WO2018108017A1 - 车载终端、云服务器、无人机、能量供应站、方法和系统 - Google Patents

车载终端、云服务器、无人机、能量供应站、方法和系统 Download PDF

Info

Publication number
WO2018108017A1
WO2018108017A1 PCT/CN2017/114908 CN2017114908W WO2018108017A1 WO 2018108017 A1 WO2018108017 A1 WO 2018108017A1 CN 2017114908 W CN2017114908 W CN 2017114908W WO 2018108017 A1 WO2018108017 A1 WO 2018108017A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
energy
energy supply
drone
information
Prior art date
Application number
PCT/CN2017/114908
Other languages
English (en)
French (fr)
Inventor
赵自强
赵炳根
王悦
杜淼森
张奇伟
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018108017A1 publication Critical patent/WO2018108017A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present application relates to the field of vehicles, and in particular to an in-vehicle terminal, a cloud server, a drone, an energy supply station, a method and a system.
  • Electric vehicles include Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs).
  • EVs Electric Vehicles
  • HEVs Hybrid Electric Vehicles
  • EVs Electric Vehicles
  • HEVs Hybrid Electric Vehicles
  • the problem of energy supplement for electric vehicles has also plagued owners, such as charging stations. The number is small and the layout is uneven. For example, the long charging time leads to high charging cost (the place where the charging station needs to be large, which causes the cost, the charging time is long, the parking fee is higher than the electricity cost, etc.) and other problems hinder the development of the electric vehicle. How to solve the problem of energy supplementation of electric vehicles has become an urgent problem for the electric vehicle industry and even the country.
  • an embodiment of the present application provides an in-vehicle terminal, which is applied to a vehicle, and the in-vehicle terminal includes:
  • a first sending module configured to send an energy supply request to the cloud server, where the energy supply request includes energy information of the vehicle and vehicle information, where the vehicle information includes a vehicle identification code and a current location;
  • An energy receiving module configured to receive an energy providing request sent by the dispatched drone after the energy supply request is responded, and the energy of the dispatched drone when the energy providing request is accepted
  • the supply modules are docked to achieve an energy supply to the vehicle.
  • An embodiment of the present application provides a power supply method based on a drone, which is applied to an in-vehicle terminal of a vehicle, and the method includes:
  • the energy supply request including energy information of the vehicle and vehicle information, the vehicle information including a vehicle identification code and a current location;
  • the embodiment of the present application further provides a cloud server, where the cloud server includes:
  • a first receiving module configured to receive an energy supply request sent by an in-vehicle terminal of the vehicle, where the energy supply request includes energy information of the vehicle and vehicle information, where the vehicle information includes a vehicle identification code and a current location ;
  • a search module for searching for an energy supply station based on the current location
  • a second sending module configured to send the energy supply request to the energy supply station searched by the search module, so that the drone in the searched energy supply station can supply energy to the vehicle.
  • the embodiment of the present application further provides a power supply method based on a drone, the method is applied to a cloud server, and the method includes:
  • the energy supply request including energy information of the vehicle and vehicle information, the vehicle information including a vehicle identification code and a current location;
  • the energy supply request is sent to the searched energy supply station such that the drone in the searched energy supply station is capable of supplying energy to the vehicle.
  • An embodiment of the present application further provides an energy supply station, where the energy supply station includes:
  • a second receiving module configured to receive an energy supply request sent by the cloud server, where the energy supply request includes energy information of the vehicle and vehicle information, where the vehicle information includes a vehicle identification code and a current location;
  • a revenue determining module configured to determine whether a revenue to supply energy to the vehicle is greater than a cost based on the energy information and the current location;
  • An energy supply instruction sending module configured to send an energy supply instruction to the dispatched drone when the revenue determination module determines that the revenue is greater than a cost, the energy supply instruction including a current location of the vehicle and a vehicle identification code .
  • the embodiment of the present application further provides an unmanned aerial vehicle based energy supply method, the method being applied to an energy supply station, the method comprising:
  • the energy supply request including energy information of the vehicle and vehicle information, the vehicle information including a vehicle identification code and a current location;
  • an energy supply command is sent to the dispatched drone, the energy supply command including the current location of the vehicle and the vehicle identification code.
  • the embodiment of the present application further provides a drone, and the drone includes:
  • An energy supply instruction receiving module configured to receive an energy supply instruction sent by the energy supply station, where the energy supply instruction includes a current location of the provided energy vehicle and a vehicle identification code;
  • a navigation module configured to guide the drone to fly to a vehicle that is supplied with energy according to the current location
  • An energy supply module configured to send an energy supply request to the vehicle when the distance between the drone and the vehicle is less than a first preset distance, and after the energy supply request is accepted Vehicles provide energy.
  • the embodiment of the present application further provides a power supply method based on a drone, the method is applied to a drone, and the method includes:
  • the energy supply instruction including a current location of the vehicle to which the energy is supplied and a vehicle identification code
  • the embodiment of the present application further provides an unmanned aerial vehicle-based energy supply system, including the above-described vehicle-mounted terminal, cloud server, energy supply station, and drone.
  • the energy supply of the vehicle requiring energy can be effectively realized, the cruising range of the vehicle is increased, the efficiency of the energy supply of the vehicle is improved, and the user is provided with a more convenient and quick service mode, thereby saving User's time.
  • FIG. 1 is a schematic block diagram of an in-vehicle terminal provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a drone-based energy supply method according to an embodiment of the present application
  • FIG. 3 is a schematic block diagram of a cloud server provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a drone-based energy supply method according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an energy supply station provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an energy supply station provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of a drone-based energy supply method according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a drone provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a drone provided by another embodiment of the present application.
  • FIG. 10 is a flowchart of a drone-based energy supply method according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of an unmanned aircraft based energy supply system provided by an embodiment of the present application.
  • the embodiment of the present application provides an in-vehicle terminal, which can be applied to a vehicle and other devices that require energy (such as electric quantity, oil quantity, etc.) to implement the use of the drone to provide energy to the vehicles and equipment that require energy.
  • the energy-demanding vehicle may be a new energy vehicle, such as a pure electric vehicle, a hybrid vehicle, or the like, or an existing ordinary vehicle that simply uses the engine.
  • the vehicle-mounted terminal is disposed on a vehicle, and is a front-end device of the vehicle monitoring management system, which can integrate functions such as positioning, communication, etc., and has powerful service scheduling functions and data processing capabilities, and It can include online monitoring, scheduling management, report management, On-Board Diagnostic (OBD) management, customer information management, order management, media information, system management and more.
  • OBD On-Board Diagnostic
  • FIG. 1 a schematic block diagram of an in-vehicle terminal 10 provided by an embodiment of the present application.
  • the vehicle-mounted terminal 10 provided in this embodiment may include:
  • a first sending module 101 configured to send an energy supply request to the cloud server 20, where the energy supply request includes energy information of the vehicle and vehicle information, where the vehicle information includes a vehicle identification code and a current location;
  • the energy receiving module 103 is configured to receive an energy providing request sent by the dispatched drone 40 after the energy supply request is responded, and when the energy providing request is accepted, with the dispatched drone 40
  • the energy supply modules are docked to achieve an energy supply to the vehicle.
  • the energy receiving module 103 can be energy with the dispatched drone 40
  • the supply module is docked, thereby effectively realizing the energy supply of the vehicle requiring energy, increasing the cruising range of the vehicle, improving the efficiency of the energy supply of the vehicle, and providing a more convenient and quick service mode for the user, saving User's time.
  • the dispatched drone 40 can supply energy to a vehicle requiring energy through a contactless type such as a wireless charging module, or can supply energy to a vehicle requiring energy by a contact method.
  • the in-vehicle terminal 10 may further include a landing module 102 for receiving a landing request sent by the dispatched drone 40 after the energy supply request is responded, and accepting the landing request When the dispatched drone 40 is guided to land on the vehicle; the last energy receiving module 103 receives the energy supply request sent by the dispatched drone 40, and when the energy supply request is accepted Interfacing with the energy supply module of the dispatched drone 40 to achieve energy supply to the vehicle.
  • the first sending module 101 can pass, for example, Global System for Mobile Communication (GSM), Code Division Multiple Access (CDMA), Long Term Evolution (Long Term Evolution, A communication system such as LTE) or LTE-Advanced (LTE-A) communicates with the cloud server 20, for example, transmits the energy supply request to the cloud server 20.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • the energy information may include electricity quantity information and/or oil quantity information.
  • the energy information may include power information, which may include, for example, the current remaining power and the required power of the pure electric vehicle that requires the amount of power.
  • the energy information may include oil amount information, which may include, for example, the current remaining oil amount and the required oil amount of the vehicle requiring the amount of oil.
  • the energy information may include the oil amount information and the power amount information described above so as to be able to refuel and charge the hybrid vehicle in a timely manner.
  • the vehicle information may further include driving information, where the driving information may include a driving route and a current traveling speed, when the current traveling speed is At zero hours, the vehicle that needs energy is actually parked in place to wait for the energy to be replenished.
  • the energy-demanding vehicle can also continue to travel according to its driving route, and is replenished with the dispatched drone at a certain position in front of the driving, so that the user's time can be greatly saved.
  • the drop module 102 can communicate with the dispatched drone 40 by means of near field communication, Bluetooth, etc., preferably by near field communication, and can also pass through, for example, GSM, CDMA, LTE, LTE.
  • the communication system such as -A communicates with the dispatched drone 40.
  • the landing request sent by the dispatched drone 40 includes the vehicle identification code of the vehicle requiring energy, and when the vehicle identification code included in the landing request matches the vehicle identification code pre-stored in the vehicle, it is landed.
  • the module 102 accepts the dispatched drone 40 and directs the dispatched drone 40 to land on a vehicle that requires energy.
  • the embodiment of the present application further provides a drone-based energy supply method, which can be applied to a vehicle or other vehicle-mounted terminal that requires energy (eg, electric quantity, oil quantity, etc.). As shown in FIG. 2, the method may include the following steps:
