WO2018107456A1 - 反射式聚光太阳能装置 - Google Patents

反射式聚光太阳能装置 Download PDF

Info

Publication number
WO2018107456A1
WO2018107456A1 PCT/CN2016/110308 CN2016110308W WO2018107456A1 WO 2018107456 A1 WO2018107456 A1 WO 2018107456A1 CN 2016110308 W CN2016110308 W CN 2016110308W WO 2018107456 A1 WO2018107456 A1 WO 2018107456A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
light receiving
fresnel lens
light
receiving surface
Prior art date
Application number
PCT/CN2016/110308
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2016/110308 priority Critical patent/WO2018107456A1/zh
Publication of WO2018107456A1 publication Critical patent/WO2018107456A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular, to a reflective concentrating solar device.
  • Non-concentrating solar systems rely primarily on light energy utilizing devices such as photovoltaic panels to directly collect sunlight. In order to collect enough sunlight, it requires the use of a large number of photovoltaic panels, which requires a large area of land, resulting in high system cost and low land use efficiency.
  • a concentrating solar system generally focuses sunlight on a light energy utilizing device through a lens, so that a smaller area of light energy utilizing the device can obtain sunlight concentrated from a larger area of the lens, and thus is better.
  • concentrating solar systems usually need to be used in conjunction with the Japanese system to achieve the desired effect, while the traditional Japanese system has a complicated structure, resulting in an increase in the cost of the entire system.
  • a reflective concentrating solar device comprising a support mechanism and two reflective panels.
  • the supporting mechanism is configured to install at least one light receiving device
  • the light receiving device defines a first light receiving surface for receiving sunlight, which may be a light energy utilizing device, or may be a light energy utilizing device and a light guiding device. combination.
  • Two reflective panels are disposed on opposite sides of the first light receiving surface such that sunlight reaching the reflective panel is at least partially directed to the area where the first light receiving surface is located.
  • the two reflective panels can each be connected to the first light receiving surface or the supporting mechanism through a rotating shaft, and the angle of the reflective panel relative to the first light receiving surface can be adjusted by the rotation of the rotating shaft.
  • the concentrating solar device of the present invention two reflective panels disposed on the side are simply used, that is, the light energy collecting capability of the system can be improved.
  • the concentrating ratio obtained by using the reflective panel is not high, but On the one hand, the cost of the reflective panel is low, and on the other hand, the simple sun tracking can be realized by adjusting the tilt angle of the reflective panel, so that the cost is high.
  • the reflective panel disposed on the side can be easily used in combination with other concentrating devices, for example, can be directly mounted on the side of other concentrating devices, thereby further enhancing the concentrating ratio of the device. This allows the apparatus of the present invention to be used both for the installation of new solar systems as well as for retrofitting old solar systems and for ease of use.
  • FIG. 1 is a schematic view of a reflective concentrating solar device of Embodiment 1;
  • FIG. 2 is a schematic view of a reflective concentrating solar device of Embodiment 2; [0014] FIG.
  • FIG. 3 is a schematic view of a reflective concentrating solar device of Embodiment 3; [0015] FIG.
  • FIG. 4 is a schematic view of a reflective concentrating solar device of Embodiment 4.
  • FIG. 5 is a schematic view of a reflective concentrating solar device of Embodiment 5.
  • FIG. 1 One embodiment of a reflective concentrating solar device in accordance with the present invention can be referenced to FIG. 1, including a support mechanism 110 and two reflective panels 120 and 120'.
  • the support mechanism 110 is for mounting at least one light receiving device.
  • the so-called light-receiving device can be either a light energy utilization device or a combination of a light energy utilization device and a light guiding device, such as a light energy utilization device with a light collecting device.
  • Light energy utilization devices generally refer to various devices that convert light energy into other energy, such as photovoltaic panels, photothermal conversion devices, and the like.
  • the so-called photovoltaic panel refers to all photoelectric conversion devices that directly convert light energy into electrical energy, such as various semiconductor photovoltaic panels, photovoltaic thin films, quantum dot photovoltaic panels, and the like.
  • the light energy utilization device can be used alone or in cascade with other energy utilization devices, such as cascading photovoltaic panels with thermal energy generators to achieve higher solar energy utilization efficiency. Therefore, the light-receiving device in the present invention can be selected and designed according to the needs of practical applications.
  • the light receiving device mounted on the support mechanism defines a first light receiving surface for receiving sunlight.
  • the surface of the light energy utilizing device is the first light receiving surface
  • the light guiding device is further disposed, and the light receiving surface of the light guiding device is the first Light receiving surface.
  • a planar light-receiving device mounted on the surface of the support mechanism is assumed, so that the first light-receiving surface is defined by the plane in which the support mechanism is located.
  • the reflective panels 120 and 120' are each disposed on opposite sides of the first light receiving surface by respective rotating shafts 121 and 121', specifically, pivotally fixed on opposite edges of the supporting mechanism 110. Through the rotation of the rotating shaft, the angle of each reflecting panel relative to the first light receiving surface (the plane in which the supporting mechanism is located in Fig. 1)
  • ⁇ and ⁇ ' can be adjusted such that sunlight reaching the reflective panel is at least partially directed to the area where the first light receiving surface is located.
  • angles ⁇ and ⁇ ' of the reflective panels 120 and 120' with respect to the first light-receiving surface can be adjusted between 45 degrees and 75 degrees to obtain a better concentrating ratio.
  • the tilt angle can be adjusted manually, and in other embodiments, it can also be adjusted automatically by setting the drive mechanism.
  • the reflective panels 120 and 120' may also be fixed to both sides of the first light receiving surface or to the support mechanism.
  • the support mechanism 110 in this embodiment has a length adjustable component, which is specifically a telescopic support bar.
  • Each of the support rods includes a hollow first rod section 111 and a second rod section 112 that is retractably received therein.
  • the telescopic support mechanism allows the distance between the two reflective panels to be adjusted to accommodate differently sized light receiving devices.
  • the structure in this embodiment is merely an example and is not intended to be limiting. In other embodiments, the size of the support mechanism can also be fixed, or other length adjustable manners.
  • the reflective panel of the present invention can be used as a variety of devices having light reflecting capabilities, such as specular mirrors or reflective lenses.
  • the so-called reflective lens refers to a device in which a transmissive lens is combined with a reflecting surface.
  • a reflective lens can be formed by plating a reflective film on one surface of the lens.
  • a reflective panel can be formed from a single device or a hybrid panel formed from different types of devices.
