PP2により、気水分離槽AWSの排出口DA及び気水分離槽AWS’の排出口DA’は、基板を洗浄する第1洗浄室190の排出口D1、及び第2洗浄室192の排出口D2と連通する。図2に示すように、配管PP2の排出先は大気に連通している。
 図2に示すように、第1洗浄室190には、ウエハWを吸着するための吸着ステージVS1と、ウエハWを上下動させるリフトピンLP1と、ウエハWを予め設定された受取位置に到達したことを検出するセンサS1とが設けられている。ここで、受取位置は、搬送ロボットがウエハWを受け取る位置である。センサS1は、検出結果を制御部5に通知する。
 吸着ステージVS1には、ウエハWを真空吸着するための穴が設けられている。また、基板処理装置100には、気水分離槽AWSから二つに分岐する配管PP3が設けられている。配管PP3の一方の分岐先はロータリージョイントRJ1の他端部に接続されている。これにより、ロータリージョイントRJ1の他端部と気水分離槽AWSとを連通する。配管PP3の他方の分岐先は水供給源WSに接続されている。これにより、水供給源WSと気水分離槽AWSとを連通する。ロータリージョイントRJ1の一端部は、吸着ステージVS1に設けられた穴に連通する。これにより、吸着ステージVS1の穴と気水分離槽AWSとが連通する。すなわち、気体供給源GSの気体が第1洗浄室190の吸着ステージVS1に供給されるように気水分離槽AWSの気体排出口GAは、第1洗浄室190の吸着ステージVS1と連通可能である。
 同様にして、基板処理装置100には、気水分離槽AWSから二つに分岐する配管PP3’が設けられている。配管PP3’の一方の分岐先はロータリージョイントRJ2の他端部に接続されている。これにより、ロータリージョイントRJ2の他端部と気水分離槽AWS’とを連通する。配管PP3’の他方の分岐先は水供給源WS’に接続されている。これにより、水供給源WS’と気水分離槽AWS’とを連通する。ロータリージョイントRJ2の一端部は、吸着ステージVS2に設けられた穴に連通する。これにより、吸着ステージVS2の穴と気水分離槽AWS’とが連通する。すなわち、気体供給源GS’の気体が第2洗浄室192の吸着ステージVS2に供給されるように気水分離槽AWS’の気体排出口GA’は、第2洗浄室192の吸着ステージVS2と連通可能である。
 同様にして、図2に示すように、第2洗浄室192には、ウエハW’を吸着するための吸着ステージVS2と、ウエハW’を上下動させるリフトピンLP2と、ウエハW’を予め設定された受取位置に到達したことを検出するセンサS2とが設けられている。ここで、受取位置は、搬送ロボットがウエハW’を受け取る位置である。センサS2は、検出結果を制御部5に通知する。
 吸着ステージVS2には、ウエハW’を真空吸着するための穴が設けられている。また、一端部が吸着ステージVS2に設けられた穴と連通するロータリージョイントRJ2が設けられ、配管PP3’によってロータリージョイントRJ2の他端部と気水分離槽AWS’とが連通する。これにより、吸着ステージVS2の穴と気水分離槽AWSとが連通する。
 図2に示すように、基板処理装置100には、第3の弁B3が設けられている。第3の弁B3は、気水分離槽AWS及びと第1洗浄室190との間(ここでは一例として配管PP3)に設けられ且つ気水分離槽AWSと第1洗浄室190の吸着ステージVS1との間の流路を開閉する。
 同様にして、基板処理装置100には、第3の弁B3’が設けられている。第3の弁B3’は、気水分離槽AWS’及びと第2洗浄室192との間(ここでは一例として配管PP3’)に設けられ且つ気水分離槽AWS’と第2洗浄室192の吸着ステージVS2の間の流路を開閉する。
 図2に示すように、基板処理装置100は、真空発生器VACと、真空発生器VACと気水分離槽AWSとを連通する配管PP4とを備える。更に基板処理装置100には、第4の弁B4が設けられている。第4の弁B4は、真空発生器VACと気水分離槽AWSとの間(ここでは一例として配管PP4)に設けられており、真空発生器VACと気水分離槽AWSとの間の流路を開閉する。これにより、第3の弁B3と後述する第4の弁B4を開くことにより、ウエハWを吸着ステージVS1に吸着することができる。
 同様にして、基板処理装置100は、真空発生器VAC’と、真空発生器VAC’と気水分離槽AWS’とを連通する配管PP4’とを備える。更に基板処理装置100には、第4の弁B4’が設けられている。第4の弁B4’は、真空発生器VAC’と気水分離槽AWS’との間(ここでは一例として配管PP4’)に設けられており、真空発生器VAC’と気水分離槽AWS’との間の流路を開閉する。これにより、第3の弁B3’と後述する第4の弁B4’を開くことにより、ウエハW’を吸着ステージVS2に吸着することができる。