  • step S201 an energy supply request is transmitted to the cloud server, the energy supply request including energy information of the vehicle and vehicle information, the vehicle information including a vehicle identification code and a current location.
  • the energy supply request may be sent to the cloud server through a communication system such as GSM, CDMA, LTE, LTE-A.
  • step S202 after the energy supply request is responded, receiving an energy supply request sent by the dispatched drone;
  • step S203 when the energy supply request is accepted, the energy supply module of the dispatched drone is docked to implement energy supply of the vehicle.
  • an energy supply request is first sent to the cloud server, and after the energy supply request is responded, the energy supply request sent by the dispatched drone is received, and the energy of the dispatched drone is further
  • the supply module is docked, thereby effectively realizing the energy supply of the vehicle requiring energy, increasing the cruising range of the vehicle, improving the efficiency of the energy supply of the vehicle, and providing a more convenient and quick service mode for the user, saving User's time.
  • the dispatched drone can supply energy to a vehicle requiring energy through a non-contact type such as a wireless charging module, or can supply energy to a vehicle requiring energy by a contact method, such as a step.
  • S202 may include the following sub-steps: receiving a landing request sent by the dispatched drone after the energy supply request is responded; guiding the dispatched drone to land at the landing request when the landing request is accepted On the vehicle; and after the dispatched drone landed on the vehicle, receiving an energy supply request sent by the dispatched drone.
  • the energy information may include electricity quantity information and/or oil quantity information.
  • the energy information may include power information, which may include, for example, the current remaining power and the required power of the pure electric vehicle that requires the power.
  • the energy information may include oil amount information, which may include, for example, the current remaining oil amount and the required oil amount of the vehicle requiring the amount of oil.
  • the energy information may include the oil amount information and the power amount information described above so as to be able to refuel and charge the hybrid vehicle in a timely manner.
  • the vehicle information may further include driving information, where the driving information may include a driving route and a current traveling speed, when the current traveling speed is At zero hours, the vehicle that needs energy is actually parked in place to wait for the energy to be replenished.
  • the energy-demanding vehicle can also continue to travel according to its driving route, and is replenished with the dispatched drone at a certain position in front of the driving, so that the user's time can be greatly saved.
  • the landing request sent by the dispatched drone may be received by means of near field communication, Bluetooth, etc., preferably by near field communication, and may also be through, for example, GSM, CDMA, A communication system such as LTE or LTE-A receives a landing request sent by the dispatched drone.
  • the landing request sent by the dispatched drone includes a vehicle identification code of the vehicle requiring energy, and the landing request is when the vehicle identification code included in the landing request matches the vehicle identification code pre-stored in the vehicle. been accepted.
  • the embodiment of the present application further provides a cloud server.
  • the cloud server 20 may include:
  • a first receiving module 301 configured to receive an energy supply request sent by the in-vehicle terminal 10 of the vehicle, where the energy supply request includes energy information of the vehicle and vehicle information, where the vehicle information includes a vehicle identification code and current position;
  • a search module 302 configured to search for an energy supply station based on the current location
  • the second sending module 303 is configured to send the energy supply request to the energy supply station 30 searched by the search module 302, so that the drone in the searched energy supply station 30 can supply energy to the vehicle.
  • the search module 302 searches for the energy supply station based on the current location, and the second sending module 303 searches the search module 302.
  • the energy supply station 30 sends the energy supply request, so that the searched energy supply station 30 can dispatch the drone in the station to replenish energy to the vehicle requiring energy, thereby increasing the cruising range of the vehicle and improving the vehicle.
  • the efficiency of energy supply and provide users with a more convenient and efficient service, saving users time.
  • the search module 302 preferentially searches for an energy supply station whose distance from the current location of the vehicle requiring energy is less than a preset distance and is located in front of the vehicle to save the user's time and increase energy. Supply efficiency.
  • the vehicle information may further include driving information, where the driving information includes a driving route and a current traveling speed.
  • the driving information includes a driving route and a current traveling speed.
  • the current driving speed is zero, the vehicle requiring energy is actually stopped in place to wait for the energy to be replenished.
  • the current driving speed is greater than zero, the vehicle requiring energy actually continues to travel according to its driving route, and is replenished with the dispatched drone at a certain position ahead of the driving, so that the energy can be greatly saved. User's time.
  • the search module 302 can be further configured to search for an energy supply station based on the current location and the travel information. For example, the search module 302 can estimate the merged location of the dispatched drone and the vehicle based on the current location of the vehicle requiring the energy and the current travel speed, and search for a distance from the merged location that is less than a preset distance and located Drive the energy supply station in front of you, so as to reduce the flight distance of the dispatched drone as much as possible and improve the energy supply efficiency.
  • the search module 302 is further configured to search for an energy supply station based on the current location, the travel information, and charging information of the energy supply station. For example, the search module 302 may first estimate the merged position of the dispatched drone and the vehicle based on the current location of the vehicle requiring the energy and the current travel speed, and search for a distance from the merged location that is less than a preset distance and Located at the energy supply station in front of the vehicle, and then selecting the cheapest energy supply station in the searched energy supply station to replenish energy for the vehicle requiring energy, which can improve energy supply efficiency and save user's overhead and time. .
  • the search module 302 may be further configured to search for a drone in the searched energy supply station based on the energy information; the second sending module 303 may also be used to The energy supply station searched by the search module 302 transmits the energy supply request so that the searched drone in the searched energy supply station can supply energy to the vehicle. That is, the cloud server 20 can determine the drone that supplements the energy of the vehicle.
  • the search module 302 searches for the drone in the searched energy supply station based on the energy information, if the single drone can complete the energy supply task, the search module 302 can determine only one of the drones to complete the energy. A supplementary task; if the existing power of each drone is less than the required power of the vehicle, the search module 302 may determine that the plurality of drones supplement the energy for the vehicle according to the order of the existing power of the drone.
  • the search module 302 can search the energy supply station database for the energy supply station and the drone database for the drone. In addition, if the search module 302 does not search for a suitable energy supply station or a drone, the search may continue, for example, and after the number of searches reaches a preset value, the second transmission module 303 sends an energy supply response to the vehicle terminal. Indicates that the corresponding energy supply station or drone has not been searched.
  • the embodiment of the present application further provides a drone-based energy supply method, which can be applied to a cloud server. As shown in FIG. 4, the method may include the following steps:
  • step S401 Receiving, in step S401, an energy supply request sent by an in-vehicle terminal of the vehicle, the energy supply request including energy information of the vehicle and vehicle information, the vehicle information including a vehicle identification code and a current location;
  • step S402 searching for an energy supply station based on the current location
  • step S403 the energy supply request is transmitted to the searched energy supply station so that the drone in the searched energy supply station can supply energy to the vehicle.
  • step S402 the energy supply station with the distance from the current location of the vehicle requiring energy is less than the preset distance and located in front of the vehicle is preferentially searched to save the user's time and Improve energy supply efficiency.
  • the vehicle information may further include driving information, where the driving information includes a driving route and a current traveling speed.
  • the driving information includes a driving route and a current traveling speed.
  • the current driving speed is zero, the vehicle requiring energy is actually stopped in place to wait for the energy to be replenished.
  • the current driving speed is greater than zero, the vehicle requiring energy actually continues to travel according to its driving route, and is replenished with the dispatched drone at a certain position ahead of the driving, so that the energy can be greatly saved. User's time.
  • the energy supply station may also be searched based on the current position and the travel information. For example, the location of the dispatched drone and the vehicle may be estimated based on the current location of the vehicle requiring the energy and the current travel speed, and the distance from the merged location may be searched for less than the preset distance and located in front of the travel.
  • the energy supply station can reduce the flight distance of the dispatched drone as much as possible and improve the energy supply efficiency.
  • the energy supply station may also be searched based on the current location, the travel information, and the charging information of the energy supply station. For example, the location of the dispatched drone and the vehicle may be estimated based on the current location of the vehicle requiring the energy and the current travel speed, and the distance from the merged location is searched for less than the preset distance and located in front of the travel. The energy supply station then selects the cheapest energy supply station in the searched energy supply station to replenish energy for the vehicle requiring energy, thus improving energy supply efficiency and saving user overhead and time.
  • step S402 the drone in the searched energy supply station may also be searched based on the energy information; and then in step S403, the searched energy supply station may also be The energy supply request is sent such that the searched drone in the searched energy supply station is capable of supplying energy to the vehicle. That is, the cloud server can determine the drone that supplements the energy of the vehicle.
  • step S402 when searching for the drone in the searched energy supply station based on the energy information in step S402, if a single drone can complete the energy supply task, only one of the drones can be determined to complete the energy supplement task. If the current power of each drone is less than the required power of the vehicle, it may be determined that the plurality of drones supplement the energy for the vehicle according to the order of the existing power of the drone.
  • the energy supply station may be searched from the energy supply station database to search for the drone from the drone database.
  • the search may continue, for example, and after the number of searches reaches a preset value, an energy supply response is sent to the vehicle terminal, indicating that the corresponding energy supply station is not searched. Or drone.
  • the energy supply station 30 may include:
  • a second receiving module 501 configured to receive an energy supply request sent by the cloud server 20, where the energy supply request includes energy information of the vehicle and vehicle information, where the vehicle information includes a vehicle identification code and a current location;
  • a revenue determination module 502 configured to determine, based on the energy information and the current location, whether revenue derived from supplying energy to the vehicle is greater than a cost
