WO2018108056A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2018108056A1
WO2018108056A1 PCT/CN2017/115521 CN2017115521W WO2018108056A1 WO 2018108056 A1 WO2018108056 A1 WO 2018108056A1 CN 2017115521 W CN2017115521 W CN 2017115521W WO 2018108056 A1 WO2018108056 A1 WO 2018108056A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen concentration
adjusting device
air
refrigerator
concentration adjusting
Prior art date
Application number
PCT/CN2017/115521
Other languages
English (en)
French (fr)
Inventor
小松肇
和田芳彦
木村清一
星野仁
Original Assignee
青岛海尔股份有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司, Aqua株式会社 filed Critical 青岛海尔股份有限公司
Publication of WO2018108056A1 publication Critical patent/WO2018108056A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present invention relates to a refrigerator, and more particularly to a refrigerator capable of adjusting the oxygen concentration in the tank.
  • Patent Document 1 JP Utility New Publication No. 31487778
  • an oxygen concentration adjusting device nitrogen generator
  • An example of the oxygen concentration adjusting device is a PSA (Pressure Swing Adsorption) system that physically adsorbs oxygen contained in the air in the refrigerating compartment to reduce the oxygen concentration.
  • PSA Pressure Swing Adsorption
  • Patent Document 1 is provided to integrally form an oxygen concentration adjusting device in a support frame such as a refrigerating case. Therefore, for example, in order to increase the supply capacity of air having a low oxygen concentration, in the case of using a large oxygen concentration adjusting device, it is necessary to reduce the capacity of the refrigerating case or the like. Further, in the oxygen concentration adjusting device described in Patent Document 1, since the outside air is introduced into the oxygen concentration adjusting device, the cooling efficiency of the refrigerator may be lowered.
  • a refrigerator includes: a storage compartment including at least a refrigerating compartment, a freezing compartment, and a storage compartment; a machine compartment for a refrigerator disposed outside the storage compartment; and an oxygen concentration adjusting device Physically adsorbs oxygen contained in the air and provides air at a low oxygen concentration.
  • the oxygen concentration adjusting device is disposed in the machine room, and an inlet of the air flowing into the oxygen concentration adjusting device is disposed in the refrigerating chamber or the freezing chamber, and an outlet of the low oxygen concentration air flowing out of the oxygen concentration adjusting device is disposed at the outlet The storage compartment.
  • the refrigerating compartment and the storage compartment are usually kept at a temperature of 0 to 10 ° C, and are storage spaces for food and the like.
  • the storage compartment is constituted by a space surrounded by walls of fresh food such as vegetables and fruits. According to the present invention, since the inside of the storage compartment can be held in a low-oxygen atmosphere by the oxygen concentration adjusting device, the freshness of the food stored in the storage compartment, particularly the freshness of the fresh food, can be maintained for a long time.
  • a relatively large device such as a compressor for a refrigerator is housed.
  • oxygen concentration Since the adjusting device is disposed in the machine room, the space of the machine room can be effectively utilized to effectively arrange the oxygen concentration adjusting device. Therefore, even when a large oxygen concentration adjusting device is used to increase the supply capacity of the air having a low oxygen air concentration, it is not necessary to reduce the internal volume of the storage of the refrigerator.
  • the cold air can be introduced into the oxygen concentration adjusting device to provide the air having a low oxygen concentration, and there is no need to worry about adversely affecting the cooling performance of the refrigerator, and it is possible to provide good results. Cooling performance of the refrigerator.
  • the refrigerating compartment or the freezing compartment there is a cooler for cooling air in the refrigerating compartment or the freezing compartment, the air flowing into the inlet of the oxygen concentration adjusting device Arranged in the vicinity of the cooler.
  • an outlet of a high oxygen concentration air flowing out of the oxygen concentration adjusting device is disposed in the refrigerating chamber or the freezing chamber.
  • the high oxygen concentration air flowing out from the oxygen concentration adjusting device is returned to the refrigerating chamber or the freezing chamber, so that the pressure inside the tank of the refrigerator can be prevented from being lowered. Even in the case where the high oxygen concentration air is returned to the refrigerating chamber or the freezing chamber, since the capacity in the tank of the refrigerator is sufficiently large, the increase in the oxygen concentration in the tank of the refrigerator is limited.
  • a compressor for a refrigerator, a radiator, and a fan for cooling a radiator are housed in the machine room, and the oxygen concentration adjusting device is used in the width direction of the refrigerator and the refrigerator.
  • the compressor, the radiator, and the radiator cooling fan are arranged side by side.
  • the oxygen concentration adjusting device is arranged side by side in the width direction of the refrigerator and the compressor for a refrigerator or the like, the space of the machine room can be effectively utilized.
  • the oxygen concentration adjusting device is disposed on a blowing side of the wind of the radiator cooling fan.
  • the compressor and the adsorption tank of the oxygen concentration adjusting device can be cooled by the wind of the heater cooling fan, the generation efficiency of the air having a low oxygen concentration can be improved.
  • the present invention it is possible to provide a refrigerator capable of adjusting the oxygen concentration in the tank, and even if a large oxygen concentration adjusting device is employed in the refrigerator, it is not necessary to reduce the inner volume of the refrigerator to obtain good cooling. performance.
  • Fig. 1 is a perspective view of a refrigerator according to an embodiment of the present invention as seen from the rear side.
  • Fig. 2 is a side view showing the rear side of the refrigerator shown in Fig. 1;
  • Fig. 3 is a side sectional view showing a section A-A of Fig. 2;
  • FIG. 4 is a schematic view showing the operation of the oxygen concentration adjusting device having one adsorption tank according to the embodiment of the present invention, wherein (a) shows an adsorption step, and (b) shows a desorption step.