  • at least part of the surface of the reflective panel is formed by one or more devices selected from the group consisting of : Mirror mirror, reflective astigmatic Fresnel lens.
  • a specular mirror is a low cost way of implementing a reflective panel, for example by attaching a mirror paper to a hard substrate.
  • Fresnel lens has the advantages of being thin and easy to mass-produce.
  • Fresnel lens refers to a Fresnel lens whose tooth surface is derived from a concave lens surface, and thus has a diverging effect on light.
  • the use of a reflective astigmatic lens enables the reflective panel to direct a greater range of light to the first light-receiving surface, thereby achieving a higher concentration ratio.
  • the cost of the reflective astigmatism lens is higher than that of the specular mirror, it can be preferably used only on the upper portion of the reflective panel, and a simple specular mirror is used in the lower portion of the reflective panel.
  • At least part of the surface of the reflective panel is formed by a reflective linear astigmatic Fresnel lens.
  • the so-called “linear” lens usually refers to the center of focus of the lens as a line.
  • An advantageous aspect of applying "linear" astigmatism in the present invention is that the light is diverged only in one direction.
  • a linear astigmatic lens can be used with a Fresnel lens whose flank originates from a concave cylindrical surface, a concave elliptical cylinder, or a concave polynomial cylinder.
  • the reflective panel can be thermally connected to the light energy utilizing device to assist in heat dissipation.
  • the at least one reflective panel has a metal layer (this metal layer may be the mirror itself or an additional layer) which may be used as a reflective surface of the reflective panel or on the back side of the reflective panel.
  • the so-called back refers to the side of the two reflective panels that are away from each other.
  • the metal layer can be used to help the light energy to dissipate heat better by the device, so in this case, the light energy utilization device can be a photovoltaic panel, which is thermally connected to the metal layer, for example, by a support mechanism made of a metal material. Thermal connection.
  • the photovoltaic panel In the existing concentrating solar energy system, the photovoltaic panel is easy to generate a large amount of heat. If it cannot effectively dissipate heat, the high temperature will affect the conversion efficiency and life of the photovoltaic panel. According to the present invention, heat dissipation can be preferably carried out through a large-area reflective panel, which is more than one.
  • the side-facing reflective panel can be used both to accommodate the deflection of the illumination angle caused by seasonal changes in the sun, and to adapt to changes in the angle of the sun in the east-west direction of the day.
  • FIG. 2 Another embodiment of the reflective concentrating solar device according to the present invention can refer to FIG. 2, including support Mechanism 210, two reflective panels 220 and 220', photovoltaic panel 230.
  • the photovoltaic panel 230 is mounted on the support mechanism 210.
  • the reflective panels 220 and 220' are each pivotally secured to opposite edges of the support mechanism 210 by respective pivots 221 and 221'.
  • the tilt angles ⁇ and ⁇ ' of the reflective panels 220 and 220' with respect to the photovoltaic panel 230 can be adjusted by the rotation of the rotating shaft.
  • the reflective panels 220 and 220' are hybrid panels, the upper portion of which is formed by reflective astigmatic Fresnel lenses 2201 and 220, and the lower portion is composed of mirror mirrors 2202 and 220 2' formation.
  • the use of a reflective astigmatic Fresnel lens can effectively increase the area of the reflective panel and the tilt angles ⁇ and ⁇ ', so that the reflective panel can receive more sunlight, thereby increasing the concentration ratio of the entire device. Since the cost of the reflective lens portion is higher than that of the conventional mirror portion, it is possible to use a reflective lens only on the upper portion of the reflective panel to obtain the best price/performance ratio.
  • the embodiment further includes a transmissive astigmatic Fresnel lens 240 disposed substantially vertically on the photovoltaic panel 230 and at least partially located in a central region of the photovoltaic panel 230.
  • the astigmatic Fresnel lens has a diverging effect on the light, so that the lens 240 can increase the off angle of the incident light LL, so that the light that could not reach the photovoltaic panel 230 can be further deflected and then irradiated onto the photovoltaic panel.
  • the transmissive astigmatic Fresnel lens may be a transmissive linear astigmatic Fresnel lens whose linear astigmatism may be oriented in a direction along the normal plane of the photovoltaic panel toward the light-receiving surface of the photovoltaic panel.
  • the lens 240 can be passed through the photovoltaic panel 230 such that they are formed in a cross shape.
  • the first light receiving surface is provided by other types of light receiving devices, such as a reflective or transmissive concentrating Fresnel lens, a transmissive astigmatic Fresnel lens may be vertically disposed in these The surface of the concentrating lens.
  • the lens 240 is disposed substantially perpendicular to the normal plane of the reflective panel.
  • the primary function of the lens 240 is to enhance the concentrating action of the reflective panel on the side.
  • the transmissive astigmatic Fresnel lens can also be disposed substantially parallel to the normal plane of the reflective panel, in which case the primary function of the lens is to independently receive sunlight from the other direction and It is deflected onto the first light receiving surface.
  • Embodiment 3 Another embodiment of a reflective concentrating solar device in accordance with the present invention may refer to FIG. 3, including a support mechanism 310, two reflective panels 320 and 320'.
  • the reflective panels 320 and 320' are each pivotally secured to opposite edges of the support mechanism 310 by respective pivots 321 and 321 '.
  • a plurality of light receiving devices specifically a photovoltaic panel 330 and a light guiding device thereof, including a transmissive concentrating Fresnel lens 331 and a tapered light guiding device 332.
  • the transmissive concentrating Fresnel lens 331 is fixedly mounted on the support mechanism 310 or integrated with the support mechanism 310.
  • the first light receiving surface is formed by a Fresnel lens 331 for directing light below it.
  • the photovoltaic panels 330 converge.
  • the tapered light guiding device 332 is located between the Fresnel lens 331 and the photovoltaic panel 330, and the larger end of the opening faces the Fresnel lens 331, and the smaller end of the opening faces the photovoltaic panel 330, and the inner wall thereof is at least Part of the reflective surface is used to further condense light to increase the concentration ratio.
  • the tapered light guiding device can also be omitted, and the light energy utilizing device can be directly disposed under the transmissive concentrating Fresnel lens.
  • a reflective concentrating Fresnel lens may also be employed, and the light energy utilizing device may be disposed above it.
  • the wall of the tapered light guiding device may be composed of one or several devices selected from the group consisting of: a specular mirror, a reflective astigmatic Fresnel lens, a transparent wall or a hollowed cornice.
  • the wall of the tapered light guiding device 3 32 is composed of a specular mirror and a transparent wall (or a hollowed out mouth), wherein a portion close to the Fresnel lens 331 adopts a transparent wall 3321 near the photovoltaic panel.
  • a mirror mirror 3322 is partially used.
  • this hybrid structure is shown on only one side wall in Figure 3, with the remaining side walls remaining as one unit.