  • the energy supply instruction sending module 503 is configured to send an energy supply instruction to the dispatched drone 40 when the revenue determining module 502 determines that the revenue is greater than the cost, the energy supply instruction including the current location and the traffic of the vehicle Tool ID.
  • the revenue determining module 502 determines whether the revenue of supplying energy to the vehicle is greater than the cost based on the energy information and the current location.
  • the energy supply command sending module 503 sends an energy supply command to the dispatched drone 40 when the revenue is greater than the cost, so that the dispatched drone 40 can timely replenish energy to the vehicle requiring energy, thereby increasing traffic.
  • the cruising range of the tool improves the efficiency of the energy supply of the vehicle and provides a more convenient and quick service method for the user, saving the user's time.
  • the vehicle information may further include driving information, where the driving information includes a driving route and a current traveling speed.
  • the driving information includes a driving route and a current traveling speed.
  • the current driving speed is zero, the vehicle requiring energy is actually stopped in place to wait for the energy to be replenished.
  • the current traveling speed is greater than zero, the vehicle requiring energy continues to travel according to its driving route, and is replenished with the dispatched drone 40 at a certain position ahead of the driving, thereby greatly saving the user's time.
  • the revenue determining module 502 may further be configured to determine to supply energy to the vehicle based on the energy information, the current location, and the driving information. Whether the revenue is greater than the cost.
  • the energy supply instruction may further include at least one of an energy supply amount, a flight route, a flight start time, and the like, so that the dispatched drone 40 can better perform the energy supplement task.
  • the flight route included in the energy supply command may be determined based on the current position of the vehicle requiring the energy, the traveling route, and the traveling speed.
  • the energy supply station 30 can also determine which drone is replenishing energy for the vehicle.
  • the energy supply station 30 may further include a drone dispatch module 504 for dispatching the vehicle based on the energy information when the revenue determining module 502 determines that the revenue is greater than the cost.
  • a drone that provides energy can dispatch the drone in the order of the existing energy levels of the drone, and when the existing energy of the single drone does not meet the energy requirements of the vehicle, the drone dispatch module 504 Multiple drones can be dispatched to replenish energy for the vehicle.
  • the energy supply station 30 can include a response module (not shown) for transmitting an energy request response to the cloud server 20 to reject the energy supply request when the revenue determination module 502 determines that the revenue is less than a cost.
  • the energy supply command sending module 503 can send an energy supply command to the dispatched drone 40 by means of a radio remote control or an on-board computer remote control.
  • the energy supply command sending module 503 can send an energy supply command to the dispatched drone 40 via Bluetooth, WiFi, or a charging stub.
  • the embodiment of the present application further provides an energy supply method based on a drone, which can be applied to an energy supply station. As shown in FIG. 7, the method may include the following steps:
  • step S701 receiving an energy supply request sent by a cloud server, where the energy supply request includes energy information of the vehicle and vehicle information, the vehicle information including a vehicle identification code and a current location;
  • step S702 determining whether the benefit of supplying energy to the vehicle is greater than a cost based on the energy information and the current location;
  • step S703 when the benefit is greater than the cost, an energy supply command is transmitted to the dispatched drone, the energy supply command including the current location of the vehicle and the vehicle identification code.
  • the drone first receiving an energy supply request sent by the cloud server, and then determining whether the revenue of supplying energy to the vehicle is greater than cost based on the energy information and the current location, and then dispatching when the revenue is greater than the cost
  • the drone sends an energy supply command, so that the dispatched drone can timely replenish energy to the vehicle requiring energy, thereby increasing the cruising range of the vehicle, improving the efficiency of the vehicle energy supply, and Provides a more convenient and fast service method, saving users time.
  • the vehicle information may further include driving information, where the driving information includes a driving route and a current traveling speed.
  • the driving information includes a driving route and a current traveling speed.
  • the current driving speed is zero, the vehicle requiring energy is actually stopped in place to wait for the energy to be replenished.
  • the current driving speed is greater than zero, the vehicle requiring energy continues to travel according to its driving route, and is replenished with the dispatched drone at a certain position ahead of the driving, so that the user's time can be greatly saved.
  • the vehicle information may further include driving information, in step S702, it may further determine, based on the energy information, the current location, and the driving information, whether the revenue of supplying energy to the vehicle is More than cost.
  • the energy supply instruction may further include at least one of an energy supply amount, a flight route, a flight start time, and the like, so that the dispatched drone can better complete the energy supplementation task.
  • the flight route included in the energy supply command may be determined based on the current position of the vehicle requiring the energy, the traveling route, and the traveling speed.
  • the method may further include: dispatching a drone that provides energy to the vehicle based on the energy information.
  • the drone can be dispatched according to the order of the existing energy of the drone, and when the existing energy of the single drone cannot meet the energy demand of the vehicle, multiple drones can be dispatched to supplement the energy of the vehicle. .
  • the method may further include: sending an energy request response to the cloud server to determine the revenue is less than the cost to reject the energy supply request.
  • the energy supply instruction may be sent to the dispatched drone by means of radio remote control or remote control of the onboard computer.
  • an energy supply command can be sent to the dispatched drone via Bluetooth, WiFi, or a charging station.
  • the embodiment of the present application further provides a drone.
  • the drone 40 may include:
  • the energy supply instruction receiving module 801 is configured to receive an energy supply instruction sent by the energy supply station 30, where the energy supply instruction includes a current location of the vehicle provided with energy and a vehicle identification code;
  • a navigation module 802 configured to guide the drone 40 to fly to a vehicle that is powered according to the current location
  • An energy providing module 804 configured to send an energy providing request to the vehicle when the distance between the drone 40 and the vehicle is less than a first preset distance, and after the energy providing request is accepted The vehicle provides energy.
  • the UAV can be effectively utilized to supplement energy for the vehicle, increase the cruising range of the vehicle, improve the efficiency of the vehicle energy supply, and provide a more convenient and quick service mode for the user, saving the user. time.
  • the drone 40 can supply energy to a vehicle requiring energy through a non-contact type such as a wireless charging module, or can supply energy to a vehicle requiring energy through a contact type, as shown in FIG.
  • the drone may further include a landing request sending module 803, configured to send a landing request to the vehicle when the distance between the drone 40 and the vehicle is less than a first preset distance;
  • the providing module 804 sends an energy providing request to the vehicle after the landing request is accepted, and provides energy to the vehicle after the energy providing request is accepted.
  • the energy supply instruction receiving module 801 can receive an energy supply instruction by using Bluetooth, WiFi, or a charging post in an energy supply station.
  • the drop request sending module 803 may send a drop request to a vehicle requiring energy through near field communication, Bluetooth, or the like, preferably by near field communication, and may also pass through, for example, GSM, CDMA, LTE, A communication system such as LTE-A sends a drop request to a vehicle that requires energy. Additionally, the landing request may include a vehicle identification code for the vehicle that is in need of energy.
  • the energy supply instruction may further include an energy supply amount.
  • the drone 40 may further include:
  • An energy determining module 805, configured to determine, according to the energy supply amount, the current location, and an existing energy of the drone, whether the drone can complete the energy supply instruction;
  • the energy supplementing module 806 is configured to replenish the drone with energy when the energy determining module 805 determines that the existing energy of the drone is insufficient to complete the energy supply command.
  • the drone 40 is able to efficiently replenish energy to vehicles that require energy.
  • the energy supply instruction may further include at least one of an energy supply amount, a flight route, a flight start time, and the like, so that the dispatched drone 40 can better perform the energy supplement task.
  • the flight route included in the energy supply command may be determined based on the current position of the vehicle requiring the energy, the traveling route, and the traveling speed.
  • the embodiment of the present application further provides an unmanned aerial vehicle based energy supply method, which can be applied to a drone, as shown in FIG. 10, the method may include the following steps:
  • step S901 receiving an energy supply instruction sent by an energy supply station, the energy supply instruction including a current location of the vehicle to which the energy is supplied and a vehicle identification code;
  • step S902 the drone is guided to fly to the vehicle that is supplied with energy according to the current position
  • step S903 when the distance between the drone and the energy-providing vehicle is less than a first preset distance, an energy supply request is sent to the energy-provided vehicle;
  • step S904 after the energy supply request is accepted, energy is supplied to the energy-provided vehicle.
  • the UAV can be effectively utilized to supplement energy for the vehicle, increase the cruising range of the vehicle, improve the efficiency of the vehicle energy supply, and provide a more convenient and quick service mode for the user, saving the user. time.
  • the dispatched drone can supply energy to a vehicle requiring energy through a non-contact type such as a wireless charging module, or can supply energy to a vehicle requiring energy by a contact method, such as a step.
  • S903 specifically includes:
  • an energy provisioning request is sent to the energy-provided vehicle.
  • the energy supply instruction may be received through Bluetooth, WiFi, or a charging post in the energy supply station.
  • a drop request may be sent to a vehicle requiring energy by means of near field communication, Bluetooth, etc., preferably by near field communication, and may also be through, for example, GSM, CDMA, LTE, A communication system such as LTE-A sends a drop request to a vehicle that requires energy. Additionally, the landing request may include a vehicle identification code for the vehicle that is in need of energy.
  • the energy supply instruction may further include an energy supply amount
  • the method may further include the steps of: based on the energy supply amount, the current location, and an existing energy of the drone Determining whether the drone can complete the energy supply command; and adding energy to the drone when determining that the existing energy of the drone is insufficient to complete the energy supply command. In this way, the drone can effectively replenish energy for vehicles that require energy.
  • the energy supply instruction may further include at least one of an energy supply amount, a flight route, a flight start time, and the like, so that the dispatched drone can better complete the energy supplementation task.
  • the flight route included in the energy supply command may be determined based on the current position of the vehicle requiring the energy, the traveling route, and the traveling speed.
  • the embodiment of the present application further provides a drone-based energy supply system 1000.
  • the energy supply system 1000 may include the above-described vehicle-mounted terminal 10, cloud server 20, and energy supply according to an embodiment of the present application. Station 30 and drone 40.

