JP6958669B2 - 空気組成調節装置 - Google Patents

空気組成調節装置 Download PDF

Info

Publication number
JP6958669B2
JP6958669B2 JP2020081229A JP2020081229A JP6958669B2 JP 6958669 B2 JP6958669 B2 JP 6958669B2 JP 2020081229 A JP2020081229 A JP 2020081229A JP 2020081229 A JP2020081229 A JP 2020081229A JP 6958669 B2 JP6958669 B2 JP 6958669B2
Authority
JP
Japan
Prior art keywords
air
carbon dioxide
oxygen concentration
concentration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020081229A
Other languages
English (en)
Other versions
JP2020128862A5 (ja
JP2020128862A (ja
Inventor
紀考 亀井
直宏 田中
秀徳 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JP2020128862A publication Critical patent/JP2020128862A/ja
Publication of JP2020128862A5 publication Critical patent/JP2020128862A5/ja
Priority to JP2021078905A priority Critical patent/JP7239849B2/ja
Application granted granted Critical
Publication of JP6958669B2 publication Critical patent/JP6958669B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/34095Details of apparatus for generating or regenerating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/144Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B7/148Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3418Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4525Gas separation or purification devices adapted for specific applications for storage and dispensing systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Gas Separation By Absorption (AREA)
  • Storage Of Harvested Produce (AREA)

