JP2020074756A - 庫内空気調節装置 - Google Patents

庫内空気調節装置 Download PDF

Info

Publication number
JP2020074756A
JP2020074756A JP2019177856A JP2019177856A JP2020074756A JP 2020074756 A JP2020074756 A JP 2020074756A JP 2019177856 A JP2019177856 A JP 2019177856A JP 2019177856 A JP2019177856 A JP 2019177856A JP 2020074756 A JP2020074756 A JP 2020074756A
Authority
JP
Japan
Prior art keywords
air
outside
pipe
outside air
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019177856A
Other languages
English (en)
Other versions
JP6930564B2 (ja
Inventor
紀考 亀井
Noritaka Kamei
紀考 亀井
直宏 田中
Naohiro Tanaka
直宏 田中
秀徳 松井
Hidenori Matsui
秀徳 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JP2020074756A publication Critical patent/JP2020074756A/ja
Application granted granted Critical
Publication of JP6930564B2 publication Critical patent/JP6930564B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/144Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B7/148Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F25/00Storing agricultural or horticultural produce; Hanging-up harvested fruit
    • A01F25/14Containers specially adapted for storing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/04Freezing; Subsequent thawing; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification

Abstract

【課題】収納庫の庫内空気の組成を適切に制御できる庫内空気調節装置を提供する。【解決手段】庫内空気調節装置(30)は、第1組成調節部(40)と第2組成調節部(60)とを備える。第1組成調節部(40)は、庫外空気から庫外空気とは組成が異なる供給用空気を分離し、この供給用空気を輸送用コンテナ(1)の内部へ供給する。第2組成調節部(60)は、庫内空気から庫内空気とは組成が異なる排出用空気を分離し、この排出用空気を輸送用コンテナ(1)の外部へ排出する。【選択図】図3