Abstract

本申请提供一种车载终端、云服务器、无人机、能量供应站、方法和系统,涉及交通工具领域,能够增加交通工具的续航里程。该车载终端包括:第一发送模块,用于向云服务器发送能量供应请求,能量供应请求包括交通工具的能量信息和交通工具信息,交通工具信息包括交通工具识别码和当前位置;以及能量接收模块,用于在能量供应请求被响应之后,接收被派遣的无人机发送的能量提供请求,并在该能量提供请求被接受时,与被派遣的无人机的能量供应模块对接,以实现交通工具的能量供应。

Description

车载终端、云服务器、无人机、能量供应站、方法和系统
本申请要求于2016年12月15日提交中国专利局、申请号为201611162539.2、发明名称为“车载终端、云服务器、无人机、能量供应站、方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及交通工具领域,具体地,涉及一种车载终端、云服务器、无人机、能量供应站、方法和系统。
背景技术
电动车包括电动汽车(Electric Vehicle,EV)和混合动力车辆(Hybrid Electric Vehicle,HEV),虽然电动车这些年在井喷式发展,但对于电动车的能量补充问题还困扰着车主,如充电站的数量不多、布置不均,再如,充电时间长导致充电的费用高(充电站需要的地方大导致其成本大,充电时间长导致停车费高过电费等)等问题阻碍着电动车的发展,如何解决电动车的能量补充问题成为电动车行业乃至国家急需解决的问题。
发明内容
本申请的目的是提供一种车载终端、云服务器、无人机、能量供应站、方法和系统,其能够利用无人机给交通工具提供加油或充电服务。
为了实现上述目的,本申请实施例提供一种车载终端,应用于交通工具,该车载终端包括:
第一发送模块,用于向云服务器发送能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;以及
能量接收模块,用于在所述能量供应请求被响应之后,接收被派遣的无人机发送的能量提供请求,并在该能量提供请求被接受时,与所述被派遣的无人机的能量供应模块对接,以实现所述交通工具的能量供应。
本申请实施例提供一种基于无人机的能量供应方法,该方法应用于交通工具的车载终端,该方法包括:
向云服务器发送能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
在所述能量供应请求被响应之后,接收被派遣的无人机发送的能量提供请求;以及
在所述能量提供请求被接受时,与所述被派遣的无人机的能量供应模块对接,以实现所述交通工具的能量供应。
本申请实施例还提供一种云服务器,该云服务器包括:
第一接收模块,用于接收交通工具的车载终端发送的能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
搜索模块,用于基于所述当前位置搜索能量供应站;以及
第二发送模块,用于向所述搜索模块搜索到的能量供应站发送所述能量供应请求,以便搜索到的能量供应站中的无人机能够为所述交通工具供应能量。
本申请实施例还提供一种基于无人机的能量供应方法,该方法应用于云服务器,该方法包括:
接收交通工具的车载终端发送的能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
基于所述当前位置搜索能量供应站;以及
向搜索到的能量供应站发送所述能量供应请求,以便搜索到的能量供应站中的无人机能够为所述交通工具供应能量。
本申请实施例还提供一种能量供应站,该能量供应站包括:
第二接收模块,用于接收云服务器发送的能量供应请求,所述能量供应请求包括交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
收益确定模块,用于基于所述能量信息和所述当前位置确定向所述交通工具供应能量的收益是否大于成本;以及
能量供应指令发送模块,用于在所述收益确定模块确定收益大于成本时,向被派遣的无人机发送能量供应指令,所述能量供应指令包括所述交通工具的当前位置和交通工具识别码。
本申请实施例还提供一种基于无人机的能量供应方法,该方法应用于能量 供应站,该方法包括:
接收云服务器发送的能量供应请求,所述能量供应请求包括交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
基于所述能量信息和所述当前位置确定向所述交通工具供应能量的收益是否大于成本;以及
在收益大于成本时,向被派遣的无人机发送能量供应指令,所述能量供应指令包括所述交通工具的当前位置和交通工具识别码。
本申请实施例还提供一种无人机,该无人机包括:
能量供应指令接收模块,用于接收能量供应站发送的能量供应指令,所述能量供应指令包括被提供能量的交通工具的当前位置和交通工具识别码;
导航模块,用于根据所述当前位置引导所述无人机飞向被供应能量的交通工具;以及
能量提供模块,用于在所述无人机与所述交通工具的距离小于第一预设距离时,向所述交通工具发送能量提供请求,并在所述能量提供请求被接受之后向所述交通工具提供能量。
本申请实施例还提供一种基于无人机的能量供应方法,该方法应用于无人机,该方法包括:
接收能量供应站发送的能量供应指令,所述能量供应指令包括被供应能量的交通工具的当前位置和交通工具识别码;
根据所述当前位置引导所述无人机飞向所述被供应能量的交通工具;
在所述无人机与所述被供应能量的交通工具的距离小于第一预设距离时,向所述被供应能量的交通工具发送能量提供请求;以及
在所述能量提供请求被接受之后,向所述被供应能量的交通工具提供能量。
本申请实施例还提供一种基于无人机的能量供应系统,该能量供应系统包括:上面描述的车载终端、云服务器、能量供应站以及无人机。
通过上述技术方案,能够有效地实现需求能量的交通工具的能量供应,增加了交通工具的续航里程,提高了交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省了用户的时间。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请一种实施例提供的车载终端的示意框图;
图2是本申请一种实施例提供的基于无人机的能量供应方法的流程图;
图3是本申请一种实施例提供的云服务器的示意框图;
图4是本申请一种实施例提供的基于无人机的能量供应方法的流程图;
图5是本申请一种实施例提供的能量供应站的示意框图;
图6是本申请又一实施例提供的能量供应站的示意框图;
图7是本申请一种实施例提供的基于无人机的能量供应方法的流程图;
图8是本申请一种实施例提供的无人机的示意框图;
图9是本申请又一实施例提供的无人机的示意框图;
图10是本申请一种实施例提供的基于无人机的能量供应方法的流程图;
图11是本申请一种实施例提供的基于无人机的能量供应系统的示意框图。
具体实施方式
以下结合附图对本申请实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请实施例,并不用于限制本申请实施例。
本申请实施例提供一种车载终端,该车载终端可以应用于交通工具以及其他需求能量(例如电量、油量等)的设备,以实现利用无人机向需求能量的交通工具和设备提供能量。其中,需求能量的交通工具可以是新能源车辆,例如纯电动汽车、混合动力车辆等,也可以是现有的单纯利用发动机的普通车辆。另外,根据本申请实施例的车载终端被设置在交通工具上,是交通工具监控管理系统的前端设备,其能够集成定位、通信等功能,并具有强大的业务调度功能和数据处理能力,其还可以包括在线监控、调度管理、报表管理、车载诊断(On-Board Diagnostic,OBD)管理、客户信息管理、订单管理、媒体信息、 系统管理等功能。
如图1所示,本申请一种实施例提供的车载终端10示意框图。
本实施例提供的车载终端10可以包括:
第一发送模块101,用于向云服务器20发送能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
能量接收模块103,用于在所述能量供应请求被响应之后接收被派遣的无人机40发送的能量提供请求,并在该能量提供请求被接受时,与所述被派遣的无人机40的能量供应模块对接,以实现所述交通工具的能量供应。
通过采用根据本申请实施例的技术方案,由于第一发送模块101能够向云服务器20发送能量供应请求,在能量供应请求被响应之后,能量接收模块103能够与被派遣的无人机40的能量供应模块对接,从而能够有效地实现需求能量的交通工具的能量供应,增加了交通工具的续航里程,提高了交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省了用户的时间。
在上述实施例中,被派遣的无人机40可通过非接触式的如无线充电模块对需求能量的交通工具进行能量供应,也可以通过接触式的方式对需求能量的交通工具进行能量供应。如图1所示,该车载终端10还可以包括降落模块102,其用于在所述能量供应请求被响应之后接收被派遣的无人机40发送的降落请求,并在所述降落请求被接受时,引导所述被派遣的无人机40降落在所述交通工具上;最后能量接收模块103接收所述被派遣的无人机40发送的能量提供请求,并在该能量提供请求被接受时,与所述被派遣的无人机40的能量供应模块对接,以实现所述交通工具的能量供应。在一种可能的实施方式中,第一发送模块101可以通过诸如全球移动通信系统(Global System for Mobile Communication,GSM)、码分多址Code Division Multiple Access,CDMA)、长期演进(Long Term Evolution,LTE)、长期演进技术升级版(LTE-Advanced,LTE-A)等通信系统与云服务器20进行通信,例如向云服务器20发送所述能量供应请求。
在一种可能的实施方式中,所述能量信息可以包括电量信息和/或油量信息。例如,当需求能量的交通工具是纯电动汽车时,能量信息可以包括电量信 息,该电量信息可以例如包括需求电量的纯电动汽车的当前剩余电量和需求电量。再例如,当需求能量的交通工具是单纯利用发动机的普通车辆时,能量信息可以包括油量信息,该油量信息可以例如包括需求油量的车辆的当前剩余油量和需求油量。再例如,当需求能量的交通工具是混合动力车辆时,能量信息可以包括上面描述的油量信息和电量信息,以便能够为混合动力车辆适时地加油和充电。
在一种可能的实施方式中,除了包括交通工具识别码和当前位置之外,所述交通工具信息还可以包括行驶信息,所述行驶信息可以包括行驶路线和当前行驶速度,当当前行驶速度为零时,需求能量的交通工具实际上是停在原地等候被补充能量。当然,需求能量的交通工具也可以继续按照其行驶路线行驶,并在行驶前方的某个位置处与被派遣的无人机汇合而被补充能量,这样就能够大大节省用户的时间。