  • FIG. 5 is a schematic view showing an operation of an oxygen concentration adjusting device having two adsorption tanks according to an embodiment of the present invention, wherein (a) shows a first step, and (b) shows a second step.
  • FIG. 1 is a perspective view of the refrigerator 2 according to an embodiment of the present invention as seen from the rear side.
  • Fig. 2 is a side view showing the rear side of the refrigerator 2 shown in Fig. 1 .
  • Fig. 3 is a side sectional view showing a section A-A of Fig. 2; First, an outline of a refrigerator 2 according to an embodiment of the present invention will be described with reference to Figs. 1 to 3 .
  • the refrigerator 2 has a storage 10 including a refrigerating compartment 4, a storage compartment 6, and a freezing compartment 8.
  • the freezing compartment 8 is disposed at a lower portion of the refrigerator 2, and the refrigerating compartment 4 is disposed at an upper side thereof.
  • the storage compartment 6 is disposed in the refrigerating compartment 4, and is constituted by a storage space surrounded by wall portions of fresh food such as vegetables and fruits.
  • the refrigerating compartment 4 and the storage compartment 6 are maintained at a temperature of 0 to 10 ° C, and the freezing compartment 8 is maintained at a temperature of 0 ° C or less.
  • the front side of the refrigerator 2 has an opening that can be opened and closed, and is provided so as to be able to take out and put food or the like stored in the storage 10 .
  • the refrigerator machine room 12 is disposed outside the storage 10 . More specifically, the machine room 12 is disposed at a position adjacent to the freezing compartment 8 disposed at the lower portion of the refrigerator 2.
  • a refrigerator compressor 50, a radiator 52, and a radiator cooling fan 54 are housed, and an oxygen concentration adjusting device 20 is housed.
  • the storage efficiency of the freezing compartment 8 is lowered, and it is difficult to take out and Put in food. Therefore, in the width direction of the refrigerator 2, in the machine room 12, a given space is provided on the lateral side of the relatively large apparatus, that is, the refrigerator compressor 50.
  • the oxygen concentration adjusting device 20 can be efficiently disposed by using the space around the refrigerator compressor 50 in the machine room 12.
  • the refrigerator compressor 50, the radiator 52, the radiator cooling fan 54, and the oxygen concentration adjusting device 20 are arranged side by side in the width direction of the refrigerator 2, thereby The space of the machine room 12 is effectively utilized.
  • the oxygen concentration adjusting device 20 is a PSA type oxygen concentration adjusting device that physically adsorbs oxygen contained in the air to reduce the oxygen concentration.
  • PSA is the abbreviation of Pressure Swing Adsorption.
  • the oxygen concentration adjusting device 20 includes a compressor 22, an adsorption tank 24 connected to the compressor 22 via a pipe and filled with an adsorbent material therein, and a product tank 26 connected to the adsorption tank 24 through a pipe.
  • the oxygen concentration adjusting device 20 may have one adsorption tank 24 as shown in FIG. 4 or two adsorption tanks 24 as shown in FIG.
  • the PSA method employed in the present embodiment is a method of separating using a difference in size between oxygen molecules and nitrogen molecules.
  • the adsorption tank 24 has an adsorption step and a desorption step, and in the adsorption step, in a state of being pressurized by the compressor 22 (for example, 0.05 to 0.5 MPa), oxygen-absorbing molecules are adsorbed to the adsorbent to be in the air.
  • the oxygen concentration is lowered, and in the desorption step, the pressure in the adsorption tank 24 is reduced to atmospheric pressure, and the adsorbed oxygen molecules are desorbed to regenerate the adsorbent.
  • the inlet of the air flowing into the oxygen concentration adjusting device 20 is disposed in the freezing chamber 8.
  • the inlet of the air is connected to the suction port of the compressor 22 through a pipe 40.
  • the outlet of the low oxygen concentration air flowing out of the oxygen concentration adjusting device 20 is disposed in the storage chamber 6.
  • the outlet of the low oxygen concentration air is connected to the outlet of the product tank 26 through a pipe 42.
  • an outlet of the high oxygen concentration air flowing out of the oxygen concentration adjusting device 20 is disposed in the freezing chamber 8.
  • the outlet of the high oxygen concentration air and the port on the exhaust side of the adsorption tank 24 are connected by a pipe 44.
  • FIG. 4 is a schematic view showing the operation of the oxygen concentration adjusting device 20 having one adsorption tank 24 according to the embodiment of the present invention, wherein (a) shows an adsorption step, and (b) shows a desorption step.
  • an oxygen concentration adjusting device 20 including one adsorption tank 24 will be described with reference to Fig. 4 .
  • the refrigerating compartment 4, the storage compartment 6, the freezing compartment 8, the machine compartment 12, and the like are schematically shown.
  • the flow of air is indicated by an arrow
  • the flow of air taken in from the freezer compartment 8 of the refrigerator 2 is indicated by a solid arrow
  • the flow of the low oxygen concentration air from the oxygen concentration adjusting device 20 is indicated by a broken line arrow, with a dotted line.
  • the arrow of the line indicates the flow of the high oxygen concentration air from the oxygen concentration adjusting device 20.
  • the port in the open state is schematically indicated by the leakage
  • the port in the closed state is schematically shown by the oblique line.
  • One end portion B of the pipe 40 is disposed in the freezing chamber 8, and the other end portion is connected to the suction port of the compressor 22 of the oxygen concentration adjusting device 20.
  • the air in the freezing compartment 8 is sucked from one end B of the pipe 40 located in the freezing compartment 8, and flows into the compressor 22 of the oxygen concentration adjusting device 20.
  • one end portion B of the pipe 40 that is, the inlet of the air flowing into the oxygen concentration adjusting device 20 is disposed in the vicinity of the cooler 14.
  • the freezer 8 When the inside air comes into contact with or approaches the cooler 14, the moisture contained in the air is cooled and frozen, and adheres to the cooler 14 or the like. Thus, the humidity of the air existing in the vicinity of the cooler 14 becomes low. Therefore, when air is taken in from the vicinity of the cooler 14 as in the present embodiment, the dry cold air can be carried into the oxygen concentration adjusting device 20.