 図2に示すように、基板処理装置100は、第5の弁B5を備える。第5の弁B5は、配管PP3のうち分岐点DPより水供給源WS側に設けられている。水供給源WSには、純水(DIW)が蓄えられており、水供給源WSから気水分離槽AWSに純水(DIW)を供給することができる。
 同様にして、基板処理装置100は、第5の弁B5’を備える。第5の弁B5’は、配管PP3’のうち分岐点DP’より水供給源WS側に設けられている。水供給源WS’には、純水(DIW)が蓄えられており、水供給源WS’から気水分離槽AWSに純水(DIW)を供給することができる。
 制御部5は、第1の弁B1、第2の弁B2、第3の弁B3、第4の弁B4、及び第5の弁B5を制御する。同様に、制御部5は、第1の弁B1’、第2の弁B2’、第3の弁B3’、第4の弁B4’、及び第5の弁B5’を制御する。また、制御部5は、リフトピンLP1及びリフトピンLP2を制御する。
 [液体排出時の制御部5の処理]
 続いて、気水分離槽AWS及びAWS’の排水に係る制御部5の処理は同じであるので、代表して気水分離槽AWSを対象にして、気水分離槽AWSに溜まった液体を排出する際の制御部5の処理について説明する。制御部5は、第1の弁B1が開いており且つ気水分離槽AWSから気体が排出できない状態になった時から予め設定された気体供給時間を経過した後に第1の弁B1を閉じ、第1の弁B1を閉じた後に第2の弁B2を閉じるよう制御する。具体的な処理については、図4で後述する。これにより、気体供給時間の間、気体を気水分離槽AWSに供給することにより、排水のきっかけを与えることができるので、その後に気水分離槽AWSに蓄積された液体を自然排水することができる。また、気体供給時間の間しか、気体を気水分離槽AWSに供給しないので、汚染された雰囲気及び/または液体の第1洗浄室190内への逆流を抑制することができ、第1洗浄室190内の基板の汚染のおそれを低減することができる。
 ここで、気体供給時間について図3を用いて説明する。図3は、気体供給源の気体の圧力毎の、排水所要時間と気体供給時間の関係の一例を示す図である。図3では、気体供給源の気体が窒素で、気水分離槽AWSの容量が600mlのときに、気水分離槽AWSに蓄積された200mlの液体を排出するのにかかる時間が排水所要時間である。図3における気体供給源の気体の圧力Pが0.08MPaのときの関係は実験により得られたものである。図3における気体供給源の気体の圧力Pが0.05、0.10、0.15のときの関係は、下記に示す計算式から予測されたものである。
 気体供給源の気体の圧力Pが0.08MPaのときには、気体供給時間が0.7秒以上であれば、気水分離槽AWSに蓄積された液体を全て排出できた。また、気体供給源の気体の圧力Pが0.08MPaのときには、気体供給時間が2.0秒以下であれば、汚染された雰囲気及び/または液体の第1洗浄室190または第2洗浄室192内への逆流が観測されなかった。
 図3に示すように、気体供給時間を変えても、同じ気体供給源の気体の圧力Pであれば、排水所要時間は同じである。このように、気体供給源の気体の圧力P毎に、排水所要時間が決まっている。よって、排水所要時間は、気体供給源GSの気体の圧力の気体の圧力Pに応じて決まっている。
 第2の弁B2を閉じるのは、気水分離槽AWSに蓄積された液体が全て排水された時以降である必要がある。例えば、気体供給源の気体の圧力Pが0.08MPaであるときには、図3から排水所要時間は4.5秒である。ここで、気体供給期間が1秒の場合には、第1の弁B1を閉じた時から第2の弁B2を閉じるまでの時間は、3(=4.5-1)秒以上に設定される。よって、第1の弁B1を閉じた時から第2の弁B2を閉じるまでの時間は、気体供給源GSの気体の圧力に応じて設定された排水所要時間に応じて設定されている。これにより、排水所要時間以上の時間、第2の弁B2を開けることができるので、気水分離槽AWSに蓄積された液体を全て排出することができる。
 ベルヌーイの定理から、流速vは次の式で表される。
 v=(2×P/ρ)0.5
 ここで、Pは気体供給源の気体の圧力であり、ρは流体密度である。よって、排出される液体の単位時間あたりに流れる量(以下、流量という)Qは次の式で表される。
 Q=C×A×(2×P/ρ)0.5
 ここで、Cは流出係数で、Aは流路面積である。よって、気水分離槽AWSから排出する液体の総量を排出総量Vとすると、排水所要時間Tfは、次の式(1)から導出される。
 Tf=V/Q …(1)
 また、本実施形態では、配管PP2の排出先が大気に連通しており、下流圧力Pが0であるから、(P+0.1)/(P+0.1)≦0.5が成り立つ。よって、気体流量qをチョーク流れで計算することができ、気体流量q(L/min)は次の式(2)から導出される。