Description

本開示は、空気組成調節装置に関するものである。
空気組成調節装置として、農産物等の植物の鮮度低下の抑制を目的として、農産物等を収容する倉庫や輸送用コンテナの庫内空気の組成(例えば、庫内空気の酸素濃度や二酸化炭素濃度)を調節する庫内空気調節装置が知られている。
特許文献1には、庫内空気の組成を調節する装置を持ったコンテナが開示されている。この特許文献1の装置は、ガス分離膜を用いて庫内空気の組成を調節する。
国際公開第2007/033668号
この種の装置を有するコンテナでは、農産物等の植物の鮮度を長期間にわたって保つため、一般に、庫内空気は大気の酸素濃度(約21%)よりも低い酸素濃度(例えば5〜8%)に維持され、二酸化炭素濃度は大気中よりも高い濃度に維持される。
コンテナの庫内の二酸化炭素濃度を低減させる場合は、換気を行ったり、スクラバーを用いて二酸化炭素を液中に溶かしたりして、空気中から二酸化炭素が選択的に除去される。酸素濃度を上昇させる場合は、一般に、換気を行って新鮮空気が庫内に取り入れられる。
しかしながら、上記の制御においては、酸素濃度を上昇させたい場合であっても、植物の呼吸による酸素除去と二酸化炭素発生の割合が1:1であるため、庫内の酸素濃度と二酸化炭素濃度の合計が図9にラインA示す21%を超えるほど(大気中の酸素濃度を超えるほど)には酸素濃度を上昇させることはできなかった。
本開示の目的は、空気組成調節装置で組成が調整される対象空間の空気の酸素濃度を大気中の酸素濃度より高濃度にできるようにすることである。
本開示の第1の態様は、対象空間(5)の空気の組成を調節する空気組成調節装置であって、
対象空間(5)へ供給される被処理空気から酸素を分離する酸素分離部(41,61)と、
上記酸素分離部(41,61)から上記対象空間(5)へ連通する酸素用高濃度ガス供給経路(136)を含むガス供給経路(135)と、
吸い込んだ空気を加圧して吐出するポンプ(36,37)と、
酸素濃度増加動作と酸素濃度上昇動作とを行う制御器(110)と、を備え、
上記酸素濃度増加動作は、上記ポンプ(36,37)により加圧された庫外空気を、上記酸素分離部(41,61)をバイパスして上記対象空間(5)へ供給する動作であり、
上記酸素濃度上昇動作は、上記ポンプ(36,37)により加圧された庫外空気から上記酸素分離部(41,61)での処理前よりも酸素濃度が高い高酸素濃度ガスを上記酸素分離部(41,61)で生成し、その高酸素濃度ガスを上記対象空間(5)へ上記酸素用高濃度ガス供給経路(136)を通じて供給する動作である
ことを特徴とする。
第1の態様では、酸素濃度上昇動作において、処理前の庫外空気が酸素分離部(41,61)を通過することにより高酸素濃度ガスが生成され、この高酸素濃度ガスが酸素用高濃度ガス供給経路(136)を通って対象空間(5)へ供給される。したがって、空気組成調節装置で組成が調整される対象空間(5)の空気の酸素濃度を大気中の酸素濃度より高濃度にすることができる。
本開示の第2の態様は、第1の態様において、
上記酸素分離部(41,61)は、上記被処理空気を、上記高酸素濃度ガスと、処理前よりも酸素濃度が低い低酸素濃度ガスとに分離するように構成され、
上記ガス供給経路(135)は、低酸素濃度ガスを上記対象空間(5)へ供給する酸素用低濃度ガス供給経路(137)と、高酸素濃度ガスと低酸素濃度ガスの一方を選択的に上記対象空間(5)へ供給する切換器(56,58)を備え、
上記制御器(110)は、上記切換器(56,58)を切り換えて上記高酸素濃度ガスまたは低酸素濃度ガスを上記対象空間(5)へ供給するように構成されていることを特徴とする。
第2の態様では、上記切換器(56,58)を切り換えることにより、高酸素濃度ガスまたは低酸素濃度ガスを上記対象空間(5)へ選択的に供給することができる。
本開示の第3の態様は、第1または第2の態様において、
上記酸素分離部(41,61)は、被処理空気から酸素を分離する分離膜(85)を備えていることを特徴とする。
第3の態様では、分離膜(85)を用いて構成した空気組成調節装置において、対象空間(5)の空気の酸素濃度を大気中の酸素濃度より高濃度にすることができる。
本開示の第4の態様は、第1から第3の態様の何れか1つにおいて、
さらに、対象空間(5)へ供給される被処理空気から二酸化炭素を分離する二酸化炭素分離部(41,61)と、上記二酸化炭素分離部(41,61)から上記対象空間(5)へ連通する二酸化炭素用高濃度ガス供給経路(136)と、を備え、
上記制御器(110)は、上記酸素濃度上昇動作に加えて、上記二酸化炭素分離部(41,61)での処理前よりも二酸化炭素濃度が高い高二酸化炭素濃度ガスを上記二酸化炭素分離部(41,61)で被処理空気から生成し、その高二酸化炭素濃度ガスを上記対象空間(5)へ上記二酸化炭素用高濃度ガス供給経路(136)を通じて供給する二酸化炭素濃度上昇動作を行うことが可能に構成されていることを特徴とする。
第4の態様では、処理前の被処理空気が二酸化炭素分離部(41,61)を通過することにより高二酸化炭素濃度ガスが生成され、この高二酸化炭素濃度ガスが二酸化炭素用高濃度ガス供給経路(136)を通って対象空間(5)へ供給される。したがって、空気組成調節装置で組成が調整される対象空間(5)の空気の二酸化炭素濃度を処理前の二酸化炭素濃度より高濃度にすることができる。
本開示の第5の態様は、第4の態様において、
上記二酸化炭素分離部(41,61)は、上記被処理空気を、上記高二酸化炭素濃度ガスと、処理前よりも二酸化炭素濃度が低い低二酸化炭素濃度ガスとに分離するように構成され、
上記ガス供給経路(135)は、低二酸化炭素濃度ガスを上記対象空間(5)へ供給する二酸化炭素用低濃度ガス供給経路(137)と、高二酸化炭素濃度ガスと低二酸化炭素濃度ガスの一方を選択的に上記対象空間(5)へ供給する切換器(76,78)を備え、
上記制御器(110)は、上記切換器(76,78)を切り換えて上記高二酸化炭素濃度ガスまたは低二酸化炭素濃度ガスを上記対象空間(5)へ供給可能に構成されていることを特徴とする。
第5の態様では、上記切換器(76,78)を切り換えることにより、高二酸化炭素濃度ガスまたは低二酸化炭素濃度ガスを上記対象空間(5)へ選択的に供給することができる。
本開示の第6の態様は、第3の態様において、
さらに、被処理空気から窒素と酸素及び二酸化炭素とを分離し、処理前よりも窒素濃度が高くて酸素濃度及び二酸化炭素濃度が低い低酸素濃度ガスと、処理前よりも窒素濃度が低くて酸素濃度及び二酸化炭素濃度が高い高酸素濃度ガスとを生成可能な吸着剤が設けられた吸着部(234,235)を備えていることを特徴とする。
この第6の態様では、酸素分離部(61)としてガス分離膜(85)を備えた庫内空気調節装置に、さらに吸着剤が設けられた吸着部(234,235)を設けた構成において、第3の態様と同様に、分離膜(85)を用いて対象空間(5)の空気の酸素濃度を大気中の酸素濃度より高濃度にすることができる。
図1は、実施形態の庫内空気調節装置を備えた輸送用コンテナの概略断面図である。 図2は、輸送用コンテナに設けられたコンテナ用冷凍機の冷媒回路の構成を示す冷媒回路図である。 図3は、実施形態の庫内空気調節装置の構成を示す配管系統図である。 図4は、実施形態の庫内空気調節装置に設けられた分離モジュールの概略断面図である。 図5は、実施形態の庫内空気調節装置が行う酸素濃度低減動作を示すブロック図である。 図6は、実施形態の庫内空気調節装置が行う二酸化炭素濃度低減動作を示すブロック図である。 図7は、実施形態の庫内空気調節装置が行う酸素濃度回復動作を示すブロック図である。 図8は、実施形態の庫内空気調節装置が行う酸素濃度回復動作の他の例を示すブロック図である。 図9は、庫内における酸素濃度と二酸化炭素濃度の変化を示すグラフである。 図10は、実施形態の酸素濃度上昇動作による庫内の酸素濃度と二酸化炭素濃度の変化を示すグラフである。 図11は、実施形態の二酸化炭素濃度上昇動作による庫内の酸素濃度と二酸化炭素濃度の変化を示すグラフである。 図12は、実施形態2の庫内空気調節装置の構成を示す配管系統図である。 図13は、実施形態2の第1組成調節部の第1動作中の状態を示す庫内空気調節装置の配管系統図である。 図14は、実施形態2の第1組成調節部の第2動作中の状態を示す庫内空気調節装置の配管系統図である。
《実施形態1》
実施形態を図面に基づいて詳細に説明する。
本実施形態の空気組成調節装置は、いわゆるCAControlled Atmosphere)輸送を行うために輸送用コンテナ(収納庫)(1)に設けられる庫内空気調節装置(30)である。そして、庫内空気調節装置(30)は、輸送用コンテナ(1)の内部空間(対象空間)の空気の組成を、外部空間の空気である大気の組成と異なるように調節したり、大気の組成に戻すように調節したりする。
図1に示すように、収納庫を構成する輸送用コンテナ(1)は、コンテナ本体(2)と、コンテナ用冷凍機(10)とを備えている。この輸送用コンテナ(1)は、庫内の温度管理か可能なリーファーコンテナ(reefer container)である。本実施形態の庫内空気調節装置(30)は、コンテナ用冷凍機(10)に設置される。この輸送用コンテナ(1)は、空気中の酸素(O)を取り込んで二酸化炭素(CO)を放出する呼吸を行う農産物等の植物を貨物(6)として輸送するために用いられる。植物の例としては、バナナやアボカド等の果物、野菜、穀物、球根、生花等が挙げられる。
コンテナ本体(2)は、細長い直方体形状の箱状に形成されている。コンテナ本体(2)は、一方の端面が開口し、この開口端を塞ぐようにコンテナ用冷凍機(10)が取り付けられる。コンテナ本体(2)の内部空間は、貨物(6)を収納するための荷室(5)を構成する。
荷室(5)の底部には、貨物(6)を載せるための床板(3)が配置される。この床板(3)とコンテナ本体(2)の底板との間には、コンテナ用冷凍機(10)が吹き出した空気を流すための床下流路(4)が形成される。床下流路(4)は、コンテナ本体(2)の底板に沿ってコンテナ本体(2)の長手方向へ延びる流路である。床下流路(4)は、一端がコンテナ用冷凍機(10)の吹出口(27)に接続し、他端が床板(3)の上側の空間(即ち、貨物(6)が収容される空間)と連通する。
−コンテナ用冷凍機−
図1,図2に示すように、コンテナ用冷凍機(10)は、ケーシング(20)と、冷凍サイクルを行う冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とを備えている。
ケーシング(20)は、庫外壁部(21)と、庫内壁部(22)と、背面板(24)と、区画板(25)とを備えている。後述するように、このケーシング(20)には、冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とが設けられる。
庫外壁部(21)は、コンテナ本体(2)の開口端を覆うように配置される板状の部材である。庫外壁部(21)は、下部がコンテナ本体(2)の内側へ膨出している。庫内壁部(22)は、庫外壁部(21)に沿った形態の板状の部材である。庫内壁部(22)は、庫外壁部(21)におけるコンテナ本体(2)の内側の面を覆うように配置される。庫外壁部(21)と庫内壁部(22)の間の空間には、断熱材(23)が充填されている。
ケーシング(20)は、その下部がコンテナ本体(2)の内側へ窪んだ形状となっている。ケーシング(20)の下部は、輸送用コンテナ(1)の外部空間と連通する庫外機器室(28)を形成する。この庫外機器室(28)には、庫外ファン(16)が配置される。
背面板(24)は、概ね矩形の平板状の部材である。背面板(24)は、庫内壁部(22)よりもコンテナ本体(2)の内側に配置され、庫内壁部(22)との間に庫内空気流路(29)を形成する。この庫内空気流路(29)は、その上端がケーシング(20)の吸込口(26)を構成し、その下端がケーシング(20)の吹出口(27)を構成する。
区画板(25)は、庫内空気流路(29)を上下に区画するように配置された板状の部材である。区画板(25)は、庫内空気流路(29)の上部に配置される。この区画板(25)によって、庫内空気流路(29)は、区画板(25)の上側の一次流路(29a)と、区画板(25)の下側の二次流路(29b)に区画される。一次流路(29a)は、吸込口(26)を介して荷室(5)と連通する。二次流路(29b)は、吹出口(27)を介して床下流路(4)と連通する。区画板(25)には、庫内ファン(17)が取り付けられる。庫内ファン(17)は、一次流路(29a)から吸い込んだ空気を二次流路(29b)へ吹き出すように配置される。
図2に示すように、冷媒回路(11)は、圧縮機(12)と、凝縮器(13)と、膨張弁(14)と、蒸発器(15)とを配管で接続することによって形成された閉回路である。圧縮機(12)を作動させると、冷媒回路(11)を冷媒が循環し、蒸気圧縮冷凍サイクルが行われる。図1に示すように、凝縮器(13)は、庫外機器室(28)における庫外ファン(16)の吸込側に配置され、蒸発器(15)は、庫内空気流路(29)の二次流路(29b)に配置される。また、図1では図示を省略するが、圧縮機(12)は、庫外機器室(28)に配置される。
−庫内空気調節装置−
図1,図3に示すように、庫内空気調節装置(30)は、本体ユニット(31)と、センサユニット(90)と、換気用排気管(100)と、制御器(110)とを備えている。本体ユニット(31)は、コンテナ用冷凍機(10)の庫外機器室(28)に設置される。センサユニット(90)は、輸送用コンテナ(1)の庫内空気流路(29)に設置される。換気用排気管(100)は、輸送用コンテナ(1)の庫内空気流路(29)と庫外機器室(28)に亘って設置される。制御器(110)は、本体ユニット(31)に設けられて、庫内空気調節装置(30)の構成機器を制御する。
図3に示すように、庫内空気調節装置(30)の本体ユニット(31)は、第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)と、ユニットケース(32)とを備えている。ユニットケース(32)は、箱状の密閉容器である。第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)とは、このユニットケース(32)の内部空間に配置される。第1組成調節部(40)、第2組成調節部(60)、及びポンプユニット(35)の詳細は、後述するが、各組成調節部(40,60)は、被処理空気(庫外空気、庫内空気)から該被処理空気とは酸素や二酸化炭素の成分比が異なる供給用空気(後述の第1庫外空気、第2庫外空気、第1庫内空気、第2庫内空気)を分離する分離部を有し、上記供給用空気を上記輸送用コンテナ(1)の内部空間へ供給することができるように構成されている。
また、庫内空気調節装置(30)は、供給管(120)と、庫内側吸入管(75)と、測定用配管(125)とを備えている。供給管(120)、庫内側吸入管(75)、及び測定用配管(125)は、本体ユニット(31)をコンテナ用冷凍機(10)の庫内空気流路(29)に接続するための配管である。
供給管(120)は、第1組成調節部(40)及び第2組成調節部(60)から流出した空気を荷室(5)へ供給するための配管である。供給管(120)は、入口端が第1組成調節部(40)及び第2組成調節部(60)に接続され、出口端が庫内空気流路(29)の二次流路(29b)に開口する。
庫内側吸入管(75)は、荷室(5)内の庫内空気を第2組成調節部(60)へ供給するための配管である。庫内側吸入管(75)は、入口端が庫内空気流路(29)の二次流路(29b)に開口し、出口端が後述する第2組成調節部(60)の第2ポンプ(37)に接続される。なお、庫内空気流路(29)の二次流路(29b)において、庫内側吸入管(75)の入口端は、供給管(120)の出口端の上流側に配置される。
測定用配管(125)は、供給管(120)を流れる空気をセンサユニット(90)へ供給するための配管である。測定用配管(125)は、入口端が供給管(120)に接続され、出口端がセンサユニット(90)に接続される。また、測定用配管(125)には、電磁弁からなる測定用開閉弁(126)が設けられる。この測定用開閉弁(126)は、本体ユニット(31)のユニットケース(32)に収容される。
なお、換気用排気管(100)と、供給管(120)と、庫内側吸入管(75)と、測定用配管(125)と、後述する各組成調節部(40,60)に設けられた配管(51〜55,57,59,71〜74,77,79,95)とは、硬質のパイプで構成されていてもよいし、柔軟なホースで構成されていてもよいし、パイプとホースを組み合わせることで構成されていてもよい。
〈ポンプユニット〉
図3に示すように、ポンプユニット(35)は、第1ポンプ(36)と、第2ポンプ(37)と、駆動モータ(38)とを備えている。
第1ポンプ(36)と第2ポンプ(37)のそれぞれは、吸い込んだ空気を吐出する空気ポンプである。第1ポンプ(36)と第2ポンプ(37)のそれぞれは、例えば容積型の流体機械によって構成される。第1ポンプ(36)と第2ポンプ(37)は、一体化されている。駆動モータ(38)は、第1ポンプ(36)及び第2ポンプ(37)に連結された電動機である。駆動モータ(38)は、第1ポンプ(36)と第2ポンプ(37)の両方を駆動する。
〈第1組成調節部〉
第1組成調節部(40)は、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気(低酸素濃度ガス)と第2庫外空気(高酸素濃度ガス)に分離するように構成される。本実施形態の第1組成調節部(40)は、供給用空気である第1庫外空気を荷室(5)へ供給して第2庫外空気を輸送用コンテナ(1)の外部へ排出したり、第1庫外空気を外部へ排出して第2庫外空気を荷室(5)へ供給したりすることができる。
第1組成調節部(40)は、エアフィルタ(47)と、第1分離モジュール(第1分離部:処理前の空気から酸素と二酸化炭素を分離する酸素分離部であり二酸化炭素分離部である)(41)と、第1バイパス弁(50)と、第1圧力センサ(45)と第1調節弁(46)とを備えている。また、第1組成調節部(40)は、庫外側吸入管(55)と、第1導入管(52)と、第1一次側管(53)と、第1二次側管(54)と、第1バイパス管(51)とを備えている。また、ポンプユニット(35)の第1ポンプ(36)は、この第1組成調節部(40)を構成する。
エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのメンブレンフィルタである。エアフィルタ(47)は、本体ユニット(31)のユニットケース(32)に取り付けられる。エアフィルタ(47)は、庫外側吸入管(55)を介して第1ポンプ(36)の吸入口に接続する。なお、本実施形態の庫内空気調節装置(30)では、庫外側吸入管(55)を省略し、密閉容器であるユニットケース(32)の内部空間を介してエアフィルタ(47)と第1ポンプ(36)を連通させてもよい。
詳しくは後述するが、第1分離モジュール(41)は、第1導入口(42)と、第1一次側導出口(43)と、第1二次側導出口(44)とを備える。第1導入口(42)は、第1導入管(52)を介して第1ポンプ(36)の吐出口に接続する。第1一次側導出口(43)は、第1一次側管(53)を介して供給管(120)に接続する。第1二次側導出口(44)には、第1二次側管(54)の一端が接続する。第1二次側管(54)は、ユニットケース(32)の外部へ延びている。第1二次側管(54)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。
第1バイパス弁(50)は、三つのポートを有する切換弁であって、第1バイパス弁機構を構成する。第1バイパス弁(50)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第1バイパス弁(50)は、第1導入管(52)の途中に配置される。第1バイパス弁(50)は、第1のポートが第1ポンプ(36)の吐出口に接続し、第2のポートが第1分離モジュール(41)の第1導入口(42)に接続する。第1バイパス弁(50)の第3のポートには、第1バイパス管(51)の入口端が接続する。第1バイパス管(51)の出口端は、第1一次側管(53)に接続する。第1バイパス管(51)は、第1バイパス通路を構成する。