  • Mirror mirrors can be used with mirrors with a transparent protective layer (such as glass or acrylic) on the reflective surface, or by plating the reflective film directly onto a smooth surface.
  • the transparent wall can be formed from glass or any other transparent material.
  • the barrel wall of the tapered light guiding device may be formed entirely of a specular mirror or a reflective astigmatic Fresnel lens (including a reflective linear astigmatic Fresnel lens).
  • the tapered light guiding device is capable of producing a smaller concentration ratio, but in combination with the concentrating Fresnel lens 331 and the two side reflecting panels 320 and 320', the concentrating efficiency of the entire system can be doubled.
  • this embodiment further includes a transmissive astigmatic Fresnel lens 340, which is vertically disposed.
  • the Fresnel lens 340 is disposed substantially parallel to the normal plane of the reflecting panel, and thus it is adapted to accommodate the deflection of the sunlight in the other direction. For example, if reflective panels 320 and 320' are used to accommodate the deflection of sunlight in the north-south direction, Fresnel lens 340 can be used to accommodate the deflection of sunlight in the east-west direction, and vice versa.
  • the first driving mechanism 350 is further included in the embodiment for driving the reflective panel to rotate according to the need of the solar tracking to adjust the angle thereof with respect to the first light receiving surface.
  • the first driving mechanism in this embodiment specifically includes a motor 351, a screw 352 that telescopically moves under the driving of the motor, and a linkage rod 353. The free end of the screw is connected to the reflective panel 320 to push it up and down, and the linkage rod 353 drives the reflective panel 320' to deflect it synchronously.
  • the driving mechanism of the different structures or manners may be used to adjust the tilt angle of the reflective panel.
  • the specific structure does not constitute a limitation of the present invention.
  • FIG. 4 Another embodiment of a reflective concentrating solar device in accordance with the present invention can be seen in FIG. 4, including a support mechanism 410, two reflective panels 420 and 420', and a first drive mechanism 450.
  • the reflective panels 420 and 420' are each pivotally secured to opposite edges of the support mechanism 410 by respective pivots 421 and 421'.
  • the first driving mechanism 450 is similar to that in Embodiment 3, and is used to automatically adjust the tilt angles of the two reflective panels.
  • a plurality of light receiving devices specifically a photovoltaic panel 430 and a light guiding device thereof, that is, a reflective concentrating Fresnel lens 431.
  • the lens 431 is integrated with the support mechanism 410 and formed as a first light receiving surface.
  • the photovoltaic panel 430 is secured over the lens 431 by a support member 4301, and it is apparent that the photovoltaic panel 430 is disposed with the light-receiving surface facing downward to receive sunlight that is concentrated and reflected by the lens 431.
  • the present embodiment further includes a vibrator 460 to implement self-cleaning of the respective light receiving surfaces including the reflective panel.
  • the vibrator 460 includes a vibrating element 461 and its drive circuit (not shown).
  • the vibrating element may be mechanically coupled to at least one of the light-receiving surfaces of the apparatus to cause it to vibrate, thereby shaking off dust or foreign matter on the light-receiving surface.
  • one vibrating member 461 is schematically fixed to the reflective panel 420.
  • the corresponding vibrating elements may be respectively fixed on the respective light receiving surfaces, or the vibrating elements may be mounted on the supporting mechanism so that all the receiving surfaces can be shared. The same vibrator.
  • the vibrating element typically operates in a resonant mode, preferably at an ultrasonic frequency.
  • the driving circuit of the vibrator includes at least one inductance element and at least one capacitance element connected in series, so that the circuit resonance frequency C0C of the driving circuit can be set to match the mechanical resonance frequency com of the vibration element (including Same or close).
  • the so-called "frequency” refers to the circular frequency.
  • the vibrators can be designed in different types.
  • the vibrator may be a piezoelectric vibrator, and the vibrating element employs a piezoelectric element (for example, a piezoelectric vibrating piece) which is connected in series in the driving circuit and serves as a capacitive element in the driving circuit; or, the vibrator may be In the electromagnetic vibrator, the vibrating element adopts a sheet-like magnetic material which is not a part of the driving circuit, and the driving circuit excites the sheet-like magnetized material to generate vibration through the inductance element.
  • the vibrator can be manually activated, or the control circuit can be preferably configured to perform the cleaning operation in a fixed manner or in accordance with an external command or under a set condition to improve the degree of intelligence of the self-cleaning function.
  • FIG. 5 Another embodiment of a reflective concentrating solar device in accordance with the present invention can be seen in FIG. This embodiment is a case where a plurality of solar devices similar to those of Embodiment 4 are used in combination, and the combined use of two sets of solar devices is shown in Fig. 5, and can be expanded as needed in actual use.
  • Each group of solar devices includes: a support mechanism 510, two reflective panels 520 and 520' (rotation shaft not shown) pivotally fixed on both sides of the support mechanism, and a reflective concentrating integrated with the support mechanism 510
  • a Fresnel lens 531, and a photovoltaic panel 530 above the lens 531 For details, refer to Embodiment 4, and details are not described herein.
  • the first drive mechanism 550 includes a motor 551, a screw 552, and a linkage rod 553.
  • the free end of the screw 552 is connected to a reflective panel 520 to push it to rotate left and right, and the linkage rod 553 simultaneously drives the remaining three reflective panels to simultaneously deflect.
  • the second driving mechanism 570 is further included in the embodiment for driving The photovoltaic panel is translated.
  • the second drive mechanism includes a motor 571 and a screw 572 that is rotated and telescoped under the drive thereof, and the screw 572 is suspended above the lens 531 by the support member 5721.
  • Each photovoltaic panel 530 is fixed on the screw 572, and the respective photovoltaic panels are linearly translated by the expansion and contraction of the screw.
  • sun tracking can be achieved by changing the position of the photovoltaic panels, for example to accommodate the deflection of the sun in the east-west direction.
  • the first driving mechanism in this embodiment employs an ultrasonic motor, which can be regarded as a piezoelectric vibrator operating at an ultrasonic frequency, and thus the motor 551 can also function as a vibrator 560.
  • the vibrator of the ultrasonic motor acts as a vibrating element.
  • the function of the vibrator can be achieved by operating the motor 551 in the in-situ resonance mode (which controls the motor to continuously rotate and reverse at the resonant frequency).
  • the motor in the second drive mechanism can similarly be used as a vibrator.
  • a light guiding device (for example, a tapered light guiding device in Embodiment 3) may be disposed between the photovoltaic panel 530 and the lens 531 to further increase the concentration ratio.
  • heaters or coolers (not shown) may be disposed on the back of each photovoltaic panel, and the working fluids of these heaters or coolers may be connected through pipes to concentrate on utilizing the photovoltaic panels from each. Thermal energy.