 q=120×S×(P+0.1)√(293/273+t) …(2)
 ここで、Pは気体供給源の気体の圧力(MPa)で、Sは気体供給源GSと気水分離槽AWSとの間を繋ぐ配管PP1の最小の内径の部分の内側の断面積であり、tは温度(℃)である。ここでは配管PP1の最小の内径の部分の内側の断面積Sは一例として12.56mmであり、温度tは20℃である。式(2)から、気体流量qは、気体供給源の気体の圧力と、配管PP1の最小の内径の部分の内側の断面積に比例する。
 図3に示すように、気体供給源の気体の圧力Pが0.08MPaのときの実験では、最低限0.7秒間、気水分離槽AWSに気体(ここでは窒素)を供給しなければ排水されなかった。よって、排水のきっかけを与えるのに供給することが最低限必要な気体の体積(最低供給体積)は、3.17(=4.53(L/秒)×0.7(秒))Lである。
 0.05MPaでの気体流量qは、式(2)から3.78(=227/60)L/秒になるので、排水するのに必要な最低限の気体供給時間は0.83(=3.17(L)/3.78(L/秒))秒になる。
 同様にして、0.1MPaでの気体流量qは、式(2)から5.03(=302/60)L/秒になるので、排水するのに必要な最低限の気体供給時間は0.6(=3.17(L)/5.03(L/秒))秒になる。
 同様にして、0.15MPaでの気体流量qは、式(2)から6.28(=377/60)L/秒になるので、排水するのに必要な最低限の気体供給時間は0.50(=3.17(L)/6.28(L/秒))秒になる。
 図3に示すように、気体供給時間は、排水するのに必要な最低限の気体供給時間以上である。ここで式(2)から気体流量qは気体供給源の気体の圧力Pに比例するから、最低限の気体供給時間は気体供給源の気体の圧力Pに反比例する。このことから、本実施形態に係る最低限の気体供給時間は、少なくとも気体供給源の気体の圧力に応じて設定されている。これにより、最低限の気体供給時間より長い時間、気体を気水分離槽AWSに供給することができるので、気水分離槽AWSからの排水のきっかけを与えることができる。
 また、式(2)から、気体流量qは配管PP1の最小の内径の部分の内側の断面積Sに比例するから、最低限の気体供給時間は配管PP1の最小の内径の部分の内側の断面積Sに反比例する。このことから、本実施形態に係る最低限の気体供給時間は、更に気体供給源GSと気水分離槽AWSとの間を繋ぐ配管PP1の最小の内径の部分の内側の断面積に応じて設定されている。これにより、最低限の気体供給時間を適切に設定でき、この最低限の気体供給時間以上の時間、気体を気水分離槽AWSに供給するので、気水分離槽AWSからの排水のきっかけを与えることができる。
 また、排水のきっかけを与えるのに供給することが最低限必要な気体の体積(最低供給体積)は、気水分離槽AWSに存在する液体の量に依存する。このことから、最低限の気体供給時間は、更に、気水分離槽AWSが満水のときに排水のきっかけを与えるのに供給することが最低限必要な気体の体積に応じて決められていてもよい。例えば、気水分離槽AWSが満水のときに排水のきっかけを与えるのに供給することが最低限必要な気体(例えば、窒素)の体積は、気水分離槽の容積(例えば、0.6L)の固定値(5.27)倍であるから、気水分離槽の容積が例えば0.6Lの場合、3.16(≒0.6×5.27)Lである。0.1MPaでの気体流量qは、式(2)より5.03(=302/60)L/秒であるため、最低限の気体供給時間は、0.6(≒3.16/5.03)秒になる。これにより、最低限の気体供給時間を気水分離槽AWSが満水のときの液体の量を排出できる量の気体を供給できる時間に設定でき、この最低限の気体供給時間以上の時間、気体を気水分離槽AWSに供給するので、気水分離槽AWS内の液体の量に関わらず、気水分離槽AWSからの排水のきっかけを与えることができる。そして、短い時間(例えば0.6秒)で排水ができ、無駄で汚染源になる気体(例えば、窒素)の排出を止めることができる。
 なお、気水分離槽AWSに存在する液体の量を検出する検出部を備えていてもよい。検出部は例えば、気水分離槽AWSの内側に設けられた液面センサである。そして、本実施形態に係る気体供給時間は、検出部によって検出された気水分離槽AWSに存在する液体の量に応じて制御部5により設定されてもよい。具体的には例えば、制御部5は、気水分離槽AWSに存在する液体の量が多いほど気体供給時間が大きくなるように気体供給時間を設定してもよい。これにより、排水きっかけを与えることができるような気体供給時間を適切に設定できるので、気水分離槽AWSから液体を排水することができる。