Description

本発明は、収納庫の庫内空気の組成を調節する庫内空気調節装置に関するものである。
農産物等の鮮度低下の抑制を目的として、農産物等を収容する倉庫や輸送用コンテナの庫内空気の組成(例えば、庫内空気の酸素濃度や二酸化炭素濃度)を調節する庫内空気調節装置が知られている。
特許文献1には、庫内空気の組成を調節する装置を持ったコンテナが開示されている。この特許文献1の装置は、二酸化炭素の透過性が酸素の透過性よりも高いガス分離膜を用いて、庫内空気の組成を調節する。具体的に、この装置は、ガス分離膜の一方の表面に庫内空気を接触させ、ガス分離膜の他方の表面に二酸化炭素を殆ど含まない外気を接触させることによって、農産物等の呼吸によって生じた二酸化炭素をコンテナの外部へ排出する(特許文献1の明細書20ページ14行〜21ページ2行を参照)。また、この装置は、庫内の酸素濃度が低下すると、コンテナの庫内と庫外を連通させる通路を開き、この通路を通じて外気を庫内へ流入させる(特許文献1の明細書20ページ5〜12行を参照)。
国際公開第2007/033668号
ここで、コンテナに収容される農産物等の貨物の種類によって、その貯蔵に適した庫内空気の組成は様々である。一方、上述したように、特許文献1の装置は、庫内空気に含まれる二酸化炭素を庫外へ排出し、コンテナの庫内と庫外を連通させる通路を通じて庫内へ外気を導入する。つまり、特許文献1の装置は、大気と同じ組成の空気(即ち、外気)を庫内へ供給する。このため、庫内空気の組成を、コンテナに収容される農産物等の貨物の貯蔵に適した組成に調節するのが困難な場合があった。
本発明は、かかる点に鑑みてなされたものであり、その目的は、収納庫の庫内空気の組成を適切に制御できる庫内空気調節装置を提供することにある。
第1の発明は、収納庫(1)の内部の庫内空気の組成を調節する庫内空気調節装置を対象とする。そして、上記収納庫(1)の外部の庫外空気から該庫外空気とは組成が異なる供給用空気を分離する第1分離部(41)を有し、上記供給用空気を上記収納庫(1)の内部へ供給する第1組成調節部(40)と、上記収納庫(1)の内部の庫内空気から該庫内空気とは組成が異なる排出用空気を分離する第2分離部(61)を有し、上記排出用空気を上記収納庫(1)の外部へ排出する第2組成調節部(60)とを備えるものである。
第1の発明の庫内空気調節装置(30)は、第1組成調節部(40)が庫外空気とは組成が異なる供給用空気を収納庫(1)の内部へ供給し、第2組成調節部(60)が庫内空気とは組成が異なる排出用空気を収納庫(1)の外部へ排出することによって、収納庫(1)内の空気の組成を調節する。また、この発明では、第2組成調節部(60)が庫内空気から分離した排出用空気を収納庫(1)の外部へ排出する一方、第1組成調節部(40)が庫外空気から分離した供給用空気を収納庫(1)の内部へ供給する。
第2の発明は、上記第1の発明において、上記第1組成調節部(40)は、上記収納庫(1)の内部の気圧が、該収納庫(1)の外部の気圧と異なるように上記供給用空気を上記収納庫(1)の内部へ供給するものである。
第2の発明では、収納庫(1)の内部の気圧が、収納庫(1)の外部の気圧と異なる値となる。つまり、この発明では、収納庫(1)の内部の気圧が調節される。
第3の発明は、上記第1の発明において、上記第1組成調節部(40)は、上記収納庫(1)の内部の気圧が陽圧となるように上記供給用空気を上記収納庫(1)の内部へ供給するものである。
第3の発明において、第1組成調節部(40)は、収納庫(1)の内部の気圧が陽圧となるように、供給用空気を収納庫(1)の内部へ供給する。空気は、気圧の高い所から気圧の低いところへ向かって流れる。従って、収納庫(1)の気密性が低い場合でも、収納庫(1)の内部の気圧が陽圧に保たれていれば、収納庫(1)の隙間から庫外空気が収納庫(1)の内部へ侵入することはない。
第4の発明は、上記第3の発明において、上記第1組成調節部(40)が上記収納庫(1)の内部へ供給する上記供給用空気の流量が、上記第2組成調節部(60)が上記収納庫(1)の外部へ排出する上記排出用空気の流量よりも多いものである。
第4の発明では、第1組成調節部(40)が収納庫(1)の内部へ供給する供給用空気の流量が、第2組成調節部(60)が収納庫(1)の外部へ排出する排出用空気の流量を上回るため、収納庫(1)内の気圧が陽圧となる。
第5の発明は、上記第1〜第4のいずれか一つの発明において、上記第2組成調節部(60)の上記第2分離部(61)が、上記収納庫(1)の内部の庫内空気から該庫内空気よりも二酸化炭素濃度が高い上記排出用空気を分離することによって、上記収納庫(1)の庫内空気の二酸化炭素濃度を低下させる二酸化炭素濃度低減動作を行うものである。
第5の発明では、庫内空気調節装置(30)が二酸化炭素濃度低減動作を行う。二酸化炭素濃度低減動作では、収納庫(1)の内部の庫内空気よりも二酸化炭素の濃度が高い排出用空気が庫内空気から分離され、この排出用空気が収納庫(1)の外部へ排出される。その結果、収納庫(1)の内部に存在する二酸化炭素の量が減少し、庫内空気の二酸化炭素の濃度が低下する。二酸化炭素濃度低減動作は、例えば、収納庫(1)に収納された植物が呼吸することによって庫内空気の二酸化炭素の濃度が上昇した場合に、庫内空気の二酸化炭素の濃度を引き下げるために行われる。
第6の発明は、上記第1〜第4のいずれか一つの発明において、上記第1組成調節部(40)の上記第1分離部(41)が、上記収納庫(1)の外部の庫外空気から該庫外空気よりも酸素濃度が低い上記供給用空気を分離し、上記第2組成調節部(60)の上記第2分離部(61)が、上記庫内空気から該庫内空気よりも酸素濃度が高い上記排出用空気を分離することによって、上記収納庫(1)の庫内空気の酸素濃度を低下させる酸素濃度低減動作を行うものである。
第6の発明では、庫内空気調節装置(30)が酸素濃度低減動作を行う。酸素濃度低減動作では、庫外空気よりも酸素の濃度が低い供給用空気が庫外空気から分離され、この供給用空気が収納庫(1)の内部へ供給されると共に、庫内空気よりも二酸化炭素の濃度が高い排出用空気が庫内空気から分離され、この排出用空気が収納庫(1)の外部へ排出される。その結果、収納庫(1)の内部に存在する酸素の量が減少し、庫内空気の酸素の濃度が低下する。酸素濃度低減動作は、例えば、庫内空気の酸素の濃度を長期間に亘る植物の保存に適した値に引き下げるために行われる。
第7の発明は、上記第6の発明において、上記収納庫(1)の庫内空気の酸素濃度を計測する酸素センサ(91)と、上記酸素濃度低減動作中における上記酸素センサ(91)の計測値の変化に基づいて上記収納庫(1)内の気圧が陽圧か否かを判断し、上記収納庫(1)内の気圧が陽圧でないと判断すると上記第1組成調節部(40)が上記収納庫(1)の内部へ供給する供給用空気の流量を増やすための制御動作を行う制御器(110)とを備えるものである。
ここで、収納庫(1)内の気圧が陽圧であれば、収納庫(1)の隙間を通って庫外空気が収納庫(1)の内部へ侵入することは無く、酸素濃度低減動作中は庫内空気の酸素濃度が次第に低下する。一方、収納庫(1)内の気圧が陰圧であれば、収納庫(1)の隙間を通って庫外空気が収納庫(1)の内部へ侵入するため、酸素濃度低減動作中であっても、庫内の酸素濃度が僅かしか低下せず、あるいは庫内の酸素濃度が上昇する。
そこで、第7の発明の制御器(110)は、酸素濃度低減動作中における酸素センサ(91)の計測値の変化に基づいて収納庫(1)内の気圧が陽圧か否かを判断する。この制御器(110)は、収納庫(1)内の気圧が陽圧でないと判断すると、第1組成調節部(40)が収納庫(1)の内部へ供給する供給用空気の流量を増やすための制御動作を行う。そして、供給用空気の流量が増加して排出用空気の流量を上回ると、収納庫(1)内の気圧が上昇して陽圧となる。
第8の発明は、第1〜第7のいずれか一つの発明において、上記収納庫(1)の内部と外部を連通させるための換気用排気通路(100)と、上記換気用排気通路(100)に設けられた換気用排気弁(101)とを備えるものである。
第8の発明において、換気用排気弁(101)が開いた状態では、換気用排気通路(100)を介して収納庫(1)の内部と外部が連通する。収納庫(1)内の気圧が陽圧である状態で換気用排気弁(101)を開くと、収納庫(1)の内部の庫内空気が換気用排気通路(100)を通って収納庫(1)の外部へ流出する。
第9の発明は、第1〜第8のいずれか一つの発明において、上記第1分離部(41)は、上記収納庫(1)の外部から導入された庫外空気である未処理庫外空気を、互いに組成が異なる第1庫外空気と第2庫外空気に分離するように構成され、上記第1組成調節部(40)は、上記第1庫外空気と上記第2庫外空気の一方を上記供給用空気として上記収納庫(1)の内部へ供給し、他方を上記収納庫(1)の外部へ排出する一方、上記第2分離部(61)は、上記収納庫(1)の内部から導入された庫内空気である未処理庫内空気を、互いに組成が異なる第1庫内空気と第2庫内空気に分離するように構成され、上記第2組成調節部(60)は、上記第1庫内空気と上記第2庫内空気の一方を上記収納庫(1)の内部へ供給し、他方を上記排出用空気として上記収納庫(1)の外部へ排出するものである。
第9の発明において、第1分離部(41)は、未処理庫外空気を第1庫外空気と第2庫外空気に分離する。第1組成調節部(40)は、互いに組成が異なる第1庫外空気と第2庫外空気の一方を供給用空気として収納庫(1)の内部へ供給し、他方を収納庫(1)の外部へ排出する。また、第2分離部(61)は、未処理庫内空気を第1庫内空気と第2庫内空気に分離する。第2組成調節部(60)は、互いに組成が異なる第1庫内空気と第2庫内空気の一方を収納庫(1)の内部へ供給し、他方を排出用空気として収納庫(1)の外部へ排出する。
第10の発明は、上記第9の発明において、上記第1分離部(41)は、上記未処理庫外空気を、該未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、上記未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気に分離するように構成され、上記第2分離部(61)は、上記未処理庫内空気を、該未処理庫内空気よりも窒素濃度が高くて酸素濃度が低い第1庫内空気と、上記未処理庫内空気よりも窒素濃度が低くて酸素濃度が高い第2庫内空気に分離するように構成されるものである。
第10の発明において、第1組成調節部(40)の第1分離部(41)は、収納庫(1)の外部から導入された庫外空気である未処理庫外空気を、未処理庫外空気に比べて窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気に比べて窒素濃度が低くて酸素濃度が高い第2庫外空気に分離する。一方、第2組成調節部(60)の第2分離部(61)は、収納庫(1)の内部から導入された庫内空気である未処理庫内空気を、未処理庫内空気に比べて窒素濃度が高くて酸素濃度が低い第1庫内空気と、未処理庫内空気に比べて窒素濃度が低くて酸素濃度が高い第2庫内空気に分離する。
第11の発明は、上記第9の発明において、上記第1分離部(41)と上記第2分離部(61)のそれぞれは、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いガス分離膜(85)を有し、上記第1分離部(41)は、上記未処理庫外空気を上記ガス分離膜(85)と接触させ、上記ガス分離膜(85)を透過しなかった空気を上記第1庫外空気とし、上記ガス分離膜(85)を透過した空気を上記第2庫外空気とするように構成され、上記第2分離部(61)は、上記未処理庫内空気を上記ガス分離膜(85)と接触させ、上記ガス分離膜(85)を透過しなかった空気を上記第1庫内空気とし、上記ガス分離膜(85)を透過した空気を上記第2庫内空気とするように構成されるものである。
第11の発明では、第1分離部(41)と第2分離部(61)のそれぞれにガス分離膜(85)が設けられる。第1分離部(41)において、ガス分離膜(85)を透過しなかった第1庫外空気は、未処理庫外空気に比べて窒素濃度が高くて酸素濃度が低くなり、ガス分離膜(85)を透過した第2庫外空気は、未処理庫外空気に比べて窒素濃度が低くて酸素濃度が高くなる。第2分離部(61)において、ガス分離膜(85)を透過しなかった第1庫内空気は、未処理庫内空気に比べて窒素濃度が高くて酸素濃度と二酸化炭素濃度が低くなり、ガス分離膜(85)を透過した第2庫内空気は、未処理庫内空気に比べて窒素濃度が低くて酸素濃度と二酸化炭素濃度が高くなる。
第12の発明は、上記第11の発明において、上記第1組成調節部(40)は、上記未処理庫外空気を加圧して上記第1分離部(41)へ供給する第1ポンプ(36)を備えるものである。
第12の発明の第1組成調節部(40)では、第1ポンプ(36)によって加圧された未処理庫外空気が、第1分離部(41)へ供給されて第1庫外空気と第2庫外空気に分離される。
第13の発明は、上記第12の発明において、上記第1組成調節部(40)は、上記第1庫外空気の流れる配管に設けられた開度可変の第1弁機構(46)を備えるものである。
第13の発明の第1組成調節部(40)では、第1庫外空気の流れる配管に第1弁機構(46)が設けられる。第1弁機構(46)の開度を変更すると、第1弁機構(46)の上流側における第1庫外空気の圧力が変化する。第1庫外空気は、第1分離部(41)のガス分離膜(85)を透過しなかった空気である。このため、第1弁機構(46)の上流側における第1庫外空気の圧力が変化すると、それに伴って第1加圧ポンプが第1分離部(41)へ供給する未処理庫外空気の圧力も変化する。一般に、ガス分離膜(85)へ供給される空気の圧力が変化すると、空気の各成分の透過率が変化する。このため、第1弁機構(46)の開度を変更すると、第1分離部(41)へ供給される未処理庫外空気の圧力が変化し、第1庫外空気と第2庫外空気の組成(例えば、窒素濃度と酸素濃度)と流量とが変化する。
第14の発明は、第11〜第13のいずれか一つの発明において、上記第2組成調節部(60)は、上記未処理庫内空気を加圧して上記第2分離部(61)へ供給する第2ポンプ(37)を備えるものである。
第14の発明の第2組成調節部(60)では、第2ポンプ(37)によって加圧された未処理庫内空気が、第2分離部(61)へ供給されて第1庫内空気と第2庫内空気に分離される。
第15の発明は、上記第14の発明において、上記第2組成調節部(60)は、上記第1庫内空気の流れる配管に設けられた開度可変の第2弁機構(66)を備えるものである。
第15の発明の第2組成調節部(60)では、第1庫内空気の流れる配管に第2弁機構(66)が設けられる。第2弁機構(66)の開度を変更すると、第2弁機構(66)の上流側における第1庫内空気の圧力が変化する。第1庫内空気は、第2分離部(61)のガス分離膜(85)を透過しなかった空気である。このため、第2弁機構(66)の上流側における第1庫内空気の圧力が変化すると、それに伴って第2加圧ポンプが第2分離部(61)へ供給する未処理庫内空気の圧力も変化する。一般に、ガス分離膜(85)へ供給される空気の圧力が変化すると、空気の各成分の透過率が変化する。このため、第2弁機構(66)の開度を変更すると、第2分離部(61)へ供給される未処理庫内空気の圧力が変化し、第1庫内空気と第2庫内空気の組成(例えば、窒素濃度と酸素濃度と二酸化炭素濃度)と流量とが変化する。
第16の発明は、上記第9の発明において、上記第1分離部(41)は、窒素を吸着する吸着剤が設けられた吸着部(234,235)を有し、上記吸着部(234,235)に供給された上記未処理庫外空気に含まれる窒素を上記吸着部(234,235)の上記吸着剤に吸着させることによって上記第1庫外空気を生成する吸着動作と、上記吸着部(234,235)の上記吸着剤から窒素を脱離させることによって上記第2庫外空気を生成する脱離動作とを行うように構成され、上記第2分離部(61)は、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いガス分離膜(85)を有し、上記未処理庫内空気を上記ガス分離膜(85)と接触させ、上記ガス分離膜(85)を透過しなかった空気を上記第1庫内空気とし、上記ガス分離膜(85)を透過した空気を上記第2庫内空気とするように構成されるものである。
第16の発明では、第1分離部(41)に吸着部(234,235)が設けられる。この発明の第1分離部(41)は、吸着動作と脱離動作とを行う。吸着動作において、吸着部(234,235)に供給された未処理庫外空気は、吸着剤に窒素を奪われて第2庫外空気となる。第2庫外空気は、未処理庫外空気に比べて窒素濃度が低くて酸素濃度が高い。一方、脱離動作において、吸着部(234,235)では、吸着動作中に吸着剤に吸着された窒素が、吸着剤から脱離する。その結果、吸着部(234,235)では、処理庫外空気に比べて窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。
また、第16の発明では、第2分離部(61)にガス分離膜(85)が設けられる。第2分離部(61)において、ガス分離膜(85)を透過しなかった第1庫内空気は、未処理庫内空気に比べて窒素濃度が高くて酸素濃度と二酸化炭素濃度が低くなり、ガス分離膜(85)を透過した第2庫内空気は、未処理庫内空気に比べて窒素濃度が低くて酸素濃度と二酸化炭素濃度が高くなる。
第17の発明は、第1〜第16のいずれか一つの発明において、上記第1組成調節部(40)は、上記収納庫(1)の外部の上記庫外空気を、上記第1分離部(41)をバイパスさせて上記収納庫(1)の内部へ供給するための第1バイパス通路(51,255)と、上記第1バイパス通路(51,255)へ流入する上記庫外空気の流量を変更するための第1バイパス弁機構(50,256)とを備えるものである。
第17の発明では、第1バイパス弁機構(50,256)を操作して庫外空気が第1バイパス通路(51,255)を流れる状態にすれば、収納庫(1)の外部から第1組成調節部(40)へ流入した庫外空気の一部または全部が、そのままの状態(即ち、組成を保った状態)で収納庫(1)の内部へ供給される。
第18の発明は、第1〜第17のいずれか一つの発明において、上記第2組成調節部(60)は、上記収納庫(1)の内部の上記庫内空気を、上記第2分離部(61)をバイパスさせて上記収納庫(1)の内部へ供給するための第2バイパス通路(71)と、上記第2バイパス通路(71)へ流入する上記庫内空気の流量を変更するための第2バイパス弁機構(70)とを備えるものである。
第18の発明では、第2バイパス弁機構(70)を操作して庫内空気が第2バイパス通路(71)を流れる状態にすれば、収納庫(1)の内部から第2組成調節部(60)へ流入した庫内空気の一部または全部が、そのままの状態(即ち、組成を保った状態)で収納庫(1)の内部へ供給される。
本発明の庫内空気調節装置(30)は、第1組成調節部(40)が庫外空気とは組成が異なる供給用空気を収納庫(1)の内部へ供給し、第2組成調節部(60)が庫内空気とは組成が異なる排出用空気を収納庫(1)の外部へ排出する。そして、本発明の庫内空気調節装置(30)は、“収納庫(1)への供給用空気の供給”と“収納庫(1)からの排出用空気の排出”の両方を行うことによって、収納庫(1)内の空気の組成を調節する。従って、本発明によれば、“収納庫(1)からの排出用空気の排出”だけを行う場合に比べて、収納庫(1)内の庫内空気の組成を適切に制御することが可能となる。
上記第3の発明において、第1組成調節部(40)は、収納庫(1)の内部の気圧が陽圧となるように、収納庫(1)の外部から内部へ空気を供給する。このため、収納庫(1)内の空気の組成を調節するために第2組成調節部(60)が庫内空気から分離した排出用空気の一方を収納庫(1)の外部へ排出している状況においても、収納庫(1)内の気圧を陽圧とすることが可能となる。従って、この発明によれば、収納庫(1)の気密性が低い場合でも、収納庫(1)の隙間からの庫外空気の侵入を抑制でき、収納庫(1)内の空気の組成を適切に制御することが可能となる。
上記第4の発明では、第1組成調節部(40)が収納庫(1)の庫内へ供給する供給用空気の流量が、第2組成調節部(60)が収納庫(1)の庫外へ排出する排出用空気の流量を上回るため、収納庫(1)内の気圧を陽圧とすることが可能となる。
上記第5の発明では、庫内空気調節装置(30)が二酸化炭素濃度低減動作を行うことによって、庫内空気の二酸化炭素の濃度を制御することが可能となる。
上記第6の発明では、庫内空気調節装置(30)が酸素濃度低減動作を行うことによって、庫内空気の酸素の濃度を制御することが可能となる。
上記第7の発明において、制御器(110)は、収納庫(1)内の気圧が陽圧でないと判断すると、第1組成調節部(40)が収納庫(1)の内部へ供給する供給用空気の流量を増やすための制御動作を行う。従って、この発明によれば、収納庫(1)内の気圧を一層確実に陽圧とすることができる。
上記第10の発明において、第1組成調節部(40)は、それぞれの窒素濃度と酸素濃度が未処理庫外空気と異なる第1庫外空気と第2庫外空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。また、第2組成調節部(60)は、それぞれの窒素濃度と酸素濃度が未処理庫内空気と異なる第1庫内空気と第2庫内空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。従って、この発明によれば、収納庫(1)の庫内空気の窒素濃度と酸素濃度とを調節することが可能となる。
上記第11の発明では、第1組成調節部(40)は、それぞれの窒素濃度と酸素濃度が未処理庫外空気と異なる第1庫外空気と第2庫外空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。また、第2組成調節部(60)は、それぞれの窒素濃度と酸素濃度と二酸化炭素濃度とが未処理庫内空気と異なる第1庫内空気と第2庫内空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。従って、この発明によれば、収納庫(1)の庫内空気の窒素濃度と酸素濃度と二酸化炭素濃度とを調節することが可能となる。
上記第13の発明では、第1ポンプ(36)が加圧した未処理庫外空気を第1分離部(41)へ供給すると共に、第1弁機構(46)の開度を調節することによって、第1庫外空気と第2庫外空気の組成(例えば、窒素濃度と酸素濃度)と流量とを制御できる。従って、この発明によれば、第1組成調節部(40)が収納庫(1)の内部へ供給する空気の組成と流量とを調節することによって、収納庫(1)の内部の空気の組成を一層適切に制御することが可能となる。
上記第15の発明では、第2ポンプ(37)が加圧した未処理庫内空気を第2分離部(61)へ供給すると共に、第2弁機構(66)の開度を調節することによって、第1庫内空気と第2庫内空気の組成(例えば、窒素濃度と酸素濃度と二酸化炭素濃度)と流量とを制御できる。従って、この発明によれば、第2組成調節部(60)が収納庫(1)の内部へ供給する空気の組成と流量とを調節することによって、収納庫(1)の内部の空気の組成を一層適切に制御することが可能となる。
上記第16の発明では、第1組成調節部(40)は、それぞれの窒素濃度と酸素濃度が未処理庫外空気と異なる第1庫外空気と第2庫外空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。また、第2組成調節部(60)は、それぞれの窒素濃度と酸素濃度と二酸化炭素濃度とが未処理庫内空気と異なる第1庫内空気と第2庫内空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。従って、この発明によれば、収納庫(1)の庫内空気の窒素濃度と酸素濃度と二酸化炭素濃度とを調節することが可能となる。
図1は、実施形態1の庫内空気調節装置を備えた輸送用コンテナの概略断面図である。 図2は、輸送用コンテナに設けられたコンテナ用冷凍機の冷媒回路の構成を示す冷媒回路図である。 図3は、実施形態1の庫内空気調節装置の構成を示す配管系統図である。 図4は、実施形態1の庫内空気調節装置に設けられた分離モジュールの概略断面図である。 図5は、実施形態1の庫内空気調節装置が行う酸素濃度低減動作を示すブロック図である。 図6は、実施形態1の庫内空気調節装置が行う二酸化炭素濃度低減動作を示すブロック図である。 図7は、実施形態2の庫内空気調節装置の構成を示す配管系統図である。 図8は、実施形態3の庫内空気調節装置の構成を示す配管系統図である。 図9は、実施形態3の第1組成調節部の第1動作中の状態を示す庫内空気調節装置の配管系統図である。 図10は、実施形態3の第1組成調節部の第2動作中の状態を示す庫内空気調節装置の配管系統図である。
本発明の実施形態を図面に基づいて詳細に説明する。
《実施形態1》
実施形態1について説明する。本実施形態の庫内空気調節装置(30)は、いわゆるCA(Controlled Atmosphere)輸送を行うために輸送用コンテナ(1)に設けられる。そして、庫内空気調節装置(30)は、輸送用コンテナ(1)内の空気の組成を、大気の組成と異なるように調節する。
図1に示すように、収納庫を構成する輸送用コンテナ(1)は、コンテナ本体(2)と、コンテナ用冷凍機(10)とを備えている。この輸送用コンテナ(1)は、庫内の温度管理か可能なリーファーコンテナ(reefer container)である。本実施形態の庫内空気調節装置(30)は、コンテナ用冷凍機(10)に設置される。この輸送用コンテナ(1)は、空気中の酸素(O)を取り込んで二酸化炭素(CO)を放出する呼吸を行う植物を輸送するために用いられる。植物の例としては、バナナやアボカド等の果物、野菜、穀物、球根、生花等が挙げられる。
コンテナ本体(2)は、細長い直方体形状の箱状に形成されている。コンテナ本体(2)は、一方の端面が開口し、この開口端を塞ぐようにコンテナ用冷凍機(10)が取り付けられる。コンテナ本体(2)の内部空間は、貨物(6)を収納するための荷室(5)を構成する。
荷室(5)の底部には、貨物(6)を載せるための床板(3)が配置される。この床板(3)とコンテナ本体(2)の底板との間には、コンテナ用冷凍機(10)が吹き出した空気を流すための床下流路(4)が形成される。床下流路(4)は、コンテナ本体(2)の底板に沿ってコンテナ本体(2)の長手方向へ延びる流路である。床下流路(4)は、一端がコンテナ用冷凍機(10)の吹出口(27)に接続し、他端が床板(3)の上側の空間(即ち、貨物(6)が収容される空間)と連通する。
−コンテナ用冷凍機−
図1に示すように、コンテナ用冷凍機(10)は、ケーシング(20)と、冷凍サイクルを行う冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とを備えている。
ケーシング(20)は、庫外壁部(21)と、庫内壁部(22)と、背面板(24)と、区画板(25)とを備えている。後述するように、このケーシング(20)には、冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とが設けられる。
庫外壁部(21)は、コンテナ本体(2)の開口端を覆うように配置される板状の部材である。庫外壁部(21)は、下部がコンテナ本体(2)の内側へ膨出している。庫内壁部(22)は、庫外壁部(21)に沿った形態の板状の部材である。庫内壁部(22)は、庫外壁部(21)におけるコンテナ本体(2)の内側の面を覆うように配置される。庫外壁部(21)と庫内壁部(22)の間の空間には、断熱材(23)が充填されている。
ケーシング(20)は、その下部がコンテナ本体(2)の内側へ窪んだ形状となっている。ケーシング(20)の下部は、輸送用コンテナ(1)の外部空間と連通する庫外機器室(28)を形成する。この庫外機器室(28)には、庫外ファン(16)が配置される。
背面板(24)は、概ね矩形の平板状の部材である。背面板(24)は、庫内壁部(22)よりもコンテナ本体(2)の内側に配置され、庫内壁部(22)との間に庫内空気流路(29)を形成する。この庫内空気流路(29)は、その上端がケーシング(20)の吸込口(26)を構成し、その下端がケーシング(20)の吹出口(27)を構成する。
区画板(25)は、庫内空気流路(29)を上下に区画するように配置された板状の部材である。区画板(25)は、庫内空気流路(29)の上部に配置される。この区画板(25)によって、庫内空気流路(29)は、区画板(25)の上側の一次流路(29a)と、区画板(25)の下側の二次流路(29b)に区画される。一次流路(29a)は、吸込口(26)を介して荷室(5)と連通する。二次流路(29b)は、吹出口(27)を介して床下流路(4)と連通する。区画板(25)には、庫内ファン(17)が取り付けられる。庫内ファン(17)は、一次流路(29a)から吸い込んだ空気を二次流路(29b)へ吹き出すように配置される。
図2に示すように、冷媒回路(11)は、圧縮機(12)と、凝縮器(13)と、膨張弁(14)と、蒸発器(15)とを配管で接続することによって形成された閉回路である。圧縮機(12)を作動させると、冷媒回路(11)を冷媒が循環し、蒸気圧縮冷凍サイクルが行われる。図1に示すように、凝縮器(13)は、庫外機器室(28)における庫外ファン(16)の吸込側に配置され、蒸発器(15)は、庫内空気流路(29)の二次流路(29b)に配置される。また、図1では図示を省略するが、圧縮機(12)は、庫外機器室(28)に配置される。
−庫内空気調節装置−
図1に示すように、庫内空気調節装置(30)は、本体ユニット(31)と、センサユニット(90)と、換気用排気管(100)と、制御器(110)とを備えている。本体ユニット(31)は、コンテナ用冷凍機(10)の庫外機器室(28)に設置される。センサユニット(90)は、輸送用コンテナ(1)の庫内空気流路(29)に設置される。換気用排気管(100)は、輸送用コンテナ(1)の庫内空気流路(29)と庫外機器室(28)に亘って設置される。制御器(110)は、本体ユニット(31)に設けられて、庫内空気調節装置(30)の構成機器を制御する。センサユニット(90)、換気用排気管(100)、及び制御器(110)の詳細は、後述する。
図3に示すように、庫内空気調節装置(30)の本体ユニット(31)は、第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)と、ユニットケース(32)とを備えている。ユニットケース(32)は、箱状の密閉容器である。第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)とは、このユニットケース(32)の内部空間に配置される。第1組成調節部(40)、第2組成調節部(60)、及びポンプユニット(35)の詳細は、後述する。
また、庫内空気調節装置(30)は、供給管(120)と、庫内側吸入管(75)と、測定用配管(125)とを備えている。供給管(120)、庫内側吸入管(75)、及び測定用配管(125)は、本体ユニット(31)をコンテナ用冷凍機(10)の庫内空気流路(29)に接続するための配管である。
供給管(120)は、第1組成調節部(40)及び第2組成調節部(60)から流出した空気を荷室(5)へ供給するための配管である。供給管(120)は、入口端が第1組成調節部(40)及び第2組成調節部(60)に接続され、出口端が庫内空気流路(29)の二次流路(29b)に開口する。
庫内側吸入管(75)は、荷室(5)内の庫内空気を第2組成調節部(60)へ供給するための配管である。庫内側吸入管(75)は、入口端が庫内空気流路(29)の二次流路(29b)に開口し、出口端が後述する第2組成調節部(60)の第2ポンプ(37)に接続される。なお、庫内空気流路(29)の二次流路(29b)において、庫内側吸入管(75)の入口端は、供給管(120)の出口端の上流側に配置される。
測定用配管(125)は、供給管(120)を流れる空気をセンサユニット(90)へ供給するための配管である。測定用配管(125)は、入口端が供給管(120)に接続され、出口端がセンサユニット(90)に接続される。また、測定用配管(125)には、電磁弁からなる測定用開閉弁(126)が設けられる。この測定用開閉弁(126)は、本体ユニット(31)のユニットケース(32)に収容される。
なお、換気用排気管(100)と、供給管(120)と、庫内側吸入管(75)と、測定用配管(125)と、後述する各組成調節部(40,60)に設けられた配管(52〜55,71〜74,95)とは、硬質のパイプで構成されていてもよいし、柔軟なホースで構成されていてもよいし、パイプとホースを組み合わせることで構成されていてもよい。
〈ポンプユニット〉
図3に示すように、ポンプユニット(35)は、第1ポンプ(36)と、第2ポンプ(37)と、駆動モータ(38)とを備えている。
第1ポンプ(36)と第2ポンプ(37)のそれぞれは、吸い込んだ空気を吐出する空気ポンプである。第1ポンプ(36)と第2ポンプ(37)のそれぞれは、例えば容積型の流体機械によって構成される。第1ポンプ(36)と第2ポンプ(37)は、一体化されている。駆動モータ(38)は、第1ポンプ(36)及び第2ポンプ(37)に連結された電動機である。駆動モータ(38)は、第1ポンプ(36)と第2ポンプ(37)の両方を駆動する。
〈第1組成調節部〉
第1組成調節部(40)は、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気と第2庫外空気に分離するように構成される。本実施形態の第1組成調節部(40)は、供給用空気である第1庫外空気を荷室(5)へ供給し、第2庫外空気を輸送用コンテナ(1)の外部へ排出する。
第1組成調節部(40)は、エアフィルタ(47)と、第1分離モジュール(41)と、第1バイパス弁(50)と、第1圧力センサ(45)と第1調節弁(46)とを備えている。また、第1組成調節部(40)は、庫外側吸入管(55)と、第1導入管(52)と、第1一次側管(53)と、第1二次側管(54)と、第1バイパス管(51)とを備えている。また、ポンプユニット(35)の第1ポンプ(36)は、この第1組成調節部(40)を構成する。
エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのメンブレンフィルタである。エアフィルタ(47)は、本体ユニット(31)のユニットケース(32)に取り付けられる。エアフィルタ(47)は、庫外側吸入管(55)を介して第1ポンプ(36)の吸入口に接続する。なお、本実施形態の庫内空気調節装置(30)では、庫外側吸入管(55)を省略し、密閉容器であるユニットケース(32)の内部空間を介してエアフィルタ(47)と第1ポンプ(36)を連通させてもよい。
詳しくは後述するが、第1分離モジュール(41)は、第1導入口(42)と、第1一次側導出口(43)と、第1二次側導出口(44)とを備える。第1導入口(42)は、第1導入管(52)を介して第1ポンプ(36)の吐出口に接続する。第1一次側導出口(43)は、第1一次側管(53)を介して供給管(120)に接続する。第1二次側導出口(44)には、第1二次側管(54)の一端が接続する。第1二次側管(54)は、ユニットケース(32)の外部へ延びている。第1二次側管(54)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。
第1バイパス弁(50)は、三つのポートを有する切換弁であって、第1バイパス弁機構を構成する。第1バイパス弁(50)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第1バイパス弁(50)は、第1導入管(52)の途中に配置される。第1バイパス弁(50)は、第1のポートが第1ポンプ(36)の吐出口に接続し、第2のポートが第1分離モジュール(41)の第1導入口(42)に接続する。第1バイパス弁(50)の第3のポートには、第1バイパス管(51)の入口端が接続する。第1バイパス管(51)の出口端は、第1一次側管(53)に接続する。第1バイパス管(51)は、第1バイパス通路を構成する。