  • the discharge port of the compressor 22 is connected to the openable and closable port 30A on the inlet side of the three-way valve 30 via the pipe 46.
  • the three-way valve 30 is connected to the adsorption groove 24 at the port on the outlet side thereof, and has an openable and closable port 30B on the exhaust side adjacent to the inlet side.
  • One end of the pipe 44 is connected to the port 30B on the exhaust side, and the other end C is opened into the freezer compartment 8. Thereby, in the desorption step, the air having a high oxygen concentration flowing out of the adsorption tank 24 can be made to flow into the freezing chamber 8.
  • the other end portion C may be disposed in the vicinity of one end portion B of the pipe 40 that flows into the oxygen concentration adjusting device 20, or may be disposed at any other position in the freezing chamber 8.
  • the inside of the adsorption tank 24 is filled with an adsorbent material.
  • the activated carbon is used as the adsorbent, but is not limited thereto.
  • zeolite may be used as the adsorbent material, and in addition, any material represented by inorganic carbon dioxide may be used, which is composed of amorphous aluminum silicate having a filamentous aluminite structure. .
  • a two-way valve 32 is attached to the outlet side of the adsorption tank 24.
  • the product tank 26 is connected to the openable and closable port 32A on the outlet side of the two-way valve 32 via the pipe 48.
  • a pipe 42 is connected to the outlet side of the product tank 26, and an end portion D on the outlet side of the pipe 42 leads to the inside of the storage compartment 6.
  • the inside of the product tank 26 is a space, and the low-oxygen concentration air generated by adsorbing oxygen in the adsorption tank 24 can be stored for a predetermined period of time. Thereby, the air of a low oxygen concentration which flows out from the product tank 26 is supplied to the storage compartment 6 via the piping 42.
  • the three-way valve 30 and the two-way valve 32 have actuators that open and close valves, and are provided to automatically open and close the valves of the respective ports 30A, 30B, and 32A based on signals from the control unit included in the refrigerator 2.
  • the compressor 22 is activated, and the air in the freezing compartment 8 is taken in from the one end B of the pipe 40 .
  • the air discharged from the compressor 22 flows into the adsorption tank 24 through the three-way valve 30.
  • the port 30A on the inlet side of the three-way valve 30 connected to the inlet side of the adsorption tank 24 is in an open state, and the port 30B on the exhaust side is in a closed state.
  • the air introduced from the freezing compartment 8 is completely sent to the adsorption tank 24.
  • the port 32A is in an open state, and the adsorption tank 24 and the product tank 26 are in a fluid connection state.
  • the air sucked by the compressor 22 is sent to the adsorption tank 24, and is filled by the pressure.
  • the adsorbent material in the adsorption tank 24 whose force rises is adsorbed by oxygen molecules contained in the air.
  • the low oxygen concentration air having a lowered oxygen concentration is generated and flows into the product tank 26.
  • the low oxygen concentration air flowing out through the product tank 26 is supplied to the storage compartment 6 via the pipe 42. Thereby, the inside of the storage compartment 6 can be filled with air of a low oxygen concentration.
  • a minute gap is provided, and when the air of a low oxygen concentration is supplied from the outlet D of the piping 42, the air of the usual oxygen concentration existing in advance in the storage compartment 6 is taken from The gap is pushed out and flows out to the refrigerating chamber 4. Thereby, the inside of the storage compartment 6 is gradually purified by the air of a low oxygen concentration.
  • the compressor 22 is stopped.
  • the port 30A on the inlet side in the open state is changed to the closed state
  • the port 30B on the exhaust side in the closed state is changed to the open state.
  • the port 32A in the open state is changed to the closed state.
  • the adsorption step and the desorption step can be performed again using the regenerated adsorbent. By repeating this cycle, the oxygen concentration of the air inside the storage compartment 6 can be maintained at a desired value.
  • FIG. 5 is a schematic view showing the operation of the oxygen concentration adjusting device 20 having the two adsorption tanks 24 according to the embodiment of the present invention, wherein (a) shows the first step and (b) shows the second step.
  • the oxygen concentration adjusting device 20 has two adsorption grooves 24 will be described with reference to Fig. 5 .
  • the two adsorption tanks 24 are provided, by alternately performing the above-described cycle, the air having a low oxygen concentration can be supplied to the inside of the storage chamber 6 substantially continuously.
  • Fig. 5 the flow of air is also indicated by arrows, the flow of air taken in from the freezer compartment 8 of the refrigerator 2 is indicated by solid arrows, and the flow of air of low oxygen concentration from the oxygen concentration adjusting device 20 is indicated by a broken arrow.
  • Flowing, the dotted line arrows indicate the flow of the high oxygen concentration air from the oxygen concentration adjusting device 20.
  • each port of the three-way valve 30 or the two-way valve 32 included in the oxygen concentration adjusting device 20 the port in the open state is schematically indicated by the leakage, and the port in the closed state is schematically indicated by the oblique line.
  • the oxygen concentration adjusting device 20 of the present embodiment differs from the embodiment shown in Fig. 4 in that it has two adsorption grooves 24 that connect the three-way valve 30 to the inlet side and the two-way valve 32 to the outlet side. That is, the pipe 46 connected to the discharge port of the compressor 22 is divided into two, and the ends of the pipes divided into two are connected to the three-way valve 30 connected to the inlet side of the adsorption tank 24 (1).
  • the port 30A1 on the inlet side and the port 30A2 on the inlet side of the three-way valve 30 connected to the inlet side of the adsorption tank 24 (2).
  • An end portion of the pipe 44 divided into two is connected to the port 30B2 on the exhaust side of the valve 30, and each pipe is merged into one pipe and led to the inside of the freezing chamber 8 at the outlet C.
  • the port 32A1 of the two-way valve 32 connected to the outlet side of the adsorption tank 24(1) and the port 32A2 of the two-way valve 32 connected to the outlet side of the adsorption tank 24(2) are connected and divided into two.
  • the ends of the pipes 48 are combined, and the pipes are combined to form a pipe which is connected to the inlet side of the product tank 26.