 [基板を吸着ステージから剥がす時の制御部5の処理]
 続いて、吸着ステージVS1、VS2を代表して、吸着ステージVS1から基板を剥がす時の制御部5の処理について説明する。
 制御部5は、基板を第1洗浄室190の吸着ステージVS1から剥がすために、第2の弁B2と第3の弁B3を開けるよう制御する。ここで、気体供給源GSの圧力は、基板を第1洗浄室190の吸着ステージVS1から剥がすことができ且つ基板が飛び跳ねない範囲で設定されている。なお、基板が飛び跳ねるとは、基板が吸着ステージから突発的に離脱してしまうことを意味しており、もし基板が意図せずにステージから飛び跳ねてしまうと、基板が損傷する懸念が生じうる。これにより、基板を吸着ステージVS1から剥がし、且つ基板を搬送ロボット22が受け取る受取位置まで上昇させることができる。
 実機で実験したところ、直径300mmのウエハの場合には、吸着ステージVS1から剥がすことができる圧力は0.05MPa以上であった。また、直径300mmのウエハの場合には、ウエハが飛び跳ねない圧力は0.15MPa以下であった。よって、直径300mmのウエハの場合、気体供給源の圧力Pは、0.05~0.15MPaである。これにより、直径300mmのウエハの場合において、当該ウエハを吸着ステージVS1から剥がし、且つ当該ウエハを搬送ロボット22が受け取る受取位置まで上昇させることができる。
 続いて、気水分離槽AWS及びAWS’の排水に係る処理は同じであるので、代表して気水分離槽AWSを対象にして、図4を用いて気水分離槽AWSの排水に係る処理を説明する。図4は、気水分離槽AWSの排水に係る処理の流れの一例を示すフローチャートである。図4は、第1洗浄室190でウエハを洗浄する場合の例である。
 (ステップS101)まず制御部5は、第4の弁B4を閉じるよう制御する。これにより、第1洗浄室190の真空が解除される。
 (ステップS102)次に制御部5は、第5の弁B5を開くよう制御する。これにより、配管PP3に水が充填される。
 (ステップS103)次に制御部5は、第5の弁B5を閉じ、第1の弁B1及び第3の弁B3を開くよう制御する。これにより、窒素ガスに押されて水がウエハWを押すとともに、窒素ガスによってウエハWが押される。これにより、ウエハWが吸着ステージVS1から剥がれる。
 (ステップS104)次に制御部5は、ウエハWをリフトピンLP1で上昇させるよう制御する。これにより、ウエハWが吸着ステージVS1から離れる。
 (ステップS105)次に制御部5は、センサS1の検出結果に基づいて、ウエハWが受取位置に到達したか否か判定する。
 (ステップS106)ステップS104でウエハWが受取位置に到達した場合、制御部5は、第3の弁B3を閉じ、第2の弁B2を開くよう制御する。ここでも、第1の弁B1は開きっぱなしである。第2の弁B2が開くので、気水分離槽AWSからの排水が始まる。
 (ステップS107)次に制御部5は、第3の弁B3が閉じた時から予め設定された気体供給時間を経過したか否か判定する。
 (ステップS108)ステップS107で第3の弁B3が閉じた時から予め設定された気体供給時間を経過した場合、制御部5は、第1の弁B1を閉じるよう制御する。なお、但し、ウエハを剥がす工程が必要ない場合には、そもそも第3の弁B3を開く必要がないので予め第3の弁B3が閉じられており、ステップS106の第3の弁B3を閉じるまでの工程がない。その場合には、ステップS106までの工程はなく、制御部5は、第1の弁B1及び第2の弁B2を開くように制御することから始まり、第1の弁B1を開いた時からの時間をカウントする。いずれにしても、制御部5は、第1の弁B1が開いており且つ気水分離槽AWSから気体が排出できない状態になった時からの時間をカウントする。
 このように制御部5は、第1の弁B1が開いており且つ気水分離槽AWSから気体が排出できない状態になった時(例えば、ステップS107で第3の弁B3を閉じた時)から、予め設定された気体供給時間を経過した後に第1の弁B1を閉じるよう制御する。
 (ステップS109)次に制御部5は、第1の弁B1を閉じてから更に予め決められた期間を経過したか否か判定する。上述したように、この予め決められた期間は、気体供給源GSの気体の圧力に応じて設定された排水所要時間に応じて設定されている。すなわち、気体供給時間と予め決められた期間の合計時間が、排水所要時間以上になるように当該予め決められた期間が設定されている。
 (ステップS110)ステップS109で更に予め決められた期間を経過した場合、制御部5は、第2の弁B2を閉じるよう制御する。