第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に設けられる。第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に接続する第1バイパス管(51)の他端よりも第1分離モジュール(41)寄りに配置される。また、第1圧力センサ(45)は、第1調節弁(46)よりも第1分離モジュール(41)寄りに配置される。
第1圧力センサ(45)は、第1分離モジュール(41)の第1一次側導出口(43)から流出した第1庫外空気の圧力を計測する。第1圧力センサ(45)の計測値は、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力と実質的に等しい。
第1調節弁(46)は、開度可変の電動弁であって、第1弁機構を構成する。第1調節弁(46)の開度を変更すると、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力が変化する。
第1分離モジュール(41)は、第1分離部を構成する。詳しくは後述するが、第1分離モジュール(41)は、ガス分離膜(85)を備えている。そして、第1分離モジュール(41)は、未処理庫外空気を、ガス分離膜(85)を透過しなかった第1庫外空気(第1一次側管(53)を流れる空気)と、ガス分離膜(85)を透過した第2庫外空気(第1二次側管(54)を流れる空気)に分離する。
第1庫外空気は、窒素濃度が未処理庫外空気よりも高く、酸素濃度が未処理庫外空気よりも低い(低酸素濃度ガス)。第2庫外空気は、窒素濃度が未処理庫外空気よりも低く、酸素濃度が未処理庫外空気よりも高い(高酸素濃度ガス)。このように、第1庫外空気と第2庫外空気は、それぞれを構成する物質の濃度が互いに異なる。なお、本明細書における濃度は、体積割合を意味する。
また、第1組成調節部(40)には、第1一次側切換弁(56)と、第1一次側排出管(57)と、第1二次側切換弁(58)と、第1二次側供給管(59)とが設けられている。
第1一次側切換弁(56)と第1二次側切換弁(58)のそれぞれは、三つのポートを有する切換弁である。第1一次側切換弁(56)と第1二次側切換弁(58)のそれぞれは、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第1一次側切換弁(56)は、第1一次側管(53)の途中に配置される。第1一次側管(53)において、第1一次側切換弁(56)は、第1バイパス管(51)の出口端よりも供給管(120)寄りに配置される。第1一次側切換弁(56)は、第1のポートが第1調節弁(46)に接続し、第2のポートが供給管(120)に接続する。第1一次側切換弁(56)の第3のポートには、第1一次側排出管(57)の一端が接続する。第1一次側排出管(57)の他端は、第1二次側管(54)に接続する。
第1二次側切換弁(58)は、第1二次側管(54)の途中に配置される。第1二次側管(54)において、第1二次側切換弁(58)は、第1一次側排出管(57)の他端よりも第1分離モジュール(41)寄りに配置される。第1二次側切換弁(58)は、第1のポートが第1分離モジュール(41)の第1二次側導出口(44)に接続し、第2のポートが第1二次側管(54)を介して輸送用コンテナ(1)の庫外機器室(28)と連通する。第1二次側切換弁(58)の第3のポートには、第1二次側供給管(59)の一端が接続する。第1二次側供給管(59)の他端は、供給管(120)に接続する。
〈第2組成調節部〉
第2組成調節部(60)は、輸送用コンテナ(1)の内部空間から吸い込んだ庫内空気(未処理庫内空気)を第1庫内空気(低酸素濃度ガス、低二酸化炭素濃度ガス)と第2庫内空気(高酸素濃度ガス、高二酸化炭素濃度ガス)に分離するように構成される。本実施形態の第2組成調節部(60)は、供給用空気である第1庫内空気を荷室(5)へ供給して第2庫内空気を輸送用コンテナ(1)の外部へ排出したり、第1庫内空気を外部へ排出して第2庫内空気を荷室(5)へ供給したりすることができる。
第2組成調節部(60)は、第2分離モジュール(第2分離部:処理前の空気から酸素と二酸化炭素を分離する酸素分離部であり二酸化炭素分離部である)(61)と、第2バイパス弁(70)と、第2圧力センサ(65)と第2調節弁(66)とを備えている。また、第2組成調節部(60)は、第2導入管(72)と、第2一次側管(73)と、第2二次側管(74)と、第2バイパス管(71)とを備えている。また、ポンプユニット(35)の第2ポンプ(37)は、この第2組成調節部(60)を構成する。
詳しくは後述するが、第2分離モジュール(61)は、第2導入口(62)と、第2一次側導出口(63)と、第2二次側導出口(64)とを備える。第2導入口(62)は、第2導入管(72)を介して第2ポンプ(37)の吐出口に接続する。第2一次側導出口(63)は、第2一次側管(73)を介して供給管(120)に接続する。第2二次側導出口(64)には、第2二次側管(74)の一端が接続する。第2二次側管(74)は、ユニットケース(32)の外部へ延びている。第2二次側管(74)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。また、第2ポンプ(37)の吸入口には、庫内側吸入管(75)が接続する。
第2バイパス弁(70)は、三つのポートを有する切換弁であって、第2バイパス弁機構を構成する。第2バイパス弁(70)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第2バイパス弁(70)は、第2導入管(72)の途中に配置される。第2バイパス弁(70)は、第1のポートが第2ポンプ(37)の吐出口に接続し、第2のポートが第2分離モジュール(61)の第2導入口(62)に接続する。第2バイパス弁(70)の第3のポートには、第2バイパス管(71)の入口端が接続する。第2バイパス管(71)の出口端は、第2一次側管(73)に接続する。第2バイパス管(71)は、第2バイパス通路を構成する。
第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に設けられる。第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に接続する第2バイパス管(71)の他端よりも第2分離モジュール(61)寄りに配置される。また、第2圧力センサ(65)は、第2調節弁(66)よりも第2分離モジュール(61)寄りに配置される。
第2圧力センサ(65)は、第2分離モジュール(61)の第2一次側導出口(63)から流出した第2庫外空気の圧力を計測する。第2圧力センサ(65)の計測値は、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力と実質的に等しい。
第2調節弁(66)は、開度可変の電動弁であって、第2弁機構を構成する。第2調節弁(66)の開度を変更すると、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力が変化する。
第2分離モジュール(61)は、第2分離部を構成する。詳しくは後述するが、第2分離モジュール(61)は、ガス分離膜(85)を備えている。そして、第2分離モジュール(61)は、未処理庫内空気を、ガス分離膜(85)を透過しなかった第1庫内空気(第2一次側管(73)を流れる空気)と、ガス分離膜(85)を透過した第2庫内空気(第2二次側管(74)を流れる空気)に分離する。
第1庫内空気は、窒素濃度が未処理庫内空気よりも高く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも低い(低酸素濃度ガス、低二酸化炭素濃度ガス)。第2庫内空気は、窒素濃度が未処理庫内空気よりも低く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも高い(高酸素濃度ガス、高二酸化炭素濃度ガス)。このように、第1庫内空気と第2庫内空気は、それぞれを構成する物質の濃度が互いに異なる。
また、第2組成調節部(60)には、第2一次側切換弁(76)と、第2一次側排出管(77)と、第2二次側切換弁(78)と、第2二次側供給管(79)とが設けられている。
第2一次側切換弁(76)と第2二次側切換弁(78)のそれぞれは、三つのポートを有する切換弁である。第2一次側切換弁(76)と第2二次側切換弁(78)のそれぞれは、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第2一次側切換弁(76)は、第2一次側管(73)の途中に配置される。第2一次側管(73)において、第2一次側切換弁(76)は、第2バイパス管(71)の出口端よりも供給管(120)寄りに配置される。第2一次側切換弁(76)は、第1のポートが第2調節弁(66)に接続し、第2のポートが供給管(120)に接続する。第2一次側切換弁(76)の第3のポートには、第2一次側排出管(77)の一端が接続する。第2一次側排出管(77)の他端は、第2二次側管(74)に接続する。
第2二次側切換弁(78)は、第2二次側管(74)の途中に配置される。第2二次側管(74)において、第2二次側切換弁(78)は、第2一次側排出管(77)の他端よりも第2分離モジュール(61)寄りに配置される。第2二次側切換弁(78)は、第1のポートが第2分離モジュール(61)の第2二次側導出口(64)に接続し、第2のポートが第2二次側管(74)を介して輸送用コンテナ(1)の庫外機器室(28)と連通する。第2二次側切換弁(78)の第3のポートには、第2二次側供給管(79)の一端が接続する。第2二次側供給管(79)の他端は、供給管(120)に接続する。
〈分離モジュール〉
第1分離モジュール(41)及び第2分離モジュール(61)の構造について、図4を参照しながら説明する。第1分離モジュール(41)と第2分離モジュール(61)の構造は、互いに同じである。
各分離モジュール(41,61)は、一つの筒状ケース(80)と、二つの隔壁部(81a,81b)とを備えている。筒状ケース(80)は、両端が閉塞された細長い円筒状の容器である。隔壁部(81a,81b)は、筒状ケース(80)の内部空間を仕切るための部材であって、筒状ケース(80)の内部空間を横断するように設けられる。隔壁部(81a,81b)は、筒状ケース(80)の内部空間の一端寄りの位置と他端寄りの位置とに一つずつ配置される。図4において、筒状ケース(80)の内部空間は、左側の隔壁部(81a)の左側に位置する導入室(82)と、二つの隔壁部(81a,81b)の間に位置する二次側導出室(84)と、右側の隔壁部(81b)の右側に位置する一次側導出室(83)とに仕切られる。
各分離モジュール(41,61)は、中空糸状(即ち、外径が1mm以下の非常に細い管状)に形成されたガス分離膜(85)を多数備えている。中空糸状のガス分離膜(85)は、一方の隔壁部(81a)から他方の隔壁部(81b)に亘って設けられる。各ガス分離膜(85)は、一端部が一方の隔壁部(81a)を貫通して導入室(82)に開口し、他端部が他方の隔壁部(81b)を貫通して一次側導出室(83)に開口する。筒状ケース(80)の内部空間は、二つの隔壁部(81a,81b)に挟まれた空間のうちガス分離膜(85)の外側の部分が、二次側導出室(84)を構成する。各分離モジュール(41,61)において、導入室(82)と一次側導出室(83)は、中空糸状のガス分離膜(85)を介して連通する一方、二次側導出室(84)は、ガス分離膜(85)の内側の空間、導入室(82)、及び一次側導出室(83)と非連通となる。
筒状ケース(80)には、導入口(42,62)と、一次側導出口(43,63)と、二次側導出口(44,64)とが設けられる。導入口(42,62)は、図4における筒状ケース(80)の左端部に配置され、導入室(82)と連通する。一次側導出口(43,63)は、図4における筒状ケース(80)の右端部に配置され、一次側導出室(83)と連通する。二次側導出口(44,64)は、筒状ケース(80)の長手方向の中間部に配置され、二次側導出室(84)と連通する。
ガス分離膜(85)は、高分子からなる非多孔膜である。このガス分離膜(85)は、物質毎に分子がガス分離膜(85)を透過する速度(透過速度)が異なることを利用して、混合ガスに含まれる成分を分離する。
本実施形態の庫内空気調節装置(30)では、第1分離モジュール(41)と第2分離モジュール(61)のそれぞれに同じガス分離膜(85)が設けられる。各分離モジュール(41,61)のガス分離膜(85)は、窒素の透過速度が酸素の透過速度と二酸化炭素の透過速度の両方よりも低いという特性を有している。中空糸状の多数のガス分離膜(85)は、それぞれの膜厚が実質的に同じである。従って、各分離モジュール(41,61)に設けられたガス分離膜(85)は、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いという特性を有している。
各分離モジュール(41,61)では、導入口(42,62)を通って導入室(82)へ流入した空気が、中空糸状のガス分離膜(85)の内側の空間を一次側導出室(83)へ向かって流れる。ガス分離膜(85)の内側の空間を流れる空気は、その一部がガス分離膜(85)を透過して二次側導出室(84)へ移動し、残りが一次側導出室(83)へ流入する。
各分離モジュール(41,61)のガス分離膜(85)は、窒素の透過率が酸素および二酸化炭素の透過率よりも低い。つまり、窒素は、酸素および二酸化炭素に比べてガス分離膜(85)を透過しにくい。このため、中空糸状のガス分離膜(85)の内側を流れる空気は、一次側導出室(83)へ近付くにつれて、その窒素濃度が上昇すると同時に、その酸素濃度および二酸化炭素濃度が低下する。また、中空糸状のガス分離膜(85)を流れる空気に含まれる酸素と二酸化炭素は、ガス分離膜(85)を透過して二次側導出室(84)へ移動する。
その結果、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気は、その窒素濃度が導入室(82)の空気よりも高くなり、その酸素濃度および二酸化炭素濃度が導入室(82)の空気よりも低くなる。また、ガス分離膜(85)を透過して二次側導出室(84)へ移動した空気は、その窒素濃度が導入室(82)の空気よりも低くなり、その酸素濃度および二酸化炭素濃度が導入室(82)の空気よりも高くなる。
第1分離モジュール(41)では、第1導入口(42)から導入室(82)へ未処理庫外空気が流入し、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気が第1庫外空気として第1一次側導出口(43)から流出し、ガス分離膜(85)を透過して二次側導出室(84)へ流入した空気が第2庫外空気として第1二次側導出口(44)から流出する。一方、第2分離モジュール(61)では、第2導入口(62)から導入室(82)へ未処理庫内空気が流入し、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気が第1庫内空気として第2一次側導出口(63)から流出し、ガス分離膜(85)を透過して二次側導出室(84)へ流入した空気が第2庫内空気として第2二次側導出口(64)から流出する。
〈センサユニット〉
図1及び図3に示すように、センサユニット(90)は、コンテナ用冷凍機(10)の庫内空気流路(29)の二次流路(29b)に配置される。図3に示すように、センサユニット(90)は、酸素センサ(91)と、二酸化炭素センサ(92)と、センサケース(93)とを備えている。
酸素センサ(91)は、空気等の混合気体の酸素濃度を計測するジルコニア電流方式のセンサである。二酸化炭素センサ(92)は、空気等の混合気体の二酸化炭素濃度を計測する非分散型赤外線吸収(NDIR:non dispersive infrared)方式のセンサである。酸素センサ(91)及び二酸化炭素センサ(92)は、センサケース(93)に収容される。
センサケース(93)は、やや細長い箱状の部材である。センサケース(93)は、長手方向の一方の端部に測定用配管(125)の出口端が接続され、他方の端部に出口管(95)の一端が接続される。出口管(95)の他端は、庫内空気流路(29)の一次流路(29a)に開口する。また、センサケース(93)には、庫内空気流路(29)を流れる庫内空気をセンサケース(93)の内部空間へ導入するためのエアフィルタ(94)が取り付けられる。エアフィルタ(94)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。
後述するように、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。このため、測定用開閉弁(126)が閉じた状態では、二次流路(29b)の庫内空気がエアフィルタ(94)を通ってセンサケース(93)へ流入し、その後に出口管(95)を通って一次流路(29a)へ流入する。この状態で、センサユニット(90)は、酸素センサ(91)が庫内空気の酸素濃度を計測し、二酸化炭素センサ(92)が庫内空気の二酸化炭素濃度を計測する。
〈換気用排気管〉
換気用排気管(100)は、輸送用コンテナ(1)の内部と外部を繋ぐための配管である。この換気用排気管(100)は、換気用排気通路を構成する。図1に示すように、換気用排気管(100)は、コンテナ用冷凍機(10)のケーシング(20)を貫通する。換気用排気管(100)の一端は、庫内空気流路(29)の二次流路(29b)に開口する。換気用排気管(100)の他端は、庫外機器室(28)における庫外ファン(16)の吸入側に開口する。
図3に示すように、換気用排気管(100)の一端には、エアフィルタ(102)が取り付けられる。エアフィルタ(102)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。また、換気用排気管(100)には、換気用排気弁(101)が設けられる。換気用排気弁(101)は、電磁弁からなる開閉弁である。
〈ガス供給経路〉
この実施形態では、庫外側吸入管(55)、第1導入管(52)、第1一次側管(53)、庫内側吸入管(75)、第2導入管(72)、第2一次側管(73)、及び供給管(120)により、ガス供給経路(135)(高濃度ガス供給経路(136)及び低濃度ガス供給経路(137))が構成されている。ガス供給経路(135)は、分離部である第1分離モジュール(41)及び第2分離モジュール(61)から対象空間である荷室(5)へ連通する経路である。高濃度ガス供給経路(136)は、それぞれが高酸素濃度ガス及び高二酸化炭素濃度ガスを庫内へ供給する第1高濃度ガス供給経路(136a)と第2高濃度ガス供給経路(136b)を含み、低濃度ガス供給経路(137)は、それぞれが低酸素濃度ガス及び低二酸化炭素濃度ガスを庫内へ供給する第1低濃度ガス供給経路(137a)と第2低濃度ガス供給経路(137b)とを含む。
高濃度ガス供給経路(136)は、高酸素濃度ガスが流通する場合は酸素用高濃度ガス供給経路(136)になり、高二酸化炭素濃度ガスが流通する場合は二酸化炭素用高濃度ガス供給経路(136)になる。同じ通路なので符号は同じであるが、流れるガスが異なるので名称は異ならせている。また、低濃度ガス供給経路(137)は、低酸素濃度ガスが流通する場合は酸素揚程濃度ガス供給経路(137)になり、低二酸化炭素濃度ガスが流通する場合は二酸化炭素用低濃度ガス流通経路(137)になる。同じ通路なので符号は同じであるが、流れるガスが異なるので名称は異ならせている。
〈制御器〉
制御器(110)は、制御動作を行うCPU(111)と、制御動作に必要なデータ等を記憶するメモリ(112)とを備える。制御器(110)には、酸素センサ(91)、二酸化炭素センサ(92)、第1圧力センサ(45)、及び第2圧力センサ(65)の計測値が入力される。制御器(110)は、ポンプユニット(35)、第1調節弁(46)、第2調節弁(66)、第1バイパス弁(50)、第2バイパス弁(70)、及び換気用排気弁(101)を操作するための制御動作を行う。上記CPU(111)は、庫内の酸素濃度や二酸化炭素濃度を上昇させる後述の酸素濃度上昇動作(酸素濃度高速増加動作)や二酸化炭素濃度上昇動作を行う濃度上昇制御部としても機能する。