  • the other configuration is substantially the same as the case of having one adsorption groove 24 shown in FIG. 4, and thus further description will be omitted.
  • the adsorption tank 24 (2) on the right side of the drawing performs an adsorption step, and the adsorption tank 24 on the left side of the drawing ( 1) Perform a desorption process.
  • the port 30A1 on the inlet side of the three-way valve 30 connected to the inlet side of the adsorption tank 24 (1) is in a closed state, and the port 30B1 on the exhaust side is in an open state.
  • the port 30A2 on the inlet side of the three-way valve 30 connected to the inlet side of the adsorption tank 24 (2) is in an open state, and the port 30B2 on the exhaust side is in a closed state.
  • the port 32A1 of the two-way valve 32 connected to the outlet side of the adsorption tank 24 (1) is closed, and the port 32A2 of the two-way valve 32 connected to the outlet side of the adsorption tank 24 (2) is opened. status.
  • the dry cold airflow in the vicinity of the cooler 14 of the freezing compartment 8 is introduced into the compressor 22 by the opening and closing state of each port.
  • the air discharged from the compressor 22 flows into the adsorption tank 24 (2), and the adsorbent adsorbs oxygen to generate air having a low oxygen concentration.
  • the generated low-oxygen concentration air flows into the product tank 26 from the adsorption tank 24 (2), and is supplied into the storage chamber 6 via the piping 42.
  • the inside of the adsorption tank 24 (1) is connected to the atmosphere, and the pressure is reduced to atmospheric pressure, and the oxygen molecules adsorbed by the adsorbent can be desorbed to regenerate the adsorbent.
  • Air having a high oxygen concentration of oxygen desorbed from the adsorbent material flows into the freezer compartment 8 through the pipe 44.
  • the first step is reversed left and right, and the adsorption tank 24(1) on the left side of the drawing is subjected to an adsorption step, and the adsorption tank 24(2) on the right side of the drawing is performed. Desorption process.
  • the port 30A1 on the inlet side of the three-way valve 30 connected to the inlet side of the adsorption tank 24 (1) is switched from the closed state to the open state, and the port 30B1 on the exhaust side is switched from the open state to the closed state.
  • the port 30A2 on the inlet side of the three-way valve 30 connected to the inlet side of the adsorption tank 24 (2) is switched from the open state to the closed state.
  • the port 30B2 on the exhaust side is switched from the closed state to the open state.
  • the port 32A1 of the two-way valve 32 connected to the outlet side of the adsorption tank 24 (1) is switched from the closed state to the open state.
  • the port 32A2 of the two-way valve 32 connected to the outlet side of the adsorption tank 24 (2) is switched from the open state to the closed state.
  • the air in the freezing compartment 8 is adsorbed with oxygen molecules by the adsorption tank 24 (1), and the air of a low oxygen concentration is supplied into the storage compartment 6.
  • the oxygen molecules adsorbed by the adsorbent of the adsorption tank 24(2) are desorbed, and are desorbed from the adsorbent material.
  • the high oxygen concentration air of oxygen flows out into the freezing compartment 8.
  • the basic air flow is the same as in the case of Fig. 5(a), and therefore a further detailed explanation will be omitted.
  • the inside of the storage compartment 6 can be held in a low oxygen atmosphere by the oxygen concentration adjusting device 20 shown in Fig. 4 or Fig. 5 . Therefore, the freshness of the food stored in the storage compartment 6, especially the freshness of the fresh food, can be maintained for a long time.
  • the cold air can be introduced into the oxygen concentration adjusting device 20 to provide the air having a low oxygen concentration without worrying about adversely affecting the cooling performance of the refrigerator 2. Get good cooling performance.
  • the inlet B of the air flowing into the oxygen concentration adjusting device 20 is disposed in the vicinity of the cooler 14 in the freezing chamber 8, the dry cold air can be carried into the oxygen concentration adjusting device 20. Therefore, even if the compressor 22 performs compression, dew condensation can be prevented, and the performance life of the adsorbent in the adsorption tank 24 can be suppressed from being shortened.
  • the high oxygen concentration air flowing out of the oxygen concentration adjusting device 20 is returned to the freezing chamber 8, so that the pressure inside the tank of the refrigerator 2 can be prevented from being lowered. Even in such a case, since the capacity in the tank of the refrigerator 2 is sufficiently large, the increase in the oxygen concentration in the tank of the refrigerator 2 is limited.
  • the air in the freezing compartment 8 is brought into the oxygen concentration adjusting device 20, and the air of the high oxygen concentration flowing out of the oxygen concentration adjusting device 20 is returned to the freezing compartment 8, but the invention is not limited thereto. It is also possible to bring the air in the refrigerating compartment 4 into the oxygen concentration adjusting device 20, and the air of the high oxygen concentration flowing out of the oxygen concentration adjusting device 20 is returned to the refrigerating chamber 4. In this case, it is preferable that the inlet of the air flowing into the oxygen concentration adjusting device 20 is disposed in the vicinity of the cooler 14 in the refrigerating chamber 4.
  • the oxygen concentration adjusting device 20 since the oxygen concentration adjusting device 20 is disposed in the machine room 12, the oxygen concentration adjusting device can be efficiently disposed by utilizing the space of the machine room 12. Therefore, even when the large oxygen concentration adjusting device 20 is used to increase the supply capacity of the air having a low oxygen air concentration, it is not necessary to reduce the internal volume of the storage 10 of the refrigerator 2.
  • the oxygen concentration adjusting device 20 is disposed side by side in the width direction of the refrigerator 2 with the refrigerator compressor 50, the radiator 52, and the radiator cooling fan 54, so that the machine room 12 can be effectively utilized. Space.
  • the oxygen concentration adjusting device 20 is disposed on the wind blowing side of the radiator cooling fan 54, the compressor 22 and the adsorption tank 24 can be cooled by the wind of the heater cooling fan 54, so that the generation of the air having a low oxygen concentration can be improved. effectiveness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