在一种可能的实施方式中,降落模块102可以通过近场通信、蓝牙等方式、优选通过近场通信方式与被派遣的无人机40进行通信,还可以通过诸如GSM、CDMA、LTE、LTE-A等通信系统与被派遣的无人机40进行通信。另外,被派遣的无人机40发送的降落请求中包含需求能量的交通工具的交通工具识别码,当降落请求中包含的交通工具识别码与交通工具中预存的交通工具识别码匹配时,降落模块102就接受被派遣的无人机40并引导被派遣的无人机40降落在需求能量的交通工具上。
本申请实施例还提供一种基于无人机的能量供应方法,该方法可以应用于交通工具或其他需求能量(例如电量、油量等)的车载终端。如图2所示,该方法可以包括以下步骤:
在步骤S201中,向云服务器发送能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置。
其中,在该步骤中,可以通过诸如GSM、CDMA、LTE、LTE-A等通信系统向云服务器发送所述能量供应请求。
在步骤S202中,在所述能量供应请求被响应之后,接收被派遣的无人机发送的能量提供请求;以及
在步骤S203中,在所述能量提供请求被接受时,与所述被派遣的无人机的能量供应模块对接,以实现所述交通工具的能量供应。
通过采用根据本申请实施例的技术方案,首先向云服务器发送能量供应请求,在能量供应请求被响应之后接收被派遣的无人机发送的能量提供请求,进而与被派遣的无人机的能量供应模块对接,从而能够有效地实现需求能量的交通工具的能量供应,增加了交通工具的续航里程,提高了交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省了用户的时间。
上述实施例中,被派遣的无人机可通过非接触式的如无线充电模块对需求能量的交通工具进行能量供应,也可以通过接触式的方式对需求能量的交通工具进行能量供应,如步骤S202可以包括以下子步骤:在所述能量供应请求被响应之后,接收被派遣的无人机发送的降落请求;在所述降落请求被接受时,引导所述被派遣的无人机降落在所述交通工具上;以及在所述被派遣的无人机降落在所述交通工具上之后,接收所述被派遣的无人机发送的能量提供请求。
在一种可能的实施方式中,所述能量信息可以包括电量信息和/或油量信息。例如,当需求能量的交通工具是纯电动汽车时,能量信息可以包括电量信息,该电量信息可以例如包括需求电量的纯电动汽车的当前剩余电量和需求电量。再例如,当需求能量的交通工具是单纯利用发动机的普通车辆时,能量信息可以包括油量信息,该油量信息可以例如包括需求油量的车辆的当前剩余油量和需求油量。再例如,当需求能量的交通工具是混合动力车辆时,能量信息可以包括上面描述的油量信息和电量信息,以便能够为混合动力车辆适时地加油和充电。
在一种可能的实施方式中,除了包括交通工具识别码和当前位置之外,所述交通工具信息还可以包括行驶信息,所述行驶信息可以包括行驶路线和当前行驶速度,当当前行驶速度为零时,需求能量的交通工具实际上是停在原地等候被补充能量。当然,需求能量的交通工具也可以继续按照其行驶路线行驶,并在行驶前方的某个位置处与被派遣的无人机汇合而被补充能量,这样就能够大大节省用户的时间。
在一种可能的实施方式中,在步骤S202中,可以通过近场通信、蓝牙等方式、优选通过近场通信方式接收被派遣的无人机发送的降落请求,还可以通 过诸如GSM、CDMA、LTE、LTE-A等通信系统接收被派遣的无人机发送的降落请求。另外,被派遣的无人机发送的降落请求中包含需求能量的交通工具的交通工具识别码,当降落请求中包含的交通工具识别码与交通工具中预存的交通工具识别码匹配时,降落请求被接受。
本申请实施例还提供一种云服务器,如图3所示,该云服务器20可以包括:
第一接收模块301,用于接收交通工具的车载终端10发送的能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
搜索模块302,用于基于所述当前位置搜索能量供应站;以及
第二发送模块303,用于向所述搜索模块302搜索到的能量供应站30发送所述能量供应请求,以便搜索到的能量供应站30中的无人机能够为所述交通工具供应能量。
通过采用上述技术方案,由于第一接收模块301接收交通工具的车载终端10发送的能量供应请求,搜索模块302基于所述当前位置搜索能量供应站,第二发送模块303则向搜索模块302搜索到的能量供应站30发送所述能量供应请求,这样搜索到的能量供应站30就能够派遣站内的无人机向需求能量的交通工具补充能量,因此增加了交通工具的续航里程,提高了交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省了用户的时间。
其中,所述能量信息已经在根据本申请实施例的车载终端中进行了详细描述,此处不再赘述。
在一种可能的实施方式中,搜索模块302会优先搜索与需求能量的交通工具的当前位置的距离小于预设距离且位于该交通工具行驶前方的能量供应站,以节省用户的时间并提高能量供应效率。
在一种可能的实施方式中,所述交通工具信息还可以包括行驶信息,所述行驶信息包括行驶路线和当前行驶速度。当当前行驶速度为零时,需求能量的交通工具实际上是停在原地等候被补充能量。当当前行驶速度大于零时,需求能量的交通工具实际上是继续按照其行驶路线行驶,并在行驶前方的某个位置处与被派遣的无人机汇合而被补充能量,这样就能够大大节省用户的时间。
另外,在交通工具信息还包括行驶信息的情况下,所述搜索模块302还可以用于基于所述当前位置和所述行驶信息来搜索能量供应站。例如,搜索模块302可以基于需求能量的交通工具的当前位置和当前行驶速度来预估被派遣的无人机与该交通工具的汇合位置,并搜索与该汇合位置的距离小于预设距离且位于行驶前方的能量供应站,这样就能够尽可能地减小被派遣的无人机的飞行距离,提高能量供应效率。
在一种可能的实施方式中,所述搜索模块302还可以用于基于所述当前位置、所述行驶信息和所述能量供应站的收费信息来搜索能量供应站。例如,搜索模块302可以首先基于需求能量的交通工具的当前位置和当前行驶速度来预估被派遣的无人机与该交通工具的汇合位置,并搜索与该汇合位置的距离小于预设距离且位于行驶前方的能量供应站,然后在搜索到的能量供应站中选择收费最便宜的能量供应站为需求能量的交通工具补充能量,这样就能够既提高能量供应效率,又节省用户的开销和时间。
在一种可能的实施方式中,所述搜索模块302还可以用于基于所述能量信息搜索被搜索到的能量供应站中的无人机;所述第二发送模块303还可以用于向所述搜索模块302搜索到的能量供应站发送所述能量供应请求,以便搜索到的能量供应站中的被搜索到的无人机能够为所述交通工具供应能量。也即可以由云服务器20来确定为交通工具补充能量的无人机。
另外,在搜索模块302基于能量信息搜索被搜索到的能量供应站中的无人机时,若单个无人机能够完成能量供应任务,则搜索模块302可以只确定其中一个无人机来完成能量补充任务;若每个无人机的现有电量均小于交通工具的需求电量,则搜索模块302可以按照无人机现有电量的大小顺序确定由多个无人机为交通工具补充能量。
在一种可能的实施方式中,搜索模块302可以从能量供应站数据库中搜索能量供应站,从无人机数据库中搜索无人机。另外,若搜索模块302没有搜索到合适的能量供应站或无人机,则可以例如继续进行搜索,并在搜索次数达到预设值之后,通过第二发送模块303向车载终端发送能量供应响应,指示没有搜索到相应的能量供应站或无人机。
本申请实施例还提供一种基于无人机的能量供应方法,该方法可以应用于 云服务器,如图4所示,该方法可以包括以下步骤:
在步骤S401中,接收交通工具的车载终端发送的能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
在步骤S402中,基于所述当前位置搜索能量供应站;以及
在步骤S403中,向搜索到的能量供应站发送所述能量供应请求,以便搜索到的能量供应站中的无人机能够为所述交通工具供应能量。
通过采用上述技术方案,首先接收交通工具的车载终端发送的能量供应请求,然后基于所述当前位置搜索能量供应站,然后向搜索到的能量供应站发送所述能量供应请求,这样搜索到的能量供应站就能够派遣站内的无人机向需求能量的交通工具补充能量,因此增加了交通工具的续航里程,提高了交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省了用户的时间。
其中,所述能量信息已经在根据本申请实施例的车载终端中进行了详细描述,此处不再赘述。
在一种可能的实施方式中,在步骤S402中,会优先搜索与需求能量的交通工具的当前位置的距离小于预设距离且位于该交通工具行驶前方的能量供应站,以节省用户的时间并提高能量供应效率。
在一种可能的实施方式中,所述交通工具信息还可以包括行驶信息,所述行驶信息包括行驶路线和当前行驶速度。当当前行驶速度为零时,需求能量的交通工具实际上是停在原地等候被补充能量。当当前行驶速度大于零时,需求能量的交通工具实际上是继续按照其行驶路线行驶,并在行驶前方的某个位置处与被派遣的无人机汇合而被补充能量,这样就能够大大节省用户的时间。
另外,在交通工具信息还包括行驶信息的情况下,在步骤S402中,还可以基于所述当前位置和所述行驶信息来搜索能量供应站。例如,可以基于需求能量的交通工具的当前位置和当前行驶速度来预估被派遣的无人机与该交通工具的汇合位置,并搜索与该汇合位置的距离小于预设距离且位于行驶前方的能量供应站,这样就能够尽可能地减小被派遣的无人机的飞行距离,提高能量供应效率。
在一种可能的实施方式中,在步骤S402中,还可以基于所述当前位置、所述行驶信息和所述能量供应站的收费信息来搜索能量供应站。例如,可以首先基于需求能量的交通工具的当前位置和当前行驶速度来预估被派遣的无人机与该交通工具的汇合位置,并搜索与该汇合位置的距离小于预设距离且位于行驶前方的能量供应站,然后在搜索到的能量供应站中选择收费最便宜的能量供应站为需求能量的交通工具补充能量,这样就能够既提高能量供应效率,又节省用户的开销和时间。
在一种可能的实施方式中,在步骤S402中,还可以基于所述能量信息搜索被搜索到的能量供应站中的无人机;然后在步骤S403中,还可以向搜索到的能量供应站发送所述能量供应请求,以便搜索到的能量供应站中的被搜索到的无人机能够为所述交通工具供应能量。也即可以由云服务器来确定为交通工具补充能量的无人机。
另外,在在步骤S402中基于能量信息搜索被搜索到的能量供应站中的无人机时,若单个无人机能够完成能量供应任务,则可以只确定其中一个无人机来完成能量补充任务;若每个无人机的现有电量均小于交通工具的需求电量,则可以按照无人机现有电量的大小顺序确定由多个无人机为交通工具补充能量。
在一种可能的实施方式中,在步骤S402中,可以从能量供应站数据库中搜索能量供应站,从无人机数据库中搜索无人机。另外,若没有搜索到合适的能量供应站或无人机,则可以例如继续进行搜索,并在搜索次数达到预设值之后,向车载终端发送能量供应响应,指示没有搜索到相应的能量供应站或无人机。
本申请实施例还提供一种能量供应站,如图5所示,该能量供应站30可以包括:
第二接收模块501,用于接收云服务器20发送的能量供应请求,所述能量供应请求包括交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