Abstract

一种反射式聚光太阳能装置,包括一支撑机构(110)和两个反射面板(120,120')。其中,支撑机构(110)用于安装至少一个受光器件,该受光器件限定出用于接收太阳光的第一受光面。两个反射面板(120,120')设置在第一受光面的相对的两侧,使得到达反射面板(120,120')的太阳光至少部分地被引导到第一受光面所在的区域。反射面板(120,120')可优选地通过转轴(121,121')与第一受光面或支撑机构(110)相连,通过转轴的旋转,反射面板(120,120')相对于第一受光面的角度能够被调整。通过在侧面设置两个反射面板(120,120'),能够以较低的成本提升系统的聚光比,并且可通过调整反射面板(120,120')的倾斜角度实现简单的太阳跟踪,具有很高的性价比。

Description

反射式聚光太阳能装置 技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种反射式聚光太阳能装置。
[0002] 背景技术
[0003] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。 已有的太 阳能系统可分为不聚光型和聚光型两类。
[0004] 不聚光型的太阳能系统主要依靠光能利用器件 (例如光伏板) 来直接收集太阳 光。 为了收集到足够多的太阳光, 其需要使用大量的光伏板, 从而需要占用大 面积的土地, 导致系统成本高且土地的使用效率低。
[0005] 聚光型的太阳能系统一般通过透镜将太阳光聚焦在光能利用器件上, 使得较小 面积的光能利用器件能够得到来自较大面积的透镜所会聚的太阳光, 因此具有 较好的光能收集能力。 但是聚光型的太阳能系统通常需要与跟日系统联合使用 才能达到应有的效果, 而传统的跟日系统结构复杂, 造成整个系统的成本增加
[0006] 因此, 有必要研究既能够提高光能收集能力又具有较低成本的聚光太阳能系统
[0007] 发明内容
[0008] 依据本发明提供一种反射式聚光太阳能装置, 包括一支撑机构和两个反射面板 。 其中, 支撑机构用于安装至少一个受光器件, 该受光器件限定出用于接收太 阳光的第一受光面, 其既可以是光能利用器件, 或者也可以是光能利用器件与 导光器件的组合。 两个反射面板设置在第一受光面的相对的两侧, 使得到达反 射面板的太阳光至少部分地被引导到第一受光面所在的区域。 优选地, 两个反 射面板可各自通过一个转轴与第一受光面或支撑机构相连, 通过转轴的旋转, 反射面板相对于第一受光面的角度能够被调整。
[0009] 依据本发明的聚光太阳能装置, 简单地采用两个设置在侧面的反射面板, 即能 提升系统的光能收集能力。 虽然采用反射面板获得的聚光比并不会很高, 但是 一方面反射面板的成本低廉, 另一方面通过调整反射面板的倾斜角度即可实现 简单的太阳跟踪, 因此具有很高的性价比。
[0010] 此外, 设置在侧面的反射面板能够容易地与其他聚光装置结合使用, 例如可直 接安装在其他聚光装置的侧面, 从而进一步提升装置的聚光比。 这使得本发明 装置既能够用于新的太阳能系统的安装, 也能够用于旧的太阳能系统的改造, 易于推广使用。
[0011] 以下结合附图, 对依据本发明的具体示例进行详细说明。 本文中所使用的编号 或序号, 例如"第一"、 "第二 "等, 仅起到标识性作用, 不具有任何限制性含义。
[0012] 附图说明
[0013] 图 1是实施例 1的反射式聚光太阳能装置的示意图;
[0014] 图 2是实施例 2的反射式聚光太阳能装置的示意图;
[0015] 图 3是实施例 3的反射式聚光太阳能装置的示意图;
[0016] 图 4是实施例 4的反射式聚光太阳能装置的示意图;
[0017] 图 5是实施例 5的反射式聚光太阳能装置的示意图。
[0018] 具体实施方式
[0019] 实施例 1
[0020] 依据本发明的反射式聚光太阳能装置的一种实施方式可参考图 1, 包括支撑机 构 110和两个反射面板 120和 120'。
[0021] 支撑机构 110用于安装至少一个受光器件。 所称受光器件既可以是光能利用器 件, 也可以是光能利用器件与导光器件的组合, 例如带有聚光装置的光能利用 器件。
[0022] 光能利用器件泛指各种将光能转换为其他能量的器件, 例如光伏板、 光热转换 器件等。 所称光伏板泛指所有直接将光能转换为电能的光电转换器件, 例如各 种半导体光伏板、 光伏薄膜、 量子点光伏板等等。 光能利用器件可以单独使用 , 也可以与其它能量利用装置级联使用, 例如将光伏板与热能利用器级联, 以 实现更高的太阳能利用效率。 因此, 本发明中的受光器件可以根据实际应用的 需要进行选择和设计, 简明起见, 图 1中仅示出用于安装受光器件的支撑机构以 及位于两侧的反射面板, 受光器件未在图 1中示出。 [0023] 安装在支撑机构上的受光器件限定出用于接收太阳光的第一受光面。 当受光器 件仅包含光能利用器件吋, 光能利用器件的表面即为第一受光面, 当光能利用 器件前方的光路上还设置有导光器件吋, 导光器件的受光面为第一受光面。 本 实施例中, 假定采用安装在支撑机构表面的平面受光器件, 因此由支撑机构所 在的平面限定出第一受光面。
[0024] 反射面板 120和 120'各自通过相应的转轴 121和 121'设置在第一受光面的相对的 两侧, 具体地, 枢转地固定在支撑机构 110相对的两个边缘上。 通过转轴的旋转 , 每个反射面板相对于第一受光面 (在图 1中即为支撑机构所在的平面) 的角度
Θ和 θ'能够被调整, 使得到达反射面板的太阳光至少部分地被引导到第一受光面 所在的区域。
[0025] 优选地, 反射面板 120和 120'相对于第一受光面的角度 Θ和 θ'能够在 45度至 75度 之间调整, 以获得较好的聚光比。 倾斜角度可以手动进行调整, 在其他实施方 式中, 也可以通过设置驱动机构自动地进行调整。
[0026] 在其它的实施方式中, 反射面板 120和 120'也可以固定在第一受光面的两侧, 或 固定在支撑机构上。
[0027] 优选地, 至少一个反射面板的下端与其转轴之间具有空隙 122, 以便于清理灰 尘和杂物。