冰箱(2),包括:收纳库(10),其至少包括冷藏室(4)以及储藏室(6);冰箱(2)用机械室(12),其配置于收纳库(10)的外部;以及氧浓度调节装置(20),其物理吸附空气中所含的氧并提供低氧浓度的空气,氧浓度调节装置(20)配置于机械室(12),空气流入氧浓度调节装置(20)的入口配置在冷藏室(4)内,低氧浓度的空气从氧浓度调节装置(20)流出的出口配置在储藏室(6)内。

Description

冰箱
本申请要求了申请日为2016年12月12日,申请号为2016-240615,发明名称为“冰箱”的日本专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冰箱,尤其涉及能够调节箱内的氧浓度的冰箱。
背景技术
在专利文献1(JP实用新案登记第3148778号)中,提出了以下方案:为了延长所收纳的食品的保存期,在冰箱中具备氧浓度调节装置(氮发生器),使箱内处于低氧浓度气氛。作为该氧浓度调节装置的一例,可举出对冷藏室内的空气所含的氧进行物理吸附来降低氧浓度的PSA(Pressure Swing Adsorption(压力摆动吸附))方式的装置。
在专利文献1中,设置为将氧浓度调节装置一体地形成于冷藏壳体等支撑框架。故而,例如,为了提高低氧浓度的空气的提供能力,在采用大型的氧浓度调节装置的情况下,需要减少冷藏壳体等的容量。另外,在专利文献1记载的氧浓度调节装置中,由于将外部空气引入到氧浓度调节装置,因此冰箱的冷却效率可能会降低。
发明内容
为至少解决上述技术问题之一,本发明的目的在于提供能够调节箱内的氧浓度的冰箱,即使在该冰箱中采用大型的氧浓度调节装置的情况下,也无需减少冰箱的箱内容积而获得良好的冷却性能。
为实现上述发明目的,本发明的冰箱具备:收纳库,其至少包括冷藏室、冷冻室以及储藏室;冰箱用的机械室,其配置于所述收纳库的外部;以及氧浓度调节装置,其物理吸附空气中所含的氧并提供低氧浓度的空气。所述氧浓度调节装置配置于所述机械室,空气流入所述氧浓度调节装置的入口配置在所述冷藏室或者冷冻室内,低氧浓度的空气从所述氧浓度调节装置流出的出口配置在所述储藏室内。
在此,冷藏室以及储藏室通常保持在0-10℃的温度,为食物等的收纳空间。尤其是,储藏室是由储藏蔬菜、水果等新鲜食品的壁部围成的空间构成。根据本发明,通过氧浓度调节装置,能够将储藏室的内部保持在低氧气氛中,因此能够使收纳在储藏室内的食品的新鲜度,尤其是新鲜食品的新鲜度保持很长时间。
在冰箱用机械室中,例如,收纳有冰箱用压缩机这样比较大型的设备。在本发明中,氧浓度 调节装置配置在机械室,因此能够有效地利用机械室的空间来有效地配置氧浓度调节装置。因而,即使在为了提高低氧空气浓度的空气的提供能力而采用大型的氧浓度调节装置的情况下,也无需减少冰箱的收纳库的内部容积。
进而,空气流入氧浓度调节装置的入口配置在冷藏室内,因此能够将冷气带入氧浓度调节装置以提供低氧浓度的空气,无需担心对冰箱的冷却性能产生不良影响,能够提供可以获得良好的冷却性能的冰箱。
作为本发明一实施方式的进一步改进,在所述冷藏室或者冷冻室内,具有用于冷却所述冷藏室或者冷冻室内的空气的冷却器,所述空气流入所述氧浓度调节装置的所述入口配置在所述冷却器的附近。
在空气被氧浓度调节装置所具有的压缩机压缩的情况下,可能会发生结露,对氧浓度调节装置所具有的吸附材料产生不良影响,从而缩短氧浓度调节装置的性能寿命。但是,在本发明中,能够将冷却器的附近的干燥的冷气带入氧浓度调节装置,因此能够防止结露,抑制氧浓度调节装置的性能寿命的缩短。
作为本发明一实施方式的进一步改进,高氧浓度的空气从所述氧浓度调节装置流出的出口配置在所述冷藏室或者冷冻室内。
在本发明中,将从氧浓度调节装置流出的高氧浓度的空气返回到冷藏室或者冷冻室内,因此能够防止冰箱的箱内的压力降低。即使在将高氧浓度的空气返回到冷藏室或者冷冻室内的情况下,由于冰箱的箱内的容量足够大,因此冰箱的箱内的氧浓度的上升是有限的。
作为本发明一实施方式的进一步改进,在所述机械室收纳有冰箱用压缩机、散热器以及散热器冷却用风扇,所述氧浓度调节装置在所述冰箱的宽度方向上与所述冰箱用压缩机、所述散热器以及所述散热器冷却用风扇横向并排配置。
在本发明中,氧浓度调节装置在冰箱的宽度方向上与冰箱用压缩机等横向并排配置,因此能够有效地利用机械室的空间。
作为本发明一实施方式的进一步改进,所述氧浓度调节装置配置于所述散热器冷却用风扇的风的吹出侧。
在本发明中,能够利用热器冷却用风扇的风来冷却氧浓度调节装置所具有的压缩机和吸附槽,因此能够提高低氧浓度的空气的生成效率。
如上所述,在本发明中,能够提供可调节箱内的氧浓度的冰箱,即使在该冰箱中采用大型的氧浓度调节装置的情况下,也无需减少冰箱的箱内容积而获得良好的冷却性能。
附图说明
图1是从后面侧观察本发明的一个实施方式所涉及的冰箱的立体图。
图2是表示图1所示的冰箱的后面侧的侧视图。
图3是表示图2的截面A-A的侧面截面图。
图4是表示本发明的一个实施方式所涉及的具有一个吸附槽的氧浓度调节装置的操作的示意图,(a)表示吸附工序,(b)表示解吸附工序。
图5是表示本发明的一个实施方式所涉及的具有两个吸附槽的氧浓度调节装置的操作的示意图,(a)表示第1工序,(b)表示第2工序。
具体实施方式
接下来,参照附图详细说明本发明的具体实施方式。
(本发明的一个实施方式所涉及的冰箱的说明)
图1是从后面侧观察本发明的一个实施方式所涉及的冰箱2的立体图。图2是表示图1所示的冰箱2的后面侧的侧视图。图3是表示图2的截面A-A的侧面截面图。首先,参照图1至图3对本发明的一个实施方式所涉及的冰箱2的概要进行说明。
如图3所示,本实施方式所涉及的冰箱2具有包括冷藏室4、储藏室6以及冷冻室8在内的收纳库10。在本实施方式中,冷冻室8配置在冰箱2的下部,冷藏室4配置在其上侧。储藏室6配置在冷藏室4中,由储藏蔬菜、水果等新鲜食品的壁部围成的储藏空间构成。
通常,冷藏室4以及储藏室6保持在0-10℃的温度,冷冻室8保持在0℃以下的温度。冰箱2的前面侧具有能够开闭的开口,设置为能够取出和放入收纳在收纳库10内的食品等。
在冰箱2中,冰箱用机械室12配置在收纳库10的外部。更具体而言,机械室12配置在与配置在冰箱2的下部的冷冻室8相邻的位置。在该机械室12中,收纳有冰箱用压缩机50、散热器52以及散热器冷却用风扇54,还收纳有氧浓度调节装置20。
考虑到与机械室12相邻的冷冻室8的壁部,即使根据设置在机械室12中的各设备的形状的而形成为具有凹凸形状,冷冻室8的收纳效率也会降低,难以取出和放入食品。因而,在冰箱2的宽度方向上,在机械室12中,在比较大的设备即冰箱用压缩机50的横侧具有给定的空间。