 以上、本実施形態に係る基板処理装置100は、気体供給源GSと気水分離槽AWSとの間に設けられ且つ気体供給源GSから供給される気体の流路を開閉する第1の弁B1を備える。更に基板処理装置100は、気水分離槽AWSの排出口DAから排出される液体の流路を開閉する第2の弁B2を備える。更に基板処理装置100は、第1の弁B1と第2の弁B2を制御する制御部5を備える。気水分離槽AWSの排出口DAは、基板を洗浄する第1洗浄室190及び第2洗浄室192の排出口と連通している。そして制御部5は、第1の弁B1が開いており且つ気水分離槽AWSから気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に第1の弁B1を閉じ、第1の弁B1を閉じた後に第2の弁B2を閉じるよう制御する。
 この構成により、気体供給時間の間、気体を気水分離槽AWSに供給することにより、排水のきっかけを与えることができるので、その後に気水分離槽AWSに蓄積された液体を自然排水することができる。また、気体供給時間の間しか、気体を気水分離槽AWSに供給しないので、汚染された雰囲気及び/または液体の第1洗浄室190内への逆流を抑制することができ、洗浄室内の基板の汚染のおそれを低減することができる。
 また、第1洗浄室190及び第2洗浄室192の排水口にはそれぞれストレーナが設けられており、ストレーナは、洗浄槽で発生した残渣(基板の破片や、ごみ)を捕集する。仮に気体を連続的に気水分離槽に供給する場合、この気体がドレイン配管を介して第1洗浄室190及び第2洗浄室192の排水口に供給され、気体の圧力でストレーナが吹き飛んでしまうおそれがあるという問題もあった。それに対し、本実施形態に係る基板処理装置100によれば、汚染された雰囲気及び/または液体の第1洗浄室190または第2洗浄室192内への逆流を抑制することができるので、ストレーナを吹き飛ぶ確率を低減することができる。
 なお、本実施形態の制御部の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、プロセッサが実行することにより、本実施形態の制御部に係る上述した種々の処理を行ってもよい。
 なお、本実施形態に係る基板処理装置100は、第1洗浄室190と第2洗浄室192の二つの洗浄室を備える構成としたが、これに限ったものではなく、一つでも、三つ以上の洗浄室を備える構成としてもよい。また、第1洗浄室190と第2洗浄室192とは、上下2段に積み重ねられた状態で配置されている構成としたが、これに限らず、積み重ねずに水平方向に分かれて配置されてもよい。
 以上、本技術は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の技術を形成できる。例えば、対象となる基板の直径は、300mmに限定されず、例えば450mmとされていてもよい。また、例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 1   ハウジング
 2   ロード/アンロード部
 3   研磨部
 3A  第1研磨ユニット
 3B  第2研磨ユニット
 3C  第3研磨ユニット
 3D  第4研磨ユニット
 4   洗浄部
 5   制御部
 6   第1リニアトランスポータ
 7   第2リニアトランスポータ
10   研磨パッド
11   リフタ
12   スイングトランスポータ
20   フロントロード部
21   走行機構
22   搬送ロボット
30A,30B,30C,30D  テーブル
31A,31B,31C,31D  トップリング(研磨ヘッド)
32A,32B,32C,32D  研磨液供給ノズル
33A,33B,33C,33D  ドレッサ
34A,34B,34C,34D  アドマイザ
100 基板処理装置
190 第1洗浄室
191 第1搬送室
192 第2洗浄室
193 第2搬送室
194 乾燥室
AWS、AWS’ 気水分離槽
B1、B1’ 第1の弁
B2、B2’ 第2の弁
B3、B3’ 第3の弁
B4、B4’ 第4の弁
B5、B5’ 第5の弁
D1,D2 排出口
GS、GS’ 気体供給源
LP1,LP2 リフトピン
PP1,PP2,PP3,PP4 配管
RJ1,RJ2 ロータリージョイント
S1,S2 センサ
TP1 第1搬送位置
TP2 第2搬送位置
TP3 第3搬送位置
TP4 第4搬送位置
TP5 第5搬送位置
TP6 第6搬送位置
TP7 第7搬送位置
VAC、VAC’ 真空発生器
VS1,VS2 吸着ステージ
WS、WS’ 水供給源
 

 

Claims (9)

  1.  気体供給源と気水分離槽との間に設けられ且つ前記気体供給源から供給される気体の流路を開閉する第1の弁と、
     前記気水分離槽の排出口から排出される液体の流路を開閉する第2の弁と、
     前記第1の弁と前記第2の弁を制御する制御部と、
     を備え、