[0028] 作为一种优选的实施方式, 本实施例中的支撑机构 110具有长度可调整的部件 , 其具体为伸缩式的支撑杆。 每根支撑杆包括空心的第一杆段 111和可伸缩地容 纳于其中的第二杆段 112。 伸缩式的支撑机构使得两个反射面板之间的距离能够 被调整, 从而能够适配不同尺寸的受光器件。 杆的伸缩的方式很多, 本实施例 中的结构仅为示例, 并不构成限定。 在其他实施方式中, 支撑机构的尺寸也可 以是固定的, 或者采用其他长度可调的方式。
[0029] 本发明中的反射面板可采用各种具有光线反射能力的器件来充当, 例如镜面反 射镜或者反射式透镜。 所称反射式透镜是指由透射式透镜与反射面结合而成的 器件, 例如可通过在透镜的一个表面上镀反射膜来形成反射式透镜。 一块反射 面板可以是由单一器件形成的, 也可以是由不同种类的器件形成的混合型面板 。 优选地, 反射面板的至少部分表面由选自以下集合中的一种或几种器件形成 : 镜面反射镜, 反射式散光型菲涅尔透镜。 镜面反射镜是实现反射面板的低成 本方式, 例如可以通过在硬质衬底上贴镜面纸来实现。 菲涅尔透镜具有轻薄且 便于批量制作的优点, 关于菲涅尔透镜的详细介绍可参见名称为"菲涅尔透镜系 统", 公布日为 2016年 6月 2日, 国际公布号为 WO/2016/082097的 PCT申请, 在此 不再赘述。 所称"散光型 "菲涅尔透镜是指齿面源自凹透镜面的菲涅尔透镜, 因而 对光线具有发散作用。 采用反射式散光型透镜能够使得反射面板将更大范围的 光线引导到第一受光面, 因而能获得更高的聚光比。 不过由于反射式散光型透 镜的成本高于镜面反射镜, 因此可以优选地仅将其用在反射面板的上部, 而在 反射面板的下部则使用简单的镜面反射镜。
[0030] 优选地, 反射面板的至少部分表面由反射式线性散光型菲涅尔透镜形成。 所称 "线性"透镜, 包括线性散光型透镜和线性聚光型透镜, 通常是指透镜的聚焦中心 为一条线。 在本发明中应用"线性"散光的有利方面在于, 光线只在一个朝向上被 发散。 举例而言, 线性散光型透镜可采用齿面源自凹形圆柱面、 凹形椭圆柱面 、 或凹形多项式柱面的菲涅尔透镜来充当。
[0031] 由于镜面具有很好的导热性能, 反射面板可与光能利用器件导热连接从而起到 辅助散热的作用。 优选地, 至少一个反射面板具有金属层 (此金属层可以是镜 面本身, 也可以是额外的一层) , 该金属层可用作反射面板的反射面或者位于 反射面板的背面。 所称背面指两个反射面板相互远离的一面。 该金属层可以用 来帮助光能利用器件更好地散热, 因此在这种情况下, 光能利用器件可以是光 伏板, 其与金属层导热连接, 例如, 通过金属材料制作的支撑机构来实现导热 连接。 在已有的聚光太阳能系统中, 光伏板很容易产生大量的热量, 如果不能 有效地散热, 高温会影响光伏板的转换效率和寿命。 而依据本发明, 可以优选 地通过大面积的反射面板来进行散热, 一举多得。
[0032] 在放置依据本发明的太阳能装置吋, 位于侧面的反射面板既可用于适应太阳因 季节变化引起的照射角的偏转, 也可用于适应太阳在一天之中东西方向的角度 的变化。
[0033] 实施例 2
[0034] 依据本发明的反射式聚光太阳能装置的另一种实施方式可参考图 2, 包括支撑 机构 210, 两个反射面板 220和 220', 光伏板 230。
[0035] 光伏板 230安装在支撑机构 210上。 反射面板 220和 220'各自通过相应的转轴 221 和 221 '枢转地固定在支撑机构 210相对的两个边缘上。 可以通过转轴的旋转调整 反射面板 220和 220'相对于光伏板 230 (即第一受光面) 的倾斜角度 Θ和 θ'。
[0036] 作为一种优选的实施方式, 本实施例中, 反射面板 220和 220'为混合式面板, 其 上部由反射式散光型菲涅尔透镜 2201和 220Γ形成, 下部由镜面反射镜 2202和 220 2'形成。 采用反射式散光型菲涅尔透镜能够有效增大反射面板的面积和倾斜角度 Θ和 θ', 使得反射面板能接收到更多的太阳光, 从而提高整个装置的聚光比。 由 于反射式透镜部分的成本比普通镜面部分的成本要高, 因此, 可以仅在反射面 板的上部使用反射式透镜, 以获得最好的性价比。
[0037] 作为一种优选的实施方式, 本实施例中还包括一透射式散光型菲涅尔透镜 240 , 基本竖直地设置在光伏板 230上, 且至少部分地位于光伏板 230的中心区域。 散光型菲涅尔透镜对光线具有发散作用, 因此透镜 240能加大入射光 LL的偏角, 使得原本不能到达光伏板 230的光线能够被进一步偏转后照射到光伏板上。 进一 步优选地, 透射式散光型菲涅尔透镜可采用透射式线性散光型菲涅尔透镜, 其 线性散光的方向可设置为沿光伏板的法平面朝向光伏板的受光面的方向。
[0038] 为使得透镜 240的安装更为稳固, 优选地, 可以将透镜 240穿过光伏板 230, 使 二者形成为十字形。 在其他实施方式中, 若第一受光面由其他类型的受光器件 提供, 例如反射式或透射式的聚光型菲涅尔透镜, 也可以将透射式散光型菲涅 尔透镜竖直设置在这些聚光型透镜的表面。
[0039] 本实施例中, 透镜 240基本垂直于反射面板的法平面进行设置。 在这种情况下 , 透镜 240的主要作用在于加强位于侧面的反射面板的聚光作用。 如图 2所示, 平行的太阳光 LL经反射式散光型透镜 2201和反射镜 2202反射后, 若未能到达光 伏板 230, 还可进一步由透镜 240散射到光伏板 230上。 在其他实施方式中, 透射 式散光型菲涅尔透镜也可以基本平行于反射面板的法平面进行设置, 在这种情 况下, 该透镜的主要作用在于独立地接收来自另一个方向的太阳光并将其偏转 到第一受光面上。
[0040] 实施例 3 [0041] 依据本发明的反射式聚光太阳能装置的另一种实施方式可参考图 3, 包括支撑 机构 310, 两个反射面板 320和 320'。
[0042] 反射面板 320和 320'各自通过相应的转轴 321和 321 '枢转地固定在支撑机构 310相 对的两个边缘上。
[0043] 本实施例中具有多个受光器件, 具体为光伏板 330及其导光器件, 包括透射式 聚光型菲涅尔透镜 331和锥形导光器件 332。
[0044] 透射式聚光型菲涅尔透镜 331固定安装在支撑机构 310上, 或者与支撑机构 310 集成为一体, 第一受光面由菲涅尔透镜 331形成, 用于将光线向位于其下方的光 伏板 330会聚。