由此,能够有效地利用机械室12内的冰箱用压缩机50的周围的空间来有效地配置氧浓度调节装置20。在本实施方式中,如图1、图2所示,在冰箱2的宽度方向上,冰箱用压缩机50、散热器52、散热器冷却用风扇54以及氧浓度调节装置20横向并排配置,从而有效地利用了机械室12的空间。
本实施方式所涉及的氧浓度调节装置20是一种对空气中所含的氧进行物理吸附来降低氧浓度的PSA方式的氧浓度调节装置。PSA是Pressure Swing Adsorption(压力摆动吸附)的简称。
氧浓度调节装置20具有:压缩机22;通过配管与压缩机22连接并在内部填充有吸附材料的吸附槽24;以及通过配管与吸附槽24连接的产品槽26。氧浓度调节装置20可以如图4所示具有一个吸附槽24,也可以如图5所示具有两个吸附槽24。
本实施方式所采用的PSA方式是一种利用氧分子与氮分子的大小的差异进行分离的方法。在吸附槽24中,具有吸附工序和解吸附工序,在吸附工序中,在通过压缩机22加压的状态下(例如,0.05-0.5MPa),使吸氧分子吸附于吸附材料来使空气中的氧浓度降低,在解吸附工序中,将吸附槽24中的压力减压至大气压,使已吸附的氧分子解吸附来使吸附材料再生。
如图3所示,空气流入氧浓度调节装置20的入口配置在冷冻室8内。该空气的入口与压缩机22的吸入口通过配管40相连。低氧浓度的空气从氧浓度调节装置20流出的出口配置在储藏室6内。该低氧浓度的空气的出口与产品槽26的出口通过配管42相连。进而,高氧浓度的空气从氧浓度调节装置20流出的出口配置在冷冻室8内。该高氧浓度的空气的出口与吸附槽24的排气侧的端口通过配管44相连。
(本发明的一个实施方式所涉及的氧浓度调节装置的说明)
接下来,对本发明的一个实施方式所涉及的氧浓度调节装置20进行更详细的说明。
<具备一个吸附槽24的氧浓度调节装置20的说明>
图4是表示具有本发明的一个实施方式所涉及的一个吸附槽24的氧浓度调节装置20的操作的示意图,(a)表示吸附工序,(b)表示解吸附工序。首先,参照图4对具备一个吸附槽24的氧浓度调节装置20进行说明。
示意性地示出了冷藏室4、储藏室6、冷冻室8、机械室12等。用箭头表示空气的流动,用实线的箭头表示从冰箱2的冷冻室8带入的空气的流动,用虚线的箭头表示低氧浓度的空气从氧浓度调节装置20流出的流动,用点划线的箭头表示高氧浓度的空气从氧浓度调节装置20流出的流动。在氧浓度调节装置20所具有的三通阀30或者二通阀32的能够开闭的端口中,打开状态的端口用漏白示意性地表示,关闭状态的端口用斜线示意性地表示。
在具有一个吸附槽24的氧浓度调节装置20中,重复进行在进行吸附工序之后进行解吸附工序的循环,因此从氧浓度调节装置20间歇地提供低氧浓度的空气。
首先,沿着空气的流动说明氧浓度调节装置20的结构。配管40的一个端部B配置在冷冻室8内,另一个端部与氧浓度调节装置20的压缩机22的吸入口连接。由此,当压缩机22运转时,冷冻室8内的空气从位于冷冻室8内的配管40的一个端部B被吸入,流入氧浓度调节装置20的压缩机22。
在冷冻室8内,具有用于冷却冷冻室8内的空气的冷却器14。在本实施方式中,配管40的一个端部B,也就是流入氧浓度调节装置20的空气的入口配置在冷却器14的附近。当冷冻室8 内的空气与冷却器14接触或者接近时,空气中所含的水分被冷却并冻结,并附着在冷却器14等上。因而,存在于冷却器14的附近的空气的湿度变低。因而,如本实施方式那样,在从冷却器14的附近带入空气的情况下,能够将干燥的冷气带入氧浓度调节装置20。尤其是,在冷冻室8内的空气的流动中,优选在冷却器14的出口侧设置配管40的一个端部B。
压缩机22的排出口经由配管46与三通阀30的入口侧的能够开闭的端口30A连接。三通阀30在其出口侧的端口处与吸附槽24连接,并且还在与入口侧相邻的排气侧具有能够开闭的端口30B。
配管44的一个端部与排气侧的端口30B连接,另一个端部C通向冷冻室8内。由此,在解吸附工序中,能够使从吸附槽24流出的高氧浓度的空气流入冷冻室8内。另一个端部C既可以配置在流入氧浓度调节装置20的配管40的一个端部B的附近,也可以配置在冷冻室8内的其他的任意位置。
另一方面,在吸附工序中,从压缩机22通过三通阀30的入口侧的端口30A以及出口侧的端口的空气流入吸附槽24内。吸附槽24的内部填充有吸附材料。在本实施方式中,作为吸附材料具有活性炭,但不限于此。例如,作为吸附材料可以使用沸石,除此之外,也可以使用以无机系二氧化碳为代表的任意的材料,该无机系二氧化碳由具有丝状铝英石(Imogolite)结构的非晶硅酸铝构成。
在吸附槽24的出口侧安装有二通阀32。产品槽26经由配管48与二通阀32的出口侧的能够开闭的端口32A连接。在产品槽26的出口侧连接有配管42,配管42的出口侧的端部D通向储藏室6的内部。
产品槽26的内部是空间,能够事先将吸附槽24吸附氧而生成的低氧浓度的空气存储一定时间。由此,从产品槽26流出的低氧浓度的空气经由配管42被提供到储藏室6。
三通阀30以及二通阀32具有开闭阀的致动器,设置为能够根据来自冰箱2所具有的控制部的信号,自动地进行各端口30A、30B、32A的阀开闭。
接下来,对氧浓度调节装置20的操作进行说明。
<吸附工序的说明>
在图4(a)所示的吸附工序中,压缩机22成为启用状态,从配管40的一个端部B吸入冷冻室8内的空气。从压缩机22排出的空气通过三通阀30流入吸附槽24。此时,与吸附槽24的入口侧连接的三通阀30的入口侧的端口30A成为打开状态,排气侧的端口30B成为关闭状态。由此,从冷冻室8引入的空气被全部送入吸附槽24。
在吸附槽24以及产品槽26之间的二通阀32中,端口32A成为打开状态,吸附槽24以及产品槽26成为流体连接的状态。由此,被压缩机22吸引的空气被送入吸附槽24,通过填充在压 力上升的吸附槽24内的吸附材料,空气中所含的氧分子被吸附。由此,氧浓度降低的低氧浓度的空气生成并流入产品槽26。通过产品槽26流出的低氧浓度的空气经由配管42被提供到储藏室6。由此,储藏室6的内部能够充满低氧浓度的空气。
在配置在冷藏室4内的储藏室6中,设有微小的间隙,当从配管42的出口D提供低氧浓度的空气时,预先存在于储藏室6的内部的通常氧浓度的空气被从间隙推出并向冷藏室4流出。由此,储藏室6的内部逐渐被低氧浓度的空气净化。
<解吸附工序的说明>
如果继续上述吸附工序,则吸附材料的氧分子的吸附量增加,吸附性能降低。那么,接下来,如图4的(b)所示,进行使氧分子解吸附来使吸附材料再生的解吸附工序。
首先,停止压缩机22。在三通阀30中,将打开状态的入口侧的端口30A变更为关闭状态,将关闭状态的排气侧的端口30B变更为打开状态。在二通阀32中,将打开状态的端口32A变更为关闭状态。由此,吸附槽24的内部变为与大气相通,压力减压至大气压,能够使被吸附材料吸附的氧分子解吸附来使吸附材料再生。含有从吸附材料解吸附的氧的高氧浓度的空气从配管44的出口C流出到冷冻室8内。