第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に設けられる。第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に接続する第1バイパス管(51)の他端よりも第1分離モジュール(41)寄りに配置される。また、第1圧力センサ(45)は、第1調節弁(46)よりも第1分離モジュール(41)寄りに配置される。
第1圧力センサ(45)は、第1分離モジュール(41)の第1一次側導出口(43)から流出した第1庫外空気の圧力を計測する。第1圧力センサ(45)の計測値は、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力と実質的に等しい。
第1調節弁(46)は、開度可変の電動弁であって、第1弁機構を構成する。第1調節弁(46)の開度を変更すると、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力が変化する。
第1分離モジュール(41)は、第1分離部を構成する。詳しくは後述するが、第1分離モジュール(41)は、ガス分離膜(85)を備えている。そして、第1分離モジュール(41)は、未処理庫外空気を、ガス分離膜(85)を透過しなかった第1庫外空気と、ガス分離膜(85)を透過した第2庫外空気に分離する。
第1庫外空気は、窒素濃度が未処理庫外空気よりも高く、酸素濃度が未処理庫外空気よりも低い。第2庫外空気は、窒素濃度が未処理庫外空気よりも低く、酸素濃度が未処理庫外空気よりも高い。このように、第1庫外空気と第2庫外空気は、それぞれを構成する物質の濃度が互いに異なる。なお、本明細書における濃度は、体積割合を意味する。
〈第2組成調節部〉
第2組成調節部(60)は、輸送用コンテナ(1)の内部空間から吸い込んだ庫内空気(未処理庫内空気)を第1庫内空気と第2庫内空気に分離するように構成される。本実施形態の第2組成調節部(60)は、第1庫内空気を荷室(5)へ供給し、排出用空気である第2庫内空気を輸送用コンテナ(1)の外部へ排出する。
第2組成調節部(60)は、第2分離モジュール(61)と、第2バイパス弁(70)と、第2圧力センサ(65)と第2調節弁(66)とを備えている。また、第2組成調節部(60)は、第2導入管(72)と、第2一次側管(73)と、第2二次側管(74)と、第2バイパス管(71)とを備えている。また、ポンプユニット(35)の第2ポンプ(37)は、この第2組成調節部(60)を構成する。
詳しくは後述するが、第2分離モジュール(61)は、第2導入口(62)と、第2一次側導出口(63)と、第2二次側導出口(64)とを備える。第2導入口(62)は、第2導入管(72)を介して第2ポンプ(37)の吐出口に接続する。第2一次側導出口(63)は、第2一次側管(73)を介して供給管(120)に接続する。第2二次側導出口(64)には、第2二次側管(74)の一端が接続する。第2二次側管(74)は、ユニットケース(32)の外部へ延びている。第2二次側管(74)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。また、第2ポンプ(37)の吸入口には、庫内側吸入管(75)が接続する。
第2バイパス弁(70)は、三つのポートを有する切換弁であって、第2バイパス弁機構を構成する。第2バイパス弁(70)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第2バイパス弁(70)は、第2導入管(72)の途中に配置される。第2バイパス弁(70)は、第1のポートが第2ポンプ(37)の吐出口に接続し、第2のポートが第2分離モジュール(61)の第2導入口(62)に接続する。第2バイパス弁(70)の第3のポートには、第2バイパス管(71)の入口端が接続する。第2バイパス管(71)の出口端は、第2一次側管(73)に接続する。第2バイパス管(71)は、第2バイパス通路を構成する。
第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に設けられる。第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に接続する第2バイパス管(71)の他端よりも第2分離モジュール(61)寄りに配置される。また、第2圧力センサ(65)は、第2調節弁(66)よりも第2分離モジュール(61)寄りに配置される。
第2圧力センサ(65)は、第2分離モジュール(61)の第2一次側導出口(63)から流出した第2庫外空気の圧力を計測する。第2圧力センサ(65)の計測値は、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力と実質的に等しい。
第2調節弁(66)は、開度可変の電動弁であって、第2弁機構を構成する。第2調節弁(66)の開度を変更すると、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力が変化する。
第2分離モジュール(61)は、第2分離部を構成する。詳しくは後述するが、第2分離モジュール(61)は、ガス分離膜(85)を備えている。そして、第2分離モジュール(61)は、未処理庫内空気を、ガス分離膜(85)を透過しなかった第1庫内空気と、ガス分離膜(85)を透過した第2庫内空気に分離する。
第1庫内空気は、窒素濃度が未処理庫内空気よりも高く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも低い。第2庫内空気は、窒素濃度が未処理庫内空気よりも低く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも高い。このように、第1庫内空気と第2庫内空気は、それぞれを構成する物質の濃度が互いに異なる。
〈分離モジュール〉
第1分離モジュール(41)及び第2分離モジュール(61)の構造について、図4を参照しながら説明する。第1分離モジュール(41)と第2分離モジュール(61)の構造は、互いに同じである。
各分離モジュール(41,61)は、一つの筒状ケース(80)と、二つの隔壁部(81a,81b)とを備えている。筒状ケース(80)は、両端が閉塞された細長い円筒状の容器である。隔壁部(81a,81b)は、筒状ケース(80)の内部空間を仕切るための部材であって、筒状ケース(80)の内部空間を横断するように設けられる。隔壁部(81a,81b)は、筒状ケース(80)の内部空間の一端寄りの位置と他端寄りの位置とに一つずつ配置される。図4において、筒状ケース(80)の内部空間は、左側の隔壁部(81a)の左側に位置する導入室(82)と、二つの隔壁部(81a,81b)の間に位置する二次側導出室(84)と、右側の隔壁部(81b)の右側に位置する一次側導出室(83)とに仕切られる。
各分離モジュール(41,61)は、中空糸状(即ち、外径が1mm以下の非常に細い管状)に形成されたガス分離膜(85)を多数備えている。中空糸状のガス分離膜(85)は、一方の隔壁部(81a)から他方の隔壁部(81b)に亘って設けられる。各ガス分離膜(85)は、一端部が一方の隔壁部(81a)を貫通して導入室(82)に開口し、他端部が他方の隔壁部(81b)を貫通して一次側導出室(83)に開口する。筒状ケース(80)の内部空間は、二つの隔壁部(81a,81b)に挟まれた空間のうちガス分離膜(85)の外側の部分が、二次側導出室(84)を構成する。各分離モジュール(41,61)において、導入室(82)と一次側導出室(83)は、中空糸状のガス分離膜(85)を介して連通する一方、二次側導出室(84)は、ガス分離膜(85)の内側の空間、導入室(82)、及び一次側導出室(83)と非連通となる。
筒状ケース(80)には、導入口(42,62)と、一次側導出口(43,63)と、二次側導出口(44,64)とが設けられる。導入口(42,62)は、図4における筒状ケース(80)の左端部に配置され、導入室(82)と連通する。一次側導出口(43,63)は、図4における筒状ケース(80)の右端部に配置され、一次側導出室(83)と連通する。二次側導出口(44,64)は、筒状ケース(80)の長手方向の中間部に配置され、二次側導出室(84)と連通する。
ガス分離膜(85)は、高分子からなる非多孔膜である。このガス分離膜(85)は、物質毎に分子がガス分離膜(85)を透過する速度(透過速度)が異なることを利用して、混合ガスに含まれる成分を分離する。
本実施形態の庫内空気調節装置(30)では、第1分離モジュール(41)と第2分離モジュール(61)のそれぞれに同じガス分離膜(85)が設けられる。各分離モジュール(41,61)のガス分離膜(85)は、窒素の透過速度が酸素の透過速度と二酸化炭素の透過速度の両方よりも低いという特性を有している。中空糸状の多数のガス分離膜(85)は、それぞれの膜厚が実質的に同じである。従って、各分離モジュール(41,61)に設けられたガス分離膜(85)は、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いという特性を有している。
各分離モジュール(41,61)では、導入口(42,62)を通って導入室(82)へ流入した空気が、中空糸状のガス分離膜(85)の内側の空間を一次側導出室(83)へ向かって流れる。ガス分離膜(85)の内側の空間を流れる空気は、その一部がガス分離膜(85)を透過して二次側導出室(84)へ移動し、残りが一次側導出室(83)へ流入する。
各分離モジュール(41,61)のガス分離膜(85)は、窒素の透過率が酸素および二酸化炭素の透過率よりも低い。つまり、窒素は、酸素および二酸化炭素に比べてガス分離膜(85)を透過しにくい。このため、中空糸状のガス分離膜(85)の内側を流れる空気は、一次側導出室(83)へ近付くにつれて、その窒素濃度が上昇すると同時に、その酸素濃度および二酸化炭素濃度が低下する。また、中空糸状のガス分離膜(85)を流れる空気に含まれる酸素と二酸化炭素は、ガス分離膜(85)を透過して二次側導出室(84)へ移動する。
その結果、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気は、その窒素濃度が導入室(82)の空気よりも高くなり、その酸素濃度および二酸化炭素濃度が導入室(82)の空気よりも低くなる。また、ガス分離膜(85)を透過して二次側導出室(84)へ移動した空気は、その窒素濃度が導入室(82)の空気よりも低くなり、その酸素濃度および二酸化炭素濃度が導入室(82)の空気よりも高くなる。
第1分離モジュール(41)では、第1導入口(42)から導入室(82)へ未処理庫外空気が流入し、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気が第1庫外空気として第1一次側導出口(43)から流出し、ガス分離膜(85)を透過して二次側導出室(84)へ流入した空気が第2庫外空気として第1二次側導出口(44)から流出する。一方、第2分離モジュール(61)では、第2導入口(62)から導入室(82)へ未処理庫内空気が流入し、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気が第1庫内空気として第2一次側導出口(63)から流出し、ガス分離膜(85)を透過して二次側導出室(84)へ流入した空気が第2庫内空気として第2二次側導出口(64)から流出する。
〈センサユニット〉
図1及び図3に示すように、センサユニット(90)は、コンテナ用冷凍機(10)の庫内空気流路(29)の二次流路(29b)に配置される。図3に示すように、センサユニット(90)は、酸素センサ(91)と、二酸化炭素センサ(92)と、センサケース(93)とを備えている。
酸素センサ(91)は、空気等の混合気体の酸素濃度を計測するジルコニア電流方式のセンサである。二酸化炭素センサ(92)は、空気等の混合気体の二酸化炭素濃度を計測する非分散型赤外線吸収(NDIR:non dispersive infrared)方式のセンサである。酸素センサ(91)及び二酸化炭素センサ(92)は、センサケース(93)に収容される。
センサケース(93)は、やや細長い箱状の部材である。センサケース(93)は、長手方向の一方の端部に測定用配管(125)の出口端が接続され、他方の端部に出口管(95)の一端が接続される。出口管(95)の他端は、庫内空気流路(29)の一次流路(29a)に開口する。また、センサケース(93)には、庫内空気流路(29)を流れる庫内空気をセンサケース(93)の内部空間へ導入するためのエアフィルタ(94)が取り付けられる。エアフィルタ(94)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。
後述するように、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。このため、測定用開閉弁(126)が閉じた状態では、二次流路(29b)の庫内空気がエアフィルタ(94)を通ってセンサケース(93)へ流入し、その後に出口管(95)を通って一次流路(29a)へ流入する。この状態で、センサユニット(90)は、酸素センサ(91)が庫内空気の酸素濃度を計測し、二酸化炭素センサ(92)が庫内空気の二酸化炭素濃度を計測する。
〈換気用排気管〉
換気用排気管(100)は、輸送用コンテナ(1)の内部と外部を繋ぐための配管である。この換気用排気管(100)は、換気用排気通路を構成する。図1に示すように、換気用排気管(100)は、コンテナ用冷凍機(10)のケーシング(20)を貫通する。換気用排気管(100)の一端は、庫内空気流路(29)の二次流路(29b)に開口する。換気用排気管(100)の他端は、庫外機器室(28)における庫外ファン(16)の吸入側に開口する。
図3に示すように、換気用排気管(100)の一端には、エアフィルタ(102)が取り付けられる。エアフィルタ(102)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。また、換気用排気管(100)には、換気用排気弁(101)が設けられる。換気用排気弁(101)は、電磁弁からなる開閉弁である。
〈制御器〉
制御器(110)は、制御動作を行うCPU(111)と、制御動作に必要なデータ等を記憶するメモリ(112)とを備える。制御器(110)には、酸素センサ(91)、二酸化炭素センサ(92)、第1圧力センサ(45)、及び第2圧力センサ(65)の計測値が入力される。制御器(110)は、ポンプユニット(35)、第1調節弁(46)、第2調節弁(66)、第1バイパス弁(50)、第2バイパス弁(70)、及び換気用排気弁(101)を操作するための制御動作を行う。
−コンテナ用冷凍機の運転動作−
コンテナ用冷凍機(10)は、輸送用コンテナ(1)の庫内空気を冷却する冷却運転を行う。
冷却運転では、冷媒回路(11)の圧縮機(12)が作動し、冷媒回路(11)において冷媒が循環することによって蒸気圧縮冷凍サイクルが行われる。冷媒回路(11)では、圧縮機(12)から吐出された冷媒が、凝縮器(13)と膨張弁(14)と蒸発器(15)とを順に通過し、その後に圧縮機(12)へ吸入されて圧縮される。
また、冷却運転では、庫外ファン(16)と庫内ファン(17)とが作動する。庫外ファン(16)が作動すると、輸送用コンテナ(1)の外部の庫外空気が庫外機器室(28)へ吸い込まれて凝縮器(13)を通過する。凝縮器(13)では、冷媒が庫外空気へ放熱して凝縮する。庫内ファン(17)が作動すると、輸送用コンテナ(1)の荷室(5)内の庫内空気が庫内空気流路(29)へ吸い込まれて蒸発器(15)を通過する。蒸発器(15)では、冷媒が庫内空気から吸熱して蒸発する。
庫内空気の流れについて説明する。荷室(5)に存在する庫内空気は、吸込口(26)を通って庫内空気流路(29)の一次流路(29a)へ流入し、庫内ファン(17)によって二次流路(29b)へ吹き出される。二次流路(29b)へ流入した庫内空気は、蒸発器(15)を通過する際に冷却され、その後に吹出口(27)から床下流路(4)へ吹き出され、床下流路(4)を通って荷室(5)へ流入する。
庫内空気流路(29)において、一次流路(29a)は庫内ファン(17)の吸い込み側に位置し、二次流路(29b)は庫内ファン(17)の吹き出し側に位置する。このため、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。
−庫内空気調節装置の運転動作−
庫内空気調節装置(30)は、輸送用コンテナ(1)の荷室(5)内の庫内空気の組成(本実施形態では、庫内空気の酸素濃度と二酸化炭素濃度)を調節するための運転を行う。ここでは、本実施形態の庫内空気調節装置(30)の運転動作について、庫内空気の酸素濃度の目標範囲が5%±1%であり、庫内空気の二酸化炭素濃度の目標範囲が2%±1%である場合を例に説明する。
〈庫内空気調節装置の運転動作の概要〉
本実施形態の庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を低下させるための酸素濃度低減動作と、荷室(5)内の庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作と、荷室(5)内の庫内空気の酸素濃度を上昇させるための酸素濃度増加動作とを行う。
輸送用コンテナ(1)への貨物(6)の積み込みが完了した時点において、荷室(5)内に存在する庫内空気の組成は、大気の組成(窒素濃度:78%、酸素濃度:21%、二酸化炭素濃度:0.04%)と実質的に同じである。そこで、庫内空気調節装置(30)は、庫内空気の酸素濃度を低下させるための酸素濃度低減動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度低減動作を停止する。
庫内空気の酸素濃度が6%に達して庫内空気調節装置(30)の酸素濃度停止動作が停止した後は、貨物(6)である植物が呼吸することによって、庫内空気の酸素濃度が次第に低下してゆくと同時に、庫内空気の二酸化炭素濃度が次第に上昇する。
庫内空気の二酸化炭素濃度が目標範囲の上限値(3%)に達すると、庫内空気調節装置(30)は、庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作を行う。庫内空気の二酸化炭素濃度が目標範囲の下限値(1%)に達すると、庫内空気調節装置(30)は、二酸化炭素濃度低減動作を停止する。
また、庫内空気の酸素濃度が目標範囲の下限値(4%)に達すると、庫内空気調節装置(30)は、庫内空気の酸素濃度を上昇させるための酸素濃度増加動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度増加動作を停止する。
このように、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を21%(大気の酸素濃度)から目標範囲にまで引き下げるために、酸素濃度低減動作を行う。また、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度と二酸化炭素濃度を、それぞれの目標範囲に維持するために、二酸化炭素低減動作と酸素濃度増加動作とを適宜繰り返して行う。
〈酸素濃度低減動作〉
庫内空気調節装置(30)の酸素濃度低減動作について、図3〜図5を適宜参照しながら説明する。この酸素濃度低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が酸素濃度の低い第1庫内空気を荷室(5)へ供給する。
酸素濃度低減動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定する。
先ず、第1ポンプ(36)が作動すると、輸送用コンテナ(1)の外部に存在する庫外空気が、エアフィルタ(47)と庫外側吸入管(55)を通って第1ポンプ(36)に吸い込まれる。第1ポンプ(36)は、吸い込んだ庫外空気を加圧して吐出する。第1ポンプ(36)が吐出する庫外空気の圧力は、大気圧の2倍程度である。第1ポンプ(36)から吐出された庫外空気は、第1導入管(52)を流れ、第1分離モジュール(41)の第1導入口(42)へ未処理庫外空気として流入する。
第1分離モジュール(41)において、第1導入口(42)を通って導入室(82)へ流入した未処理庫外空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して第2庫外空気として二次側導出室(84)へ移動し、残りが第1庫外空気として一次側導出室(83)へ流入する。上述したように、ガス分離膜(85)は、窒素の透過率が酸素の透過率よりも低い特性を持つ。このため、図5に示すように、第1庫外空気の酸素濃度は、未処理庫外空気の酸素濃度よりも低く、第2庫外空気の酸素濃度は、未処理庫外空気の酸素濃度よりも高い。
第1分離モジュール(41)の第1一次側導出口(43)から第1一次側管(53)へ流出した第1庫外空気は、供給管(120)へ流入する。一方、第1分離モジュール(41)の第1二次側導出口(44)から第1二次側管(54)へ流出した第2庫外空気は、輸送用コンテナ(1)の外部へ排出される。
次に、第2ポンプ(37)が作動すると、輸送用コンテナ(1)の内部(具体的には、コンテナ用冷凍機(10)の二次流路(29b))に存在する庫内空気が、庫内側吸入管(75)を通って第2ポンプ(37)に吸い込まれる。第2ポンプ(37)は、吸い込んだ庫内空気を加圧して吐出する。第2ポンプ(37)が吐出する庫外空気の圧力は、大気圧よりも若干高い程度である。第2ポンプ(37)から吐出された庫内空気は、第2導入管(72)を流れ、第2分離モジュール(61)の第2導入口(62)へ未処理庫内空気として流入する。
第2分離モジュール(61)において、第2導入口(62)を通って導入室(82)へ流入した未処理庫内空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して第2庫内空気として二次側導出室(84)へ移動し、残りが第1庫内空気として一次側導出室(83)へ流入する。上述したように、ガス分離膜(85)は、窒素の透過率が酸素の透過率よりも低い特性を持つ。このため、図5に示すように、第1庫内空気の酸素濃度は、未処理庫外空気の酸素濃度よりも低く、第2庫内空気の酸素濃度は、未処理庫外空気の酸素濃度よりも高い。
第2分離モジュール(61)の第2一次側導出口(63)から第2一次側管(73)へ流出した第1庫内空気は、供給管(120)へ流入する。一方、第2分離モジュール(61)の第2二次側導出口(64)から第2二次側管(74)へ流出した第2庫内空気は、輸送用コンテナ(1)の外部へ排出される。
上述したように、供給管(120)には、第1分離モジュール(41)から流出した第1庫外空気と、第2分離モジュール(61)から流出した第1庫内空気とが流入する。そして、供給管(120)を流れる第1庫外空気と第1庫内空気の混合空気は、コンテナ用冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。
通常、酸素濃度低減動作中は、輸送用コンテナ(1)の外部から内部へ供給される第1庫外空気の流量Qo1が、輸送用コンテナ(1)の内部から外部へ排出される第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる(図5を参照)。つまり、第1組成調節部(40)は、輸送用コンテナ(1)内の気圧が陽圧となるように、第1庫外空気を輸送用コンテナ(1)の内部へ供給する。輸送用コンテナ(1)内の気圧が陽圧であるため、庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度低減動作では、大気に比べて酸素濃度の低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて荷室(5)内の庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)の空気を第1庫外空気に入れ替えることによって、荷室(5)内の庫内空気の酸素濃度を低下させる。また、酸素濃度低減動作では、未処理庫内空気から分離された酸素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の酸素濃度を低下させる。
〈二酸化炭素濃度低減動作〉
庫内空気調節装置(30)の二酸化炭素濃度低減動作について、図3,図4,図6を適宜参照しながら説明する。この二酸化炭素低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が二酸化炭素濃度の低い第1庫内空気を荷室(5)へ供給する。
二酸化炭素濃度低減動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。そして、第1組成調節部(40)と第2組成調節部(60)のそれぞれにおいて、空気は、酸素濃度低減動作と同様に流れる。ただし、二酸化炭素濃度低減動作において、第1ポンプ(36)が吐出する庫外空気の圧力と、第2ポンプ(37)が吐出する庫内空気の圧力は、いずれも大気圧よりも若干高い程度である。
第1組成調節部(40)では、第1分離モジュール(41)へ流入した未処理庫外空気が、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気とに分離される。そして、第1庫外空気が輸送用コンテナ(1)の内部へ供給され、第2庫外空気が輸送用コンテナ(1)の外部へ排出される。なお、未処理庫外空気の二酸化炭素濃度は、大気の二酸化炭素濃度(0.04%)と実質的に同じである。このため、第1庫外空気の二酸化炭素濃度は実質的にゼロと見なせる。
第2組成調節部(60)では、第2分離モジュール(61)へ流入した未処理庫内空気が、未処理庫内空気よりも窒素濃度が高くて酸素濃度および二酸化炭素濃度が低い第1庫内空気と、未処理庫内空気よりも窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い第2庫内空気とに分離される。そして、第1庫内空気が輸送用コンテナ(1)の内部へ供給され、第2庫内空気が輸送用コンテナ(1)の外部へ排出される。
通常、二酸化炭素濃度低減動作中は、酸素濃度低減動作中と同様に、第1庫外空気の流量Qo1が第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる(図6を参照)。つまり、第1組成調節部(40)は、輸送用コンテナ(1)内の気圧が陽圧となるように、第1庫外空気を輸送用コンテナ(1)の内部へ供給する。輸送用コンテナ(1)内の気圧が陽圧であるため、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、二酸化炭素濃度低減動作では、二酸化炭素濃度の極めて低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)の空気を第1庫外空気に入れ替えることによって、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。また、二酸化炭素濃度低減動作では、未処理庫内空気から分離された二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。
〈酸素濃度増加動作〉
庫内空気調節装置(30)の酸素濃度増加動作について、図3を参照しながら説明する。この酸素濃度増加動作では、第1組成調節部(40)が輸送用コンテナ(1)の外部から吸い込んだ庫外空気をそのまま荷室(5)へ供給し、第2組成調節部(60)が輸送用コンテナ(1)の内部から吸い込んだ庫内空気をそのまま荷室(5)へ送り返す。
酸素濃度増加動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第2状態(図3に破線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。
第1組成調節部(40)において、第1ポンプ(36)から吐出された庫外空気は、第1バイパス管(51)へ流入し、その窒素濃度と酸素濃度を保った状態で第1一次側管(53)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ供給される。一方、第2組成調節部(60)において、第2ポンプ(37)へ吸い込まれた庫内空気は、第2ポンプ(37)から吐出された後に第2バイパス管(71)を通って第2一次側管(73)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ戻る。また、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度増加動作では、庫内空気よりも酸素濃度の高い庫外空気を輸送用コンテナ(1)の内部へ供給することによって、荷室(5)内の酸素濃度を上昇させる。
−制御器の制御動作−
庫内空気調節装置(30)の制御器(110)は、酸素センサ(91)及び二酸化炭素センサ(92)の計測値を監視する。そして、庫内空気調節装置(30)が上述した動作を行うことによって、庫内空気の酸素濃度と二酸化炭素濃度をそれぞれの目標範囲に保たれるように、酸素センサ(91)及び二酸化炭素センサ(92)の計測値に基づいて庫内空気調節装置(30)の構成機器を制御する。
ところで、輸送用コンテナ(1)の気密性が完全であることは、実際には有り得ない。このため、輸送用コンテナ(1)内が陰圧になると、輸送用コンテナ(1)の隙間を通って庫外空気(即ち、大気)が輸送用コンテナ(1)の内部へ侵入する。酸素濃度低減動作の実行中に庫外空気が輸送用コンテナ(1)の内部へ侵入すると、庫内空気の酸素濃度の低下速度(即ち、単位時間当たりの酸素濃度の低下量)が非常に低くなる場合や、庫内空気の酸素濃度が上昇する場合がある。また、二酸化炭素濃度低減動作の実行中に庫外空気が輸送用コンテナ(1)の内部へ侵入すると、貨物(6)である植物が呼吸によって酸素を消費しているにも拘わらず、庫内空気の酸素濃度が上昇する場合がある。そこで、このような場合、庫内空気調節装置(30)の制御器(110)は、輸送用コンテナ(1)内の気圧を陽圧にするための陽圧維持動作を行う。
〈陽圧維持動作〉
制御器(110)は、酸素濃度低減動作及び二酸化炭素濃度低減動作の実行中に、酸素センサ(91)の計測値を監視する。制御器(110)は、酸素濃度低減動作及び二酸化炭素濃度低減動作の実行中に酸素センサ(91)の計測値の低下速度(即ち、単位時間当たりの計測値の低下量)が所定の基準値を下回るという判定条件が成立すると、輸送用コンテナ(1)内の気圧が陰圧となって庫外空気が輸送用コンテナ(1)の内部へ侵入していると判断する。なお、酸素センサ(91)の計測値が上昇している場合は、酸素センサ(91)の計測値の低下速度が負の値となる。
上述した判定条件が成立すると、制御器(110)は、第1組成調節部(40)が輸送用コンテナ(1)の内部へ供給する第1庫外空気の流量を増やすための陽圧維持動作を行う。制御器(110)は、第1組成調節部(40)に設けられた第1調節弁(46)の開度を拡大する動作を、陽圧維持動作として行う。
陽圧維持動作において、制御器(110)は、第1圧力センサ(45)の計測値を読み込み、読み込んだ第1圧力センサ(45)の計測値よりも低い値を、目標圧力とする。そして、制御器(110)は、第1圧力センサ(45)の計測値が目標圧力となるように、第1調節弁(46)の開度を調節する。第1調節弁(46)の開度が大きくなるほど、第1圧力センサ(45)の計測値は低くなる。そのため、第1圧力センサ(45)の計測値が目標圧力となるように第1調節弁(46)の開度を調節すれば、第1調節弁(46)の開度が次第に拡大する。
一般に、ガス分離膜(85)には、“その一次側の面に接する空気の圧力とその二次側の面に接する空気の圧力の差が小さいほど、ガス分離膜(85)を透過する空気の成分が少なくなる”という特性がある。第1調節弁(46)の開度が拡大すると、第1分離モジュール(41)のガス分離膜(85)の内側(一次側)を流れる空気の圧力が低くなり、ガス分離膜(85)を透過する空気の成分が減少する。このため、第1調節弁(46)の開度が拡大すると、第1分離モジュール(41)から流出する第1庫外空気の流量が増加する。その結果、第1組成調節部(40)が輸送用コンテナ(1)の内部へ供給する第1庫外空気の流量が増加し、輸送用コンテナ(1)内の気圧が上昇する。
上述したように、第1調節弁(46)の開度が拡大すると、ガス分離膜(85)を透過する空気の成分が減少する。このため、制御器(110)が陽圧維持動作を行うことによって第1調節弁(46)の開度が拡大すると、それに伴って第1庫外空気の酸素濃度が上昇する。しかし、その場合でも、第1庫外空気の酸素濃度は、大気の酸素濃度よりも低く保たれる。このため、輸送用コンテナ(1)内の気圧を陽圧にして庫外空気の荷室(5)内への侵入を抑えることによって、荷室(5)内の庫内空気の酸素濃度は低下してゆく。
−実施形態1の効果−
本実施形態の庫内空気調節装置(30)は、輸送用コンテナ(1)内の気圧を陽圧に保ちつつ、輸送用コンテナ(1)内の庫内空気の組成を調節する動作を行う。従って、本実施形態によれば、輸送用コンテナ(1)の気密性がそれほど高くない場合であっても、輸送用コンテナ(1)内への庫外空気(大気)の侵入を防ぐことができ、その結果、輸送用コンテナ(1)内の庫内空気の組成を適切に調節することが可能となる。
特に、二酸化炭素濃度低減動作中は、第2組成調節部(60)が未処理庫内空気から分離した二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の二酸化炭素濃度を適切に制御しつつ、第1組成調節部(40)が第1庫外空気を輸送用コンテナ(1)の内部へ供給することによって、輸送用コンテナ(1)内の気圧が陽圧に保たれる。従って、本実施形態によれば、輸送用コンテナ(1)の内部への庫外空気(大気)の侵入を防いで庫内空気の酸素濃度と上昇を抑えつつ、庫内空気の二酸化炭素濃度を適切に制御することが可能となる。
また、二酸化炭素濃度低減動作中は、第2組成調節部(60)が未処理庫内空気よりも二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出すると同時に、第1組成調節部(40)が未処理庫外空気よりも酸素濃度の低い第1庫外空気を輸送用コンテナ(1)の内部へ供給する。このため、未処理庫外空気をそのまま輸送用コンテナ(1)の内部へ供給する場合に比べて、輸送用コンテナ(1)の庫内空気の酸素濃度の変動を抑えることができ、庫内空気の組成を適正値に近い状態に保つことが可能となる。
また、酸素濃度低減動作中は、第1組成調節部(40)が未処理庫外空気よりも酸素濃度の低い第1庫外空気を輸送用コンテナ(1)の内部へ供給すると同時に、第2組成調節部(60)が未処理庫内空気よりも酸素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出する。従って、本実施形態によれば、第1庫外空気の供給によって荷室(5)内の庫内空気の酸素濃度を低下させる場合に比べて、荷室(5)内の庫内空気の酸素濃度を目標範囲にまで引き下げるのに要する時間を短縮できる。
《実施形態2》
実施形態2について説明する。本実施形態の庫内空気調節装置(30)は、実施形態1の庫内空気調節装置(30)において、第1組成調節部(40)及び第2組成調節部(60)の構成を変更したものである。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
〈第1組成調節部〉
図7に示すように、本実施形態の第1組成調節部(40)には、第1一次側切換弁(56)と、第1一次側排出管(57)と、第1二次側切換弁(58)と、第1二次側供給管(59)とが追加される。