本実施形態において、上記第1分離部(41)は、対象空間である庫内空間へ供給される被処理空気である外気から酸素及び二酸化炭素を分離し、上記第2分離部(61)は、庫内から取り出されて庫内空間へ供給される(戻される)被処理空気である庫内空気から酸素及び二酸化炭素を分離する。上記制御部(110)は、上記第1分離部(41)での処理前の外気よりも酸素濃度が高い高酸素濃度ガスを、上記荷室(5)へ上記高濃度ガス供給経路(136a)を通じて供給する酸素濃度低速増加動作(酸素濃度増加動作)及び酸素濃度高速増加動作(酸素濃度上昇動作)と、上記第1分離部(41)での処理前の外気よりも二酸化炭素濃度が高い高二酸化炭素濃度ガスを、上記荷室(5)へ上記高濃度ガス供給経路(136a)を通じて供給する二酸化炭素濃度上昇動作とを行うことが可能に構成されている。
〈切換器〉
上記第1分離部(41)は、上記被処理空気である外気を、処理前よりも酸素や二酸化炭素の濃度が高い高濃度ガスと、処理前よりも酸素や二酸化炭素の濃度が低い低濃度ガスとに分離するように構成されている。上記第1組成調節部(40)には、高濃度ガス(高酸素濃度ガス及び高二酸化炭素濃度ガス)と低濃度ガス(低酸素濃度ガス及び低二酸化炭素濃度ガス)のうち、一方を選択的に上記荷室(5)へ供給する第1の切換器として、上記第1一次側切換弁(56)と第1二次側切換弁(58)が設けられている。そして、上記制御器(110)は、上記第1の切換器(56,58)を切り換えて上記高濃度ガスまたは低濃度ガスを上記対象空間へ供給可能に構成されている。
上記第2分離部(61)は、上記被処理空気である庫内空気を、処理前よりも酸素や二酸化炭素の濃度が高い高濃度ガスと、処理前よりも酸素や二酸化炭素の濃度が低い低濃度ガスとに分離するように構成されている。上記第2組成調節部(60)には、高濃度ガス(高酸素濃度ガス及び高二酸化炭素濃度ガス)と低濃度ガス(低酸素濃度ガス及び低二酸化炭素濃度ガス)のうち、一方を選択的に上記荷室(5)へ供給する第2の切換器として、上記第2一次側切換弁(76)と第2二次側切換弁(78)が設けられている。そして、上記制御器(110)は、上記第2の切換器(76,78)を切り換えて上記高濃度ガスまたは低濃度ガスを上記対象空間へ供給可能に構成されている。
−コンテナ用冷凍機の運転動作−
コンテナ用冷凍機(10)は、輸送用コンテナ(1)の庫内空気を冷却する冷却運転を行う。
冷却運転では、冷媒回路(11)の圧縮機(12)が作動し、冷媒回路(11)において冷媒が循環することによって蒸気圧縮冷凍サイクルが行われる。冷媒回路(11)では、圧縮機(12)から吐出された冷媒が、凝縮器(13)と膨張弁(14)と蒸発器(15)とを順に通過し、その後に圧縮機(12)へ吸入されて圧縮される。
また、冷却運転では、庫外ファン(16)と庫内ファン(17)とが作動する。庫外ファン(16)が作動すると、輸送用コンテナ(1)の外部の庫外空気が庫外機器室(28)へ吸い込まれて凝縮器(13)を通過する。凝縮器(13)では、冷媒が庫外空気へ放熱して凝縮する。庫内ファン(17)が作動すると、輸送用コンテナ(1)の荷室(5)内の庫内空気が庫内空気流路(29)へ吸い込まれて蒸発器(15)を通過する。蒸発器(15)では、冷媒が庫内空気から吸熱して蒸発する。
庫内空気の流れについて説明する。荷室(5)に存在する庫内空気は、吸込口(26)を通って庫内空気流路(29)の一次流路(29a)へ流入し、庫内ファン(17)によって二次流路(29b)へ吹き出される。二次流路(29b)へ流入した庫内空気は、蒸発器(15)を通過する際に冷却され、その後に吹出口(27)から床下流路(4)へ吹き出され、床下流路(4)を通って荷室(5)へ流入する。
庫内空気流路(29)において、一次流路(29a)は庫内ファン(17)の吸い込み側に位置し、二次流路(29b)は庫内ファン(17)の吹き出し側に位置する。このため、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。
−庫内空気調節装置の運転動作−
庫内空気調節装置(30)は、輸送用コンテナ(1)の荷室(5)内の庫内空気の組成(本実施形態では、庫内空気の酸素濃度と二酸化炭素濃度)を調節するための運転を行う。ここでは、本実施形態の庫内空気調節装置(30)の運転動作について、庫内空気の酸素濃度の目標範囲が5%±1%であり、庫内空気の二酸化炭素濃度の目標範囲が2%±1%である場合を例に説明する。
〈庫内空気調節装置の運転動作の概要〉
本実施形態の庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を低下させるための酸素濃度低減動作と、荷室(5)内の庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作と、荷室(5)内の庫内空気の酸素濃度を上昇させるための酸素濃度増加動作とを行う。
輸送用コンテナ(1)への貨物(6)の積み込みが完了した時点において、荷室(5)内に存在する庫内空気の組成は、大気の組成(窒素濃度:78%、酸素濃度:21%、二酸化炭素濃度:0.04%)と実質的に同じである。そこで、庫内空気調節装置(30)は、庫内空気の酸素濃度を低下させるための酸素濃度低減動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度低減動作を停止する。
庫内空気の酸素濃度が6%に達して庫内空気調節装置(30)の酸素濃度停止動作が停止した後は、貨物(6)である植物が呼吸することによって、庫内空気の酸素濃度が次第に低下してゆくと同時に、庫内空気の二酸化炭素濃度が次第に上昇する。
庫内空気の二酸化炭素濃度が目標範囲の上限値(3%)に達すると、庫内空気調節装置(30)は、庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作を行う。庫内空気の二酸化炭素濃度が目標範囲の下限値(1%)に達すると、庫内空気調節装置(30)は、二酸化炭素濃度低減動作を停止する。
また、庫内空気の酸素濃度が目標範囲の下限値(4%)に達すると、庫内空気調節装置(30)は、庫内空気の酸素濃度を上昇させるための酸素濃度増加動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度増加動作を停止する。
このように、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を21%(大気の酸素濃度)から目標範囲にまで引き下げるために、酸素濃度低減動作を行う。また、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度と二酸化炭素濃度を、それぞれの目標範囲に維持するために、二酸化炭素低減動作と酸素濃度増加動作とを適宜繰り返して行う。
〈酸素濃度低減動作〉
庫内空気調節装置(30)の酸素濃度低減動作について、図3〜図5を適宜参照しながら説明する。この酸素濃度低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が酸素濃度の低い第1庫内空気を荷室(5)へ供給する。
酸素濃度低減動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定する。また、第1一次側切換弁(56)、第1二次側切換弁(58)、第2一次側切換弁(76)、及び第2二次側切換弁(78)を、すべて第1状態に設定する。
先ず、第1ポンプ(36)が作動すると、輸送用コンテナ(1)の外部に存在する庫外空気が、エアフィルタ(47)と庫外側吸入管(55)を通って第1ポンプ(36)に吸い込まれる。第1ポンプ(36)は、吸い込んだ庫外空気を加圧して吐出する。第1ポンプ(36)が吐出する庫外空気の圧力は、大気圧の2倍程度である。第1ポンプ(36)から吐出された庫外空気は、第1導入管(52)を流れ、第1分離モジュール(41)の第1導入口(42)へ未処理庫外空気として流入する。
第1分離モジュール(41)において、第1導入口(42)を通って導入室(82)へ流入した未処理庫外空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して第2庫外空気として二次側導出室(84)へ移動し、残りが第1庫外空気として一次側導出室(83)へ流入する。上述したように、ガス分離膜(85)は、窒素の透過率が酸素の透過率よりも低い特性を持つ。このため、図5に示すように、第1庫外空気の酸素濃度は、未処理庫外空気の酸素濃度よりも低く、第2庫外空気の酸素濃度は、未処理庫外空気の酸素濃度よりも高い。
第1分離モジュール(41)の第1一次側導出口(43)から第1一次側管(53)へ流出した第1庫外空気は、供給管(120)へ流入する。一方、第1分離モジュール(41)の第1二次側導出口(44)から第1二次側管(54)へ流出した第2庫外空気は、輸送用コンテナ(1)の外部へ排出される。
次に、第2ポンプ(37)が作動すると、輸送用コンテナ(1)の内部(具体的には、コンテナ用冷凍機(10)の二次流路(29b))に存在する庫内空気が、庫内側吸入管(75)を通って第2ポンプ(37)に吸い込まれる。第2ポンプ(37)は、吸い込んだ庫内空気を加圧して吐出する。第2ポンプ(37)が吐出する庫外空気の圧力は、大気圧よりも若干高い程度である。第2ポンプ(37)から吐出された庫内空気は、第2導入管(72)を流れ、第2分離モジュール(61)の第2導入口(62)へ未処理庫内空気として流入する。
第2分離モジュール(61)において、第2導入口(62)を通って導入室(82)へ流入した未処理庫内空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して第2庫内空気として二次側導出室(84)へ移動し、残りが第1庫内空気として一次側導出室(83)へ流入する。上述したように、ガス分離膜(85)は、窒素の透過率が酸素の透過率よりも低い特性を持つ。このため、図5に示すように、第1庫内空気の酸素濃度は、未処理庫外空気の酸素濃度よりも低く、第2庫内空気の酸素濃度は、未処理庫外空気の酸素濃度よりも高い。
第2分離モジュール(61)の第2一次側導出口(63)から第2一次側管(73)へ流出した第1庫内空気は、供給管(120)へ流入する。一方、第2分離モジュール(61)の第2二次側導出口(64)から第2二次側管(74)へ流出した第2庫内空気は、輸送用コンテナ(1)の外部へ排出される。
上述したように、供給管(120)には、第1分離モジュール(41)から流出した第1庫外空気と、第2分離モジュール(61)から流出した第1庫内空気とが流入する(第1庫外と第1庫内空気は、いずれも被処理空気の処理前より被処理空気よりも酸素濃度が低い)。そして、供給管(120)を流れる第1庫外空気と第1庫内空気の混合空気は、コンテナ用冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。
通常、酸素濃度低減動作中は、輸送用コンテナ(1)の外部から内部へ供給される第1庫外空気の流量Qo1が、輸送用コンテナ(1)の内部から外部へ排出される第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる(図5を参照)。つまり、第1組成調節部(40)は、輸送用コンテナ(1)内の気圧が陽圧となるように、第1庫外空気を輸送用コンテナ(1)の内部へ供給する。輸送用コンテナ(1)内の気圧が陽圧であるため、庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度低減動作では、大気に比べて酸素濃度の低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて荷室(5)内の庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)内の庫内空気の酸素濃度を低下させる。また、酸素濃度低減動作では、未処理庫内空気から分離された酸素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の酸素濃度を低下させる。
〈二酸化炭素濃度低減動作〉
庫内空気調節装置(30)の二酸化炭素濃度低減動作について、図3,図4,図6を適宜参照しながら説明する。この二酸化炭素低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が二酸化炭素濃度の低い第1庫内空気を荷室(5)へ供給する。
二酸化炭素濃度低減動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。また、第1一次側切換弁(56)、第1二次側切換弁(58)、第2一次側切換弁(76)、及び第2二次側切換弁(78)を、すべて第1状態に設定する。そして、第1組成調節部(40)と第2組成調節部(60)のそれぞれにおいて、空気は、酸素濃度低減動作と同様に流れる。ただし、二酸化炭素濃度低減動作において、第1ポンプ(36)が吐出する庫外空気の圧力と、第2ポンプ(37)が吐出する庫内空気の圧力は、いずれも大気圧よりも若干高い程度である。
第1組成調節部(40)では、第1分離モジュール(41)へ流入した未処理庫外空気が、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気とに分離される。そして、第1庫外空気(供給用空気)が輸送用コンテナ(1)の内部へ供給され、第2庫外空気(排出用空気)が輸送用コンテナ(1)の外部へ排出される。なお、未処理庫外空気の二酸化炭素濃度は、大気の二酸化炭素濃度(0.04%)と実質的に同じである。このため、第1庫外空気の二酸化炭素濃度は実質的にゼロと見なせる。
第2組成調節部(60)では、第2分離モジュール(61)へ流入した未処理庫内空気が、未処理庫内空気よりも窒素濃度が高くて酸素濃度および二酸化炭素濃度が低い第1庫内空気と、未処理庫内空気よりも窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い第2庫内空気とに分離される。そして、第1庫内空気(供給用空気)が輸送用コンテナ(1)の内部へ供給され、第2庫内空気(排出用空気)が輸送用コンテナ(1)の外部へ排出される。
通常、二酸化炭素濃度低減動作中は、酸素濃度低減動作中と同様に、第1庫外空気の流量Qo1が第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる(図6を参照)。つまり、第1組成調節部(40)は、輸送用コンテナ(1)内の気圧が陽圧となるように、第1庫外空気を輸送用コンテナ(1)の内部へ供給する。輸送用コンテナ(1)内の気圧が陽圧であるため、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、二酸化炭素濃度低減動作では、二酸化炭素濃度の極めて低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。また、二酸化炭素濃度低減動作では、未処理庫内空気から分離された二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。
〈酸素濃度増加動作(酸素濃度低速増加動作)〉
庫内空気調節装置(30)の酸素濃度増加動作について、図3を参照しながら説明する。この酸素濃度増加動作では、第1組成調節部(40)が輸送用コンテナ(1)の外部から吸い込んだ庫外空気をそのまま荷室(5)へ供給し、第2組成調節部(60)が輸送用コンテナ(1)の内部から吸い込んだ庫内空気をそのまま荷室(5)へ送り返す。
酸素濃度増加動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第2状態(図3に破線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。また、第1一次側切換弁(56)、第1二次側切換弁(58)、第2一次側切換弁(76)、及び第2二次側切換弁(78)を、すべて第1状態に設定する。
第1組成調節部(40)において、第1ポンプ(36)から吐出された庫外空気は、第1バイパス管(51)へ流入し、その窒素濃度と酸素濃度を保った状態で第1一次側管(53)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ供給される。一方、第2組成調節部(60)において、第2ポンプ(37)へ吸い込まれた庫内空気は、第2ポンプ(37)から吐出された後に第2バイパス管(71)を通って第2一次側管(73)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ戻る。また、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度増加動作では、庫内空気よりも酸素濃度の高い庫外空気を輸送用コンテナ(1)の内部へ供給することによって、荷室(5)内の酸素濃度を上昇させる。
−制御器の制御動作−
庫内空気調節装置(30)の制御器(110)は、酸素センサ(91)及び二酸化炭素センサ(92)の計測値を監視する。そして、庫内空気調節装置(30)が上述した動作を行うことによって、庫内空気の酸素濃度と二酸化炭素濃度をそれぞれの目標範囲に保たれるように、酸素センサ(91)及び二酸化炭素センサ(92)の計測値に基づいて庫内空気調節装置(30)の構成機器を制御する。
本実施形態では、上記制御器(110)は、荷室(5)の酸素濃度を大気相当の濃度に戻す酸素濃度回復動作と、酸素濃度を上記酸素濃度増加動作よりも早く上昇させる酸素濃度高速増加動作(酸素濃度上昇動作)と、荷室(5)の二酸化炭素濃度を上昇させる二酸化炭素濃度上昇動作とを行えるように構成されている。
〈酸素濃度回復動作〉
酸素濃度回復動作は、従来、コンテナ(1)で輸送されたり貯蔵されたりした農産物等の荷物を取り出すとき、コンテナ(1)の扉を開ける前に、庫内空気の酸素濃度を大気相当に戻すために換気が行われていたのに対して、庫内空気の酸素濃度を大気相当の約21%まで上昇させるには換気だけでは長時間を要するため、庫内空気を大気相当に戻す時間を短縮できるようにする運転動作である。
この酸素濃度回復動作について、図3,図7を参照しながら説明する。
酸素濃度回復動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定する。以上の状態は、酸素濃度低減動作と同じである。一方、第1一次側切換弁(56)、第1二次側切換弁(58)、第2一次側切換弁(76)、及び第2二次側切換弁(78)を、すべて第2状態に設定する。
先ず、第1ポンプ(36)が作動すると、輸送用コンテナ(1)の外部に存在する庫外空気が、エアフィルタ(47)と庫外側吸入管(55)を通って第1ポンプ(36)に吸い込まれる。第1ポンプ(36)は、吸い込んだ庫外空気を加圧して吐出する。第1ポンプ(36)が吐出する庫外空気の圧力は、大気圧の2倍程度である。第1ポンプ(36)から吐出された庫外空気は、第1導入管(52)を流れ、第1分離モジュール(41)の第1導入口(42)へ未処理庫外空気として流入する。
第1分離モジュール(41)において、第1導入口(42)を通って導入室(82)へ流入した未処理庫外空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して酸素濃度が未処理庫外空気の酸素濃度よりも高い第2庫外空気(高酸素濃度ガス)として二次側導出室(84)へ移動し、残りは酸素濃度が未処理庫外空気の酸素濃度よりも低い第1庫外空気として一次側導出室(83)へ流入する。
第1分離モジュール(41)の第1一次側導出口(43)から第1一次側管(53)へ流出した第1庫外空気は、第1一次側切換弁(56)から第1二次側管(54)へ流出し、輸送用コンテナ(1)の外部へ排出される。一方、第1分離モジュール(41)の第1二次側導出口(44)から第1二次側管(54)へ流出した第2庫外空気は、第1二次側切換弁(58)から第1二次側供給管(59)を通って供給管(120)へ流入する。