     前記気水分離槽の排出口は、基板を洗浄する洗浄室の排出口と連通しており、
     前記制御部は、前記第1の弁が開いており且つ前記気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に前記第1の弁を閉じ、前記第1の弁を閉じた後に前記第2の弁を閉じるよう制御する
     基板処理装置。
  2.  前記気体供給時間は、排水するのに必要な最低限の気体供給時間以上であり、
     前記最低限の気体供給時間は、少なくとも前記気体供給源の気体の圧力に応じて設定されている
     請求項1に記載の基板処理装置。
  3.  前記最低限の気体供給時間は、更に前記気体供給源と前記気水分離槽との間を繋ぐ配管の最小の内径の部分の内側の断面積に応じて設定されている
     請求項2に記載の基板処理装置。
  4.  前記最低限の気体供給時間は、更に、前記気水分離槽が満水のときに排水のきっかけを与えるのに供給することが最低限必要な気体の体積に応じて設定されている
     請求項2または3に記載の基板処理装置。
  5.  前記気体供給源の気体が前記洗浄室の吸着ステージに供給されるように前記気水分離槽の気体排出口は前記洗浄室の前記吸着ステージと連通可能であり、
     前記気体供給源の圧力は、基板を前記洗浄室の吸着ステージから剥がすことができ且つ前記基板が飛び跳ねない範囲で設定されている
     請求項1から4のいずれか一項に記載の基板処理装置。
  6.  前記基板は、直径300mmのウエハであり、
     前記気体供給源の圧力は、0.05~0.15MPaである
     請求項5に記載の基板処理装置。
  7.  前記第1の弁を閉じた時から前記第2の弁を閉じるまでの時間は、前記気体供給源の気体の圧力に応じて設定された排水所要時間に応じて設定されている
     請求項1から6のいずれか一項に記載の基板処理装置。
  8.  基板処理装置における気水分離槽内の液体の排出方法であって、
     気体供給源と気水分離槽との間に設けられ且つ前記気体供給源から供給される気体の流路を開閉する第1の弁が開いており且つ前記気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に前記第1の弁を閉じる工程と、
     前記第1の弁を閉じた後に前記気水分離槽の排出口から排出される液体の流路を開閉する第2の弁を閉じる工程と、
     を有する排出方法。
  9.  コンピュータを、
     気体供給源と気水分離槽との間に設けられ且つ前記気体供給源から供給される気体の流路を開閉する第1の弁と、前記気水分離槽の排出口から排出される液体の流路を開閉する第2の弁を制御する制御部として機能させるためのプログラムであって、
     前記気水分離槽の排出口は、基板を洗浄する洗浄室の排出口と連通しており、
     前記制御部は、前記第1の弁が開いており且つ前記気水分離槽から気体が排出できない状態になった時から、予め設定された気体供給時間を経過した後に前記第1の弁を閉じ、前記第1の弁を閉じた後に前記第2の弁を閉じるよう制御する
     プログラム。
PCT/JP2017/038126 2016-12-12 2017-10-23 基板処理装置、排出方法およびプログラム WO2018110086A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/088,691 US10438820B2 (en) 2016-12-12 2017-10-23 Substrate processing apparatus, discharge method, and program
KR1020187031584A KR101961604B1 (ko) 2016-12-12 2017-10-23 기판 처리 장치, 배출 방법 및 프로그램
SG11201808513PA SG11201808513PA (en) 2016-12-12 2017-10-23 Substrate processing apparatus, discharge method, and program
CN201780026476.4A CN109075053B (zh) 2016-12-12 2017-10-23 基板处理装置、排出方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240315A JP6535649B2 (ja) 2016-12-12 2016-12-12 基板処理装置、排出方法およびプログラム
JP2016-240315 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110086A1 true WO2018110086A1 (ja) 2018-06-21