第1一次側切換弁(56)と第1二次側切換弁(58)のそれぞれは、三つのポートを有する切換弁である。第1一次側切換弁(56)と第1二次側切換弁(58)のそれぞれは、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図7に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図7に破線で示す状態)とに切り換わるように構成される。
第1一次側切換弁(56)は、第1一次側管(53)の途中に配置される。第1一次側管(53)において、第1一次側切換弁(56)は、第1バイパス管(51)の出口端よりも供給管(120)寄りに配置される。第1一次側切換弁(56)は、第1のポートが第1調節弁(46)に接続し、第2のポートが供給管(120)に接続する。第1一次側切換弁(56)の第3のポートには、第1一次側排出管(57)の一端が接続する。第1一次側排出管(57)の他端は、第1二次側管(54)に接続する。
第1二次側切換弁(58)は、第1二次側管(54)の途中に配置される。第1二次側管(54)において、第1二次側切換弁(58)は、第1一次側排出管(57)の他端よりも第1分離モジュール(41)寄りに配置される。第1二次側切換弁(58)は、第1のポートが第1分離モジュール(41)の第1二次側導出口(44)に接続し、第2のポートが第1二次側管(54)を介して輸送用コンテナ(1)の庫外機器室(28)と連通する。第1二次側切換弁(58)の第3のポートには、第1二次側供給管(59)の一端が接続する。第1二次側供給管(59)の他端は、供給管(120)に接続する。
〈第2組成調節部〉
本実施形態の第2組成調節部(60)には、第2一次側切換弁(76)と、第2一次側排出管(77)と、第2二次側切換弁(78)と、第2二次側供給管(79)とが追加される。
第2一次側切換弁(76)と第2二次側切換弁(78)のそれぞれは、三つのポートを有する切換弁である。第2一次側切換弁(76)と第2二次側切換弁(78)のそれぞれは、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図7に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図7に破線で示す状態)とに切り換わるように構成される。
第2一次側切換弁(76)は、第2一次側管(73)の途中に配置される。第2一次側管(73)において、第2一次側切換弁(76)は、第2バイパス管(71)の出口端よりも供給管(120)寄りに配置される。第2一次側切換弁(76)は、第1のポートが第2調節弁(66)に接続し、第2のポートが供給管(120)に接続する。第2一次側切換弁(76)の第3のポートには、第2一次側排出管(77)の一端が接続する。第2一次側排出管(77)の他端は、第2二次側管(74)に接続する。
第2二次側切換弁(78)は、第2二次側管(74)の途中に配置される。第2二次側管(74)において、第2二次側切換弁(78)は、第2一次側排出管(77)の他端よりも第2分離モジュール(61)寄りに配置される。第2二次側切換弁(78)は、第1のポートが第2分離モジュール(61)の第2二次側導出口(64)に接続し、第2のポートが第2二次側管(74)を介して輸送用コンテナ(1)の庫外機器室(28)と連通する。第2二次側切換弁(78)の第3のポートには、第2二次側供給管(79)の一端が接続する。第2二次側供給管(79)の他端は、供給管(120)に接続する。
−運転動作−
第1組成調節部(40)において、第1一次側切換弁(56)と第1二次側切換弁(58)の両方が第1状態(図7に実線で示す状態)に設定された場合、第1庫外空気は、第1一次側管(53)を通って輸送用コンテナ(1)の内部へ供給され、第2庫外空気は、第2二次側管(74)を通って輸送用コンテナ(1)の外部へ排出される。一方、第1一次側切換弁(56)と第1二次側切換弁(58)の両方が第2状態(図7に破線で示す状態)に設定された場合、第1庫外空気は、第1一次側排出管(57)を通って輸送用コンテナ(1)の外部へ排出され、第2庫外空気は、第1二次側供給管(59)を通って輸送用コンテナ(1)の内部へ供給される。
第2組成調節部(60)において、第2一次側切換弁(76)と第2二次側切換弁(78)の両方が第1状態(図7に実線で示す状態)に設定された場合、第1庫内空気は、第2一次側管(73)を通って輸送用コンテナ(1)の内部へ供給され、第2庫内空気は、第2二次側管(74)を通って輸送用コンテナ(1)の外部へ排出される。一方、第2一次側切換弁(76)と第2二次側切換弁(78)の両方が第2状態(図7に破線で示す状態)に設定された場合、第1庫内空気は、第2一次側排出管(77)を通って輸送用コンテナ(1)の外部へ排出され、第2庫内空気は、第2二次側供給管(79)を通って輸送用コンテナ(1)の内部へ供給される。
《実施形態3》
実施形態3の庫内空気調節装置(30)について説明する。実施形態の庫内空気調節装置(30)は、実施形態1の庫内空気調節装置(30)において、第1組成調節部(40)及び制御器(110)を変更したものである。ここでは、実施形態3の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
−第1組成調節部の構成−
本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気と第2庫外空気に分離するように構成される。本実施形態の第1組成調節部(40)は、いわゆるPSA(Pressure Swing Adsorption)法によって、未処理庫外空気を第1庫外空気と第2庫外空気に分離するように構成されており、この点で実施形態1の第1組成調節部(40)と相違する。
図8に示すように、本実施形態の第1組成調節部(40)は、ポンプユニット(35)の第1ポンプ(36)に代えて、エアポンプ(231)を備える。つまり、本実施形態の庫内空気調節装置(30)において、ポンプユニット(35)は、第2ポンプ(37)及び駆動モータ(38)を備えるが、第1ポンプ(36)を備えていない。また、本実施形態の第1組成調節部(40)は、第1方向制御弁(232)及び第2方向制御弁(233)と、第1吸着筒(234)及び第2吸着筒(235)とを備える。後述するように、各吸着筒(234,235)には、空気中の窒素を吸着する吸着剤が設けられる。
〈エアポンプ〉
エアポンプ(231)は、ユニットケース(32)の内部空間に配置される。エアポンプ(231)は、それぞれが空気を吸引して加圧して吐出する第1ポンプ機構(231a)及び第2ポンプ機構(231b)を備える。第1ポンプ機構(231a)及び第2ポンプ機構(231b)は、潤滑油を使用しないオイルレスのポンプである。加圧部である第1ポンプ機構(231a)と、減圧部である第2ポンプ機構(231b)とは、それらの両方が駆動モータ(231c)の駆動軸に接続される。第1ポンプ機構(231a)及び第2ポンプ機構(231b)のぞれぞれは、駆動モータ(231c)によって回転駆動されることによって、吸込口から空気を吸引して加圧し、加圧した空気を吐出口から吐出する。
〈外気管、吐出管、フィルタユニット〉
第1ポンプ機構(231a)の吸込口には、外気通路を形成する外気管(241)の一端が接続される。外気管(241)は、ユニットケース(32)を貫通するように設けられる。ユニットケース(32)の外部に位置する外気管(241)の他端は、フィルタユニット(220)に接続される。
フィルタユニット(220)は、エアフィルタ(47)を備える。エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのフィルタである。本実施形態では、通気性と防水性を有するメンブレンフィルタが、エアフィルタ(47)として用いられる。フィルタユニット(220)は、箱状に形成された部材であり、エアフィルタ(47)を通過した空気(庫外空気)を外気管(241)へ導入する。図示しないが、フィルタユニット(220)は、庫外機器室(28)における凝縮器(13)の下流側に配置される。
第1ポンプ機構(231a)の吐出口には、吐出通路を形成する吐出管(242)の一端が接続される。吐出管(242)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。
〈吸引管、供給管〉
第2ポンプ機構(231b)の吸込口には、吸引通路を形成する吸引管(243)の一端が接続される。吸引管(243)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。
第2ポンプ機構(231b)の吐出口には、供給通路を形成する供給用接続管(244)の一端が接続される。供給用接続管(244)の他端は、供給管(120)に接続される。
供給用接続管(244)には、その一端から他端へ向かって順に、逆止弁(264)と供給側開閉弁(273)とが設けられる。逆止弁(264)は、供給用接続管(244)の一端から他端へ向かう向きの空気の流通のみを許容し、空気の逆流を防止する。供給側開閉弁(273)は、電磁弁からなる開閉弁である。
〈方向制御弁〉
第1方向制御弁(232)及び第2方向制御弁(233)のそれぞれは、三つのポートを有する切換弁である。各方向制御弁(232,233)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態とに切り換わるように構成される。
第1方向制御弁(232)は、第1のポートが第1吸着筒(234)の一端に接続される。また、第1方向制御弁(232)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第1方向制御弁(232)は、第1吸着筒(234)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。
第2方向制御弁(233)は、第1のポートが第2吸着筒(235)の一端に接続される。また、第2方向制御弁(233)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第2方向制御弁(233)は、第2吸着筒(235)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。
〈吸着筒〉
第1吸着筒(234)及び第2吸着筒(235)のそれぞれは、両端が閉塞された円筒状の容器と、その容器に充填された吸着剤とを備える部材である。
これら吸着筒(234,235)に充填された吸着剤は、圧力が大気圧よりも高い加圧状態において窒素成分を吸着し、圧力が大気圧よりも低い減圧状態において窒素成分を脱着させる性質を有する。本実施形態では、吸着剤として、例えば、窒素分子の分子径(3.0オングストローム)よりも小さく且つ酸素分子の分子径(2.8オングストローム)よりも大きな孔径の細孔を有する多孔体のゼオライトが用いられる。
本実施形態の第1組成調節部(40)では、第1吸着筒(234)及び第2吸着筒(235)が第1分離部(41)を構成する。第1分離部(41)を構成する二つの吸着筒(234,235)は、未処理庫外空気を、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気に分離する。
〈酸素排出管〉
酸素排出通路を形成する酸素排出管(245)は、一端側で二つの分岐管に分岐しており、一方の分岐管が第1吸着筒(234)の他端に、他方の分岐管が第2吸着筒(235)にそれぞれ接続される。酸素排出管(245)の各分岐管には、逆止弁(261)が一つずつ設けられる。各逆止弁(261)は、対応する吸着筒(234,235)から流出する向きの空気の流れを許容し、逆向きの空気の流れを遮断する。
酸素排出管(245)は、ユニットケース(32)を貫通するように設けられる。酸素排出管(245)の他端は、輸送用コンテナ(1)の庫外空間に開口する。酸素排出管(245)の集合部分には、逆止弁(262)とオリフィス(263)とが設けられる。逆止弁(262)は、オリフィス(263)よりも酸素排出管(245)の他端寄りに配置される。この逆止弁(262)は、酸素排出管(245)の他端へ向かう空気の流れを許容し、逆向きの空気の流れを遮断する。
〈パージ管〉
酸素排出管(245)の各分岐管には、パージ通路を形成するパージ管(250)が接続される。パージ管(250)は、一端が第1吸着筒(234)に接続する分岐管に接続され、他端が第2吸着筒(235)に接続する分岐管に接続される。パージ管(250)の一端は、第1吸着筒(234)と逆止弁(261)の間に接続される。パージ管(250)の他端は、第2吸着筒(235)と逆止弁(261)の間に接続される。
パージ管(250)には、パージ弁(251)が設けられる。パージ弁(251)は、電磁弁からなる開閉弁である。パージ弁(251)は、第1吸着筒(234)と第2吸着筒(235)を均圧する際に開かれる。また、パージ管(250)におけるパージ弁(251)の両側には、オリフィス(252)が一つずつ設けられる。
〈排気用接続管〉
供給用接続管(244)には、排気用接続通路を形成する排気用接続管(271)が接続される。排気用接続管(271)は、一端が供給用接続管(244)に接続され、他端が酸素排出管(245)に接続される。排気用接続管(271)の一端は、供給用接続管(244)における第2ポンプ機構(231b)と逆止弁(264)の間に接続される。排気用接続管(271)の他端は、酸素排出管(245)の逆止弁(262)よりも庫外側に接続される。
排気用接続管(271)には、排気用開閉弁(272)が設けられる。排気用開閉弁(272)は、電磁弁からなる開閉弁である。排気用開閉弁(272)は、供給用接続管(244)を流れる空気を庫外へ排出する際に開かれる。
〈測定用接続管〉
供給用接続管(244)には、測定用通路を形成する測定用接続管(281)が接続される。この測定用接続管(281)は、第1組成調節部(40)をセンサユニット(90)に接続するための配管である。
測定用接続管(281)は、一端が供給用接続管(244)に接続され、他端が測定用配管(125)に接続される。測定用接続管(281)の一端は、供給用接続管(244)における逆止弁(264)と供給側開閉弁(273)の間に接続される。測定用接続管(281)の他端は、測定用配管(125)における測定用開閉弁(126)とセンサユニット(90)の間に接続される。
測定用接続管(281)には、測定用開閉弁(282)が設けられる。測定用開閉弁(282)は、電磁弁からなる開閉弁である。測定用開閉弁(282)は、供給用接続管(244)を流れる空気をセンサユニット(90)へ送る際に開かれる。
〈バイパス管〉
吐出管(242)には、バイパス通路を形成するバイパス接続管(255)が接続される。バイパス接続管(255)は、一端が吐出管(242)に接続され、他端が測定用接続管(281)に接続される。バイパス接続管(255)の一端は、吐出管(242)の分岐箇所よりも第1ポンプ機構(231a)寄りに接続される。バイパス接続管(255)の他端は、測定用接続管(281)の一端と測定用開閉弁(282)の間に接続される。このバイパス接続管(255)は、第1吸着筒(234)及び第2吸着筒(235)をバイパスさせて庫外空気を輸送用コンテナ(1)の庫内空間へ供給するための第1バイパス通路を形成する。
バイパス接続管(255)には、バイパス開閉弁(256)が設けられる。バイパス開閉弁(256)は、電磁弁からなる開閉弁である。バイパス開閉弁(256)は、バイパス接続管(255)へ流入する庫外空気の流量を変更するための第1バイパス弁機構を構成する。このバイパス開閉弁(256)は、第1ポンプ機構(231a)が吐出した庫外空気を、その組成を変更せずに荷室(5)へ供給する際に開かれる。
−第1組成調節部の運転動作−
本実施形態の第1組成調節部(40)の運転動作を説明する。
本実施形態の第1組成調節部(40)は、後述する第1動作と第2動作を所定の時間(例えば、14.5秒)ずつ交互に繰り返し行うことによって、未処理庫外空気を第1庫外空気と第2庫外空気に分離する。また、本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、庫内空気調節装置(30)の酸素濃度低減動作と二酸化炭素濃度低減動作のそれぞれにおいて、未処理庫外空気を第1庫外空気と第2庫外空気に分離する動作を行う。
〈第1動作〉
図9に示すように、第1動作では、第1方向制御弁(232)が第1状態に設定され、第2方向制御弁(233)が第2状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第1吸着筒(234)に接続し、第2吸着筒(235)が第2ポンプ機構(231b)の吸込口に接続する。また、第1動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第1動作では、第1吸着筒(234)を対象とする吸着動作と、第2吸着筒(235)を対象とする脱離動作とが行われる。
第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第1吸着筒(234)へ供給する。第1吸着筒(234)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第1吸着筒(234)から流出して酸素排出管(245)を流れ、排出用空気として庫外空間へ排出される。
一方、第2ポンプ機構(231b)は、第2吸着筒(235)から空気を吸引する。第2吸着筒(235)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。
〈第2動作〉
図10に示すように、第2動作では、第1方向制御弁(232)が第2状態に設定され、第2方向制御弁(233)が第1状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第2吸着筒(235)に接続し、第1吸着筒(234)が第2ポンプ機構(231b)の吸込口に接続する。また、第2動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第2動作では、第1吸着筒(234)を対象とする脱離動作と、第2吸着筒(235)を対象とする吸着動作とが行われる。
第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第2吸着筒(235)へ供給する。第2吸着筒(235)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第2吸着筒(235)から流出して酸素排出管(245)を流れ、排出用空気として庫外空間へ排出される。
一方、第2ポンプ機構(231b)は、第1吸着筒(234)から空気を吸引する。第1吸着筒(234)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。
−制御器の陽圧維持動作−
本実施形態の制御器(110)は、エアポンプ(231)の回転速度を上昇させる動作を、陽圧維持動作として行う。この点で、本実施形態の制御器(110)は、実施形態1の制御器(110)と異なる。
具体的に、本実施形態の制御器(110)は、実施形態1の説明において述べた判定条件が成立すると、輸送用コンテナ(1)内の気圧が陰圧となって庫外空気が輸送用コンテナ(1)の内部へ侵入していると判断し、第1組成調節部(40)が輸送用コンテナ(1)の内部へ供給する第1庫外空気の流量を増やすための陽圧維持動作を行う。
本実施形態の制御器(110)は、エアポンプ(231)を駆動するモータ(231c)の回転速度を上昇させる動作を、陽圧維持動作として行う。モータ(231c)の回転速度が上昇すると、エアポンプ(231)の回転速度が上昇する。そして、エアポンプ(231)の回転速度が上昇すると、第2動作中に輸送用コンテナ(1)の内部へ供給される第1庫外空気(供給用空気)の流量が増加し、その結果、輸送用コンテナ(1)内の気圧が上昇する。
《その他の実施形態》
上記各実施形態の庫内空気調節装置(30)については、次のような変形例を適用してもよい。なお、以下の変形例は、庫内空気調節装置(30)の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
−第1変形例−
実施形態1〜3の庫内空気調節装置(30)に設けられた制御器(110)は、陽圧維持動作として、判定条件が成立したときに輸送用コンテナ(1)の外部へ排出される第2庫内空気の流量を減らすために第2調節弁(66)の開度を拡大する動作を行うように構成されていてもよい。また、この制御器(110)は、陽圧維持動作として、換気用排気弁(101)を一時的に閉状態に保つ動作、あるいは換気用排気弁(101)を所定の時間間隔で開閉する動作を行うように構成されていてもよい。本変形例の場合は、輸送用コンテナ(1)の内部から外部へ排出される空気の流量を減少させることによって、輸送用コンテナ(1)内の気圧を上昇させる。
−第2変形例−
実施形態1,2の庫内空気調節装置(30)において、第1分離モジュール(41)のガス分離膜(85)と第2分離モジュール(61)のガス分離膜(85)とは、それぞれの特性が互いに異なっていてもよい。
−第3変形例−
実施形態1,2の庫内空気調節装置(30)において、第1バイパス弁(50)は、第1分離モジュール(41)へ流入する未処理庫外空気の流量と、第1バイパス管(51)へ流入する未処理庫外空気の流量の割合を、多段階に又は連続的に変更できるように構成されていてもよい。また、第2バイパス弁(70)は、第2分離モジュール(61)へ流入する未処理庫内空気の流量と、第2バイパス管(71)へ流入する未処理庫内空気の流量の割合を、多段階に又は連続的に変更できるように構成されていてもよい。
−第4変形例−
実施形態1,2の庫内空気調節装置(30)では、第1ポンプ(36)と第2ポンプ(37)のそれぞれに駆動モータが連結されていてもよい。この変形例では、第1ポンプ(36)と第2ポンプ(37)の一方を作動させて他方を休止させることが可能となる。
−第5変形例−
実施形態1,2の庫内空気調節装置(30)において、第1組成調節部(40)と第2組成調節部(60)のそれぞれは、いわゆるPSA(Pressure Swing Adsorption)法によって、吸い込んだ空気を互いに組成が異なる二種類の空気に分離するように構成されていてもよい。この場合、組成調節部(40,60)は、吸い込んだ空気に含まれる窒素を吸着剤に吸着させることによって、窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い空気を生成する工程と、吸着剤から窒素を脱離させて窒素濃度が高くて酸素濃度及び二酸化炭素濃度が低い空気を生成する工程とを繰り返し行う。
−第6変形例−
実施形態1〜3の庫内空気調節装置(30)は、定置型の冷蔵庫または冷凍庫に設けられてもよい。また、上記各実施形態の庫内空気調節装置(30)は、トラックや鉄道などで輸送される陸上輸送用の冷蔵・冷凍コンテナに設けられていてもよい。また、上記各実施形態の庫内空気調節装置(30)は、荷室を形成する箱体が車台と一体になった冷蔵・冷凍トラックに設けられていてもよい。
以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
以上説明したように、本発明は、収納庫の庫内空気の組成を調節する庫内空気調節装置について有用である。
1 輸送用コンテナ(収納庫)
30 庫内空気調節装置
36 第1ポンプ
37 第2ポンプ
40 第1組成調節部
41 第1分離モジュール(第1分離部)
46 第1調節弁(第1弁機構)
50 第1バイパス弁(第1バイパス弁機構)
51 第1バイパス管(第1バイパス通路)
60 第2組成調節部
61 第2分離モジュール(第2分離部)
66 第2調節弁(第2弁機構)
70 第2バイパス弁(第2バイパス弁機構)
71 第2バイパス管(第2バイパス通路)
91 酸素センサ
100 換気用排気管(換気用排気通路)
101 換気用排気弁
110 制御器
255 バイパス接続管(第1バイパス通路)
256 バイパス開閉弁(第1バイパス弁機構)
本発明は、収納庫の庫内空気の組成を調節する庫内空気調節装置に関するものである。
農産物等の鮮度低下の抑制を目的として、農産物等を収容する倉庫や輸送用コンテナの庫内空気の組成(例えば、庫内空気の酸素濃度や二酸化炭素濃度)を調節する庫内空気調節装置が知られている。
特許文献1には、庫内空気の組成を調節する装置を持ったコンテナが開示されている。この特許文献1の装置は、二酸化炭素の透過性が酸素の透過性よりも高いガス分離膜を用いて、庫内空気の組成を調節する。具体的に、この装置は、ガス分離膜の一方の表面に庫内空気を接触させ、ガス分離膜の他方の表面に二酸化炭素を殆ど含まない外気を接触させることによって、農産物等の呼吸によって生じた二酸化炭素をコンテナの外部へ排出する(特許文献1の明細書20ページ14行〜21ページ2行を参照)。また、この装置は、庫内の酸素濃度が低下すると、コンテナの庫内と庫外を連通させる通路を開き、この通路を通じて外気を庫内へ流入させる(特許文献1の明細書20ページ5〜12行を参照)。
国際公開第2007/033668号
ここで、コンテナに収容される農産物等の貨物の種類によって、その貯蔵に適した庫内空気の組成は様々である。一方、上述したように、特許文献1の装置は、庫内空気に含まれる二酸化炭素を庫外へ排出し、コンテナの庫内と庫外を連通させる通路を通じて庫内へ外気を導入する。つまり、特許文献1の装置は、大気と同じ組成の空気(即ち、外気)を庫内へ供給する。このため、庫内空気の組成を、コンテナに収容される農産物等の貨物の貯蔵に適した組成に調節するのが困難な場合があった。
本発明は、かかる点に鑑みてなされたものであり、その目的は、収納庫の庫内空気の組成を適切に制御できる庫内空気調節装置を提供することにある。
第1の発明は、収納庫(1)の内部の庫内空気の組成を調節する庫内空気調節装置を対象とする。そして、上記収納庫(1)の外部の庫外空気から該庫外空気とは組成が異なる供給用空気を分離する第1分離部(41)を有し、上記供給用空気を上記収納庫(1)の内部へ供給する第1組成調節部(40)を備え、上記第1組成調節部(40)の上記第1分離部(41)が、上記収納庫(1)の外部の庫外空気から該庫外空気よりも酸素濃度が低い上記供給用空気を分離することによって、上記収納庫(1)の庫内空気の酸素濃度を低下させる一方、上記収納庫(1)の庫内空気の酸素濃度を計測する酸素センサ(91)と、上記第1組成調節部(40)が上記供給用空気を上記収納庫(1)の内部へ供給しているときにおける上記酸素センサ(91)の計測値の変化に基づいて、上記収納庫(1)内の気圧が陽圧か否かを判断する制御器(110)とを更に備えるものである。
第1の発明の庫内空気調節装置(30)は、第1組成調節部(40)が庫外空気とは組成が異なる供給用空気を収納庫(1)の内部へ供給することによって、収納庫(1)内の空気の組成を調節する。第1組成調節部(40)では、庫外空気よりも酸素の濃度が低い供給用空気が庫外空気から分離され、この供給用空気が収納庫(1)の内部へ供給される。その結果、収納庫(1)の内部に存在する酸素の量が減少し、庫内空気の酸素の濃度が低下する。
ここで、収納庫(1)内の気圧が陽圧であれば、収納庫(1)の隙間を通って庫外空気が収納庫(1)の内部へ侵入することは無く、第1組成調節部(40)が供給用空気を上記収納庫(1)の内部へ供給しているときには、庫内空気の酸素濃度が次第に低下する。一方、収納庫(1)内の気圧が陰圧であれば、収納庫(1)の隙間を通って庫外空気が収納庫(1)の内部へ侵入するため、第1組成調節部(40)が供給用空気を上記収納庫(1)の内部へ供給しているときであっても、庫内の酸素濃度が僅かしか低下せず、あるいは庫内の酸素濃度が上昇する。
そこで、第2の発明の制御器(110)は、第1組成調節部(40)が供給用空気を上記収納庫(1)の内部へ供給しているときにおける酸素センサ(91)の計測値の変化に基づいて、収納庫(1)内の気圧が陽圧か否かを判断する。
第2の発明は、上記第1の発明において、上記制御器(110)は、上記収納庫(1)内の気圧が陽圧でないと判断すると上記第1組成調節部(40)が上記収納庫(1)の内部へ供給する供給用空気の流量を増やすための制御動作を行うものである。
第2の発明の制御器(110)は、収納庫(1)内の気圧が陽圧でないと判断すると、第1組成調節部(40)が収納庫(1)の内部へ供給する供給用空気の流量を増やすための制御動作を行う。そして、供給用空気の流量が増加して排出用空気の流量を上回ると、収納庫(1)内の気圧が上昇して陽圧となる。
空気は、気圧の高い所から気圧の低いところへ向かって流れる。従って、収納庫(1)の気密性が低い場合でも、収納庫(1)の内部の気圧が陽圧に保たれていれば、収納庫(1)の隙間から庫外空気が収納庫(1)の内部へ侵入することはない。
第3の発明は、第1又は第2の発明において、上記第1分離部(41)は、上記収納庫(1)の外部から導入された庫外空気である未処理庫外空気を、該未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、上記未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気に分離するように構成され、上記第1組成調節部(40)は、上記第1庫外空気を上記供給用空気として上記収納庫(1)の内部へ供給し、上記第2庫外空気を上記収納庫(1)の外部へ排出するものである。
第3の発明において、第1分離部(41)は、未処理庫外空気を、未処理庫外空気に比べて窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気に比べて窒素濃度が低くて酸素濃度が高い第2庫外空気に分離する。第1組成調節部(40)は、互いに組成が異なる第1庫外空気を供給用空気として収納庫(1)の内部へ供給し、第2庫外空気を収納庫(1)の外部へ排出する
第4の発明は、上記第3の発明において、上記第1分離部(41)は、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いガス分離膜(85)を有し、上記未処理庫外空気を上記ガス分離膜(85)と接触させ、上記ガス分離膜(85)を透過しなかった空気を上記第1庫外空気とし、上記ガス分離膜(85)を透過した空気を上記第2庫外空気とするように構成されるものである。
第4の発明では、第1分離部(41)にガス分離膜(85)が設けられる。第1分離部(41)において、ガス分離膜(85)を透過しなかった第1庫外空気は、未処理庫外空気に比べて窒素濃度が高くて酸素濃度が低くなり、ガス分離膜(85)を透過した第2庫外空気は、未処理庫外空気に比べて窒素濃度が低くて酸素濃度が高くなる
第5の発明は、上記第4の発明において、上記第1組成調節部(40)は、上記未処理庫外空気を加圧して上記第1分離部(41)へ供給する第1ポンプ(36)を備えるものである。
第5の発明の第1組成調節部(40)では、第1ポンプ(36)によって加圧された未処理庫外空気が、第1分離部(41)へ供給されて第1庫外空気と第2庫外空気に分離される。
第6の発明は、上記第5の発明において、上記第1組成調節部(40)は、上記第1庫外空気の流れる配管に設けられた開度可変の第1弁機構(46)を備えるものである。
第6の発明の第1組成調節部(40)では、第1庫外空気の流れる配管に第1弁機構(46)が設けられる。第1弁機構(46)の開度を変更すると、第1弁機構(46)の上流側における第1庫外空気の圧力が変化する。第1庫外空気は、第1分離部(41)のガス分離膜(85)を透過しなかった空気である。このため、第1弁機構(46)の上流側における第1庫外空気の圧力が変化すると、それに伴って第1加圧ポンプが第1分離部(41)へ供給する未処理庫外空気の圧力も変化する。一般に、ガス分離膜(85)へ供給される空気の圧力が変化すると、空気の各成分の透過率が変化する。このため、第1弁機構(46)の開度を変更すると、第1分離部(41)へ供給される未処理庫外空気の圧力が変化し、第1庫外空気と第2庫外空気の組成(例えば、窒素濃度と酸素濃度)と流量とが変化する。
第7の発明は、上記第3の発明において、上記第1分離部(41)は、窒素を吸着する吸着剤が設けられた吸着部(234,235)を有し、上記吸着部(234,235)に供給された上記未処理庫外空気に含まれる窒素を上記吸着部(234,235)の上記吸着剤に吸着させることによって上記第2庫外空気を生成する吸着動作と、上記吸着部(234,235)の上記吸着剤から窒素を脱離させることによって上記第1庫外空気を生成する脱離動作とを行うように構成されるものである。
第7の発明では、第1分離部(41)に吸着部(234,235)が設けられる。この発明の第1分離部(41)は、吸着動作と脱離動作とを行う。吸着動作において、吸着部(234,235)に供給された未処理庫外空気は、吸着剤に窒素を奪われて第2庫外空気となる。第2庫外空気は、未処理庫外空気に比べて窒素濃度が低くて酸素濃度が高い。一方、脱離動作において、吸着部(234,235)では、吸着動作中に吸着剤に吸着された窒素が、吸着剤から脱離する。その結果、吸着部(234,235)では、処理庫外空気に比べて窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。
第8の発明は、第1〜第7のいずれか一つの発明において、上記第1組成調節部(40)は、上記収納庫(1)の外部の上記庫外空気を、上記第1分離部(41)をバイパスさせて上記収納庫(1)の内部へ供給するための第1バイパス通路(51,255)と、上記第1バイパス通路(51,255)へ流入する上記庫外空気の流量を変更するための第1バイパス弁機構(50,256)とを備えるものである。
第8の発明では、第1バイパス弁機構(50,256)を操作して庫外空気が第1バイパス通路(51,255)を流れる状態にすれば、収納庫(1)の外部から第1組成調節部(40)へ流入した庫外空気の一部または全部が、そのままの状態(即ち、組成を保った状態)で収納庫(1)の内部へ供給される。
本発明によれば、第1組成調節部(40)が供給用空気を収納庫(1)の内部へ供給しているときにおける酸素センサ(91)の計測値の変化に基づいて、収納庫(1)内の気圧が陽圧か否かを判断できる。
上記第2の発明において、制御器(110)は、収納庫(1)内の気圧が陽圧でないと判断すると、第1組成調節部(40)が収納庫(1)の内部へ供給する供給用空気の流量を増やすための制御動作を行う。従って、この発明によれば、収納庫(1)内の気圧を一層確実に陽圧とすることができる。
上記第4の発明では、第1組成調節部(40)は、それぞれの窒素濃度と酸素濃度が未処理庫外空気と異なる第1庫外空気と第2庫外空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。従って、この発明によれば、収納庫(1)の庫内空気の窒素濃度と酸素濃度と二酸化炭素濃度とを調節することが可能となる。
上記第6の発明では、第1ポンプ(36)が加圧した未処理庫外空気を第1分離部(41)へ供給すると共に、第1弁機構(46)の開度を調節することによって、第1庫外空気と第2庫外空気の組成(例えば、窒素濃度と酸素濃度)と流量とを制御できる。従って、この発明によれば、第1組成調節部(40)が収納庫(1)の内部へ供給する空気の組成と流量とを調節することによって、収納庫(1)の内部の空気の組成を一層適切に制御することが可能となる。
上記第7の発明では、第1組成調節部(40)は、それぞれの窒素濃度と酸素濃度が未処理庫外空気と異なる第1庫外空気と第2庫外空気の一方を収納室の内部へ供給して、他方を収納室の外部へ排出する。従って、この発明によれば、収納庫(1)の庫内空気の窒素濃度と酸素濃度と二酸化炭素濃度とを調節することが可能となる。