[0045] 锥形导光器件 332位于菲涅尔透镜 331与光伏板 330之间, 其幵口较大的一端朝 向菲涅尔透镜 331, 幵口较小的一端朝向光伏板 330, 其内壁至少部分为反光面 , 用于进一步会聚光线以提高聚光比。 在其他实施方式中, 也可以省去锥形导 光器件, 而直接将光能利用器件设置在透射式聚光型菲涅尔透镜的下方。 在其 他实施方式中, 也可采用反射式聚光型菲涅尔透镜, 则光能利用器件可设置在 其上方。
[0046] 锥形导光器件的筒壁可由选自以下集合的一种或几种器件组成: 镜面反射镜, 反射式散光型菲涅尔透镜, 透明壁或镂空的幵口。 本实施例中, 锥形导光器件 3 32的筒壁由镜面反射镜和透明壁 (或镂空的幵口) 组成, 其中, 靠近菲涅尔透 镜 331的部分采用透明壁 3321, 靠近光伏板的部分采用镜面反射镜 3322。 简明起 见, 图 3中仅在一个侧壁上示出了这种混合式的结构, 其余侧壁仍保持为一个整 体。 镜面反射镜可采用在反射面上具有透明保护层 (如玻璃或亚克力) 的镜子 来充当, 也可通过将反射膜直接镀在一个光滑表面上形成。 透明壁可采用玻璃 或其他任意透明材料来形成。 在其他实施方式中, 锥形导光器件的筒壁可以全 部由镜面反射镜或反射式散光型菲涅尔透镜 (包括反射式线性散光型菲涅尔透 镜) 形成。 锥形导光器件能够产生较小的聚光比, 但是与聚光型菲涅尔透镜 331 以及两个位于侧面的反射面板 320和 320'结合后, 能成倍提升整个系统的聚光效 率。
[0047] 与实施例 2类似, 本实施例中还包括一透射式散光型菲涅尔透镜 340, 竖直设置 在菲涅尔透镜 331 (第一受光面) 的表面, 以增强本实施例装置对于太阳光偏角 的适应能力。 与实施例 2不同的是, 菲涅尔透镜 340基本平行于反射面板的法平 面进行设置, 因此其用于适应太阳光在另一个方向上的偏转。 例如, 若反射面 板 320和 320'用于适应太阳光在南北方向的偏转, 则菲涅尔透镜 340可用于适应太 阳光在东西方向的偏转, 反之亦然。
[0048] 作为一种优选的实施方式, 本实施例中还包括第一驱动机构 350, 用于按照太 阳跟踪的需要, 驱动反射面板发生转动, 以调整其相对于第一受光面的角度。 本实施例中的第一驱动机构具体包括电机 351, 在电机的驱动下伸缩运动的螺杆 352, 以及联动杆 353。 螺杆的自由端连接反射面板 320推动其上下转动, 联动杆 353则带动反射面板 320'使其同步偏转。 本领域技术人员容易理解, 还可以采用 其他不同结构或方式的驱动机构来调整反射面板的倾斜角, 具体结构不构成对 本发明的限定。
[0049] 实施例 4
[0050] 依据本发明的反射式聚光太阳能装置的另一种实施方式可参考图 4, 包括支撑 机构 410, 两个反射面板 420和 420', 第一驱动机构 450。
[0051] 反射面板 420和 420'各自通过相应的转轴 421和 421 '枢转地固定在支撑机构 410相 对的两个边缘上。
[0052] 第一驱动机构 450与实施例 3中类似, 用于自动地调整两个反射面板的倾斜角。
[0053] 本实施例中具有多个受光器件, 具体为光伏板 430及其导光器件, 即反射式聚 光型菲涅尔透镜 431。 透镜 431与支撑机构 410集成为一体, 形成为第一受光面。 光伏板 430通过支撑件 4301固定在透镜 431的上方, 显然, 光伏板 430被设置为受 光面朝下, 以接收透镜 431会聚和反射的太阳光。
[0054] 作为一种优选的实施方式, 本实施例中还包括一振动器 460, 以实现包括反射 面板在内的各个受光面的自清洁。 振动器 460包括一振动元件 461及其驱动电路 (未图示) 。 振动元件可以与装置中的至少一个受光面机械连接以带动其进行 振动, 从而抖落受光面上的灰尘或异物。 本实施例中, 一个振动元件 461示意性 地固定在反射面板 420上。 在其他实施方式中, 也可以分别在各个受光面上固定 相应的振动元件, 或者将振动元件安装在支撑机构上, 使得所有受光面可共用 同一个振动器。
[0055] 为了达到良好的振动效果, 振动元件通常工作于共振模态, 优选地, 工作于超 声频率。 作为一种优选的实施方式, 振动器的驱动电路包括串联的至少一个电 感元件和至少一个电容元件, 使得能够将驱动电路的电路共振频率 C0C设置为与 振动元件的机械共振频率 com相匹配 (包括相同或接近) 。 所称"频率"均指圆频 率。 当输入驱动电路的驱动信号 (交变电流或电压) 的频率为 coc吋, 振动器即 可工作于机械和电路同吋共振的"双共振"状态。 在双共振状态下, 驱动电路的功 耗将明显降低。
[0056] 振动器可以被设计为不同的类型。 例如, 振动器可以是压电振动器, 振动元件 采用压电元件 (例如压电振动片) , 其串联在驱动电路中并同吋充当为驱动电 路中的电容元件; 或者, 振动器也可以是电磁振动器, 振动元件采用片状受磁 材料, 其不是驱动电路的一部分, 驱动电路通过电感元件激发片状受磁材料产 生振动。 振动器可以手动启动, 或者也可以优选地配置控制电路, 定吋地或按 照外部指令或在设定条件下启动振动器执行清洁操作, 以提高自清洁功能的智 能化程度。
[0057] 实施例 5
[0058] 依据本发明的反射式聚光太阳能装置的另一种实施方式可参考图 5。 本实施例 是与实施例 4类似的太阳能装置多组联合使用的情况, 图 5中示出了两组太阳能 装置的联合使用, 在实际使用中可根据需要进行扩展。
[0059] 每组太阳能装置包括: 支撑机构 510, 两个枢转地固定在支撑机构两侧的反射 面板 520和 520' (转轴未图示) , 与支撑机构 510集成为一体的反射式聚光型菲涅 尔透镜 531, 以及位于透镜 531上方的光伏板 530。 具体描述可参见实施例 4, 不 再赘述。
[0060] 本实施例与实施例 4的主要区别在于:
[0061] 1.两组太阳能装置共用同一个第一驱动机构 550。 具体地, 第一驱动机构包括 电机 551, 螺杆 552以及联动杆 553。 螺杆 552的自由端连接到一个反射面板 520推 动其左右转动, 联动杆 553同吋带动其余三个反射面板同步偏转。