Family

ID=62558435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038126 WO2018110086A1 (ja) 2016-12-12 2017-10-23 基板処理装置、排出方法およびプログラム

Country Status (7)

Country Link
US (1) US10438820B2 (ja)
JP (1) JP6535649B2 (ja)
KR (1) KR101961604B1 (ja)
CN (1) CN109075053B (ja)
SG (1) SG11201808513PA (ja)
TW (1) TWI738904B (ja)
WO (1) WO2018110086A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102565731B1 (ko) * 2020-11-16 2023-08-17 (주)에스티아이 포드 세정챔버
KR102581895B1 (ko) * 2020-12-29 2023-09-22 세메스 주식회사 챔버 내 압력을 제어하기 위한 압력 조절 장치 및 이를 포함하는 기판 처리 장치
US20220326805A1 (en) * 2021-04-07 2022-10-13 Novatek Microelectronics Corp. Synchronization Method and Controller Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201330A (ja) * 2006-01-30 2007-08-09 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2015191897A (ja) * 2014-03-27 2015-11-02 株式会社Screenホールディングス 基板処理システムおよび配管洗浄方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158264B2 (ja) * 1993-08-11 2001-04-23 東京エレクトロン株式会社 ガス処理装置
KR0164007B1 (ko) * 1994-04-06 1999-02-01 이시다 아키라 미세 패턴화된 레지스트막을 가지는 기판의 건조처리방법 및 장치
JP4025146B2 (ja) * 2002-08-23 2007-12-19 東京エレクトロン株式会社 処理液用タンク及び処理装置
US7481867B2 (en) * 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
US7379155B2 (en) * 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4828948B2 (ja) 2006-01-30 2011-11-30 大日本スクリーン製造株式会社 基板処理装置
TWI334624B (en) 2006-01-30 2010-12-11 Dainippon Screen Mfg Apparatus for and method for processing substrate
CN102117736B (zh) 2006-02-22 2013-06-05 株式会社荏原制作所 基板处理装置、基板搬运装置、基板把持装置以及药液处理装置
FR2940322B1 (fr) * 2008-12-19 2011-02-11 Alcatel Lucent Procede de descente en pression dans un sas de chargement et de dechargement et equipement associe
KR101047862B1 (ko) 2009-03-13 2011-07-08 주식회사 에이앤디코퍼레이션 고압 처리기를 이용한 기판처리장치 및 고압 처리기의 가스재활용방법
JP6190286B2 (ja) 2014-02-14 2017-08-30 株式会社荏原製作所 基板保持装置および研磨装置
KR102049193B1 (ko) * 2014-03-10 2019-11-26 가부시키가이샤 스크린 홀딩스 기판 처리 시스템 및 배관 세정 방법
JP6266493B2 (ja) 2014-03-20 2018-01-24 株式会社荏原製作所 研磨装置及び研磨方法