收益确定模块502,用于基于所述能量信息和所述当前位置确定向所述交通工具供应能量的收益是否大于成本;以及
能量供应指令发送模块503,用于在所述收益确定模块502确定收益大于成本时,向被派遣的无人机40发送能量供应指令,所述能量供应指令包括所述交通工具的当前位置和交通工具识别码。
通过采用上述技术方案,由于第二接收模块501接收云服务器20发送的能量供应请求,收益确定模块502基于所述能量信息和所述当前位置确定向所述交通工具供应能量的收益是否大于成本,能量供应指令发送模块503则在收益大于成本时向被派遣的无人机40发送能量供应指令,这样被派遣的无人机40就能够及时地向需求能量的交通工具补充能量,因此增加了交通工具的续航里程,提高了交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省了用户的时间。
在一种可能的实施方式中,所述交通工具信息还可以包括行驶信息,所述行驶信息包括行驶路线和当前行驶速度。当当前行驶速度为零时,需求能量的交通工具实际上是停在原地等候被补充能量。当当前行驶速度大于零时,需求能量的交通工具继续按照其行驶路线行驶,并在行驶前方的某个位置处与被派遣的无人机40汇合而被补充能量,这样就能够大大节省用户的时间。
另外,在所述交通工具信息还可以包括行驶信息的情况下,所述收益确定模块502还可以用于基于所述能量信息、所述当前位置和所述行驶信息确定向所述交通工具供应能量的收益是否大于成本。
在一种可能的实施方式中,所述能量供应指令还可以包括能量供应量、飞行路线、飞行开始时间等中的至少一者,以便于被派遣的无人机40更好地完成能量补充任务。另外,在所述交通工具信息还包括行驶信息的情况下,能量供应指令中包含的飞行路线可以基于需求能量的交通工具的当前位置和行驶路线、行驶速度来确定。
另外,由哪个无人机为交通工具补充能量,可由云服务器20确定。当然,在一种可能的实施方式中,也可由能量供应站30确定由哪个无人机为交通工具补充能量。此时,如图6所示,该能量供应站30还可以包括无人机派遣模块504,用于在所述收益确定模块502确定收益大于成本时,基于所述能量信息派遣向所述交通工具提供能量的无人机。例如,无人机派遣模块504可以按照无人机的现有能量大小顺序来派遣无人机,而且当单个无人机的现有能量不 能满足交通工具的能量需求时,无人机派遣模块504可以派遣多个无人机为交通工具补充能量。
在一种可能的实施方式中,能量供应站30可以包括响应模块(未示出),用于在收益确定模块502确定收益小于成本时向云服务器20发送能量请求响应,以拒绝能量供应请求。
在一种可能的实施方式中,能量供应指令发送模块503可以通过无线电遥控的方式或机载计算机远程控制的方式向被派遣的无人机40发送能量供应指令。例如,能量供应指令发送模块503可以通过蓝牙、WiFi或者充电桩将能量供应指令发送给被派遣的无人机40。
本申请实施例还提供一种基于无人机的能量供应方法,该方法可以应用于能量供应站,如图7所示,该方法可以包括以下步骤:
在步骤S701中,接收云服务器发送的能量供应请求,所述能量供应请求包括交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
在步骤S702中,基于所述能量信息和所述当前位置确定向所述交通工具供应能量的收益是否大于成本;以及
在步骤S703中,在收益大于成本时,向被派遣的无人机发送能量供应指令,所述能量供应指令包括所述交通工具的当前位置和交通工具识别码。
通过采用上述技术方案,首先接收云服务器发送的能量供应请求,然后基于所述能量信息和所述当前位置确定向所述交通工具供应能量的收益是否大于成本,然后在收益大于成本时向被派遣的无人机发送能量供应指令,这样被派遣的无人机就能够及时地向需求能量的交通工具补充能量,因此增加了交通工具的续航里程,提高了交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省了用户的时间。
在一种可能的实施方式中,所述交通工具信息还可以包括行驶信息,所述行驶信息包括行驶路线和当前行驶速度。当当前行驶速度为零时,需求能量的交通工具实际上是停在原地等候被补充能量。当当前行驶速度大于零时,需求能量的交通工具继续按照其行驶路线行驶,并在行驶前方的某个位置处与被派遣的无人机汇合而被补充能量,这样就能够大大节省用户的时间。
另外,在所述交通工具信息还可以包括行驶信息的情况下,在步骤S702中,还可以基于所述能量信息、所述当前位置和所述行驶信息确定向所述交通工具供应能量的收益是否大于成本。
在一种可能的实施方式中,所述能量供应指令还可以包括能量供应量、飞行路线、飞行开始时间等中的至少一者,以便于被派遣的无人机更好地完成能量补充任务。另外,在所述交通工具信息还包括行驶信息的情况下,能量供应指令中包含的飞行路线可以基于需求能量的交通工具的当前位置和行驶路线、行驶速度来确定。
另外,由哪个无人机为交通工具补充能量,可由云服务器确定。当然,在一种可能的实施方式中,也可由能量供应站确定由哪个无人机为交通工具补充能量。此时,在步骤S702之后、步骤S703之前,该方法还可以包括:基于所述能量信息派遣向所述交通工具提供能量的无人机。例如,可以按照无人机的现有能量大小顺序来派遣无人机,而且当单个无人机的现有能量不能满足交通工具的能量需求时,可以派遣多个无人机为交通工具补充能量。
在一种可能的实施方式中,该方法还可以包括:在确定收益小于成本时向云服务器发送能量请求响应,以拒绝能量供应请求。
在一种可能的实施方式中,在步骤S703中,可以通过无线电遥控的方式或机载计算机远程控制的方式向被派遣的无人机发送能量供应指令。例如,可以通过蓝牙、WiFi或者充电桩将能量供应指令发送给被派遣的无人机。
本申请实施例还提供一种无人机,如图8所示,该无人机40可以包括:
能量供应指令接收模块801,用于接收能量供应站30发送的能量供应指令,所述能量供应指令包括被提供能量的交通工具的当前位置和交通工具识别码;
导航模块802,用于根据所述当前位置引导所述无人机40飞向被供应能量的交通工具;以及
能量提供模块804,用于在所述无人机40与所述交通工具的距离小于第一预设距离时,向所述交通工具发送能量提供请求,并在所述能量提供请求被接受之后向所述交通工具提供能量。
通过采用上述技术方案,能够有效地利用无人机为交通工具补充能量,增 加交通工具的续航里程,提高交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省用户的时间。
在上述实施例中,无人机40可通过非接触式的如无线充电模块对需求能量的交通工具进行能量供应,也可以通过接触式的方式对需求能量的交通工具进行能量供应,如图8所示,该无人机还可以包括降落请求发送模块803,用于在所述无人机40与所述交通工具的距离小于第一预设距离时,向所述交通工具发送降落请求;能量提供模块804在所述降落请求被接受之后向所述交通工具发送能量提供请求,并在所述能量提供请求被接受之后向所述交通工具提供能量。
在一种可能的实施方式中,能量供应指令接收模块801可以通过蓝牙、WiFi或者能量供应站中的充电桩等方式接收能量供应指令。
在一种可能的实施方式中,降落请求发送模块803可以通过近场通信、蓝牙等方式、优选通过近场通信方式向需求能量的交通工具发送降落请求,还可以通过诸如GSM、CDMA、LTE、LTE-A等通信系统向需求能量的交通工具发送降落请求。另外,降落请求中可以包含需求能量的交通工具的交通工具识别码。
在一种可能的实施方式中,所述能量供应指令还可以包括能量供应量。如图9所示,该无人机40还可以包括:
能量确定模块805,用于基于所述能量供应量、所述当前位置和所述无人机的现有能量确定所述无人机能否完成所述能量供应指令;
能量补充模块806,用于在所述能量确定模块805确定所述无人机的现有能量不足以完成所述能量供应指令时,为所述无人机补充能量。
通过采用能量确定模块805和能量补充模块806,无人机40就能够有效地为需求能量的交通工具补充能量。
在一种可能的实施方式中,所述能量供应指令还可以包括能量供应量、飞行路线、飞行开始时间等中的至少一者,以便于被派遣的无人机40更好地完成能量补充任务。另外,在所述交通工具信息还包括行驶信息的情况下,能量供应指令中包含的飞行路线可以基于需求能量的交通工具的当前位置和行驶路线、行驶速度来确定。
本申请实施例还提供一种基于无人机的能量供应方法,该方法可以应用于无人机,如图10所示,该方法可以包括以下步骤:
在步骤S901中,接收能量供应站发送的能量供应指令,所述能量供应指令包括被供应能量的交通工具的当前位置和交通工具识别码;
在步骤S902中,根据所述当前位置引导所述无人机飞向所述被供应能量的交通工具;
在步骤S903中,在所述无人机与所述被供应能量的交通工具的距离小于第一预设距离时,向所述被供应能量的交通工具发送能量提供请求;以及
在步骤S904中,在所述能量提供请求被接受之后,向所述被供应能量的交通工具提供能量。
通过采用上述技术方案,能够有效地利用无人机为交通工具补充能量,增加交通工具的续航里程,提高交通工具能量供应的效率,并为用户提供了更加方便、快捷的服务方式,节省用户的时间。
上述实施例中,被派遣的无人机可通过非接触式的如无线充电模块对需求能量的交通工具进行能量供应,也可以通过接触式的方式对需求能量的交通工具进行能量供应,如步骤S903具体可以包括:
在所述无人机与所述被供应能量的交通工具的距离小于第一预设距离时,向所述被供应能量的交通工具发送降落请求;以及
在所述降落请求被接受之后,向所述被供应能量的交通工具发送能量提供请求。
在一种可能的实施方式中,在步骤S901中,可以通过蓝牙、WiFi或者能量供应站中的充电桩等方式接收能量供应指令。
在一种可能的实施方式中,在步骤S903中,可以通过近场通信、蓝牙等方式、优选通过近场通信方式向需求能量的交通工具发送降落请求,还可以通过诸如GSM、CDMA、LTE、LTE-A等通信系统向需求能量的交通工具发送降落请求。另外,降落请求中可以包含需求能量的交通工具的交通工具识别码。
在一种可能的实施方式中,所述能量供应指令还可以包括能量供应量,该方法还可以包括以下步骤:基于所述能量供应量、所述当前位置和所述无人机的现有能量确定所述无人机能否完成所述能量供应指令;在确定所述无人机的 现有能量不足以完成所述能量供应指令时,为所述无人机补充能量。这样,无人机就能够有效地为需求能量的交通工具补充能量。
在一种可能的实施方式中,所述能量供应指令还可以包括能量供应量、飞行路线、飞行开始时间等中的至少一者,以便于被派遣的无人机更好地完成能量补充任务。另外,在所述交通工具信息还包括行驶信息的情况下,能量供应指令中包含的飞行路线可以基于需求能量的交通工具的当前位置和行驶路线、行驶速度来确定。
本申请实施例还提供一种基于无人机的能量供应系统1000,如图11所示,该能量供应系统1000可以包括上面描述的根据本申请实施例的车载终端10、云服务器20、能量供应站30以及无人机40。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (17)