図1は、実施形態1の庫内空気調節装置を備えた輸送用コンテナの概略断面図である。 図2は、輸送用コンテナに設けられたコンテナ用冷凍機の冷媒回路の構成を示す冷媒回路図である。 図3は、実施形態1の庫内空気調節装置の構成を示す配管系統図である。 図4は、実施形態1の庫内空気調節装置に設けられた分離モジュールの概略断面図である。 図5は、実施形態1の庫内空気調節装置が行う酸素濃度低減動作を示すブロック図である。 図6は、実施形態1の庫内空気調節装置が行う二酸化炭素濃度低減動作を示すブロック図である。 図7は、実施形態2の庫内空気調節装置の構成を示す配管系統図である。 図8は、実施形態3の庫内空気調節装置の構成を示す配管系統図である。 図9は、実施形態3の第1組成調節部の第1動作中の状態を示す庫内空気調節装置の配管系統図である。 図10は、実施形態3の第1組成調節部の第2動作中の状態を示す庫内空気調節装置の配管系統図である。
本発明の実施形態を図面に基づいて詳細に説明する。
《実施形態1》
実施形態1について説明する。本実施形態の庫内空気調節装置(30)は、いわゆるCA(Controlled Atmosphere)輸送を行うために輸送用コンテナ(1)に設けられる。そして、庫内空気調節装置(30)は、輸送用コンテナ(1)内の空気の組成を、大気の組成と異なるように調節する。
図1に示すように、収納庫を構成する輸送用コンテナ(1)は、コンテナ本体(2)と、コンテナ用冷凍機(10)とを備えている。この輸送用コンテナ(1)は、庫内の温度管理か可能なリーファーコンテナ(reefer container)である。本実施形態の庫内空気調節装置(30)は、コンテナ用冷凍機(10)に設置される。この輸送用コンテナ(1)は、空気中の酸素(O2)を取り込んで二酸化炭素(CO2)を放出する呼吸を行う植物を輸送するために用いられる。植物の例としては、バナナやアボカド等の果物、野菜、穀物、球根、生花等が挙げられる。
コンテナ本体(2)は、細長い直方体形状の箱状に形成されている。コンテナ本体(2)は、一方の端面が開口し、この開口端を塞ぐようにコンテナ用冷凍機(10)が取り付けられる。コンテナ本体(2)の内部空間は、貨物(6)を収納するための荷室(5)を構成する。
荷室(5)の底部には、貨物(6)を載せるための床板(3)が配置される。この床板(3)とコンテナ本体(2)の底板との間には、コンテナ用冷凍機(10)が吹き出した空気を流すための床下流路(4)が形成される。床下流路(4)は、コンテナ本体(2)の底板に沿ってコンテナ本体(2)の長手方向へ延びる流路である。床下流路(4)は、一端がコンテナ用冷凍機(10)の吹出口(27)に接続し、他端が床板(3)の上側の空間(即ち、貨物(6)が収容される空間)と連通する。
−コンテナ用冷凍機−
図1に示すように、コンテナ用冷凍機(10)は、ケーシング(20)と、冷凍サイクルを行う冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とを備えている。
ケーシング(20)は、庫外壁部(21)と、庫内壁部(22)と、背面板(24)と、区画板(25)とを備えている。後述するように、このケーシング(20)には、冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とが設けられる。
庫外壁部(21)は、コンテナ本体(2)の開口端を覆うように配置される板状の部材である。庫外壁部(21)は、下部がコンテナ本体(2)の内側へ膨出している。庫内壁部(22)は、庫外壁部(21)に沿った形態の板状の部材である。庫内壁部(22)は、庫外壁部(21)におけるコンテナ本体(2)の内側の面を覆うように配置される。庫外壁部(21)と庫内壁部(22)の間の空間には、断熱材(23)が充填されている。
ケーシング(20)は、その下部がコンテナ本体(2)の内側へ窪んだ形状となっている。ケーシング(20)の下部は、輸送用コンテナ(1)の外部空間と連通する庫外機器室(28)を形成する。この庫外機器室(28)には、庫外ファン(16)が配置される。
背面板(24)は、概ね矩形の平板状の部材である。背面板(24)は、庫内壁部(22)よりもコンテナ本体(2)の内側に配置され、庫内壁部(22)との間に庫内空気流路(29)を形成する。この庫内空気流路(29)は、その上端がケーシング(20)の吸込口(26)を構成し、その下端がケーシング(20)の吹出口(27)を構成する。
区画板(25)は、庫内空気流路(29)を上下に区画するように配置された板状の部材である。区画板(25)は、庫内空気流路(29)の上部に配置される。この区画板(25)によって、庫内空気流路(29)は、区画板(25)の上側の一次流路(29a)と、区画板(25)の下側の二次流路(29b)に区画される。一次流路(29a)は、吸込口(26)を介して荷室(5)と連通する。二次流路(29b)は、吹出口(27)を介して床下流路(4)と連通する。区画板(25)には、庫内ファン(17)が取り付けられる。庫内ファン(17)は、一次流路(29a)から吸い込んだ空気を二次流路(29b)へ吹き出すように配置される。
図2に示すように、冷媒回路(11)は、圧縮機(12)と、凝縮器(13)と、膨張弁(14)と、蒸発器(15)とを配管で接続することによって形成された閉回路である。圧縮機(12)を作動させると、冷媒回路(11)を冷媒が循環し、蒸気圧縮冷凍サイクルが行われる。図1に示すように、凝縮器(13)は、庫外機器室(28)における庫外ファン(16)の吸込側に配置され、蒸発器(15)は、庫内空気流路(29)の二次流路(29b)に配置される。また、図1では図示を省略するが、圧縮機(12)は、庫外機器室(28)に配置される。
−庫内空気調節装置−
図1に示すように、庫内空気調節装置(30)は、本体ユニット(31)と、センサユニット(90)と、換気用排気管(100)と、制御器(110)とを備えている。本体ユニット(31)は、コンテナ用冷凍機(10)の庫外機器室(28)に設置される。センサユニット(90)は、輸送用コンテナ(1)の庫内空気流路(29)に設置される。換気用排気管(100)は、輸送用コンテナ(1)の庫内空気流路(29)と庫外機器室(28)に亘って設置される。制御器(110)は、本体ユニット(31)に設けられて、庫内空気調節装置(30)の構成機器を制御する。センサユニット(90)、換気用排気管(100)、及び制御器(110)の詳細は、後述する。
図3に示すように、庫内空気調節装置(30)の本体ユニット(31)は、第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)と、ユニットケース(32)とを備えている。ユニットケース(32)は、箱状の密閉容器である。第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)とは、このユニットケース(32)の内部空間に配置される。第1組成調節部(40)、第2組成調節部(60)、及びポンプユニット(35)の詳細は、後述する。
また、庫内空気調節装置(30)は、供給管(120)と、庫内側吸入管(75)と、測定用配管(125)とを備えている。供給管(120)、庫内側吸入管(75)、及び測定用配管(125)は、本体ユニット(31)をコンテナ用冷凍機(10)の庫内空気流路(29)に接続するための配管である。
供給管(120)は、第1組成調節部(40)及び第2組成調節部(60)から流出した空気を荷室(5)へ供給するための配管である。供給管(120)は、入口端が第1組成調節部(40)及び第2組成調節部(60)に接続され、出口端が庫内空気流路(29)の二次流路(29b)に開口する。
庫内側吸入管(75)は、荷室(5)内の庫内空気を第2組成調節部(60)へ供給するための配管である。庫内側吸入管(75)は、入口端が庫内空気流路(29)の二次流路(29b)に開口し、出口端が後述する第2組成調節部(60)の第2ポンプ(37)に接続される。なお、庫内空気流路(29)の二次流路(29b)において、庫内側吸入管(75)の入口端は、供給管(120)の出口端の上流側に配置される。
測定用配管(125)は、供給管(120)を流れる空気をセンサユニット(90)へ供給するための配管である。測定用配管(125)は、入口端が供給管(120)に接続され、出口端がセンサユニット(90)に接続される。また、測定用配管(125)には、電磁弁からなる測定用開閉弁(126)が設けられる。この測定用開閉弁(126)は、本体ユニット(31)のユニットケース(32)に収容される。
なお、換気用排気管(100)と、供給管(120)と、庫内側吸入管(75)と、測定用配管(125)と、後述する各組成調節部(40,60)に設けられた配管(52〜55,71〜74,95)とは、硬質のパイプで構成されていてもよいし、柔軟なホースで構成されていてもよいし、パイプとホースを組み合わせることで構成されていてもよい。
〈ポンプユニット〉
図3に示すように、ポンプユニット(35)は、第1ポンプ(36)と、第2ポンプ(37)と、駆動モータ(38)とを備えている。
第1ポンプ(36)と第2ポンプ(37)のそれぞれは、吸い込んだ空気を吐出する空気ポンプである。第1ポンプ(36)と第2ポンプ(37)のそれぞれは、例えば容積型の流体機械によって構成される。第1ポンプ(36)と第2ポンプ(37)は、一体化されている。駆動モータ(38)は、第1ポンプ(36)及び第2ポンプ(37)に連結された電動機である。駆動モータ(38)は、第1ポンプ(36)と第2ポンプ(37)の両方を駆動する。
〈第1組成調節部〉
第1組成調節部(40)は、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気と第2庫外空気に分離するように構成される。本実施形態の第1組成調節部(40)は、供給用空気である第1庫外空気を荷室(5)へ供給し、第2庫外空気を輸送用コンテナ(1)の外部へ排出する。
第1組成調節部(40)は、エアフィルタ(47)と、第1分離モジュール(41)と、第1バイパス弁(50)と、第1圧力センサ(45)と第1調節弁(46)とを備えている。また、第1組成調節部(40)は、庫外側吸入管(55)と、第1導入管(52)と、第1一次側管(53)と、第1二次側管(54)と、第1バイパス管(51)とを備えている。また、ポンプユニット(35)の第1ポンプ(36)は、この第1組成調節部(40)を構成する。
エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのメンブレンフィルタである。エアフィルタ(47)は、本体ユニット(31)のユニットケース(32)に取り付けられる。エアフィルタ(47)は、庫外側吸入管(55)を介して第1ポンプ(36)の吸入口に接続する。なお、本実施形態の庫内空気調節装置(30)では、庫外側吸入管(55)を省略し、密閉容器であるユニットケース(32)の内部空間を介してエアフィルタ(47)と第1ポンプ(36)を連通させてもよい。
詳しくは後述するが、第1分離モジュール(41)は、第1導入口(42)と、第1一次側導出口(43)と、第1二次側導出口(44)とを備える。第1導入口(42)は、第1導入管(52)を介して第1ポンプ(36)の吐出口に接続する。第1一次側導出口(43)は、第1一次側管(53)を介して供給管(120)に接続する。第1二次側導出口(44)には、第1二次側管(54)の一端が接続する。第1二次側管(54)は、ユニットケース(32)の外部へ延びている。第1二次側管(54)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。
第1バイパス弁(50)は、三つのポートを有する切換弁であって、第1バイパス弁機構を構成する。第1バイパス弁(50)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第1バイパス弁(50)は、第1導入管(52)の途中に配置される。第1バイパス弁(50)は、第1のポートが第1ポンプ(36)の吐出口に接続し、第2のポートが第1分離モジュール(41)の第1導入口(42)に接続する。第1バイパス弁(50)の第3のポートには、第1バイパス管(51)の入口端が接続する。第1バイパス管(51)の出口端は、第1一次側管(53)に接続する。第1バイパス管(51)は、第1バイパス通路を構成する。
第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に設けられる。第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に接続する第1バイパス管(51)の他端よりも第1分離モジュール(41)寄りに配置される。また、第1圧力センサ(45)は、第1調節弁(46)よりも第1分離モジュール(41)寄りに配置される。
第1圧力センサ(45)は、第1分離モジュール(41)の第1一次側導出口(43)から流出した第1庫外空気の圧力を計測する。第1圧力センサ(45)の計測値は、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力と実質的に等しい。
第1調節弁(46)は、開度可変の電動弁であって、第1弁機構を構成する。第1調節弁(46)の開度を変更すると、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力が変化する。
第1分離モジュール(41)は、第1分離部を構成する。詳しくは後述するが、第1分離モジュール(41)は、ガス分離膜(85)を備えている。そして、第1分離モジュール(41)は、未処理庫外空気を、ガス分離膜(85)を透過しなかった第1庫外空気と、ガス分離膜(85)を透過した第2庫外空気に分離する。
第1庫外空気は、窒素濃度が未処理庫外空気よりも高く、酸素濃度が未処理庫外空気よりも低い。第2庫外空気は、窒素濃度が未処理庫外空気よりも低く、酸素濃度が未処理庫外空気よりも高い。このように、第1庫外空気と第2庫外空気は、それぞれを構成する物質の濃度が互いに異なる。なお、本明細書における濃度は、体積割合を意味する。
〈第2組成調節部〉
第2組成調節部(60)は、輸送用コンテナ(1)の内部空間から吸い込んだ庫内空気(未処理庫内空気)を第1庫内空気と第2庫内空気に分離するように構成される。本実施形態の第2組成調節部(60)は、第1庫内空気を荷室(5)へ供給し、排出用空気である第2庫内空気を輸送用コンテナ(1)の外部へ排出する。
第2組成調節部(60)は、第2分離モジュール(61)と、第2バイパス弁(70)と、第2圧力センサ(65)と第2調節弁(66)とを備えている。また、第2組成調節部(60)は、第2導入管(72)と、第2一次側管(73)と、第2二次側管(74)と、第2バイパス管(71)とを備えている。また、ポンプユニット(35)の第2ポンプ(37)は、この第2組成調節部(60)を構成する。
詳しくは後述するが、第2分離モジュール(61)は、第2導入口(62)と、第2一次側導出口(63)と、第2二次側導出口(64)とを備える。第2導入口(62)は、第2導入管(72)を介して第2ポンプ(37)の吐出口に接続する。第2一次側導出口(63)は、第2一次側管(73)を介して供給管(120)に接続する。第2二次側導出口(64)には、第2二次側管(74)の一端が接続する。第2二次側管(74)は、ユニットケース(32)の外部へ延びている。第2二次側管(74)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。また、第2ポンプ(37)の吸入口には、庫内側吸入管(75)が接続する。
第2バイパス弁(70)は、三つのポートを有する切換弁であって、第2バイパス弁機構を構成する。第2バイパス弁(70)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。
第2バイパス弁(70)は、第2導入管(72)の途中に配置される。第2バイパス弁(70)は、第1のポートが第2ポンプ(37)の吐出口に接続し、第2のポートが第2分離モジュール(61)の第2導入口(62)に接続する。第2バイパス弁(70)の第3のポートには、第2バイパス管(71)の入口端が接続する。第2バイパス管(71)の出口端は、第2一次側管(73)に接続する。第2バイパス管(71)は、第2バイパス通路を構成する。
第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に設けられる。第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に接続する第2バイパス管(71)の他端よりも第2分離モジュール(61)寄りに配置される。また、第2圧力センサ(65)は、第2調節弁(66)よりも第2分離モジュール(61)寄りに配置される。
第2圧力センサ(65)は、第2分離モジュール(61)の第2一次側導出口(63)から流出した第2庫内空気の圧力を計測する。第2圧力センサ(65)の計測値は、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力と実質的に等しい。
第2調節弁(66)は、開度可変の電動弁であって、第2弁機構を構成する。第2調節弁(66)の開度を変更すると、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力が変化する。
第2分離モジュール(61)は、第2分離部を構成する。詳しくは後述するが、第2分離モジュール(61)は、ガス分離膜(85)を備えている。そして、第2分離モジュール(61)は、未処理庫内空気を、ガス分離膜(85)を透過しなかった第1庫内空気と、ガス分離膜(85)を透過した第2庫内空気に分離する。
第1庫内空気は、窒素濃度が未処理庫内空気よりも高く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも低い。第2庫内空気は、窒素濃度が未処理庫内空気よりも低く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも高い。このように、第1庫内空気と第2庫内空気は、それぞれを構成する物質の濃度が互いに異なる。
〈分離モジュール〉
第1分離モジュール(41)及び第2分離モジュール(61)の構造について、図4を参照しながら説明する。第1分離モジュール(41)と第2分離モジュール(61)の構造は、互いに同じである。
各分離モジュール(41,61)は、一つの筒状ケース(80)と、二つの隔壁部(81a,81b)とを備えている。筒状ケース(80)は、両端が閉塞された細長い円筒状の容器である。隔壁部(81a,81b)は、筒状ケース(80)の内部空間を仕切るための部材であって、筒状ケース(80)の内部空間を横断するように設けられる。隔壁部(81a,81b)は、筒状ケース(80)の内部空間の一端寄りの位置と他端寄りの位置とに一つずつ配置される。図4において、筒状ケース(80)の内部空間は、左側の隔壁部(81a)の左側に位置する導入室(82)と、二つの隔壁部(81a,81b)の間に位置する二次側導出室(84)と、右側の隔壁部(81b)の右側に位置する一次側導出室(83)とに仕切られる。
各分離モジュール(41,61)は、中空糸状(即ち、外径が1mm以下の非常に細い管状)に形成されたガス分離膜(85)を多数備えている。中空糸状のガス分離膜(85)は、一方の隔壁部(81a)から他方の隔壁部(81b)に亘って設けられる。各ガス分離膜(85)は、一端部が一方の隔壁部(81a)を貫通して導入室(82)に開口し、他端部が他方の隔壁部(81b)を貫通して一次側導出室(83)に開口する。筒状ケース(80)の内部空間は、二つの隔壁部(81a,81b)に挟まれた空間のうちガス分離膜(85)の外側の部分が、二次側導出室(84)を構成する。各分離モジュール(41,61)において、導入室(82)と一次側導出室(83)は、中空糸状のガス分離膜(85)を介して連通する一方、二次側導出室(84)は、ガス分離膜(85)の内側の空間、導入室(82)、及び一次側導出室(83)と非連通となる。
筒状ケース(80)には、導入口(42,62)と、一次側導出口(43,63)と、二次側導出口(44,64)とが設けられる。導入口(42,62)は、図4における筒状ケース(80)の左端部に配置され、導入室(82)と連通する。一次側導出口(43,63)は、図4における筒状ケース(80)の右端部に配置され、一次側導出室(83)と連通する。二次側導出口(44,64)は、筒状ケース(80)の長手方向の中間部に配置され、二次側導出室(84)と連通する。
ガス分離膜(85)は、高分子からなる非多孔膜である。このガス分離膜(85)は、物質毎に分子がガス分離膜(85)を透過する速度(透過速度)が異なることを利用して、混合ガスに含まれる成分を分離する。
本実施形態の庫内空気調節装置(30)では、第1分離モジュール(41)と第2分離モジュール(61)のそれぞれに同じガス分離膜(85)が設けられる。各分離モジュール(41,61)のガス分離膜(85)は、窒素の透過速度が酸素の透過速度と二酸化炭素の透過速度の両方よりも低いという特性を有している。中空糸状の多数のガス分離膜(85)は、それぞれの膜厚が実質的に同じである。従って、各分離モジュール(41,61)に設けられたガス分離膜(85)は、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いという特性を有している。
各分離モジュール(41,61)では、導入口(42,62)を通って導入室(82)へ流入した空気が、中空糸状のガス分離膜(85)の内側の空間を一次側導出室(83)へ向かって流れる。ガス分離膜(85)の内側の空間を流れる空気は、その一部がガス分離膜(85)を透過して二次側導出室(84)へ移動し、残りが一次側導出室(83)へ流入する。
各分離モジュール(41,61)のガス分離膜(85)は、窒素の透過率が酸素および二酸化炭素の透過率よりも低い。つまり、窒素は、酸素および二酸化炭素に比べてガス分離膜(85)を透過しにくい。このため、中空糸状のガス分離膜(85)の内側を流れる空気は、一次側導出室(83)へ近付くにつれて、その窒素濃度が上昇すると同時に、その酸素濃度および二酸化炭素濃度が低下する。また、中空糸状のガス分離膜(85)を流れる空気に含まれる酸素と二酸化炭素は、ガス分離膜(85)を透過して二次側導出室(84)へ移動する。
その結果、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気は、その窒素濃度が導入室(82)の空気よりも高くなり、その酸素濃度および二酸化炭素濃度が導入室(82)の空気よりも低くなる。また、ガス分離膜(85)を透過して二次側導出室(84)へ移動した空気は、その窒素濃度が導入室(82)の空気よりも低くなり、その酸素濃度および二酸化炭素濃度が導入室(82)の空気よりも高くなる。
第1分離モジュール(41)では、第1導入口(42)から導入室(82)へ未処理庫外空気が流入し、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気が第1庫外空気として第1一次側導出口(43)から流出し、ガス分離膜(85)を透過して二次側導出室(84)へ流入した空気が第2庫外空気として第1二次側導出口(44)から流出する。一方、第2分離モジュール(61)では、第2導入口(62)から導入室(82)へ未処理庫内空気が流入し、ガス分離膜(85)を透過せずに一次側導出室(83)へ流入した空気が第1庫内空気として第2一次側導出口(63)から流出し、ガス分離膜(85)を透過して二次側導出室(84)へ流入した空気が第2庫内空気として第2二次側導出口(64)から流出する。
〈センサユニット〉
図1及び図3に示すように、センサユニット(90)は、コンテナ用冷凍機(10)の庫内空気流路(29)の二次流路(29b)に配置される。図3に示すように、センサユニット(90)は、酸素センサ(91)と、二酸化炭素センサ(92)と、センサケース(93)とを備えている。
酸素センサ(91)は、空気等の混合気体の酸素濃度を計測するジルコニア電流方式のセンサである。二酸化炭素センサ(92)は、空気等の混合気体の二酸化炭素濃度を計測する非分散型赤外線吸収(NDIR:non dispersive infrared)方式のセンサである。酸素センサ(91)及び二酸化炭素センサ(92)は、センサケース(93)に収容される。
センサケース(93)は、やや細長い箱状の部材である。センサケース(93)は、長手方向の一方の端部に測定用配管(125)の出口端が接続され、他方の端部に出口管(95)の一端が接続される。出口管(95)の他端は、庫内空気流路(29)の一次流路(29a)に開口する。また、センサケース(93)には、庫内空気流路(29)を流れる庫内空気をセンサケース(93)の内部空間へ導入するためのエアフィルタ(94)が取り付けられる。エアフィルタ(94)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。
後述するように、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。このため、測定用開閉弁(126)が閉じた状態では、二次流路(29b)の庫内空気がエアフィルタ(94)を通ってセンサケース(93)へ流入し、その後に出口管(95)を通って一次流路(29a)へ流入する。この状態で、センサユニット(90)は、酸素センサ(91)が庫内空気の酸素濃度を計測し、二酸化炭素センサ(92)が庫内空気の二酸化炭素濃度を計測する。
〈換気用排気管〉
換気用排気管(100)は、輸送用コンテナ(1)の内部と外部を繋ぐための配管である。この換気用排気管(100)は、換気用排気通路を構成する。図1に示すように、換気用排気管(100)は、コンテナ用冷凍機(10)のケーシング(20)を貫通する。換気用排気管(100)の一端は、庫内空気流路(29)の二次流路(29b)に開口する。換気用排気管(100)の他端は、庫外機器室(28)における庫外ファン(16)の吸入側に開口する。
図3に示すように、換気用排気管(100)の一端には、エアフィルタ(102)が取り付けられる。エアフィルタ(102)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。また、換気用排気管(100)には、換気用排気弁(101)が設けられる。換気用排気弁(101)は、電磁弁からなる開閉弁である。
〈制御器〉
制御器(110)は、制御動作を行うCPU(111)と、制御動作に必要なデータ等を記憶するメモリ(112)とを備える。制御器(110)には、酸素センサ(91)、二酸化炭素センサ(92)、第1圧力センサ(45)、及び第2圧力センサ(65)の計測値が入力される。制御器(110)は、ポンプユニット(35)、第1調節弁(46)、第2調節弁(66)、第1バイパス弁(50)、第2バイパス弁(70)、及び換気用排気弁(101)を操作するための制御動作を行う。
−コンテナ用冷凍機の運転動作−
コンテナ用冷凍機(10)は、輸送用コンテナ(1)の庫内空気を冷却する冷却運転を行う。
冷却運転では、冷媒回路(11)の圧縮機(12)が作動し、冷媒回路(11)において冷媒が循環することによって蒸気圧縮冷凍サイクルが行われる。冷媒回路(11)では、圧縮機(12)から吐出された冷媒が、凝縮器(13)と膨張弁(14)と蒸発器(15)とを順に通過し、その後に圧縮機(12)へ吸入されて圧縮される。
また、冷却運転では、庫外ファン(16)と庫内ファン(17)とが作動する。庫外ファン(16)が作動すると、輸送用コンテナ(1)の外部の庫外空気が庫外機器室(28)へ吸い込まれて凝縮器(13)を通過する。凝縮器(13)では、冷媒が庫外空気へ放熱して凝縮する。庫内ファン(17)が作動すると、輸送用コンテナ(1)の荷室(5)内の庫内空気が庫内空気流路(29)へ吸い込まれて蒸発器(15)を通過する。蒸発器(15)では、冷媒が庫内空気から吸熱して蒸発する。
庫内空気の流れについて説明する。荷室(5)に存在する庫内空気は、吸込口(26)を通って庫内空気流路(29)の一次流路(29a)へ流入し、庫内ファン(17)によって二次流路(29b)へ吹き出される。二次流路(29b)へ流入した庫内空気は、蒸発器(15)を通過する際に冷却され、その後に吹出口(27)から床下流路(4)へ吹き出され、床下流路(4)を通って荷室(5)へ流入する。
庫内空気流路(29)において、一次流路(29a)は庫内ファン(17)の吸い込み側に位置し、二次流路(29b)は庫内ファン(17)の吹き出し側に位置する。このため、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。
−庫内空気調節装置の運転動作−
庫内空気調節装置(30)は、輸送用コンテナ(1)の荷室(5)内の庫内空気の組成(本実施形態では、庫内空気の酸素濃度と二酸化炭素濃度)を調節するための運転を行う。ここでは、本実施形態の庫内空気調節装置(30)の運転動作について、庫内空気の酸素濃度の目標範囲が5%±1%であり、庫内空気の二酸化炭素濃度の目標範囲が2%±1%である場合を例に説明する。
〈庫内空気調節装置の運転動作の概要〉
本実施形態の庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を低下させるための酸素濃度低減動作と、荷室(5)内の庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作と、荷室(5)内の庫内空気の酸素濃度を上昇させるための酸素濃度増加動作とを行う。
輸送用コンテナ(1)への貨物(6)の積み込みが完了した時点において、荷室(5)内に存在する庫内空気の組成は、大気の組成(窒素濃度:78%、酸素濃度:21%、二酸化炭素濃度:0.04%)と実質的に同じである。そこで、庫内空気調節装置(30)は、庫内空気の酸素濃度を低下させるための酸素濃度低減動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度低減動作を停止する。
庫内空気の酸素濃度が6%に達して庫内空気調節装置(30)の酸素濃度停止動作が停止した後は、貨物(6)である植物が呼吸することによって、庫内空気の酸素濃度が次第に低下してゆくと同時に、庫内空気の二酸化炭素濃度が次第に上昇する。
庫内空気の二酸化炭素濃度が目標範囲の上限値(3%)に達すると、庫内空気調節装置(30)は、庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作を行う。庫内空気の二酸化炭素濃度が目標範囲の下限値(1%)に達すると、庫内空気調節装置(30)は、二酸化炭素濃度低減動作を停止する。
また、庫内空気の酸素濃度が目標範囲の下限値(4%)に達すると、庫内空気調節装置(30)は、庫内空気の酸素濃度を上昇させるための酸素濃度増加動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度増加動作を停止する。
このように、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を21%(大気の酸素濃度)から目標範囲にまで引き下げるために、酸素濃度低減動作を行う。また、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度と二酸化炭素濃度を、それぞれの目標範囲に維持するために、二酸化炭素低減動作と酸素濃度増加動作とを適宜繰り返して行う。
〈酸素濃度低減動作〉
庫内空気調節装置(30)の酸素濃度低減動作について、図3〜図5を適宜参照しながら説明する。この酸素濃度低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が酸素濃度の低い第1庫内空気を荷室(5)へ供給する。
酸素濃度低減動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定する。
先ず、第1ポンプ(36)が作動すると、輸送用コンテナ(1)の外部に存在する庫外空気が、エアフィルタ(47)と庫外側吸入管(55)を通って第1ポンプ(36)に吸い込まれる。第1ポンプ(36)は、吸い込んだ庫外空気を加圧して吐出する。第1ポンプ(36)が吐出する庫外空気の圧力は、大気圧の2倍程度である。第1ポンプ(36)から吐出された庫外空気は、第1導入管(52)を流れ、第1分離モジュール(41)の第1導入口(42)へ未処理庫外空気として流入する。
第1分離モジュール(41)において、第1導入口(42)を通って導入室(82)へ流入した未処理庫外空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して第2庫外空気として二次側導出室(84)へ移動し、残りが第1庫外空気として一次側導出室(83)へ流入する。上述したように、ガス分離膜(85)は、窒素の透過率が酸素の透過率よりも低い特性を持つ。このため、図5に示すように、第1庫外空気の酸素濃度は、未処理庫外空気の酸素濃度よりも低く、第2庫外空気の酸素濃度は、未処理庫外空気の酸素濃度よりも高い。
第1分離モジュール(41)の第1一次側導出口(43)から第1一次側管(53)へ流出した第1庫外空気は、供給管(120)へ流入する。一方、第1分離モジュール(41)の第1二次側導出口(44)から第1二次側管(54)へ流出した第2庫外空気は、輸送用コンテナ(1)の外部へ排出される。
次に、第2ポンプ(37)が作動すると、輸送用コンテナ(1)の内部(具体的には、コンテナ用冷凍機(10)の二次流路(29b))に存在する庫内空気が、庫内側吸入管(75)を通って第2ポンプ(37)に吸い込まれる。第2ポンプ(37)は、吸い込んだ庫内空気を加圧して吐出する。第2ポンプ(37)が吐出する庫内空気の圧力は、大気圧よりも若干高い程度である。第2ポンプ(37)から吐出された庫内空気は、第2導入管(72)を流れ、第2分離モジュール(61)の第2導入口(62)へ未処理庫内空気として流入する。
第2分離モジュール(61)において、第2導入口(62)を通って導入室(82)へ流入した未処理庫内空気は、中空糸状のガス分離膜(85)へ流入する。中空糸状のガス分離膜(85)の内側を流れる空気は、その一部がガス分離膜(85)を透過して第2庫内空気として二次側導出室(84)へ移動し、残りが第1庫内空気として一次側導出室(83)へ流入する。上述したように、ガス分離膜(85)は、窒素の透過率が酸素の透過率よりも低い特性を持つ。このため、図5に示すように、第1庫内空気の酸素濃度は、未処理庫外空気の酸素濃度よりも低く、第2庫内空気の酸素濃度は、未処理庫内空気の酸素濃度よりも高い。
第2分離モジュール(61)の第2一次側導出口(63)から第2一次側管(73)へ流出した第1庫内空気は、供給管(120)へ流入する。一方、第2分離モジュール(61)の第2二次側導出口(64)から第2二次側管(74)へ流出した第2庫内空気は、輸送用コンテナ(1)の外部へ排出される。
上述したように、供給管(120)には、第1分離モジュール(41)から流出した第1庫外空気と、第2分離モジュール(61)から流出した第1庫内空気とが流入する。そして、供給管(120)を流れる第1庫外空気と第1庫内空気の混合空気は、コンテナ用冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。
通常、酸素濃度低減動作中は、輸送用コンテナ(1)の外部から内部へ供給される第1庫外空気の流量Qo1が、輸送用コンテナ(1)の内部から外部へ排出される第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる(図5を参照)。つまり、第1組成調節部(40)は、輸送用コンテナ(1)内の気圧が陽圧となるように、第1庫外空気を輸送用コンテナ(1)の内部へ供給する。輸送用コンテナ(1)内の気圧が陽圧であるため、庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度低減動作では、大気に比べて酸素濃度の低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて荷室(5)内の庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)の空気を第1庫外空気に入れ替えることによって、荷室(5)内の庫内空気の酸素濃度を低下させる。また、酸素濃度低減動作では、未処理庫内空気から分離された酸素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の酸素濃度を低下させる。