如上所述,在结束吸附工序以及解吸附工序后,能够使用再生的吸附材料再次进行上述吸附工序以及解吸附工序。通过重复该循环,能够将储藏室6的内部的空气的氧浓度保持在期望值。
(具有两个吸附槽24的氧浓度调节装置20的说明)
图5是表示具有本发明的一个实施方式所涉及的两个吸附槽24的氧浓度调节装置20的操作的示意图,(a)表示第1工序,(b)表示第2工序。接下来,参照图5对氧浓度调节装置20具有两个吸附槽24的情况进行说明。在具有两个吸附槽24的情况下,通过交替地进行上述循环,能够基本上连续地将低氧浓度的空气向储藏室6的内部供给。
在图5中也是用箭头表示空气的流动,用实线的箭头表示从冰箱2的冷冻室8带入的空气的流动,用虚线的箭头表示低氧浓度的空气从氧浓度调节装置20流出的流动,用点划线的箭头表示高氧浓度的空气从氧浓度调节装置20流出的流动。
在氧浓度调节装置20所具有的三通阀30或者二通阀32的各端口中,打开状态的端口用漏白示意性地表示,关闭状态的端口用斜线示意性地表示。
在本实施方式的氧浓度调节装置20中,具有两个在入口侧连接三通阀30、在出口侧连接二通阀32的吸附槽24,这一点与图4所示的实施方式不同。也就是,与压缩机22的排出口连接的配管46被分为两股,被分为两股的各配管的端部连接于与吸附槽24(1)的入口侧连接的三通阀30的入口侧的端口30A1、与吸附槽24(2)的入口侧连接的三通阀30的入口侧的端口30A2。
在与吸附槽24(1)连接的三通阀30的排气侧的端口30B1和与吸附槽24(2)连接的三通 阀30的排气侧的端口30B2上,连接着被分为两股的配管44的端部,并且各配管合并成一个配管在出口C处通向冷冻室8内。
在与吸附槽24(1)的出口侧连接的二通阀32的端口32A1和与吸附槽24(2)的出口侧连接的二通阀32的端口32A2上,连接着被分为两股的各配管48的端部,并且各配管合并成一个配管与产品槽26的入口侧连接。
其他的构成与图4所示的具有一个吸附槽24的情况大致相同,因此省略进一步的说明。
<第1工序的说明>
在具有上述结构的氧浓度调节装置20中,在图5(a)所示的第1工序中,附图右侧的吸附槽24(2)进行吸附工序,附图左侧的吸附槽24(1)进行解吸附工序。
为了实现上述操作,与吸附槽24(1)的入口侧连接的三通阀30的入口侧的端口30A1成为关闭状态,排气侧的端口30B1成为打开状态。另一方面,与吸附槽24(2)的入口侧连接的三通阀30的入口侧的端口30A2成为打开状态,排气侧的端口30B2成为关闭状态。另外,与吸附槽24(1)的出口侧连接的二通阀32的端口32A1成为关闭状态,另一方面,与吸附槽24(2)的出口侧连接的二通阀32的端口32A2成为打开状态。
通过各端口的开闭状态,冷冻室8的冷却器14的附近的干燥的冷气流入压缩机22。从压缩机22排出的空气流入吸附槽24(2),吸附材料吸附氧,生成低氧浓度的空气。生成的低氧浓度的空气从吸附槽24(2)流入产品槽26,进而经由配管42提供到储藏室6内。
另一方面,吸附槽24(1)的内部变为与大气相通,压力减压至大气压,能够使被吸附材料吸附的氧分子解吸附来使吸附材料再生。含有从吸附材料解吸附的氧的高氧浓度的空气经由配管44流入冷冻室8内。
<第2工序的说明>
在图5(b)所示的第2工序中,将上述第1工序进行左右颠倒,附图左侧的吸附槽24(1)进行吸附工序,附图右侧的吸附槽24(2)进行解吸附工序。
为了实现上述操作,与吸附槽24(1)的入口侧连接的三通阀30的入口侧的端口30A1从关闭状态切换为打开状态,排气侧的端口30B1从打开状态切换为关闭状态。另一方面,与吸附槽24(2)的入口侧连接的三通阀30的入口侧的端口30A2从打开状态切换为关闭状态。排气侧的端口30B2从关闭状态切换为打开状态。
另外,与吸附槽24(1)的出口侧连接的二通阀32的端口32A1从关闭状态切换为打开状态。另一方面,与吸附槽24(2)的出口侧连接的二通阀32的端口32A2从打开状态切换为关闭状态。
由此,冷冻室8内的空气被吸附槽24(1)吸附氧分子,低氧浓度的空气被提供到储藏室6内。另一方面,使被吸附槽24(2)的吸附材料吸附的氧分子解吸附,含有从吸附材料解吸附的 氧的高氧浓度的空气流出到冷冻室8内。基本的空气流动与图5(a)的情况相同,因此省略进一步详细的说明。
通过图4或者图5所示的氧浓度调节装置20,能够将储藏室6的内部保持在低氧气氛中。因而,能够使收纳在储藏室6内的食品的新鲜度,尤其是新鲜食品的新鲜度保持很长时间。
进而,空气流入氧浓度调节装置20的入口B位于冷冻室8内,因此能够将冷气带入氧浓度调节装置20以提供低氧浓度的空气,无需担心对冰箱2的冷却性能产生不良影响,可以获得良好的冷却性能。
尤其是,空气流入氧浓度调节装置20的入口B配置在冷冻室8内的冷却器14的附近,因此能够将干燥的冷气带入氧浓度调节装置20。因而,即使压缩机22进行压缩,也能够防止结露,抑制吸附槽24内的吸附材料的性能寿命的缩短。
另外,从氧浓度调节装置20流出的高氧浓度的空气返回到冷冻室8内,因此能够防止冰箱2的箱内的压力降低。即使在这样的情况下,由于冰箱2的箱内的容量足够大,因此冰箱2的箱内的氧浓度的上升是有限的。
在上述实施方式中,设置为将冷冻室8内的空气带入氧浓度调节装置20,从氧浓度调节装置20流出的高氧浓度的空气返回到冷冻室8内,但也不限于此。也可以设置为将冷藏室4内的空气带入氧浓度调节装置20,从氧浓度调节装置20流出的高氧浓度的空气返回到冷藏室4内。在此情况下,优选流入氧浓度调节装置20的空气的入口配置在冷藏室4内的冷却器14的附近。
如图1至图3所示,在本实施方式中,氧浓度调节装置20配置于机械室12,因此能够有效地利用机械室12的空间来有效地配置氧浓度调节装置。因而,即使在为了提高低氧空气浓度的空气的提供能力而采用大型的氧浓度调节装置20的情况下,也无需减少冰箱2的收纳库10的内部容积。
尤其是,在机械室12中,氧浓度调节装置20在冰箱2的宽度方向上与冰箱用压缩机50、散热器52以及散热器冷却用风扇54横向并排配置,因此能够有效地利用机械室12的空间。
氧浓度调节装置20配置在散热器冷却用风扇54的风的吹出侧,因此能够利用热器冷却用风扇54的风来冷却压缩机22和吸附槽24,所以能够提高低氧浓度的空气的生成效率。
以上,对本发明的实施方式、实施形态进行了说明,但是,本发明的公开内容可以在结构的细节上进行变更,可以在不脱离要求保护的本发明的范围和精神的情况下实现实施方式、实施形态中的要素的组合、顺序的变更等。