  1. 一种车载终端,其特征在于,应用于交通工具,该车载终端包括:
    第一发送模块,用于向云服务器发送能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
    能量接收模块,用于在所述能量供应请求被响应之后,接收被派遣的无人机发送的能量提供请求,并在该能量提供请求被接受时,与所述被派遣的无人机对接,以实现所述交通工具的能量供应。
  2. 根据权利要求1所述的车载终端,其特征在于,该车载终端还包括降落模块,用于在所述能量供应请求被响应之后接收所述被派遣的无人机发送的降落请求,并在所述降落请求被接受时,引导所述被派遣的无人机降落在所述交通工具上。
  3. 根据权利要求1或2所述的车载终端,其特征在于,所述交通工具信息还包括行驶信息,所述行驶信息包括行驶路线和当前行驶速度。
  4. 根据权利要求1-3任一权利要求所述的车载终端,其特征在于,所述能量信息包括电量信息和/或油量信息。
  5. 根据权利要求1-4任一权利要求所述的车载终端,其特征在于,所述交通工具是车辆。
  6. 一种云服务器,其特征在于,该云服务器包括:
    第一接收模块,用于接收交通工具的车载终端发送的能量供应请求,所述能量供应请求包括所述交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
    搜索模块,用于基于所述当前位置搜索能量供应站;以及
    第二发送模块,用于向所述搜索模块搜索到的能量供应站发送所述能量供应请求,以便搜索到的能量供应站中的无人机能够为所述交通工具供应能量。
  7. 根据权利要求6所述的云服务器,其特征在于,
    所述交通工具信息还包括行驶信息,所述行驶信息包括行驶路线和当前行驶速度;
    所述搜索模块还用于基于所述当前位置和所述行驶信息来搜索能量供应 站。
  8. 根据权利要求6或7所述的云服务器,其特征在于,所述搜索模块还用于基于所述当前位置、所述行驶信息和所述能量供应站的收费信息来搜索能量供应站。
  9. 根据权利要求6至8中任一权利要求所述的云服务器,其特征在于,
    所述搜索模块还用于基于所述能量信息搜索被搜索到的能量供应站中的无人机;
    所述第二发送模块还用于向所述搜索模块搜索到的能量供应站发送所述能量供应请求,以便搜索到的能量供应站中的被搜索到的无人机能够为所述交通工具供应能量。
  10. 根据权利要求6至9中任一权利要求所述的云服务器,其特征在于,所述交通工具是车辆。
  11. 一种能量供应站,其特征在于,该能量供应站包括:
    第二接收模块,用于接收云服务器发送的能量供应请求,所述能量供应请求包括交通工具的能量信息和交通工具信息,所述交通工具信息包括交通工具识别码和当前位置;
    收益确定模块,用于基于所述能量信息和所述当前位置确定向所述交通工具供应能量的收益是否大于成本;以及
    能量供应指令发送模块,用于在所述收益确定模块确定收益大于成本时,向被派遣的无人机发送能量供应指令,所述能量供应指令包括所述交通工具的当前位置和交通工具识别码。
  12. 根据权利要求11所述的能量供应站,其特征在于,所述交通工具信息还包括行驶信息,所述行驶信息包括行驶路线和当前行驶速度;
    所述收益确定模块还用于基于所述能量信息、所述当前位置和所述行驶信息确定向所述交通工具供应能量的收益是否大于成本。
  13. 根据权利要求11或12所述的能量供应站,其特征在于,该能量供应站还包括无人机派遣模块,用于在所述收益确定模块确定收益大于成本时,基于所述能量信息派遣向所述交通工具提供能量的无人机。
  14. 一种无人机,其特征在于,该无人机包括:
    能量供应指令接收模块,用于接收能量供应站发送的能量供应指令,所述能量供应指令包括被提供能量的交通工具的当前位置和交通工具识别码;
    导航模块,用于根据所述当前位置引导所述无人机飞向被供应能量的交通工具;
    能量提供模块,用于在所述无人机与所述交通工具的距离小于第一预设距离时,向所述交通工具发送能量提供请求,并在所述能量提供请求被接受之后向所述交通工具提供能量。
  15. 根据权利要求14所述的无人机,其特征在于,所述无人机还包括降落请求发送模块,用于在所述无人机与所述交通工具的距离小于第一预设距离时,向所述交通工具发送降落请求;所述能量提供模块在所述降落请求被接受之后向所述交通工具发送能量提供请求。
  16. 根据权利要求14或15所述的无人机,其特征在于,所述能量供应指令还包括能量供应量,该无人机还包括:
    能量确定模块,用于基于所述能量供应量、所述当前位置和所述无人机的现有能量确定所述无人机能否完成所述能量供应指令;
    能量补充模块,用于在所述能量确定模块确定所述无人机的现有能量不足以完成所述能量供应指令时,为所述无人机补充能量。
  17. 根据权利要求14至16中任一权利要求所述的无人机,其特征在于,所述交通工具是车辆。
PCT/CN2017/114908 2016-12-15 2017-12-07 车载终端、云服务器、无人机、能量供应站、方法和系统 WO2018108017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611162539.2A CN108215816B (zh) 2016-12-15 2016-12-15 车载终端、云服务器、无人机、能量供应站、方法和系统
CN201611162539.2 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018108017A1 true WO2018108017A1 (zh) 2018-06-21