〈二酸化炭素濃度低減動作〉
庫内空気調節装置(30)の二酸化炭素濃度低減動作について、図3,図4,図6を適宜参照しながら説明する。この二酸化炭素低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が二酸化炭素濃度の低い第1庫内空気を荷室(5)へ供給する。
二酸化炭素濃度低減動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。そして、第1組成調節部(40)と第2組成調節部(60)のそれぞれにおいて、空気は、酸素濃度低減動作と同様に流れる。ただし、二酸化炭素濃度低減動作において、第1ポンプ(36)が吐出する庫外空気の圧力と、第2ポンプ(37)が吐出する庫内空気の圧力は、いずれも大気圧よりも若干高い程度である。
第1組成調節部(40)では、第1分離モジュール(41)へ流入した未処理庫外空気が、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気とに分離される。そして、第1庫外空気が輸送用コンテナ(1)の内部へ供給され、第2庫外空気が輸送用コンテナ(1)の外部へ排出される。なお、未処理庫外空気の二酸化炭素濃度は、大気の二酸化炭素濃度(0.04%)と実質的に同じである。このため、第1庫外空気の二酸化炭素濃度は実質的にゼロと見なせる。
第2組成調節部(60)では、第2分離モジュール(61)へ流入した未処理庫内空気が、未処理庫内空気よりも窒素濃度が高くて酸素濃度および二酸化炭素濃度が低い第1庫内空気と、未処理庫内空気よりも窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い第2庫内空気とに分離される。そして、第1庫内空気が輸送用コンテナ(1)の内部へ供給され、第2庫内空気が輸送用コンテナ(1)の外部へ排出される。
通常、二酸化炭素濃度低減動作中は、酸素濃度低減動作中と同様に、第1庫外空気の流量Qo1が第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる(図6を参照)。つまり、第1組成調節部(40)は、輸送用コンテナ(1)内の気圧が陽圧となるように、第1庫外空気を輸送用コンテナ(1)の内部へ供給する。輸送用コンテナ(1)内の気圧が陽圧であるため、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、二酸化炭素濃度低減動作では、二酸化炭素濃度の極めて低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)の空気を第1庫外空気に入れ替えることによって、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。また、二酸化炭素濃度低減動作では、未処理庫内空気から分離された二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。
〈酸素濃度増加動作〉
庫内空気調節装置(30)の酸素濃度増加動作について、図3を参照しながら説明する。この酸素濃度増加動作では、第1組成調節部(40)が輸送用コンテナ(1)の外部から吸い込んだ庫外空気をそのまま荷室(5)へ供給し、第2組成調節部(60)が輸送用コンテナ(1)の内部から吸い込んだ庫内空気をそのまま荷室(5)へ送り返す。
酸素濃度増加動作において、制御器(110)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第2状態(図3に破線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。
第1組成調節部(40)において、第1ポンプ(36)から吐出された庫外空気は、第1バイパス管(51)へ流入し、その窒素濃度と酸素濃度を保った状態で第1一次側管(53)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ供給される。一方、第2組成調節部(60)において、第2ポンプ(37)へ吸い込まれた庫内空気は、第2ポンプ(37)から吐出された後に第2バイパス管(71)を通って第2一次側管(73)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ戻る。また、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。
このように、酸素濃度増加動作では、庫内空気よりも酸素濃度の高い庫外空気を輸送用コンテナ(1)の内部へ供給することによって、荷室(5)内の酸素濃度を上昇させる。
−制御器の制御動作−
庫内空気調節装置(30)の制御器(110)は、酸素センサ(91)及び二酸化炭素センサ(92)の計測値を監視する。そして、庫内空気調節装置(30)が上述した動作を行うことによって、庫内空気の酸素濃度と二酸化炭素濃度をそれぞれの目標範囲に保たれるように、酸素センサ(91)及び二酸化炭素センサ(92)の計測値に基づいて庫内空気調節装置(30)の構成機器を制御する。
ところで、輸送用コンテナ(1)の気密性が完全であることは、実際には有り得ない。このため、輸送用コンテナ(1)内が陰圧になると、輸送用コンテナ(1)の隙間を通って庫外空気(即ち、大気)が輸送用コンテナ(1)の内部へ侵入する。酸素濃度低減動作の実行中に庫外空気が輸送用コンテナ(1)の内部へ侵入すると、庫内空気の酸素濃度の低下速度(即ち、単位時間当たりの酸素濃度の低下量)が非常に低くなる場合や、庫内空気の酸素濃度が上昇する場合がある。また、二酸化炭素濃度低減動作の実行中に庫外空気が輸送用コンテナ(1)の内部へ侵入すると、貨物(6)である植物が呼吸によって酸素を消費しているにも拘わらず、庫内空気の酸素濃度が上昇する場合がある。そこで、このような場合、庫内空気調節装置(30)の制御器(110)は、輸送用コンテナ(1)内の気圧を陽圧にするための陽圧維持動作を行う。
〈陽圧維持動作〉
制御器(110)は、酸素濃度低減動作及び二酸化炭素濃度低減動作の実行中に、酸素センサ(91)の計測値を監視する。制御器(110)は、酸素濃度低減動作及び二酸化炭素濃度低減動作の実行中に酸素センサ(91)の計測値の低下速度(即ち、単位時間当たりの計測値の低下量)が所定の基準値を下回るという判定条件が成立すると、輸送用コンテナ(1)内の気圧が陰圧となって庫外空気が輸送用コンテナ(1)の内部へ侵入していると判断する。なお、酸素センサ(91)の計測値が上昇している場合は、酸素センサ(91)の計測値の低下速度が負の値となる。
上述した判定条件が成立すると、制御器(110)は、第1組成調節部(40)が輸送用コンテナ(1)の内部へ供給する第1庫外空気の流量を増やすための陽圧維持動作を行う。制御器(110)は、第1組成調節部(40)に設けられた第1調節弁(46)の開度を拡大する動作を、陽圧維持動作として行う。
陽圧維持動作において、制御器(110)は、第1圧力センサ(45)の計測値を読み込み、読み込んだ第1圧力センサ(45)の計測値よりも低い値を、目標圧力とする。そして、制御器(110)は、第1圧力センサ(45)の計測値が目標圧力となるように、第1調節弁(46)の開度を調節する。第1調節弁(46)の開度が大きくなるほど、第1圧力センサ(45)の計測値は低くなる。そのため、第1圧力センサ(45)の計測値が目標圧力となるように第1調節弁(46)の開度を調節すれば、第1調節弁(46)の開度が次第に拡大する。
一般に、ガス分離膜(85)には、“その一次側の面に接する空気の圧力とその二次側の面に接する空気の圧力の差が小さいほど、ガス分離膜(85)を透過する空気の成分が少なくなる”という特性がある。第1調節弁(46)の開度が拡大すると、第1分離モジュール(41)のガス分離膜(85)の内側(一次側)を流れる空気の圧力が低くなり、ガス分離膜(85)を透過する空気の成分が減少する。このため、第1調節弁(46)の開度が拡大すると、第1分離モジュール(41)から流出する第1庫外空気の流量が増加する。その結果、第1組成調節部(40)が輸送用コンテナ(1)の内部へ供給する第1庫外空気の流量が増加し、輸送用コンテナ(1)内の気圧が上昇する。
上述したように、第1調節弁(46)の開度が拡大すると、ガス分離膜(85)を透過する空気の成分が減少する。このため、制御器(110)が陽圧維持動作を行うことによって第1調節弁(46)の開度が拡大すると、それに伴って第1庫外空気の酸素濃度が上昇する。しかし、その場合でも、第1庫外空気の酸素濃度は、大気の酸素濃度よりも低く保たれる。このため、輸送用コンテナ(1)内の気圧を陽圧にして庫外空気の荷室(5)内への侵入を抑えることによって、荷室(5)内の庫内空気の酸素濃度は低下してゆく。
−実施形態1の効果−
本実施形態の庫内空気調節装置(30)は、輸送用コンテナ(1)内の気圧を陽圧に保ちつつ、輸送用コンテナ(1)内の庫内空気の組成を調節する動作を行う。従って、本実施形態によれば、輸送用コンテナ(1)の気密性がそれほど高くない場合であっても、輸送用コンテナ(1)内への庫外空気(大気)の侵入を防ぐことができ、その結果、輸送用コンテナ(1)内の庫内空気の組成を適切に調節することが可能となる。
特に、二酸化炭素濃度低減動作中は、第2組成調節部(60)が未処理庫内空気から分離した二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の二酸化炭素濃度を適切に制御しつつ、第1組成調節部(40)が第1庫外空気を輸送用コンテナ(1)の内部へ供給することによって、輸送用コンテナ(1)内の気圧が陽圧に保たれる。従って、本実施形態によれば、輸送用コンテナ(1)の内部への庫外空気(大気)の侵入を防いで庫内空気の酸素濃度と上昇を抑えつつ、庫内空気の二酸化炭素濃度を適切に制御することが可能となる。
また、二酸化炭素濃度低減動作中は、第2組成調節部(60)が未処理庫内空気よりも二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出すると同時に、第1組成調節部(40)が未処理庫外空気よりも酸素濃度の低い第1庫外空気を輸送用コンテナ(1)の内部へ供給する。このため、未処理庫外空気をそのまま輸送用コンテナ(1)の内部へ供給する場合に比べて、輸送用コンテナ(1)の庫内空気の酸素濃度の変動を抑えることができ、庫内空気の組成を適正値に近い状態に保つことが可能となる。
また、酸素濃度低減動作中は、第1組成調節部(40)が未処理庫外空気よりも酸素濃度の低い第1庫外空気を輸送用コンテナ(1)の内部へ供給すると同時に、第2組成調節部(60)が未処理庫内空気よりも酸素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出する。従って、本実施形態によれば、第1庫外空気の供給によって荷室(5)内の庫内空気の酸素濃度を低下させる場合に比べて、荷室(5)内の庫内空気の酸素濃度を目標範囲にまで引き下げるのに要する時間を短縮できる。
《実施形態2》
実施形態2について説明する。本実施形態の庫内空気調節装置(30)は、実施形態1の庫内空気調節装置(30)において、第1組成調節部(40)及び第2組成調節部(60)の構成を変更したものである。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
〈第1組成調節部〉
図7に示すように、本実施形態の第1組成調節部(40)には、第1一次側切換弁(56)と、第1一次側排出管(57)と、第1二次側切換弁(58)と、第1二次側供給管(59)とが追加される。
第1一次側切換弁(56)と第1二次側切換弁(58)のそれぞれは、三つのポートを有する切換弁である。第1一次側切換弁(56)と第1二次側切換弁(58)のそれぞれは、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図7に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図7に破線で示す状態)とに切り換わるように構成される。
第1一次側切換弁(56)は、第1一次側管(53)の途中に配置される。第1一次側管(53)において、第1一次側切換弁(56)は、第1バイパス管(51)の出口端よりも供給管(120)寄りに配置される。第1一次側切換弁(56)は、第1のポートが第1調節弁(46)に接続し、第2のポートが供給管(120)に接続する。第1一次側切換弁(56)の第3のポートには、第1一次側排出管(57)の一端が接続する。第1一次側排出管(57)の他端は、第1二次側管(54)に接続する。
第1二次側切換弁(58)は、第1二次側管(54)の途中に配置される。第1二次側管(54)において、第1二次側切換弁(58)は、第1一次側排出管(57)の他端よりも第1分離モジュール(41)寄りに配置される。第1二次側切換弁(58)は、第1のポートが第1分離モジュール(41)の第1二次側導出口(44)に接続し、第2のポートが第1二次側管(54)を介して輸送用コンテナ(1)の庫外機器室(28)と連通する。第1二次側切換弁(58)の第3のポートには、第1二次側供給管(59)の一端が接続する。第1二次側供給管(59)の他端は、供給管(120)に接続する。
〈第2組成調節部〉
本実施形態の第2組成調節部(60)には、第2一次側切換弁(76)と、第2一次側排出管(77)と、第2二次側切換弁(78)と、第2二次側供給管(79)とが追加される。
第2一次側切換弁(76)と第2二次側切換弁(78)のそれぞれは、三つのポートを有する切換弁である。第2一次側切換弁(76)と第2二次側切換弁(78)のそれぞれは、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図7に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図7に破線で示す状態)とに切り換わるように構成される。
第2一次側切換弁(76)は、第2一次側管(73)の途中に配置される。第2一次側管(73)において、第2一次側切換弁(76)は、第2バイパス管(71)の出口端よりも供給管(120)寄りに配置される。第2一次側切換弁(76)は、第1のポートが第2調節弁(66)に接続し、第2のポートが供給管(120)に接続する。第2一次側切換弁(76)の第3のポートには、第2一次側排出管(77)の一端が接続する。第2一次側排出管(77)の他端は、第2二次側管(74)に接続する。
第2二次側切換弁(78)は、第2二次側管(74)の途中に配置される。第2二次側管(74)において、第2二次側切換弁(78)は、第2一次側排出管(77)の他端よりも第2分離モジュール(61)寄りに配置される。第2二次側切換弁(78)は、第1のポートが第2分離モジュール(61)の第2二次側導出口(64)に接続し、第2のポートが第2二次側管(74)を介して輸送用コンテナ(1)の庫外機器室(28)と連通する。第2二次側切換弁(78)の第3のポートには、第2二次側供給管(79)の一端が接続する。第2二次側供給管(79)の他端は、供給管(120)に接続する。
−運転動作−
第1組成調節部(40)において、第1一次側切換弁(56)と第1二次側切換弁(58)の両方が第1状態(図7に実線で示す状態)に設定された場合、第1庫外空気は、第1一次側管(53)を通って輸送用コンテナ(1)の内部へ供給され、第2庫外空気は、第2二次側管(74)を通って輸送用コンテナ(1)の外部へ排出される。一方、第1一次側切換弁(56)と第1二次側切換弁(58)の両方が第2状態(図7に破線で示す状態)に設定された場合、第1庫外空気は、第1一次側排出管(57)を通って輸送用コンテナ(1)の外部へ排出され、第2庫外空気は、第1二次側供給管(59)を通って輸送用コンテナ(1)の内部へ供給される。
第2組成調節部(60)において、第2一次側切換弁(76)と第2二次側切換弁(78)の両方が第1状態(図7に実線で示す状態)に設定された場合、第1庫内空気は、第2一次側管(73)を通って輸送用コンテナ(1)の内部へ供給され、第2庫内空気は、第2二次側管(74)を通って輸送用コンテナ(1)の外部へ排出される。一方、第2一次側切換弁(76)と第2二次側切換弁(78)の両方が第2状態(図7に破線で示す状態)に設定された場合、第1庫内空気は、第2一次側排出管(77)を通って輸送用コンテナ(1)の外部へ排出され、第2庫内空気は、第2二次側供給管(79)を通って輸送用コンテナ(1)の内部へ供給される。
《実施形態3》
実施形態3の庫内空気調節装置(30)について説明する。実施形態の庫内空気調節装置(30)は、実施形態1の庫内空気調節装置(30)において、第1組成調節部(40)及び制御器(110)を変更したものである。ここでは、実施形態3の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
−第1組成調節部の構成−
本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気と第2庫外空気に分離するように構成される。本実施形態の第1組成調節部(40)は、いわゆるPSA(Pressure Swing Adsorption)法によって、未処理庫外空気を第1庫外空気と第2庫外空気に分離するように構成されており、この点で実施形態1の第1組成調節部(40)と相違する。
図8に示すように、本実施形態の第1組成調節部(40)は、ポンプユニット(35)の第1ポンプ(36)に代えて、エアポンプ(231)を備える。つまり、本実施形態の庫内空気調節装置(30)において、ポンプユニット(35)は、第2ポンプ(37)及び駆動モータ(38)を備えるが、第1ポンプ(36)を備えていない。また、本実施形態の第1組成調節部(40)は、第1方向制御弁(232)及び第2方向制御弁(233)と、第1吸着筒(234)及び第2吸着筒(235)とを備える。後述するように、各吸着筒(234,235)には、空気中の窒素を吸着する吸着剤が設けられる。
〈エアポンプ〉
エアポンプ(231)は、ユニットケース(32)の内部空間に配置される。エアポンプ(231)は、それぞれが空気を吸引して加圧して吐出する第1ポンプ機構(231a)及び第2ポンプ機構(231b)を備える。第1ポンプ機構(231a)及び第2ポンプ機構(231b)は、潤滑油を使用しないオイルレスのポンプである。加圧部である第1ポンプ機構(231a)と、減圧部である第2ポンプ機構(231b)とは、それらの両方が駆動モータ(231c)の駆動軸に接続される。第1ポンプ機構(231a)及び第2ポンプ機構(231b)のぞれぞれは、駆動モータ(231c)によって回転駆動されることによって、吸込口から空気を吸引して加圧し、加圧した空気を吐出口から吐出する。
〈外気管、吐出管、フィルタユニット〉
第1ポンプ機構(231a)の吸込口には、外気通路を形成する外気管(241)の一端が接続される。外気管(241)は、ユニットケース(32)を貫通するように設けられる。ユニットケース(32)の外部に位置する外気管(241)の他端は、フィルタユニット(220)に接続される。
フィルタユニット(220)は、エアフィルタ(47)を備える。エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのフィルタである。本実施形態では、通気性と防水性を有するメンブレンフィルタが、エアフィルタ(47)として用いられる。フィルタユニット(220)は、箱状に形成された部材であり、エアフィルタ(47)を通過した空気(庫外空気)を外気管(241)へ導入する。図示しないが、フィルタユニット(220)は、庫外機器室(28)における凝縮器(13)の下流側に配置される。
第1ポンプ機構(231a)の吐出口には、吐出通路を形成する吐出管(242)の一端が接続される。吐出管(242)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。
〈吸引管、供給管〉
第2ポンプ機構(231b)の吸込口には、吸引通路を形成する吸引管(243)の一端が接続される。吸引管(243)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。
第2ポンプ機構(231b)の吐出口には、供給通路を形成する供給用接続管(244)の一端が接続される。供給用接続管(244)の他端は、供給管(120)に接続される。
供給用接続管(244)には、その一端から他端へ向かって順に、逆止弁(264)と供給側開閉弁(273)とが設けられる。逆止弁(264)は、供給用接続管(244)の一端から他端へ向かう向きの空気の流通のみを許容し、空気の逆流を防止する。供給側開閉弁(273)は、電磁弁からなる開閉弁である。
〈方向制御弁〉
第1方向制御弁(232)及び第2方向制御弁(233)のそれぞれは、三つのポートを有する切換弁である。各方向制御弁(232,233)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態とに切り換わるように構成される。
第1方向制御弁(232)は、第1のポートが第1吸着筒(234)の一端に接続される。また、第1方向制御弁(232)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第1方向制御弁(232)は、第1吸着筒(234)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。
第2方向制御弁(233)は、第1のポートが第2吸着筒(235)の一端に接続される。また、第2方向制御弁(233)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第2方向制御弁(233)は、第2吸着筒(235)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。
〈吸着筒〉
第1吸着筒(234)及び第2吸着筒(235)のそれぞれは、両端が閉塞された円筒状の容器と、その容器に充填された吸着剤とを備える部材である。
これら吸着筒(234,235)に充填された吸着剤は、圧力が大気圧よりも高い加圧状態において窒素成分を吸着し、圧力が大気圧よりも低い減圧状態において窒素成分を脱着させる性質を有する。本実施形態では、吸着剤として、例えば、窒素分子の分子径(3.0オングストローム)よりも小さく且つ酸素分子の分子径(2.8オングストローム)よりも大きな孔径の細孔を有する多孔体のゼオライトが用いられる。
本実施形態の第1組成調節部(40)では、第1吸着筒(234)及び第2吸着筒(235)が第1分離部(41)を構成する。第1分離部(41)を構成する二つの吸着筒(234,235)は、未処理庫外空気を、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気に分離する。
〈酸素排出管〉
酸素排出通路を形成する酸素排出管(245)は、一端側で二つの分岐管に分岐しており、一方の分岐管が第1吸着筒(234)の他端に、他方の分岐管が第2吸着筒(235)にそれぞれ接続される。酸素排出管(245)の各分岐管には、逆止弁(261)が一つずつ設けられる。各逆止弁(261)は、対応する吸着筒(234,235)から流出する向きの空気の流れを許容し、逆向きの空気の流れを遮断する。
酸素排出管(245)は、ユニットケース(32)を貫通するように設けられる。酸素排出管(245)の他端は、輸送用コンテナ(1)の庫外空間に開口する。酸素排出管(245)の集合部分には、逆止弁(262)とオリフィス(263)とが設けられる。逆止弁(262)は、オリフィス(263)よりも酸素排出管(245)の他端寄りに配置される。この逆止弁(262)は、酸素排出管(245)の他端へ向かう空気の流れを許容し、逆向きの空気の流れを遮断する。
〈パージ管〉
酸素排出管(245)の各分岐管には、パージ通路を形成するパージ管(250)が接続される。パージ管(250)は、一端が第1吸着筒(234)に接続する分岐管に接続され、他端が第2吸着筒(235)に接続する分岐管に接続される。パージ管(250)の一端は、第1吸着筒(234)と逆止弁(261)の間に接続される。パージ管(250)の他端は、第2吸着筒(235)と逆止弁(261)の間に接続される。
パージ管(250)には、パージ弁(251)が設けられる。パージ弁(251)は、電磁弁からなる開閉弁である。パージ弁(251)は、第1吸着筒(234)と第2吸着筒(235)を均圧する際に開かれる。また、パージ管(250)におけるパージ弁(251)の両側には、オリフィス(252)が一つずつ設けられる。
〈排気用接続管〉
供給用接続管(244)には、排気用接続通路を形成する排気用接続管(271)が接続される。排気用接続管(271)は、一端が供給用接続管(244)に接続され、他端が酸素排出管(245)に接続される。排気用接続管(271)の一端は、供給用接続管(244)における第2ポンプ機構(231b)と逆止弁(264)の間に接続される。排気用接続管(271)の他端は、酸素排出管(245)の逆止弁(262)よりも庫外側に接続される。
排気用接続管(271)には、排気用開閉弁(272)が設けられる。排気用開閉弁(272)は、電磁弁からなる開閉弁である。排気用開閉弁(272)は、供給用接続管(244)を流れる空気を庫外へ排出する際に開かれる。
〈測定用接続管〉
供給用接続管(244)には、測定用通路を形成する測定用接続管(281)が接続される。この測定用接続管(281)は、第1組成調節部(40)をセンサユニット(90)に接続するための配管である。
測定用接続管(281)は、一端が供給用接続管(244)に接続され、他端が測定用配管(125)に接続される。測定用接続管(281)の一端は、供給用接続管(244)における逆止弁(264)と供給側開閉弁(273)の間に接続される。測定用接続管(281)の他端は、測定用配管(125)における測定用開閉弁(126)とセンサユニット(90)の間に接続される。
測定用接続管(281)には、測定用開閉弁(282)が設けられる。測定用開閉弁(282)は、電磁弁からなる開閉弁である。測定用開閉弁(282)は、供給用接続管(244)を流れる空気をセンサユニット(90)へ送る際に開かれる。
〈バイパス管〉
吐出管(242)には、バイパス通路を形成するバイパス接続管(255)が接続される。バイパス接続管(255)は、一端が吐出管(242)に接続され、他端が測定用接続管(281)に接続される。バイパス接続管(255)の一端は、吐出管(242)の分岐箇所よりも第1ポンプ機構(231a)寄りに接続される。バイパス接続管(255)の他端は、測定用接続管(281)の一端と測定用開閉弁(282)の間に接続される。このバイパス接続管(255)は、第1吸着筒(234)及び第2吸着筒(235)をバイパスさせて庫外空気を輸送用コンテナ(1)の庫内空間へ供給するための第1バイパス通路を形成する。
バイパス接続管(255)には、バイパス開閉弁(256)が設けられる。バイパス開閉弁(256)は、電磁弁からなる開閉弁である。バイパス開閉弁(256)は、バイパス接続管(255)へ流入する庫外空気の流量を変更するための第1バイパス弁機構を構成する。このバイパス開閉弁(256)は、第1ポンプ機構(231a)が吐出した庫外空気を、その組成を変更せずに荷室(5)へ供給する際に開かれる。
−第1組成調節部の運転動作−
本実施形態の第1組成調節部(40)の運転動作を説明する。
本実施形態の第1組成調節部(40)は、後述する第1動作と第2動作を所定の時間(例えば、14.5秒)ずつ交互に繰り返し行うことによって、未処理庫外空気を第1庫外空気と第2庫外空気に分離する。また、本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、庫内空気調節装置(30)の酸素濃度低減動作と二酸化炭素濃度低減動作のそれぞれにおいて、未処理庫外空気を第1庫外空気と第2庫外空気に分離する動作を行う。
〈第1動作〉
図9に示すように、第1動作では、第1方向制御弁(232)が第1状態に設定され、第2方向制御弁(233)が第2状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第1吸着筒(234)に接続し、第2吸着筒(235)が第2ポンプ機構(231b)の吸込口に接続する。また、第1動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第1動作では、第1吸着筒(234)を対象とする吸着動作と、第2吸着筒(235)を対象とする脱離動作とが行われる。
第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第1吸着筒(234)へ供給する。第1吸着筒(234)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第1吸着筒(234)から流出して酸素排出管(245)を流れ、排出用空気として庫外空間へ排出される。
一方、第2ポンプ機構(231b)は、第2吸着筒(235)から空気を吸引する。第2吸着筒(235)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。
〈第2動作〉
図10に示すように、第2動作では、第1方向制御弁(232)が第2状態に設定され、第2方向制御弁(233)が第1状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第2吸着筒(235)に接続し、第1吸着筒(234)が第2ポンプ機構(231b)の吸込口に接続する。また、第2動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第2動作では、第1吸着筒(234)を対象とする脱離動作と、第2吸着筒(235)を対象とする吸着動作とが行われる。
第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第2吸着筒(235)へ供給する。第2吸着筒(235)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第2吸着筒(235)から流出して酸素排出管(245)を流れ、排出用空気として庫外空間へ排出される。
一方、第2ポンプ機構(231b)は、第1吸着筒(234)から空気を吸引する。第1吸着筒(234)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。
−制御器の陽圧維持動作−
本実施形態の制御器(110)は、エアポンプ(231)の回転速度を上昇させる動作を、陽圧維持動作として行う。この点で、本実施形態の制御器(110)は、実施形態1の制御器(110)と異なる。
具体的に、本実施形態の制御器(110)は、実施形態1の説明において述べた判定条件が成立すると、輸送用コンテナ(1)内の気圧が陰圧となって庫外空気が輸送用コンテナ(1)の内部へ侵入していると判断し、第1組成調節部(40)が輸送用コンテナ(1)の内部へ供給する第1庫外空気の流量を増やすための陽圧維持動作を行う。
本実施形態の制御器(110)は、エアポンプ(231)を駆動するモータ(231c)の回転速度を上昇させる動作を、陽圧維持動作として行う。モータ(231c)の回転速度が上昇すると、エアポンプ(231)の回転速度が上昇する。そして、エアポンプ(231)の回転速度が上昇すると、第2動作中に輸送用コンテナ(1)の内部へ供給される第1庫外空気(供給用空気)の流量が増加し、その結果、輸送用コンテナ(1)内の気圧が上昇する。
《その他の実施形態》
上記各実施形態の庫内空気調節装置(30)については、次のような変形例を適用してもよい。なお、以下の変形例は、庫内空気調節装置(30)の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
−第1変形例−
実施形態1〜3の庫内空気調節装置(30)に設けられた制御器(110)は、陽圧維持動作として、判定条件が成立したときに輸送用コンテナ(1)の外部へ排出される第2庫内空気の流量を減らすために第2調節弁(66)の開度を拡大する動作を行うように構成されていてもよい。また、この制御器(110)は、陽圧維持動作として、換気用排気弁(101)を一時的に閉状態に保つ動作、あるいは換気用排気弁(101)を所定の時間間隔で開閉する動作を行うように構成されていてもよい。本変形例の場合は、輸送用コンテナ(1)の内部から外部へ排出される空気の流量を減少させることによって、輸送用コンテナ(1)内の気圧を上昇させる。
−第2変形例−
実施形態1,2の庫内空気調節装置(30)において、第1分離モジュール(41)のガス分離膜(85)と第2分離モジュール(61)のガス分離膜(85)とは、それぞれの特性が互いに異なっていてもよい。
−第3変形例−
実施形態1,2の庫内空気調節装置(30)において、第1バイパス弁(50)は、第1分離モジュール(41)へ流入する未処理庫外空気の流量と、第1バイパス管(51)へ流入する未処理庫外空気の流量の割合を、多段階に又は連続的に変更できるように構成されていてもよい。また、第2バイパス弁(70)は、第2分離モジュール(61)へ流入する未処理庫内空気の流量と、第2バイパス管(71)へ流入する未処理庫内空気の流量の割合を、多段階に又は連続的に変更できるように構成されていてもよい。
−第4変形例−
実施形態1,2の庫内空気調節装置(30)では、第1ポンプ(36)と第2ポンプ(37)のそれぞれに駆動モータが連結されていてもよい。この変形例では、第1ポンプ(36)と第2ポンプ(37)の一方を作動させて他方を休止させることが可能となる。
−第5変形例−
実施形態1,2の庫内空気調節装置(30)において、第1組成調節部(40)と第2組成調節部(60)のそれぞれは、いわゆるPSA(Pressure Swing Adsorption)法によって、吸い込んだ空気を互いに組成が異なる二種類の空気に分離するように構成されていてもよい。この場合、組成調節部(40,60)は、吸い込んだ空気に含まれる窒素を吸着剤に吸着させることによって、窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い空気を生成する工程と、吸着剤から窒素を脱離させて窒素濃度が高くて酸素濃度及び二酸化炭素濃度が低い空気を生成する工程とを繰り返し行う。
−第6変形例−
実施形態1〜3の庫内空気調節装置(30)は、定置型の冷蔵庫または冷凍庫に設けられてもよい。また、上記各実施形態の庫内空気調節装置(30)は、トラックや鉄道などで輸送される陸上輸送用の冷蔵・冷凍コンテナに設けられていてもよい。また、上記各実施形態の庫内空気調節装置(30)は、荷室を形成する箱体が車台と一体になった冷蔵・冷凍トラックに設けられていてもよい。
以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
以上説明したように、本発明は、収納庫の庫内空気の組成を調節する庫内空気調節装置について有用である。
1 輸送用コンテナ(収納庫)
30 庫内空気調節装置
36 第1ポンプ
37 第2ポンプ
40 第1組成調節部
41 第1分離モジュール(第1分離部)
46 第1調節弁(第1弁機構)
50 第1バイパス弁(第1バイパス弁機構)
51 第1バイパス管(第1バイパス通路)
60 第2組成調節部
61 第2分離モジュール(第2分離部)
66 第2調節弁(第2弁機構)
70 第2バイパス弁(第2バイパス弁機構)
71 第2バイパス管(第2バイパス通路)
91 酸素センサ
100 換気用排気管(換気用排気通路)
101 換気用排気弁
110 制御器
255 バイパス接続管(第1バイパス通路)
256 バイパス開閉弁(第1バイパス弁機構)