[0062] 2.作为一种优选的实施方式, 本实施例中还包括第二驱动机构 570, 用于驱动 光伏板发生平移。 具体地, 第二驱动机构包括电机 571以及在其驱动下旋转伸缩 的螺杆 572, 螺杆 572通过支撑件 5721悬挂在透镜 531上方。 各个光伏板 530固定 在螺杆 572上, 通过螺杆的伸缩带动各个光伏板沿直线平移。 采用第二驱动机构 , 可通过改变光伏板的位置来实现太阳跟踪, 例如可用于适应太阳在东西方向 上的偏转。
[0063] 3.作为一种优选的实施方式, 本实施例中的第一驱动机构采用超声电机, 其可 视为工作于超声频率的压电振动器, 因此电机 551还可充当为振动器 560, 超声 电机的振子即充当为振动元件。 可以通过令电机 551工作于原地共振模式 (既在 共振频率下, 控制电机不断地正转和反转) , 来实现振动器的功能。 在其他实 施方式中, 也可以类似地将第二驱动机构中的电机同吋用作振动器。
[0064] 在其他实施方式中, 在光伏板 530与透镜 531之间还可设置导光器件 (例如实施 例 3中的锥形导光器件) , 以进一步提高聚光比。 此外, 为充分利用太阳能, 还 可以在各个光伏板的背面设置加热器或冷却器 (未图示) , 并且将这些加热器 或冷却器的工质通过管道连通, 以集中利用来自各个光伏板的热能。
[0065]
[0066] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种反射式聚光太阳能装置, 其特征在于, 包括
一支撑机构, 用于安装至少一个受光器件, 所述至少一个受光器件限 定出用于接收太阳光的第一受光面; 所述受光器件为光能利用器件, 或者为光能利用器件与导光器件的组合;
两个反射面板, 其各自设置在第一受光面的相对的两侧, 使得到达所 述反射面板的太阳光至少部分地被引导到第一受光面所在的区域。
[权利要求 2] 如权利要求 1所述的装置, 其特征在于,
所述两个反射面板各自通过一个转轴连接到所述支撑机构或第一受光 面, 使得所述反射面板相对于第一受光面的角度至少能够在 45度至 75 度之间调整。
[权利要求 3] 如权利要求 1或 2所述的装置, 其特征在于, 具有如下特征中的至少一 个.
至少一个反射面板的下端与其连接处之间具有空隙; 所述支撑机构具有长度可调整的部件, 使得所述两个反射面板之间的 距离能够被调整。
[权利要求 4] 如权利要求 1至 3中任意一项所述的装置, 其特征在于,
所述反射面板的至少部分表面由选自以下集合中的一种或几种器件形 成: 镜面反射镜, 反射式散光型菲涅尔透镜。
[权利要求 5] 如权利要求 4所述的装置, 其特征在于, 具有如下特征中的至少一个 所述反射面板的至少部分表面由反射式线性散光型菲涅尔透镜形成; 所述反射面板的上部由反射式线性散光型菲涅尔透镜形成, 下部由镜 面反射镜形成。
[权利要求 6] 如权利要求 1至 5中任意一项所述的装置, 其特征在于,
至少一个反射面板具有金属层, 所述金属层用作反射面或者位于所述 反射面板的背面;
所述光能利用器件为光伏板, 其与所述金属层导热连接。 如权利要求 1至 6中任意一项所述的装置, 其特征在于,
还包括一透射式散光型菲涅尔透镜, 基本竖直地设置在第一受光面上
, 且至少部分地位于第一受光面的中心区域。
如权利要求 7所述的装置, 其特征在于, 具有如下特征中的至少一个 所述透射式散光型菲涅尔透镜为透射式线性散光型菲涅尔透镜; 所述透射式散光型菲涅尔透镜基本平行或垂直于所述反射面板的法平 面。
如权利要求 2至 8中任意一项所述的装置, 其特征在于,
还包括第一驱动机构, 用于按照太阳跟踪的需要, 驱动所述反射面板 发生转动, 以调整其相对于第一受光面的角度。
如权利要求 1至 9中任意一项所述的装置, 其特征在于,
所述受光器件包括
一聚光型菲涅尔透镜, 固定在所述支撑机构上, 第一受光面由所述聚 光型菲涅尔透镜形成;
一光能利用器件, 若所述聚光型菲涅尔透镜为透射式的, 所述光能利 用器件位于所述聚光型菲涅尔透镜的下方, 或者, 若所述聚光型菲涅 尔透镜为反射式的, 所述光能利用器件位于所述聚光型菲涅尔透镜的 上方。
如权利要求 10所述的装置, 其特征在于,
所述受光器件还包括
一锥形导光器件, 位于所述聚光型菲涅尔透镜与所述光能利用器件之 间, 其幵口较大的一端朝向所述聚光型菲涅尔透镜, 幵口较小的一端 朝向所述光能利用器件, 其内壁至少部分为反光面。
如权利要求 11所述的装置, 其特征在于,
所述锥形导光器件的筒壁由选自以下集合的一种或几种器件组成: 镜 面反射镜, 反射式散光型菲涅尔透镜, 透明壁或镂空的幵口。
如权利要求 1至 12中任意一项所述的装置, 其特征在于, 还包括第二驱动机构, 用于驱动所述光能利用器件发生平移。
[权利要求 14] 如权利要求 1至 13中任意一项所述的装置, 其特征在于,
还包括一振动器, 其包括一振动元件及其驱动电路,
所述振动元件与所述装置中的至少一个受光面板机械连接以带动其进 行振动,
所述振动器选自压电振动器和电磁振动器。
[权利要求 15] 如权利要求 14所述的装置, 其特征在于,
所述驱动电路包括串联的至少一个电感元件和至少一个电容元件, 所 述驱动电路的电路共振频率与所述振动元件的机械共振频率相匹配; 当所述振动器为压电振动器吋, 所述振动元件为压电元件, 其充当为 所述驱动电路中的电容元件;
当所述振动器为电磁振动器吋, 所述振动元件为片状受磁材料, 所述 驱动电路通过电感元件激发所述振动元件产生振动。
[权利要求 16] 如权利要求 14引用权利要求 9或 13吋所述的装置, 其特征在于,
所述振动器为超声电机, 所述超声电机的振子充当为所述振动元件, 所述超声电机还用于充当为第一驱动机构或第二驱动机构中的电机。
PCT/CN2016/110308 2016-12-16 2016-12-16 反射式聚光太阳能装置 WO2018107456A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110308 WO2018107456A1 (zh) 2016-12-16 2016-12-16 反射式聚光太阳能装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110308 WO2018107456A1 (zh) 2016-12-16 2016-12-16 反射式聚光太阳能装置