Family

ID=62557916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114908 WO2018108017A1 (zh) 2016-12-15 2017-12-07 车载终端、云服务器、无人机、能量供应站、方法和系统

Country Status (2)

Country Link
CN (1) CN108215816B (zh)
WO (1) WO2018108017A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233658B (zh) * 2019-06-02 2021-05-18 西安电子科技大学 基于空闲无人机替换的无人机能量补给调度方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025267A1 (en) * 2009-07-31 2011-02-03 Deka Products Limited Partnership Systems, methods and apparatus for vehicle battery charging
CN205178538U (zh) * 2015-10-12 2016-04-20 上海中科深江电动车辆有限公司 一种电动车辆移动无线充电系统
CN205304342U (zh) * 2015-10-12 2016-06-08 上海中科深江电动车辆有限公司 一种电动车辆移动无线补电系统
CN205304274U (zh) * 2015-10-12 2016-06-08 上海中科深江电动车辆有限公司 一种具有移动高空飞行作业的电动车辆无线充电系统
US9778653B1 (en) * 2014-06-27 2017-10-03 Amazon Technologies, Inc. Systems, devices and methods delivering energy using an uncrewed autonomous vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277381A (ja) * 2009-05-29 2010-12-09 Cascom:Kk 電気エネルギーの供給システム
KR20140028625A (ko) * 2012-08-29 2014-03-10 주식회사 삼천리 코제네레이션용 요금 관리 시스템
CN204279128U (zh) * 2014-10-17 2015-04-22 上虞安卡拖车配件有限公司 一种具有两套能源供应模块的电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025267A1 (en) * 2009-07-31 2011-02-03 Deka Products Limited Partnership Systems, methods and apparatus for vehicle battery charging
US9778653B1 (en) * 2014-06-27 2017-10-03 Amazon Technologies, Inc. Systems, devices and methods delivering energy using an uncrewed autonomous vehicle
CN205178538U (zh) * 2015-10-12 2016-04-20 上海中科深江电动车辆有限公司 一种电动车辆移动无线充电系统
CN205304342U (zh) * 2015-10-12 2016-06-08 上海中科深江电动车辆有限公司 一种电动车辆移动无线补电系统
CN205304274U (zh) * 2015-10-12 2016-06-08 上海中科深江电动车辆有限公司 一种具有移动高空飞行作业的电动车辆无线充电系统

Also Published As

Publication number Publication date
CN108215816A (zh) 2018-06-29
CN108215816B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
EP3431327B1 (en) Autonomous car, traveling controller, traveling control method, and storage medium storing control program
CN109955734B (zh) 电力管理系统、电力管理方法及计算机可读取的记录介质
US9778653B1 (en) Systems, devices and methods delivering energy using an uncrewed autonomous vehicle
US9566868B2 (en) Real-time system and method for tracking, locating and recharging electric vehicles in transit
US9658076B2 (en) Vehicle and electric bicycle charge monitoring interface
JP5842348B2 (ja) Evクラウド
US11571974B2 (en) Systems and methods for mobile charging of electric vehicles
US10802490B2 (en) On-the-fly autonomous vehicle refueling and recharging
US20180241234A1 (en) Methods And Charge Controllers For Charging Of Battery In Electric Vehicle
US20210162874A1 (en) Energy transport system and transport method thereof
JP7073676B2 (ja) 移動体の救助システム、サーバ、及び移動体の救助方法
CN110234547A (zh) 无人机对车辆充电
JP5683722B2 (ja) センター側システム及び車両側システム
US20150066258A1 (en) Bev life support system and method
CN110209189A (zh) 飞行控制装置、存储介质及车辆
US20200257312A1 (en) Information processing system, information processing method, and non-transitory storage medium
KR20200019972A (ko) 충전 장치를 작동시키기 위한 방법
WO2018108017A1 (zh) 车载终端、云服务器、无人机、能量供应站、方法和系统
WO2018108018A1 (zh) 用于交通工具的充电控制方法和装置
WO2018108019A1 (zh) 交通工具充电方法和装置
US20230166615A1 (en) Wireless charging method for urban air mobility and device and system therefor
CN108227690B (zh) 基于无人机的充电控制方法和装置
CN108233447B (zh) 用于交通工具的充电控制方法和装置
US11498447B2 (en) Vehicle to vehicle charge cable acquisition
CN108215815B (zh) 用于交通工具的充电控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880122

Country of ref document: EP

Kind code of ref document: A1