Claims (18)

  1. 収納庫(1)の内部の庫内空気の組成を調節する庫内空気調節装置であって、
    上記収納庫(1)の外部の庫外空気から該庫外空気とは組成が異なる供給用空気を分離する第1分離部(41)を有し、上記供給用空気を上記収納庫(1)の内部へ供給する第1組成調節部(40)と、
    上記収納庫(1)の内部の庫内空気から該庫内空気とは組成が異なる排出用空気を分離する第2分離部(61)を有し、上記排出用空気を上記収納庫(1)の外部へ排出する第2組成調節部(60)とを備える
    ことを特徴とする庫内空気調節装置。
  2. 請求項1において、
    上記第1組成調節部(40)は、上記収納庫(1)の内部の気圧が、該収納庫(1)の外部の気圧と異なるように上記供給用空気を上記収納庫(1)の内部へ供給する
    ことを特徴とする庫内空気調節装置。
  3. 請求項1において、
    上記第1組成調節部(40)は、上記収納庫(1)の内部の気圧が陽圧となるように上記供給用空気を上記収納庫(1)の内部へ供給する
    ことを特徴とする庫内空気調節装置。
  4. 請求項3において、
    上記第1組成調節部(40)が上記収納庫(1)の内部へ供給する上記供給用空気の流量が、上記第2組成調節部(60)が上記収納庫(1)の外部へ排出する上記排出用空気の流量よりも多い
    ことを特徴とする庫内空気調節装置。
  5. 請求項1乃至4のいずれか一つにおいて、
    上記第2組成調節部(60)の上記第2分離部(61)が、上記収納庫(1)の内部の庫内空気から該庫内空気よりも二酸化炭素濃度が高い上記排出用空気を分離することによって、上記収納庫(1)の庫内空気の二酸化炭素濃度を低下させる二酸化炭素濃度低減動作を行う
    ことを特徴とする庫内空気調節装置。
  6. 請求項1乃至4のいずれか一つにおいて、
    上記第1組成調節部(40)の上記第1分離部(41)が、上記収納庫(1)の外部の庫外空気から該庫外空気よりも酸素濃度が低い上記供給用空気を分離し、上記第2組成調節部(60)の上記第2分離部(61)が、上記庫内空気から該庫内空気よりも酸素濃度が高い上記排出用空気を分離することによって、上記収納庫(1)の庫内空気の酸素濃度を低下させる酸素濃度低減動作を行う
    ことを特徴とする庫内空気調節装置。
  7. 請求項6において、
    上記収納庫(1)の庫内空気の酸素濃度を計測する酸素センサ(91)と、
    上記酸素濃度低減動作中における上記酸素センサ(91)の計測値の変化に基づいて上記収納庫(1)内の気圧が陽圧か否かを判断し、上記収納庫(1)内の気圧が陽圧でないと判断すると上記第1組成調節部(40)が上記収納庫(1)の内部へ供給する供給用空気の流量を増やすための制御動作を行う制御器(110)とを備えている
    ことを特徴とする庫内空気調節装置。
  8. 請求項1乃至7のいずれか一つにおいて、
    上記収納庫(1)の内部と外部を連通させるための換気用排気通路(100)と、
    上記換気用排気通路(100)に設けられた換気用排気弁(101)とを備えている
    ことを特徴とする庫内空気調節装置。
  9. 請求項1乃至8のいずれか一つにおいて、
    上記第1分離部(41)は、上記収納庫(1)の外部から導入された庫外空気である未処理庫外空気を、互いに組成が異なる第1庫外空気と第2庫外空気に分離するように構成され、
    上記第1組成調節部(40)は、上記第1庫外空気と上記第2庫外空気の一方を上記供給用空気として上記収納庫(1)の内部へ供給し、他方を上記収納庫(1)の外部へ排出する一方、
    上記第2分離部(61)は、上記収納庫(1)の内部から導入された庫内空気である未処理庫内空気を、互いに組成が異なる第1庫内空気と第2庫内空気に分離するように構成され、
    上記第2組成調節部(60)は、上記第1庫内空気と上記第2庫内空気の一方を上記収納庫(1)の内部へ供給し、他方を上記排出用空気として上記収納庫(1)の外部へ排出する
    ことを特徴とする庫内空気調節装置。
  10. 請求項9において、
    上記第1分離部(41)は、上記未処理庫外空気を、該未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、上記未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気に分離するように構成され、
    上記第2分離部(61)は、上記未処理庫内空気を、該未処理庫内空気よりも窒素濃度が高くて酸素濃度が低い第1庫内空気と、上記未処理庫内空気よりも窒素濃度が低くて酸素濃度が高い第2庫内空気に分離するように構成されている
    ことを特徴とする庫内空気調節装置。
  11. 請求項9において、
    上記第1分離部(41)と上記第2分離部(61)のそれぞれは、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いガス分離膜(85)を有し、
    上記第1分離部(41)は、上記未処理庫外空気を上記ガス分離膜(85)と接触させ、上記ガス分離膜(85)を透過しなかった空気を上記第1庫外空気とし、上記ガス分離膜(85)を透過した空気を上記第2庫外空気とするように構成され、
    上記第2分離部(61)は、上記未処理庫内空気を上記ガス分離膜(85)と接触させ、上記ガス分離膜(85)を透過しなかった空気を上記第1庫内空気とし、上記ガス分離膜(85)を透過した空気を上記第2庫内空気とするように構成されている
    ことを特徴とする庫内空気調節装置。
  12. 請求項11において、
    上記第1組成調節部(40)は、上記未処理庫外空気を加圧して上記第1分離部(41)へ供給する第1ポンプ(36)を備えている
    ことを特徴とする庫内空気調節装置。
  13. 請求項12において、
    上記第1組成調節部(40)は、上記第1庫外空気の流れる配管に設けられた開度可変の第1弁機構(46)を備えている
    ことを特徴とする庫内空気調節装置。
  14. 請求項11乃至13のいずれか一つにおいて、
    上記第2組成調節部(60)は、上記未処理庫内空気を加圧して上記第2分離部(61)へ供給する第2ポンプ(37)を備えている
    ことを特徴とする庫内空気調節装置。
  15. 請求項14において、
    上記第2組成調節部(60)は、上記第1庫内空気の流れる配管に設けられた開度可変の第2弁機構(66)を備えている
    ことを特徴とする庫内空気調節装置。
  16. 請求項9において、
    上記第1分離部(41)は、
    窒素を吸着する吸着剤が設けられた吸着部(234,235)を有し、
    上記吸着部(234,235)に供給された上記未処理庫外空気に含まれる窒素を上記吸着部(234,235)の上記吸着剤に吸着させることによって上記第1庫外空気を生成する吸着動作と、
    上記吸着部(234,235)の上記吸着剤から窒素を脱離させることによって上記第2庫外空気を生成する脱離動作とを行うように構成され、
    上記第2分離部(61)は、
    窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いガス分離膜(85)を有し、
    上記未処理庫内空気を上記ガス分離膜(85)と接触させ、上記ガス分離膜(85)を透過しなかった空気を上記第1庫内空気とし、上記ガス分離膜(85)を透過した空気を上記第2庫内空気とするように構成されている
    ことを特徴とする庫内空気調節装置。
  17. 請求項1乃至16のいずれか一つにおいて、
    上記第1組成調節部(40)は、
    上記収納庫(1)の外部の上記庫外空気を、上記第1分離部(41)をバイパスさせて上記収納庫(1)の内部へ供給するための第1バイパス通路(51,255)と、
    上記第1バイパス通路(51,255)へ流入する上記庫外空気の流量を変更するための第1バイパス弁機構(50,256)とを備えている
    ことを特徴とする庫内空気調節装置。
  18. 請求項1乃至17のいずれか一つにおいて、
    上記第2組成調節部(60)は、
    上記収納庫(1)の内部の上記庫内空気を、上記第2分離部(61)をバイパスさせて上記収納庫(1)の内部へ供給するための第2バイパス通路(71)と、
    上記第2バイパス通路(71)へ流入する上記庫内空気の流量を変更するための第2バイパス弁機構(70)とを備えている
    ことを特徴とする庫内空気調節装置。
JP2019177856A 2017-09-29 2019-09-27 庫内空気調節装置 Active JP6930564B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017189947 2017-09-29
JP2017189947 2017-09-29
JP2018181654A JP6658837B2 (ja) 2017-09-29 2018-09-27 庫内空気調節装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018181654A Division JP6658837B2 (ja) 2017-09-29 2018-09-27 庫内空気調節装置