次に、第2ポンプ(37)が作動すると、輸送用コンテナ(1)の内部(具体的には、コンテナ用冷凍機(10)の二次流路(29b))に存在する庫内空気が、庫内側吸入管(75)を通って第2ポンプ(37)に吸い込まれる。第2ポンプ(37)は、吸い込んだ庫内空気を加圧して吐出する。第2ポンプ(37)が吐出する庫外空気の圧力は、大気圧よりも若干高い程度である。第2ポンプ(37)から吐出された庫内空気は、第2導入管(72)を流れ、第2分離モジュール(61)の第2導入口(62)へ未処理庫内空気として流入する。
第2分離モジュール(61)において、第2導入口(62)を通って導入室(82)へ流入した未処理庫内空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して酸素濃度が未処理庫外空気の酸素濃度よりも高い第2庫内空気として二次側導出室(84)へ移動し、残りは酸素濃度が未処理庫外空気の酸素濃度よりも低い第1庫内空気として一次側導出室(83)へ流入する。
第2分離モジュール(61)の第2一次側導出口(63)から第2一次側管(73)へ流出した第1庫内空気は、第2一次側切換弁(76)から第2二次側管(74)へ流出し、輸送用コンテナ(1)の外部へ排出される。一方、第2分離モジュール(61)の第2二次側導出口(64)から第2二次側管(74)へ流出した第2庫内空気は、第2二次側切換弁(78)から第2二次側供給管(79)を通って供給管(120)へ流入する。
上述したように、供給管(120)には、第1分離モジュール(41)から流出した第2庫外空気(庫外空気よりも高酸素濃度:図7参照)と、第2分離モジュール(61)から流出した第2庫内空気(庫内空気よりも高酸素濃度:図7参照)とが流入する。そして、供給管(120)を流れる第2庫外空気と第2庫内空気の混合空気(酸素濃度が大気よりも高い混合空気)は、コンテナ用冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。
このとき、庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度回復動作では、大気に比べて酸素濃度の高い第2庫外空気を供給すると同時に、換気用排気管(100)を通じて荷室(5)内の庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)内の庫内空気の酸素濃度を大気相当の酸素濃度へ回復させる。
そして、庫内に設けられている酸素センサ(91)により荷室(5)内の酸素濃度を検出し、酸素濃度が目標濃度(大気相当の酸素濃度)に到達すると、酸素濃度回復運転を停止する。なお、日本の労働安全衛生法では酸素欠乏の基準値が18%未満に定められているから、目標濃度は必ずしも21%に限らず、18%以上に定めてもよい。
またコンテナ(1)の扉は、例えば酸素濃度回復運転が停止するまではロックされるように構成するとよい。一方、酸素濃度回復運転の開始時に開始スイッチをオンにしたときに扉がロックされるようにすると、酸素濃度回復運転中に誤って扉を開くような誤操作を抑制できる。
〈酸素濃度高速増加動作(酸素濃度上昇動作)〉
酸素濃度上昇動作は、酸素濃度を上昇させたい場合に、上記の酸素濃度増加動作(低速増加動作)では、図9にラインAで示すように、植物の呼吸による酸素除去と二酸化炭素発生の割合が1:1であるため、庫内の酸素濃度と二酸化炭素濃度の合計が21%のラインを超えるほど(大気中の酸素濃度を超えるほど)には酸素濃度を上昇させることはできなかったのに対して、21%を超えるまで迅速に酸素濃度を上昇させる動作である。図9から、従来は、換気を行ったり、スクラバーを用いて二酸化炭素を液中に溶かしたりして、空気中から二酸化炭素が選択的に除去されるようにしても、酸素濃度は21%までしか増加しない。
酸素濃度上昇動作では、基本的には、上記酸素濃度回復動作と同様のバルブの設定が行われ、高濃度酸素ガスの流れも上記酸素濃度回復動作と同様である。ただし、第2ポンプ(37)を停止し、第1ポンプ(36)の吐出圧力を、上記分離部(41)において、より高酸素濃度のガスが得られるように設定するとよい。
酸素濃度上昇動作の空気の流れを説明する。
第1ポンプ(36)が作動すると、輸送用コンテナ(1)の外部に存在する庫外空気が、エアフィルタ(47)と庫外側吸入管(55)を通って第1ポンプ(36)に吸い込まれる。第1ポンプ(36)から吐出された庫外空気は、第1導入管(52)を流れ、酸素分離部である第1分離モジュール(41)の第1導入口(42)へ未処理庫外空気として流入する。
第1分離モジュール(41)において、第1導入口(42)を通って導入室(82)へ流入した未処理庫外空気は、その一部がガス分離膜(85)を透過して酸素濃度が未処理庫外空気の酸素濃度よりも高い第2庫外空気(高酸素濃度ガス)として二次側導出室(84)へ移動し、残りは酸素濃度が未処理庫外空気の酸素濃度よりも低い第1庫外空気として一次側導出室(83)へ流入する。
第1分離モジュール(41)の第1一次側導出口(43)から第1一次側管(53)へ流出した第1庫外空気は、第1一次側切換弁(56)から第1二次側管(54)へ流出し、輸送用コンテナ(1)の外部へ排出される。一方、第1分離モジュール(41)の第1二次側導出口(44)から第1二次側管(54)へ流出した第2庫外空気は、第1二次側切換弁(58)から第1二次側供給管(59)を通って供給管(120)へ流入する。そして、高酸素濃度ガスが、コンテナ用冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。
このように、酸素濃度上昇動作では、大気に比べて酸素濃度の高い第2庫外空気を供給するようにしている。したがって、図10に示すように、酸素濃度を、ラインAを超える濃度まで迅速に増加させることができる。このことにより、輸送の際に庫内を高酸素濃度条件にするのが好ましい植物(例えばアスパラガス)に適した環境を作り出すことが可能になる。
〈二酸化炭素濃度上昇動作〉
二酸化炭素上昇動作は、コンテナの庫内の酸素濃度が下がりすぎた場合に、ポンプで高酸素濃度ガスを庫内へ供給すると、庫内の二酸化炭素が庫外へ排出されて庫内の二酸化炭素濃度を高濃度に維持しにくくなったり、庫内へのガスの供給にポンプを用いない構成では庫内の負圧箇所へ外気が流入しやすく、外気の二酸化炭素濃度が低いために庫内の庫内の二酸化炭素を高濃度に維持しにくくなったりするのに対して、庫内の二酸化炭素濃度を高濃度に維持するための動作である。
二酸化炭素濃度上昇動作では、基本的には、上記酸素濃度回復動作と同様のバルブの設定が行われ、高二酸化炭素濃度ガスの流れは高酸素濃度ガスの流れと同様である。ただし、ポンプユニット(35)の吐出圧力を、上記分離部(41,61)において、より高二酸化炭素濃度のガスが得られるように設定するとよい。
上記二酸化炭素濃度上昇動作の空気の流れを説明する。
第1ポンプ(36)が作動すると、輸送用コンテナ(1)の外部に存在する庫外空気が、エアフィルタ(47)と庫外側吸入管(55)を通って第1ポンプ(36)に吸い込まれる。第1ポンプ(36)から吐出された庫外空気は、第1導入管(52)を流れ、二酸化炭素分離部である第1分離モジュール(41)の第1導入口(42)へ未処理庫外空気として流入する。
第1分離モジュール(41)において、第1導入口(42)を通って導入室(82)へ流入した未処理庫外空気は、その一部がガス分離膜(85)を透過して二酸化炭素濃度が未処理庫外空気の二酸化炭素濃度よりも高い第2庫外空気(高二酸化炭素濃度ガス)として二次側導出室(84)へ移動し、残りは二酸化炭素濃度が未処理庫外空気の二酸化炭素濃度よりも低い第1庫外空気として一次側導出室(83)へ流入する。
第1分離モジュール(41)の第1一次側導出口(43)から第1一次側管(53)へ流出した第1庫外空気は、第1一次側切換弁(56)から第1二次側管(54)へ流出し、輸送用コンテナ(1)の外部へ排出される。一方、第1分離モジュール(41)の第1二次側導出口(44)から第1二次側管(54)へ流出した第2庫外空気は、第1二次側切換弁(58)から第1二次側供給管(59)を通って供給管(120)へ流入する。
第2ポンプ(37)が作動すると、輸送用コンテナ(1)の内部に存在する庫内空気が、庫内側吸入管(75)を通って第2ポンプ(37)に吸い込まれる。第2ポンプ(37)は、吸い込んだ庫内空気を加圧して吐出する。第2ポンプ(37)から吐出された庫内空気は、第2導入管(72)を流れ、二酸化炭素分離部である第2分離モジュール(61)の第2導入口(62)へ未処理庫内空気として流入する。
第2分離モジュール(61)において、第2導入口(62)を通って導入室(82)へ流入した未処理庫内空気は、その一部がガス分離膜(85)を透過して二酸化炭素濃度が未処理庫外空気の二酸化炭素濃度よりも高い第2庫内空気として二次側導出室(84)へ移動し、残りは二酸化炭素濃度が未処理庫外空気の二酸化炭素濃度よりも低い第1庫内空気として一次側導出室(83)へ流入する。
第2分離モジュール(61)の第2一次側導出口(63)から第2一次側管(73)へ流出した第1庫内空気は、第2一次側切換弁(76)から第2二次側管(74)へ流出し、輸送用コンテナ(1)の外部へ排出される。一方、第2分離モジュール(61)の第2二次側導出口(64)から第2二次側管(74)へ流出した第2庫内空気(高二酸化炭素濃度ガス)は、第2二次側切換弁(78)から第2二次側供給管(79)を通って供給管(120)へ流入する。
上述したように、供給管(120)には、第1分離モジュール(41)から流出した高二酸化炭素濃度ガスと、第2分離モジュール(61)から流出した高二酸化炭素濃度ガスとが流入する。そして、混合した高二酸化炭素濃度ガスが、コンテナ用冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。
このように、二酸化炭素濃度上昇動作では、処理前に比べて二酸化炭素濃度の高い第2庫外空気を庫内へ供給するようにしている。したがって、図11に示すように、二酸化炭素濃度をラインAを超える濃度まで迅速に増加させることができる。このことにより、輸送の際に庫内を高二酸化炭素濃度条件にするのが好ましい植物(例えばブラックベリーやストロベリー)に適した環境を作り出すことが可能になる。
なお、二酸化炭素濃度上昇動作は、第1ポンプ(36)を停止して第2ポンプ(37)のみで行ってもよい。
−実施形態の効果−
本実施形態の庫内空気調節装置(空気組成調節装置)(30)は、対象空間(5)へ供給される外気から酸素を分離する酸素分離部(41)と、上記酸素分離部(41)から上記対象空間(5)へ連通する酸素用高濃度ガス供給経路(136)を含むガス供給経路(135)と、上記酸素分離部(41)での処理前の外気よりも酸素濃度が高い高酸素濃度ガスを、上記対象空間(5)へ上記高濃度ガス供給経路(136)を通じて供給する酸素濃度上昇動作を行う制御器(110)とを備えている。また、酸素分離部(41)はガス分離膜(85)を備えている。
したがって、この実施形態では、処理前の空気が酸素分離部(41)のガス分離膜(85)を通過することにより高酸素濃度ガスが生成され、この高酸素濃度ガスが高濃度ガス供給経路(136)を通って対象空間(5)へ供給される。したがって、空気組成調節装置で組成が調整される対象空間(5)の空気の酸素濃度を大気中の酸素濃度より高濃度にすることができ、特に、図10に示すように、酸素濃度を、ラインAを超える濃度まで迅速に増加させることができる。このことにより、輸送の際に庫内を高酸素濃度条件にするのが好ましい植物(例えばアスパラガス)に適した環境を作り出すことが可能になる。
また、本実施形態では、酸素分離部(41)が、上記外気を、上記高酸素濃度ガスと、処理前よりも酸素濃度が低い低酸素濃度ガスとに分離するように構成され、上記ガス供給経路(135)が、低酸素濃度ガスを上記対象空間(5)へ供給する酸素用低濃度ガス供給経路(137)と、高酸素濃度ガスと低酸素濃度ガスの一方を選択的に上記対象空間(5)へ供給する切換器(56,58)を備え、上記制御器(110)が、上記切換器(56,58)を切り換えて上記高酸素濃度ガスまたは低酸素濃度ガスを上記対象空間(5)へ供給するように構成されている。
したがって、本実施形態によれば、上記切換器(56,58)を切り換えることにより、高酸素濃度ガスまたは低酸素濃度ガスを上記対象空間(5)へ選択的に供給することができるので、対象空間である荷室(5)の酸素濃度を上昇させる運転と酸素濃度を低減させる運転を切り換えることができる。
また、本実施形態では、対象空間(5)へ供給される被処理空気から二酸化炭素を分離する二酸化炭素分離部(41,61)と、上記二酸化炭素分離部(41,61)から上記対象空間(5)へ連通する二酸化炭素用高濃度ガス供給経路(136)とを設け、上記制御器(110)が、上記酸素濃度上昇動作に加えて、上記二酸化炭素分離部(41,61)での処理前の被処理空気よりも二酸化炭素濃度が高い高二酸化炭素濃度ガスを、上記対象空間(5)へ上記二酸化炭素用高濃度ガス供給経路(136)を通じて供給する二酸化炭素濃度上昇動作を行うことが可能に構成されている。また、上記二酸化炭素分離部(41,61)は、ガス分離膜(85)を備えている。
したがって、本実施形態によれば、処理前の空気が二酸化炭素分離部(41,61)のガス分離膜(85)を通過することにより高二酸化炭素濃度ガスが生成され、この高二酸化炭素濃度ガスが二酸化炭素用高濃度ガス供給経路(136)を通って対象空間(5)へ供給されるので、空気組成調節装置で組成が調整される対象空間(5)の空気の二酸化炭素濃度を処理前の二酸化炭素濃度より高濃度にすることができる。このことにより、図11に示すように、荷室(5)の二酸化炭素濃度を、ラインAを超える濃度まで迅速に増加させることができるので、輸送の際に庫内を高二酸化炭素濃度条件にするのが好ましい植物(例えばブラックベリーやストロベリー)に適した環境を作り出すことが可能になる。
また、本実施形態では、二酸化炭素分離部(41,61)が、上記被処理空気を、上記高二酸化炭素濃度ガスと、処理前よりも二酸化炭素濃度が低い低二酸化炭素濃度ガスとに分離するように構成され、上記ガス供給経路(135)が、低二酸化炭素濃度ガスを上記対象空間(5)へ供給する二酸化炭素用低濃度ガス供給経路(137)と、高二酸化炭素濃度ガスと低二酸化炭素濃度ガスの一方を選択的に上記対象空間(5)へ供給する切換器(76,78)を備え、上記制御器(110)が、上記切換器(76,78)を切り換えて上記高二酸化炭素濃度ガスまたは低二酸化炭素濃度ガスを上記対象空間(5)へ供給可能に構成されている。
したがって、本実施形態によれば、上記切換器(76,78)を切り換えることにより、高二酸化炭素濃度ガスまたは低二酸化炭素濃度ガスを上記対象空間(5)へ選択的に供給することができるので、対象空間である荷室(5)の二酸化炭素濃度を上昇させる運転と二酸化炭素濃度を低減させる運転を切り換えることができる。
また、本実施形態によれば、例えばコンテナ(1)の扉を開ける前に酸素濃度回復運転を行うと、大気よりも酸素濃度の高い第2庫外空気と第2庫内空気の混合空気(高酸素濃度ガス)が酸素濃度の低い上記内部空間へ供給される。したがって、換気だけを行って内部空間へ大気を導入するよりも、コンテナ(1)の内部空間における酸素濃度の上昇速度が速くなる。また、単なる換気により内部空間へ酸素濃度が約21%の大気を導入する場合は、内部空間を大気相当の酸素濃度に戻すには、内部空間の空気がほぼ全て大気と入れ替わる程度の長い時間を要するのに対して、この実施形態では、大気よりも酸素濃度が高い高酸素濃度ガスを内部空間へ導入することにより、内部空間を大気相当の酸素濃度に戻す時間を従来よりも短縮できる。
また、本実施形態によれば、輸送用コンテナ(1)の庫外空気から窒素と酸素とを分離して低酸素濃度ガスと高酸素濃度ガスを生成する第1組成調節部(40)と、輸送用コンテナ(1)の庫内空気から窒素と酸素及び二酸化炭素とを分離して低酸素濃度ガスと高酸素濃度ガスを生成する第2組成調節部(60)とにより、酸素濃度回復運転時に高酸素濃度ガスを輸送用コンテナ(1)の庫内空間へ供給するようにしているので、内部空間を大気相当の酸素濃度に戻す時間を従来よりも短縮できる構成を、各ガス組成調節部(40,60)のガス分離膜(85)を用いて容易に実現できるし、酸素濃度の回復を効率よく行える。
《実施形態2》
実施形態2の庫内空気調節装置(30)について説明する。実施形態の庫内空気調節装置(30)は、実施形態1の庫内空気調節装置(30)において、第1組成調節部(40)及び制御器(110)を変更したものであり、第2組成調節部(60)の構成は実施形態1と同様である。庫内空気調節装置(30)には、後述する第1組成調節部(40)の第1方向制御弁(232)及び第2方向制御弁(233)に加えて、第3方向制御弁(291)及び第2方向制御弁(292)が設けられている。ここでは、実施形態2の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
−第1組成調節部の構成−
本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気と第2庫外空気に分離するように構成される。本実施形態の第1組成調節部(40)は、いわゆるPSA(Pressure Swing Adsorption)法によって、未処理庫外空気を第1庫外空気と第2庫外空気に分離するように構成されており、この点で実施形態1の第1組成調節部(40)と相違する。
図12に示すように、本実施形態の第1組成調節部(40)は、ポンプユニット(35)の第1ポンプ(36)に代えて、エアポンプ(231)を備える。つまり、本実施形態の庫内空気調節装置(30)において、ポンプユニット(35)は、第2ポンプ(37)及び駆動モータ(38)を備えるが、第1ポンプ(36)を備えていない。また、本実施形態の第1組成調節部(40)は、第1方向制御弁(232)及び第2方向制御弁(233)と、第1吸着筒(234)及び第2吸着筒(235)とを備える。後述するように、各吸着筒(234,235)には、空気中の窒素を吸着する吸着剤が設けられる。
〈エアポンプ〉
エアポンプ(231)は、ユニットケース(32)の内部空間に配置される。エアポンプ(231)は、それぞれが空気を吸引して加圧して吐出する第1ポンプ機構(231a)及び第2ポンプ機構(231b)を備える。第1ポンプ機構(231a)及び第2ポンプ機構(231b)は、潤滑油を使用しないオイルレスのポンプである。加圧部である第1ポンプ機構(231a)と、減圧部である第2ポンプ機構(231b)とは、それらの両方が駆動モータ(231c)の駆動軸に接続される。第1ポンプ機構(231a)及び第2ポンプ機構(231b)のぞれぞれは、駆動モータ(231c)で回転駆動されることによって、吸込口から空気を吸引して加圧し、加圧した空気を吐出口から吐出する。
〈外気管、吐出管、フィルタユニット〉
第1ポンプ機構(231a)の吸込口には、外気通路を形成する外気管(241)の一端が接続される。外気管(241)は、ユニットケース(32)を貫通するように設けられる。ユニットケース(32)の外部に位置する外気管(241)の他端は、フィルタユニット(220)に接続される。
フィルタユニット(220)は、エアフィルタ(47)を備える。エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのフィルタである。本実施形態では、通気性と防水性を有するメンブレンフィルタが、エアフィルタ(47)として用いられる。フィルタユニット(220)は、箱状に形成された部材であり、エアフィルタ(47)を通過した空気(庫外空気)を外気管(241)へ導入する。図示しないが、フィルタユニット(220)は、庫外機器室(28)における凝縮器(13)の下流側に配置される。
第1ポンプ機構(231a)の吐出口には、吐出通路を形成する吐出管(242)の一端が接続される。吐出管(242)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。
〈吸引管、供給管〉
第2ポンプ機構(231b)の吸込口には、吸引通路を形成する吸引管(243)の一端が接続される。吸引管(243)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。