CN204029777U (zh) * 2014-08-04 2014-12-17 亚亚科技股份有限公司 用于晶圆切割道检测设备的除液装置
US10553421B2 (en) * 2015-05-15 2020-02-04 Tokyo Electron Limited Substrate processing apparatus, substrate processing method and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201330A (ja) * 2006-01-30 2007-08-09 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2015191897A (ja) * 2014-03-27 2015-11-02 株式会社Screenホールディングス 基板処理システムおよび配管洗浄方法

Also Published As

Publication number Publication date
TWI738904B (zh) 2021-09-11
SG11201808513PA (en) 2018-10-30
US10438820B2 (en) 2019-10-08
KR101961604B1 (ko) 2019-03-22
KR20180123163A (ko) 2018-11-14
TW201822269A (zh) 2018-06-16
JP2018098319A (ja) 2018-06-21
JP6535649B2 (ja) 2019-06-26
CN109075053B (zh) 2019-12-27
CN109075053A (zh) 2018-12-21
US20190115230A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US10688622B2 (en) Substrate processing apparatus
KR20160101861A (ko) 기판 세정 장치, 기판 세정 방법 및 기판 처리 장치
TW202132931A (zh) 具有基板載具及清洗腔室環境控制的基板處理系統、設備及方法
WO2018110086A1 (ja) 基板処理装置、排出方法およびプログラム
TWI654705B (zh) 基板處理裝置
TWI632605B (zh) 基板液處理裝置、排氣切換單元及基板液處理方法
JP6491908B2 (ja) 基板洗浄装置、基板洗浄方法、および基板処理装置
KR102518708B1 (ko) 기판 처리 장치
TWI734913B (zh) 基板處理裝置及其控制方法
US20190126430A1 (en) Substrate treatment apparatus
US11631606B2 (en) Substrate storage apparatus and apparatus for processing substrate using the same
KR20150117601A (ko) 기판 처리 장치
JP6373796B2 (ja) 基板研磨装置
US10777417B2 (en) Dressing device, polishing apparatus, holder, housing and dressing method
WO2017094406A1 (ja) 基板処理装置の排気装置
JP2015207602A (ja) 排水機構、及びこれを備えた基板処理装置
JP2015193054A (ja) 気液分離器、及び、基板処理装置
JP6091976B2 (ja) 液体供給装置、及び基板処理装置
US11813646B2 (en) Substrate processing device
JP7422558B2 (ja) 研削システム、及び研削方法
JP7143251B2 (ja) ダンパー制御システムおよびダンパー制御方法
KR20070070482A (ko) 반도체 제조 설비에 사용되는 기판 수납 장치
JP2021009979A (ja) 気液分離装置、研磨装置、研磨装置のメンテナンス方法
KR20080071235A (ko) 흡입식 청소기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11201808513P

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187031584

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880825

Country of ref document: EP

Kind code of ref document: A1