Publications (2)

Publication Number Publication Date
JP2020074756A true JP2020074756A (ja) 2020-05-21
JP6930564B2 JP6930564B2 (ja) 2021-09-01

Family

ID=65901632

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018181654A Active JP6658837B2 (ja) 2017-09-29 2018-09-27 庫内空気調節装置
JP2019177856A Active JP6930564B2 (ja) 2017-09-29 2019-09-27 庫内空気調節装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018181654A Active JP6658837B2 (ja) 2017-09-29 2018-09-27 庫内空気調節装置

Country Status (7)

Country Link
US (1) US11517022B2 (ja)
EP (1) EP3677115B1 (ja)
JP (2) JP6658837B2 (ja)
CN (1) CN111148429B (ja)
DK (1) DK3677115T3 (ja)
SG (3) SG10202105954PA (ja)
WO (1) WO2019065889A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838618B2 (ja) * 2019-04-15 2021-03-03 ダイキン工業株式会社 庫内空気調節装置
JP6789587B1 (ja) * 2020-06-05 2020-11-25 株式会社シンカ・アウトフィットNq 空調装置および空調管理方法
WO2022045370A1 (ja) * 2020-08-31 2022-03-03 ダイキン工業株式会社 空気組成調整装置、冷凍装置、及び輸送用コンテナ
KR102230968B1 (ko) * 2020-11-02 2021-03-23 정수유통 주식회사 농산물 수송용 컨테이너
WO2023053719A1 (ja) 2021-09-29 2023-04-06 ダイキン工業株式会社 庫内空気調節装置、冷凍装置、及び輸送用コンテナ
JP7348546B2 (ja) 2021-12-14 2023-09-21 ダイキン工業株式会社 空気調節装置、冷凍装置、および輸送用コンテナ
JP2023159754A (ja) * 2022-04-20 2023-11-01 三菱重工業株式会社 冷凍コンテナ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475575A (ja) * 1990-07-18 1992-03-10 Sanyo Electric Co Ltd 保存庫
JPH04110581A (ja) * 1990-08-31 1992-04-13 Tochigi Pref Gov 庫内のエチレン濃度を制御でき且つ一定湿度を保持できる二重室構造の低温貯蔵庫及び低温貯蔵方法
JPH04278047A (ja) * 1990-12-06 1992-10-02 Litton Syst Inc 制御された大気容器用の空気管理システム
JPH08168A (ja) * 1994-06-15 1996-01-09 Carrier Corp 冷凍コンテナ用の庫内環境制御システムの制御方法
WO2011113915A1 (en) * 2010-03-17 2011-09-22 Katholieke Universiteit Leuven Storage of respiratory produce
JP2013202085A (ja) * 2012-03-27 2013-10-07 Panasonic Corp 配膳車
JP2015014445A (ja) * 2013-07-08 2015-01-22 株式会社竹中工務店 低温倉庫
JP2015136364A (ja) * 2014-01-21 2015-07-30 ノリ・トレーディング有限会社 自然界における超微細水の空気浄化及び栽培環境の仕組みを利用した、安心安全な野菜・果物・穀物等の長期鮮度保持コンテナ・倉庫の装置。
JP2017044444A (ja) * 2015-08-28 2017-03-02 ダイキン工業株式会社 コンテナ用冷凍装置
JP2017123831A (ja) * 2016-01-15 2017-07-20 ダイキン工業株式会社 ガス供給装置及びそれを備えたコンテナ用冷凍装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438841A (en) 1994-06-15 1995-08-08 Carrier Corporation Pre-trip system for a controlled atmosphere system for a refrigerated container
JP3040982B1 (ja) * 1999-01-14 2000-05-15 株式会社山本製作所 穀粒貯蔵庫
JP4867075B2 (ja) * 2001-03-21 2012-02-01 宇部興産株式会社 庫内の湿度及び/又は酸素ガス濃度を制御可能な収納庫
CN1246067C (zh) * 2001-10-12 2006-03-22 乐金电子(天津)电器有限公司 氧气发生器的控制装置与控制方法
US20070065546A1 (en) 2005-09-22 2007-03-22 Gert Jorgensen Controlled atmosphere in a container
CN101019682B (zh) * 2007-01-30 2010-05-26 杭州希爱保鲜设备科技有限公司 一种智能气调保鲜箱
JP2010246475A (ja) 2009-04-16 2010-11-04 Sharp Corp 食品保存庫
BE1020553A3 (nl) 2012-03-19 2013-12-03 Atlas Copco Airpower Nv Inrichting en werkwijze voor het scheiden van gassen.
US20170127705A1 (en) 2014-06-11 2017-05-11 Thermo King Corporation Atmosphere control in transport unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475575A (ja) * 1990-07-18 1992-03-10 Sanyo Electric Co Ltd 保存庫
JPH04110581A (ja) * 1990-08-31 1992-04-13 Tochigi Pref Gov 庫内のエチレン濃度を制御でき且つ一定湿度を保持できる二重室構造の低温貯蔵庫及び低温貯蔵方法
JPH04278047A (ja) * 1990-12-06 1992-10-02 Litton Syst Inc 制御された大気容器用の空気管理システム
JPH08168A (ja) * 1994-06-15 1996-01-09 Carrier Corp 冷凍コンテナ用の庫内環境制御システムの制御方法
WO2011113915A1 (en) * 2010-03-17 2011-09-22 Katholieke Universiteit Leuven Storage of respiratory produce
JP2013202085A (ja) * 2012-03-27 2013-10-07 Panasonic Corp 配膳車
JP2015014445A (ja) * 2013-07-08 2015-01-22 株式会社竹中工務店 低温倉庫
JP2015136364A (ja) * 2014-01-21 2015-07-30 ノリ・トレーディング有限会社 自然界における超微細水の空気浄化及び栽培環境の仕組みを利用した、安心安全な野菜・果物・穀物等の長期鮮度保持コンテナ・倉庫の装置。
JP2017044444A (ja) * 2015-08-28 2017-03-02 ダイキン工業株式会社 コンテナ用冷凍装置
WO2017038055A1 (ja) * 2015-08-28 2017-03-09 ダイキン工業株式会社 コンテナ用冷凍装置
JP2017123831A (ja) * 2016-01-15 2017-07-20 ダイキン工業株式会社 ガス供給装置及びそれを備えたコンテナ用冷凍装置

Also Published As

Publication number Publication date
SG10202105953SA (en) 2021-07-29
SG11202002861QA (en) 2020-04-29
SG10202105954PA (en) 2021-07-29
US20200253227A1 (en) 2020-08-13
EP3677115B1 (en) 2023-12-06
DK3677115T3 (da) 2024-01-08
EP3677115A4 (en) 2021-05-05
JP6930564B2 (ja) 2021-09-01
CN111148429B (zh) 2022-10-25
EP3677115A1 (en) 2020-07-08
CN111148429A (zh) 2020-05-12
US11517022B2 (en) 2022-12-06
WO2019065889A1 (ja) 2019-04-04
JP6658837B2 (ja) 2020-03-04
JP2019066169A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6658837B2 (ja) 庫内空気調節装置
JP6958669B2 (ja) 空気組成調節装置
JP6590058B2 (ja) 空気組成調節装置
JP6665909B2 (ja) 庫内空気調節装置
JP2020128862A5 (ja)
JP6687091B1 (ja) 庫内空気調節装置
JP6662427B2 (ja) 庫内空気調節装置
JP7185132B2 (ja) 庫内空気調節装置
JP7339567B2 (ja) 庫内空気調節装置、冷凍装置、および輸送用コンテナ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R151 Written notification of patent or utility model registration

Ref document number: 6930564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151