第2ポンプ機構(231b)の吐出口には、供給通路を形成する供給用接続管(244)の一端が接続される。供給用接続管(244)の他端は、供給管(120)に接続される。
供給用接続管(244)には、その一端から他端へ向かって順に、逆止弁(264)と供給側開閉弁(273)とが設けられる。逆止弁(264)は、供給用接続管(244)の一端から他端へ向かう向きの空気の流通のみを許容し、空気の逆流を防止する。供給側開閉弁(273)は、電磁弁からなる開閉弁である。
〈第1,第2方向制御弁〉
第1方向制御弁(232)及び第2方向制御弁(233)のそれぞれは、三つのポートを有する切換弁である。各方向制御弁(232,233)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態とに切り換わるように構成される。
第1方向制御弁(232)は、第1のポートが第1吸着筒(234)の一端に接続される。また、第1方向制御弁(232)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第1方向制御弁(232)は、第1吸着筒(234)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。
第2方向制御弁(233)は、第1のポートが第2吸着筒(235)の一端に接続される。また、第2方向制御弁(233)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第2方向制御弁(233)は、第2吸着筒(235)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。
〈吸着筒〉
第1吸着筒(234)及び第2吸着筒(235)のそれぞれは、両端が閉塞された円筒状の容器と、その容器に充填された吸着剤とを備える部材である。
これら吸着筒(234,235)に充填された吸着剤は、圧力が大気圧よりも高い加圧状態において窒素成分を吸着し、圧力が大気圧よりも低い減圧状態において窒素成分を脱着させる性質を有する。本実施形態では、吸着剤として、例えば、窒素分子の分子径(3.0オングストローム)よりも小さく且つ酸素分子の分子径(2.8オングストローム)よりも大きな孔径の細孔を有する多孔体のゼオライトが用いられる。
本実施形態の第1組成調節部(40)では、第1吸着筒(234)及び第2吸着筒(235)が第1分離部(41)を構成する。第1分離部(41)を構成する二つの吸着筒(234,235)は、未処理庫外空気を、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気に分離する。
〈酸素排出管〉
酸素排出通路を形成する酸素排出管(245)は、一端側で二つの分岐管に分岐しており、一方の分岐管が第1吸着筒(234)の他端に、他方の分岐管が第2吸着筒(235)にそれぞれ接続される。酸素排出管(245)の各分岐管には、逆止弁(261)が一つずつ設けられる。各逆止弁(261)は、対応する吸着筒(234,235)から流出する向きの空気の流れを許容し、逆向きの空気の流れを遮断する。
酸素排出管(245)の集合部分には、逆止弁(262)とオリフィス(263)とが設けられる。逆止弁(262)は、オリフィス(263)よりも酸素排出管(245)の他端寄りに配置される。この逆止弁(262)は、酸素排出管(245)の他端へ向かう空気の流れを許容し、逆向きの空気の流れを遮断する。
〈パージ管〉
酸素排出管(245)の各分岐管には、パージ通路を形成するパージ管(250)が接続される。パージ管(250)は、一端が第1吸着筒(234)に接続する分岐管に接続され、他端が第2吸着筒(235)に接続する分岐管に接続される。パージ管(250)の一端は、第1吸着筒(234)と逆止弁(261)の間に接続される。パージ管(250)の他端は、第2吸着筒(235)と逆止弁(261)の間に接続される。
パージ管(250)には、パージ弁(251)が設けられる。パージ弁(251)は、電磁弁からなる開閉弁である。パージ弁(251)は、第1吸着筒(234)と第2吸着筒(235)を均圧する際に開かれる。また、パージ管(250)におけるパージ弁(251)の両側には、オリフィス(252)が一つずつ設けられる。
〈排気用接続管〉
供給用接続管(244)には、排気用接続通路を形成する排気用接続管(271)が接続される。排気用接続管(271)は、一端が供給用接続管(244)に接続され、他端が酸素排出管(245)に接続される。排気用接続管(271)の一端は、供給用接続管(244)における第2ポンプ機構(231b)と逆止弁(264)の間に接続される。排気用接続管(271)の他端は、酸素排出管(245)の逆止弁(262)よりも庫外側に接続される。
排気用接続管(271)には、排気用開閉弁(272)が設けられる。排気用開閉弁(272)は、電磁弁からなる開閉弁である。排気用開閉弁(272)は、供給用接続管(244)を流れる空気を庫外へ排出する際に開かれる。
〈測定用接続管〉
供給用接続管(244)には、測定用通路を形成する測定用接続管(281)が接続される。この測定用接続管(281)は、第1組成調節部(40)をセンサユニット(90)に接続するための配管である。
測定用接続管(281)は、一端が供給用接続管(244)に接続され、他端が測定用配管(125)に接続される。測定用接続管(281)の一端は、供給用接続管(244)における逆止弁(264)と供給側開閉弁(273)の間に接続される。測定用接続管(281)の他端は、測定用配管(125)における測定用開閉弁(126)とセンサユニット(90)の間に接続される。
測定用接続管(281)には、測定用開閉弁(282)が設けられる。測定用開閉弁(282)は、電磁弁からなる開閉弁である。測定用開閉弁(282)は、供給用接続管(244)を流れる空気をセンサユニット(90)へ送る際に開かれる。
〈バイパス管〉
吐出管(242)には、バイパス通路を形成するバイパス接続管(255)が接続される。バイパス接続管(255)は、一端が吐出管(242)に接続され、他端が測定用接続管(281)に接続される。バイパス接続管(255)の一端は、吐出管(242)の分岐箇所よりも第1ポンプ機構(231a)寄りに接続される。バイパス接続管(255)の他端は、測定用接続管(281)の一端と測定用開閉弁(282)の間に接続される。このバイパス接続管(255)は、第1吸着筒(234)及び第2吸着筒(235)をバイパスさせて庫外空気を輸送用コンテナ(1)の庫内空間へ供給するための第1バイパス通路を形成する。
バイパス接続管(255)には、バイパス開閉弁(256)が設けられる。バイパス開閉弁(256)は、電磁弁からなる開閉弁である。バイパス開閉弁(256)は、バイパス接続管(255)へ流入する庫外空気の流量を変更するための第1バイパス弁機構を構成する。このバイパス開閉弁(256)は、第1ポンプ機構(231a)が吐出した庫外空気を、その組成を変更せずに荷室(5)へ供給する際に開かれる。
〈第3,第4方向制御弁〉
第3方向制御弁(291)及び第4方向制御弁(292)のそれぞれは、三つのポートを有する切換弁である。各方向制御弁(291,292)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態とに切り換わるように構成される。
合流した酸素排出管(245)の他端と排気用接続管(271)の他端には、第1排気管(301)の一端が接続される。第1排気管(301)の途中には、第3方向制御弁(291)が接続される。具体的には、第3方向制御弁(291)の第1のポートと第2のポートに第1排気管(301)が接続される。第1排気管(301)は、ユニットケース(32)を貫通するように設けられる。第1排気管(301)の他端は、輸送用コンテナ(1)の庫外空間に開口する。
第4方向制御弁(292)は、供給用接続管(244)の供給側開閉弁(273)と供給管(120)との間に設けられる。具体的には、第4方向制御弁(292)の第1のポートと第2のポートに供給用接続管(244)が接続される。供給用接続管(244)には、第4方向制御弁(292)の第2のポートと供給管(120)との間に供給用分岐接続管(302)の一端が接続される。供給用分岐接続管(302)の他端は、第3方向制御弁(291)の第3のポートに接続される。第4方向制御弁(292)の第3のポートには、第2排気管(303)の一端が接続される。第2排気管(303)の他端は、第1排気管(301)に、本体ユニット(31)のユニットケース(32)の内部で接続される。
−第1組成調節部の運転動作−
本実施形態の第1組成調節部(40)の運転動作を説明する。
本実施形態の第1組成調節部(40)は、後述する第1動作と第2動作を所定の時間(例えば、14.5秒)ずつ交互に繰り返し行うことによって、未処理庫外空気を第1庫外空気と第2庫外空気に分離する。また、本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、庫内空気調節装置(30)の酸素濃度低減動作と二酸化炭素濃度低減動作のそれぞれにおいて、未処理庫外空気を第1庫外空気と第2庫外空気に分離する動作を行う。
〈第1動作〉
図13に示すように、第1動作では、第1方向制御弁(232)が第1状態に設定され、第2方向制御弁(233)が第2状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第1吸着筒(234)に接続し、第2吸着筒(235)が第2ポンプ機構(231b)の吸込口に接続する。また、第1動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第1動作では、第1吸着筒(234)を対象とする吸着動作と、第2吸着筒(235)を対象とする脱離動作とが行われる。
第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第1吸着筒(234)へ供給する。第1吸着筒(234)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第1吸着筒(234)から流出して酸素排出管(245)を流れ、第3方向制御弁(291)を通って排出用空気として庫外空間へ排出される。
一方、第2ポンプ機構(231b)は、第2吸着筒(235)から空気を吸引する。第2吸着筒(235)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。
〈第2動作〉
図14に示すように、第2動作では、第1方向制御弁(232)が第2状態に設定され、第2方向制御弁(233)が第1状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第2吸着筒(235)に接続し、第1吸着筒(234)が第2ポンプ機構(231b)の吸込口に接続する。また、第2動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第2動作では、第1吸着筒(234)を対象とする脱離動作と、第2吸着筒(235)を対象とする吸着動作とが行われる。
第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第2吸着筒(235)へ供給する。第2吸着筒(235)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第2吸着筒(235)から流出して酸素排出管(245)を流れ、第3方向制御弁(291)を通って排出用空気として庫外空間へ排出される。
一方、第2ポンプ機構(231b)は、第1吸着筒(234)から空気を吸引する。第1吸着筒(234)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。
〈酸素濃度上昇動作〉
この実施形態2において、酸素濃度上昇動作は、第2組成調節部(60)により行われる。このとき、供給管(120)には、第2分離モジュール(61)から流出した第2庫内空気(庫内空気よりも高酸素濃度の空気)が第2二次側管と第2二次側供給管(79)から流入する。供給管(120)を流れる第2庫外空気は、コンテナ用冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度回復動作では、酸素濃度の高い第2庫内空気を荷室(5)に供給すると同時に、換気用排気管(100)を通じて荷室(5)内の庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)内の庫内空気の酸素濃度を上昇させる。
〈二酸化炭素濃度上昇動作〉
二酸化炭素濃度上昇動作では、二酸化炭素濃度上昇動作は、第2組成調節部(60)により行われる。二酸化炭素濃度上昇動作では、上記酸素濃度上昇動作と同様のバルブの設定で、第2ポンプ(37)の吐出圧力が、第2分離モジュール(61)において、より高二酸化炭素濃度のガスが得られるように設定される。
この二酸化炭素濃度上昇動作において、庫内空気が庫内側吸入管(75)を通って第2ポンプ(37)に吸い込まれて吐出され、第2分離モジュール(61)へ流入する。第2分離モジュール(61)からは、二酸化炭素濃度が未処理庫外空気の二酸化炭素濃度よりも低い第1庫内空気が第2一次側管(73)へ流出し、第2一次側切換弁(76)の破線の流路を通って第2二次側管(74)へ流出し、輸送用コンテナ(1)の外部へ排出される。
一方、第2分離モジュール(61)から第2二次側管(74)へ流出した第2庫内空気(高二酸化炭素濃度ガス)は、第2二次側切換弁(78)の破線の流路を通り、第2二次側供給管(79)を通って供給管(120)へ流入する。このように、二酸化炭素濃度上昇動作では、第2分離モジュール(61)から流出した高二酸化炭素濃度ガスが、供給管(120)からコンテナ用冷凍機(10)の二次流路(29b)を通って荷室(5)へ供給され、荷室(5)内の庫内空気の二酸化炭素濃度を上昇させ、特に小型の輸送用コンテナ(1)において二酸化炭素濃度が速く上昇する。
この実施形態2では、庫内へガスを供給するときの強制換気による二酸化炭素の排出を抑えられるので、庫内の二酸化炭素濃度が低下するのを抑制できる。
また、この実施形態では、庫内の酸素濃度の低減を吸着剤で行い、二酸化炭素の排出部にガス分離膜を用いる構成を実現できる。
《その他の実施形態》
上記各実施形態の庫内空気調節装置(30)については、次のような変形例を適用してもよい。
−第1変形例−
上記実施形態1の酸素濃度回復動作では、上記酸素濃度低減動作において第1一次側切換弁(56)、第1二次側切換弁(58)、第2一次側切換弁(76)、及び第2二次側切換弁(78)をすべて第2状態に設定することで、図7の酸素濃度回復動作(第1の酸素濃度回復動作)を行う例について説明したが、二酸化炭素低減動作において第1一次側切換弁(56)、第1二次側切換弁(58)、第2一次側切換弁(76)、及び第2二次側切換弁(78)をすべて第2状態に設定することで、図8に示す酸素濃度回復動作(第2の酸素濃度回復動作)を行うことが可能である。
また、実施形態1において図7に示す第1の酸素濃度回復動作及び図8に示す第2の酸素濃度回復動作のいずれにおいても、第2ポンプ(37)を運転し、庫内空気よりも酸素濃度の高い第2庫内空気をコンテナ(1)の庫内へ戻すようにしているが、この例では第2庫内空気の酸素濃度が庫内空気よりは高いが大気よりは低いため、第2ポンプ(37)は途中まで(例えば庫内空間の酸素濃度が18%になるまで)運転して、以降は第1ポンプのみで酸素回復動作を行うか、最初から第2ポンプ(37)を停止して第1ポンプ(36)のみで酸素回復動作を行うことも可能である。ただし、労働安全衛生法では酸素欠乏の基準値が18%未満に定められているから、この基準を満たす第2庫外空気と第2庫内空気の両方を酸素濃度回復動作の開始から終了まで用いることに問題はなく、そうすれば途中で第2ポンプ(37)を停止させる場合よりも酸素濃度の回復時間を短縮できる。
また、実施形態1の第1の酸素濃度回復動作及び第2の酸素濃度回復動作のいずれの場合も、第2庫外空気と第2庫内空気のうちの少なくとも第2庫外空気をコンテナ(1)の庫内へ供給するのと同時に換気を実施し、庫内空間を大気相当の酸素濃度に近づけるようにしてもよい。このように酸素濃度回復運転をするときに同時に換気も行って、内部空間へ供給する空気の一部に大気を混ぜることにより、すべてをガス組成調節部(40,60)で生成したガスにする場合よりも省エネルギ化が可能になる。
なお、上記実施形態1や第1変形例で酸素濃度回復動作に用いている高酸素濃度ガスの酸素濃度は一例であり、第1調節弁(46)や第2調節弁(66)の開度を調節すればガス分離膜(85)を通る庫外空気や庫内空気の圧力を調節して分離性能を調整できるので、例えばより酸素濃度が高い高酸素濃度ガス生成して庫内空間へ供給し、酸素濃度回復動作の運転時間をさらに短縮するようにしてもよい。
−第2変形例−
実施形態1の庫内空気調節装置(30)において、第1分離モジュール(41)のガス分離膜(85)と第2分離モジュール(61)のガス分離膜(85)とは、それぞれの特性が互いに異なっていてもよい。
−第3変形例−
実施形態1の庫内空気調節装置(30)において、第1バイパス弁(50)は、第1分離モジュール(41)へ流入する未処理庫外空気の流量と、第1バイパス管(51)へ流入する未処理庫外空気の流量の割合を、多段階に又は連続的に変更できるように構成されていてもよい。また、第2バイパス弁(70)は、第2分離モジュール(61)へ流入する未処理庫内空気の流量と、第2バイパス管(71)へ流入する未処理庫内空気の流量の割合を、多段階に又は連続的に変更できるように構成されていてもよい。
−第4変形例−
実施形態1の庫内空気調節装置(30)では、第1ポンプ(36)と第2ポンプ(37)のそれぞれに駆動モータが連結されていてもよい。この変形例では、第1ポンプ(36)と第2ポンプ(37)の一方を作動させて他方を休止させることが可能となる。
−第5変形例−
実施形態1の庫内空気調節装置(30)において、第1組成調節部(40)と第2組成調節部(60)のそれぞれは、いわゆるPSA(Pressure Swing Adsorption)法によって、吸い込んだ空気を互いに組成が異なる二種類の空気に分離するように構成されていてもよい。実施形態2は、第2組成調節部(60)にPSA法の構成を用いた例であるが、第1組成調節部(40)と第2組成調節部(60)のそれぞれにPSA法を用いる構成では、組成調節部(40,60)は、吸い込んだ空気に含まれる窒素を吸着剤に吸着させることによって、窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い空気を生成する工程と、吸着剤から窒素を脱離させて窒素濃度が高くて酸素濃度及び二酸化炭素濃度が低い空気を生成する工程とを交互に繰り返し行う。
−第6変形例−
上記各実施形態の庫内空気調節装置(30)は、定置型の冷蔵庫または冷凍庫に設けられてもよい。また、上記各実施形態の庫内空気調節装置(30)は、トラックや鉄道などで輸送される陸上輸送用の冷蔵・冷凍コンテナに設けられていてもよい。また、上記各実施形態の庫内空気調節装置(30)は、荷室を形成する箱体が車台と一体になった冷蔵・冷凍トラックに設けられていてもよい。さらに、上記実施形態では庫内空気調節装置を説明したが、本開示は、対象空間の空気組成を調節する空気組成調節装置であれば、適用対象はコンテナ等の庫内に限定されない。
以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能である。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
以上説明したように、本開示は、庫内空気調節装置について有用である。
5 荷室(対象空間)
30 空気組成調節装置
41 第1分離モジュール(酸素分離部、二酸化炭素分離部)
56 第1一次側切換弁(切換器)
58 第1二次側切換弁(切換器)
61 第1分離モジュール(二酸化炭素分離部)
76 第2一次側切換弁(切換器)
78 第2二次側切換弁(切換器)
85 ガス分離膜
110 制御器
136 高濃度ガス供給経路
137 低濃度ガス供給経路