Claims (5)

  1. 一种冰箱,其特征在于,具备:
    收纳库,其至少包括冷藏室、冷冻室以及储藏室;
    冰箱用的机械室,其配置于所述收纳库的外部;以及
    氧浓度调节装置,其物理吸附空气中所含的氧并提供低氧浓度的空气,
    所述氧浓度调节装置配置于所述机械室,
    空气流入所述氧浓度调节装置的入口配置在所述冷藏室或者冷冻室内,低氧浓度的空气从所述氧浓度调节装置流出的出口配置在所述储藏室内。
  2. 根据权利要求1所述的冰箱,其特征在于,
    在所述冷藏室或者冷冻室内,具有用于冷却所述冷藏室或者冷冻室内的空气的冷却器,
    所述空气流入所述氧浓度调节装置的所述入口配置在所述冷却器的附近。
  3. 根据权利要求1所述的冰箱,其特征在于,
    高氧浓度的空气从所述氧浓度调节装置流出的出口配置在所述冷藏室或者冷冻室内。
  4. 根据权利要求1所述的冰箱,其特征在于,
    在所述机械室收纳有冰箱用压缩机、散热器以及散热器冷却用风扇,所述氧浓度调节装置在所述冰箱的宽度方向上与所述冰箱用压缩机、所述散热器以及所述散热器冷却用风扇横向并排配置。
  5. 根据权利要求4所述的冰箱,其特征在于,
    所述氧浓度调节装置配置于所述散热器冷却用风扇的风的吹出侧。
PCT/CN2017/115521 2016-12-12 2017-12-12 冰箱 WO2018108056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240615A JP6917045B2 (ja) 2016-12-12 2016-12-12 冷蔵庫
JP2016-240615 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018108056A1 true WO2018108056A1 (zh) 2018-06-21

Family

ID=62558061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115521 WO2018108056A1 (zh) 2016-12-12 2017-12-12 冰箱

Country Status (2)

Country Link
JP (1) JP6917045B2 (zh)
WO (1) WO2018108056A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091362A (zh) * 2019-12-23 2021-07-09 广东美的白色家电技术创新中心有限公司 一种冰箱

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020581A1 (en) * 2005-08-12 2007-02-22 Arcelik Anonim Sirketi A cooling device
EP1972872A1 (en) * 2006-01-11 2008-09-24 Dong-Lei Wang A refrigerator with function of producing nitrogen and keeping freshness
CN101322575A (zh) * 2007-06-14 2008-12-17 河南新飞电器有限公司 氧气浓度调节装置及光降氧保鲜冰箱
CN101358793A (zh) * 2007-07-30 2009-02-04 河南新飞电器有限公司 一种冰箱降氧方法及利用该降氧方法的耗氧气调保鲜冰箱
CN201233145Y (zh) * 2008-07-01 2009-05-06 董亮 采用变压吸附制氮装置的气调冰箱
US20090266095A1 (en) * 2005-09-27 2009-10-29 Marco Pruneri Refrigerated Preservation Unit, Particularly for Domestic Use
CN103090624A (zh) * 2012-10-24 2013-05-08 徐东明 一种保鲜冰箱的保鲜气体循环利用方法
CN106052254A (zh) * 2016-05-30 2016-10-26 青岛海尔股份有限公司 冷藏冷冻装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602427B2 (ja) * 1987-02-23 1997-04-23 鈴木総業株式会社 冷蔵装置
JPH07109313B2 (ja) * 1987-09-17 1995-11-22 株式会社日立製作所 空気調和機
JPH055585A (ja) * 1991-06-28 1993-01-14 Sharp Corp 新鮮貯蔵庫

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020581A1 (en) * 2005-08-12 2007-02-22 Arcelik Anonim Sirketi A cooling device
US20090266095A1 (en) * 2005-09-27 2009-10-29 Marco Pruneri Refrigerated Preservation Unit, Particularly for Domestic Use
EP1972872A1 (en) * 2006-01-11 2008-09-24 Dong-Lei Wang A refrigerator with function of producing nitrogen and keeping freshness
CN101322575A (zh) * 2007-06-14 2008-12-17 河南新飞电器有限公司 氧气浓度调节装置及光降氧保鲜冰箱
CN101358793A (zh) * 2007-07-30 2009-02-04 河南新飞电器有限公司 一种冰箱降氧方法及利用该降氧方法的耗氧气调保鲜冰箱
CN201233145Y (zh) * 2008-07-01 2009-05-06 董亮 采用变压吸附制氮装置的气调冰箱
CN103090624A (zh) * 2012-10-24 2013-05-08 徐东明 一种保鲜冰箱的保鲜气体循环利用方法
CN106052254A (zh) * 2016-05-30 2016-10-26 青岛海尔股份有限公司 冷藏冷冻装置

Also Published As

Publication number Publication date
JP6917045B2 (ja) 2021-08-11
JP2018096596A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
US10098366B2 (en) Indoor air conditioning device and container freezer device comprising same
US10034484B2 (en) Refrigeration unit for container
US10499660B2 (en) Refrigeration device for container
JP6958669B2 (ja) 空気組成調節装置
KR102157947B1 (ko) 냉장고
US11419341B2 (en) Inside air control system
JP2020074756A (ja) 庫内空気調節装置
CN110958908B (zh) 过滤器单元、气体供给装置、箱内空气调节装置以及集装箱用制冷装置
JP2020128862A5 (zh)
WO2018108056A1 (zh) 冰箱
US11712656B2 (en) Drying and filtering device
JP7418593B2 (ja) 鮮度保持装置及び冷蔵庫
JP6572782B2 (ja) ガス供給装置及びそれを備えたコンテナ用冷凍装置
JP6662427B2 (ja) 庫内空気調節装置
JP7148798B2 (ja) 庫内空気調整装置
JP2017067380A (ja) 冷蔵庫
TW201541041A (zh) 冷凍倉庫用低露點除濕裝置
JP6662053B2 (ja) ガス供給装置及びそれを備えたコンテナ用冷凍装置
JP6313638B2 (ja) 圧縮装置およびそれを用いた気体分離装置
JP2019518190A (ja) 冷蔵冷凍機器
CN206156123U (zh) 运输用集装箱的密封结构以及集装箱用制冷装置
JP6676977B2 (ja) コンテナ用冷凍装置
CN105987569A (zh) 除异味装置、冰箱及去除冰箱内异味的方法
JP2019152421A (ja) 庫内空気調節装置
JP2020180740A (ja) 冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880542

Country of ref document: EP

Kind code of ref document: A1