Publications (1)

Publication Number Publication Date
WO2018107456A1 true WO2018107456A1 (zh) 2018-06-21

Family

ID=62557815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110308 WO2018107456A1 (zh) 2016-12-16 2016-12-16 反射式聚光太阳能装置

Country Status (1)

Country Link
WO (1) WO2018107456A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478332U (zh) * 2009-03-30 2010-05-19 美商智阳光电有限公司台湾分公司 太阳能光电模块
US20110023939A1 (en) * 2009-07-31 2011-02-03 Chien-An Chen Portable solar cell apparatus
CN102403929A (zh) * 2011-11-04 2012-04-04 杨东 一种太阳能聚光发电模组
CN102478854A (zh) * 2010-11-26 2012-05-30 益科博能源科技(上海)有限公司 聚光太阳自动跟踪系统
CN204633697U (zh) * 2015-04-14 2015-09-09 汪匀民 太阳能集光装置安装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478332U (zh) * 2009-03-30 2010-05-19 美商智阳光电有限公司台湾分公司 太阳能光电模块
US20110023939A1 (en) * 2009-07-31 2011-02-03 Chien-An Chen Portable solar cell apparatus
CN102478854A (zh) * 2010-11-26 2012-05-30 益科博能源科技(上海)有限公司 聚光太阳自动跟踪系统
CN102403929A (zh) * 2011-11-04 2012-04-04 杨东 一种太阳能聚光发电模组
CN204633697U (zh) * 2015-04-14 2015-09-09 汪匀民 太阳能集光装置安装结构

Similar Documents

Publication Publication Date Title
KR100818197B1 (ko) 태양광 집속식 발전장치
JP2013123059A (ja) 集光のための方法及び装置
AU2016434337B2 (en) Concentrating solar apparatus
EP1988582A1 (en) A condensing type solar cell apparatus
AU2006244561A1 (en) Reflecting photonic concentrator
TWM561365U (zh) 聚光式光能接收裝置
WO2019084707A1 (zh) 聚光式太阳能系统
JP2011155115A (ja) 太陽光発電装置
US20110100418A1 (en) Solid Linear Solar Concentrator Optical System With Micro-Faceted Mirror Array
WO2020154963A1 (zh) 聚光太阳能装置
WO2018107456A1 (zh) 反射式聚光太阳能装置
WO2018214152A1 (zh) 聚光式多功能太阳能系统
KR101450149B1 (ko) 태양 추적이 가능한 일체형 태양광 전송 장치
WO2019213834A1 (zh) 双面聚光太阳能装置和系统
KR101091249B1 (ko) 태양광 집광장치
WO2018053822A1 (zh) 光能接收装置
US20210050815A1 (en) Side concentrating solar apparatus
TWI373850B (en) Concentrating solar module and system with hollow integration rod
WO2018053821A1 (zh) 导光装置和太阳能系统
WO2018077223A1 (zh) 一种管状聚光光伏电池组件及阵列
WO2018090277A1 (zh) 聚光式光能接收装置
WO2018014151A1 (zh) 自清洁太阳光接收装置
WO2017206140A1 (zh) 跟日太阳能系统
JP6916315B2 (ja) フレネル集光装置及び集光型太陽エネルギーシステム
JPH03263549A (ja) 太陽エネルギー収集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923880

Country of ref document: EP

Kind code of ref document: A1