Claims (6)

  1. 対象空間(5)の空気の組成を調節する空気組成調節装置であって、
    対象空間(5)へ供給される被処理空気から酸素を分離する酸素分離部(41,61)と、
    上記酸素分離部(41,61)から上記対象空間(5)へ連通する酸素用高濃度ガス供給経路(136)を含むガス供給経路(135)と、
    吸い込んだ空気を加圧して吐出するポンプ(36,37)と、
    酸素濃度増加動作と酸素濃度上昇動作とを行う制御器(110)と、を備え、
    上記酸素濃度増加動作は、上記ポンプ(36,37)により加圧された庫外空気を、上記酸素分離部(41,61)をバイパスして上記対象空間(5)へ供給する動作であり、
    上記酸素濃度上昇動作は、上記ポンプ(36,37)により加圧された庫外空気から上記酸素分離部(41,61)での処理前よりも酸素濃度が高い高酸素濃度ガスを上記酸素分離部(41,61)で生成し、その高酸素濃度ガスを上記対象空間(5)へ上記酸素用高濃度ガス供給経路(136)を通じて供給する動作であり、
    酸素濃度上昇動作は、酸素濃度を上記酸素濃度増加動作よりも速く上昇させるために行われる動作である
    ことを特徴とする空気組成調節装置。
  2. 請求項1において、
    上記酸素分離部(41,61)は、上記被処理空気を、上記高酸素濃度ガスと、処理前よりも酸素濃度が低い低酸素濃度ガスとに分離するように構成され、
    上記ガス供給経路(135)は、低酸素濃度ガスを上記対象空間(5)へ供給する酸素用低濃度ガス供給経路(137)と、高酸素濃度ガスと低酸素濃度ガスの一方を選択的に上記対象空間(5)へ供給する切換器(56,58)を備え、
    上記制御器(110)は、上記切換器(56,58)を切り換えて上記高酸素濃度ガスまたは低酸素濃度ガスを上記対象空間(5)へ供給するように構成されていることを特徴とする空気組成調節装置。
  3. 請求項1または2において、
    上記酸素分離部(41,61)は、被処理空気から酸素を分離する分離膜(85)を備えていることを特徴とする空気組成調節装置。
  4. 請求項1から3の何れか1つにおいて、
    さらに、対象空間(5)へ供給される被処理空気から二酸化炭素を分離する二酸化炭素分離部(41,61)と、上記二酸化炭素分離部(41,61)から上記対象空間(5)へ連通する二酸化炭素用高濃度ガス供給経路(136)と、を備え、
    上記制御器(110)は、上記酸素濃度上昇動作に加えて、上記二酸化炭素分離部(41,61)での処理前よりも二酸化炭素濃度が高い高二酸化炭素濃度ガスを上記二酸化炭素分離部(41,61)で被処理空気から生成し、その高二酸化炭素濃度ガスを上記対象空間(5)へ上記二酸化炭素用高濃度ガス供給経路(136)を通じて供給する二酸化炭素濃度上昇動作を行うことが可能に構成されていることを特徴とする空気組成調節装置。
  5. 請求項4において、
    上記二酸化炭素分離部(41,61)は、上記被処理空気を、上記高二酸化炭素濃度ガスと、処理前よりも二酸化炭素濃度が低い低二酸化炭素濃度ガスとに分離するように構成され、
    上記ガス供給経路(135)は、低二酸化炭素濃度ガスを上記対象空間(5)へ供給する二酸化炭素用低濃度ガス供給経路(137)と、高二酸化炭素濃度ガスと低二酸化炭素濃度ガスの一方を選択的に上記対象空間(5)へ供給する切換器(76,78)を備え、
    上記制御器(110)は、上記切換器(76,78)を切り換えて上記高二酸化炭素濃度ガスまたは低二酸化炭素濃度ガスを上記対象空間(5)へ供給可能に構成されていることを特徴とする空気組成調節装置。
  6. 請求項3において、
    さらに、被処理空気から窒素と酸素及び二酸化炭素とを分離し、処理前よりも窒素濃度が高くて酸素濃度及び二酸化炭素濃度が低い低酸素濃度ガスと、処理前よりも窒素濃度が低くて酸素濃度及び二酸化炭素濃度が高い高酸素濃度ガスとを生成可能な吸着剤が設けられた吸着部(234,235)を備えていることを特徴とする空気組成調節装置。
JP2020081229A 2017-09-29 2020-05-01 空気組成調節装置 Active JP6958669B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021078905A JP7239849B2 (ja) 2017-09-29 2021-05-07 空気組成調節装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017190145 2017-09-29
JP2017190145 2017-09-29
JP2018037288 2018-03-02
JP2018037288 2018-03-02
JP2018181722A JP2019150010A (ja) 2017-09-29 2018-09-27 空気組成調節装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018181722A Division JP2019150010A (ja) 2017-09-29 2018-09-27 空気組成調節装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021078905A Division JP7239849B2 (ja) 2017-09-29 2021-05-07 空気組成調節装置

Publications (3)

Publication Number Publication Date
JP2020128862A JP2020128862A (ja) 2020-08-27
JP2020128862A5 JP2020128862A5 (ja) 2020-11-12
JP6958669B2 true JP6958669B2 (ja) 2021-11-02

Family

ID=65903590

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018181722A Pending JP2019150010A (ja) 2017-09-29 2018-09-27 空気組成調節装置
JP2020081229A Active JP6958669B2 (ja) 2017-09-29 2020-05-01 空気組成調節装置
JP2021078905A Active JP7239849B2 (ja) 2017-09-29 2021-05-07 空気組成調節装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018181722A Pending JP2019150010A (ja) 2017-09-29 2018-09-27 空気組成調節装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021078905A Active JP7239849B2 (ja) 2017-09-29 2021-05-07 空気組成調節装置

Country Status (6)

Country Link
US (2) US11471826B2 (ja)
EP (2) EP3677848A4 (ja)
JP (3) JP2019150010A (ja)
CN (2) CN113218023B (ja)
SG (2) SG10202105117YA (ja)
WO (1) WO2019065885A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722710B1 (en) * 2019-04-12 2024-10-02 Carrier Corporation Refrigeration unit with atmosphere control system
WO2020263622A1 (en) * 2019-06-28 2020-12-30 Carrier Corporation Refrigeration unit with atmosphere control system access panel
EP3985335A4 (en) * 2019-07-10 2023-07-19 Daikin Industries, Ltd. INTERIOR AIR CONDITIONING
JP7089208B1 (ja) * 2021-04-20 2022-06-22 ダイキン工業株式会社 庫内空気調節装置、冷凍装置、及び輸送用コンテナ
CN113203144B (zh) * 2021-04-27 2022-04-01 深圳宏一建设集团有限公司 实验室气体在线监测与智能控制系统
JP7339567B2 (ja) * 2022-01-31 2023-09-06 ダイキン工業株式会社 庫内空気調節装置、冷凍装置、および輸送用コンテナ
JP7485974B2 (ja) * 2022-07-21 2024-05-17 ダイキン工業株式会社 低酸素空気供給システム

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT384668B (de) * 1985-11-28 1987-12-28 Welz Franz Transporte Transportabler kuehlcontainer
JP2858130B2 (ja) 1989-07-20 1999-02-17 鈴木総業株式会社 空気組成調整可能な冷却収納体
US5230719A (en) * 1990-05-15 1993-07-27 Erling Berner Dehumidification apparatus
US5167243A (en) 1991-02-28 1992-12-01 Lorillard Tobacco Company Disinfestation system for agricultural products
FR2678143B1 (fr) 1991-06-28 1993-09-03 Air Liquide Procede et dispositif d'etablissement d'une atmosphere controlee dans des compartiments d'une enceinte de conservation de produits alimentaires vegetaux frais.
JP3087358B2 (ja) 1991-07-25 2000-09-11 松下電器産業株式会社 ロジカルコムフィルター回路の切替回路
JPH0692408A (ja) 1992-09-16 1994-04-05 Tokico Ltd ガス濃度制御装置
US5457963A (en) * 1994-06-15 1995-10-17 Carrier Corporation Controlled atmosphere system for a refrigerated container
US5649995A (en) * 1995-03-09 1997-07-22 Nitec, Inc. Nitrogen generation control systems and methods for controlling oxygen content in containers for perishable goods
GB9924866D0 (en) * 1999-10-20 1999-12-22 Boc Group Plc Atmosphere control for perishable produce
JP2002263433A (ja) * 2001-03-08 2002-09-17 Matsushita Electric Ind Co Ltd 保存庫内の気体組成の制御方法と保存庫
JP2003287360A (ja) * 2002-03-27 2003-10-10 Toshiba Corp 貯蔵庫
US6866701B2 (en) 2002-11-26 2005-03-15 Udi Meirav Oxygen enrichment of indoor human environments
JP2005016875A (ja) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd 保存庫
JP2006166831A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd 酸素濃度可変保存庫
JP4702773B2 (ja) 2004-12-28 2011-06-15 クリナップ株式会社 水栓装置およびそのシャワーヘッド先端部
US20070065546A1 (en) 2005-09-22 2007-03-22 Gert Jorgensen Controlled atmosphere in a container
JP2007215433A (ja) * 2006-02-15 2007-08-30 Sanden Corp 貯蔵庫
US8177883B2 (en) 2006-08-09 2012-05-15 Maersk Container Industri A/S Container with controlled atmosphere
US20080034964A1 (en) 2006-08-09 2008-02-14 Schmidt Richard D Gas permeable membrane
US20080202262A1 (en) 2006-08-09 2008-08-28 Richard Schmidt Gas permeable membrane
JP2009174725A (ja) 2008-01-22 2009-08-06 Hitachi Appliances Inc 冷蔵庫
JP2010246475A (ja) 2009-04-16 2010-11-04 Sharp Corp 食品保存庫
JP2012236134A (ja) 2011-05-11 2012-12-06 Hitachi Zosen Corp 二酸化炭素分離システム
JP2015072103A (ja) * 2013-10-03 2015-04-16 ダイキン工業株式会社 コンテナ用冷凍装置
CN103615763B (zh) * 2013-12-13 2016-03-30 韩福来 增进空气质量的空气调节装置
JP5804215B1 (ja) 2014-03-31 2015-11-04 ダイキン工業株式会社 コンテナ用冷凍装置
WO2015191878A1 (en) 2014-06-11 2015-12-17 Thermo King Corporation Atmosphere control in transport unit
JP6459355B2 (ja) * 2014-09-30 2019-01-30 ダイキン工業株式会社 庫内空気調節装置及びそれを備えたコンテナ用冷凍装置
WO2016205542A1 (en) 2015-06-16 2016-12-22 Van Someren Greve Stephen K Systems and methods for preservation of perishable substances
JP6137249B2 (ja) 2015-08-28 2017-05-31 ダイキン工業株式会社 庫内空気調節装置及びそれを備えたコンテナ用冷凍装置
JP2017125670A (ja) * 2016-01-15 2017-07-20 ダイキン工業株式会社 ガス供給装置
EP3677849A4 (en) * 2017-09-29 2022-03-30 Daikin Industries, Ltd. AIR COMPOSITION ADJUSTER
WO2019065879A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 庫内空気調節装置
JP6687091B1 (ja) * 2018-11-14 2020-04-22 ダイキン工業株式会社 庫内空気調節装置

Also Published As

Publication number Publication date
US20200254384A1 (en) 2020-08-13
JP2021113677A (ja) 2021-08-05
SG11202002849SA (en) 2020-04-29
JP7239849B2 (ja) 2023-03-15
EP3919826A2 (en) 2021-12-08
JP2019150010A (ja) 2019-09-12
CN113218023B (zh) 2023-05-23
SG10202105117YA (en) 2021-06-29
US11666856B2 (en) 2023-06-06
CN113218023A (zh) 2021-08-06
EP3677848A1 (en) 2020-07-08
WO2019065885A1 (ja) 2019-04-04
EP3677848A4 (en) 2022-03-30
JP2020128862A (ja) 2020-08-27
CN111133254A (zh) 2020-05-08
US20210268431A1 (en) 2021-09-02
EP3919826A3 (en) 2022-07-27
US11471826B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
JP6958669B2 (ja) 空気組成調節装置
JP6930564B2 (ja) 庫内空気調節装置
JP6590058B2 (ja) 空気組成調節装置
JP2020128862A5 (ja)
JP6665909B2 (ja) 庫内空気調節装置
JP6687091B1 (ja) 庫内空気調節装置
JP6662427B2 (ja) 庫内空気調節装置
JP7185132B2 (ja) 庫内空気調節装置
JP7339567B2 (ja) 庫内空気調節装置、冷凍装置、および輸送用コンテナ
JP6838618B2 (ja) 庫内空気調節装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6958669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151