WO2019084707A1 - 聚光式太阳能系统 - Google Patents

聚光式太阳能系统 Download PDF

Info

Publication number
WO2019084707A1
WO2019084707A1 PCT/CN2017/108251 CN2017108251W WO2019084707A1 WO 2019084707 A1 WO2019084707 A1 WO 2019084707A1 CN 2017108251 W CN2017108251 W CN 2017108251W WO 2019084707 A1 WO2019084707 A1 WO 2019084707A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving surface
pair
elements
disposed
Prior art date
Application number
PCT/CN2017/108251
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to EP17930782.2A priority Critical patent/EP3703253A4/en
Priority to PCT/CN2017/108251 priority patent/WO2019084707A1/zh
Priority to CN201780095767.9A priority patent/CN111213318A/zh
Priority to US16/756,863 priority patent/US20200274481A1/en
Publication of WO2019084707A1 publication Critical patent/WO2019084707A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0525Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells including means to utilise heat energy directly associated with the PV cell, e.g. integrated Seebeck elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/876Reflectors formed by assemblies of adjacent reflective elements having different orientation or different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/88Multi reflective traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/10Protective covers or shrouds; Closure members, e.g. lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular to concentrating solar power systems.
  • a concentrating solar power system includes an external light reflecting element, a pair of internal light reflecting elements, and a light energy utilizing device.
  • Each pair of retroreflective elements comprises two mutually opposite, obliquely disposed retroreflective elements, the larger end of which is the upper end facing the direction in which the sunlight is incident.
  • a pair of inner retroreflective elements are disposed between the outer retroreflective elements.
  • a face opposite to each other of the external light reflecting elements is a reflective surface.
  • the faces of the pair of inner reflecting elements facing each other are reflective surfaces, or both surfaces are reflective surfaces.
  • Each reflective surface is a flat surface or a curved surface.
  • the light-receiving surface of the light energy utilization device is disposed at a lower end of the external light-reflecting element, and the inner light-reflecting element is positioned above the light-receiving surface.
  • the concentrating solar energy system according to the present invention has two pairs of retroreflective elements inside and outside, which can achieve a higher concentration ratio and a lower cost than a light guide or a concentrating tube having only one pair of retroreflective elements. Concentration efficiency, Moreover, it has a stronger adaptability to the sun deflection, and contributes to improving the incident angle of the sunlight received by the light-receiving surface of the light energy utilization device, thereby reducing the reflection loss of the light-receiving surface and improving the utilization efficiency of the solar energy.
  • the system may further include a Fresnel lens parallel or perpendicular to the light-receiving surface of the light energy utilization device, thereby increasing the concentration ratio of the system or enhancing the adaptation range to the solar illumination angle.
  • FIG. 1 is a schematic view of a concentrating solar energy system of Embodiment 1;
  • FIG. 2 is a schematic view of a concentrating solar energy system of Embodiment 2;
  • FIG. 3 is a schematic view of a concentrating solar energy system of Embodiment 3; [0010] FIG.
  • FIG. 4 is a schematic view of a concentrating solar energy system of Embodiment 4.
  • FIG. 1 shows a schematic view of a longitudinal section of the system, including first external light reflecting elements 110 and 110', first pair of inner light reflecting elements 120 and 120', and light energy utilizing means 130.
  • Each pair of retroreflective elements comprises two reflective elements that are disposed opposite each other and are inclined.
  • the opposite end of each pair of inclined reflecting elements is the upper end, and the sunlight LL is irradiated from the upper end to the reflecting member, and is guided to the lower end.
  • the faces of the outer light reflecting elements 110 and 110' facing each other are reflective surfaces.
  • the inner light reflecting elements 120 and 120' are disposed between the outer light reflecting elements 110 and 110', and the faces opposite to each other are reflective surfaces.
  • the faces of the inner retroreflective elements 120 and 120' that face the outer retroreflective elements are also reflective surfaces to assist the outer reflective elements in directing light downward.
  • each of the light reflecting elements may be a flat surface or a curved surface.
  • the reflective surface of the outer reflector is planar, forming a flared opening on the outside
  • the reflective surface of the inner reflector is a smooth curved surface forming a flared opening located inside.
  • the type of each reflective surface can be arbitrarily selected, but the parameters such as the slope of the plane or the curvature of the curved surface need to be set according to the requirements of the optical design, so that the sunlight that is irradiated onto the reflective surface can be concentrated on the light energy utilization device.
  • the light-receiving surface 131 of the light energy utilization device 130 is disposed at the lower ends of the outer light-reflecting elements 110 and 110', and the inner light-reflecting elements 120 and 120' are positioned above the light-receiving surface 131.
  • the inner reflecting member may be fixed to the light receiving surface 131 by a transparent supporting member (not shown), or the inner reflecting member may be fixed at the side (i.e., both ends of the inner reflecting member extending laterally).
  • the light energy utilization device in this embodiment is a photovoltaic panel, which generally refers to any photoelectric conversion device that directly converts light energy into electrical energy, and includes various semiconductor photovoltaic panels, photovoltaic thin films, quantum dot photoelectric conversion devices, photoelectric conversion materials, and the like.
  • the light energy utilization device can also include a thermoelectric conversion device or a thermal energy utilization device or the like to achieve higher solar energy utilization efficiency.
  • thermal energy utilization devices include water heaters and thermal power generators (such as Stirling generators or steam generators).
  • the photovoltaic panel 130 and the outer reflective elements 110 and 110' on both sides are formed as wedge-shaped grooves, and light from the large cornice (upper end) is concentrated to the bottom.
  • the introduction of the inner light reflecting elements 120 and 120' located inside the groove can not only enlarge the opening angle of the outer reflecting element, thereby improving the concentration ratio and the adaptability to the sun yaw angle, and also improving the sunlight on the light receiving surface 131.
  • the incident angle reduces the reflection loss and improves the utilization efficiency of solar energy.
  • This embodiment shows a basic form of a solar energy system in accordance with the present invention, on the basis of which various variations or modifications are possible.
  • a top cover can be placed on top of the system, or more efficient optical components (such as Fresnel lenses) can be added to the light path of the concentrated light to suit different needs or achieve better results.
  • FIG. 2 shows a schematic view of a longitudinal section of the system, including first outer retroreflective elements 210 and 210', first pair of inner retroreflective elements 220 and 220', and photovoltaic panel 230.
  • each of the reflecting surfaces is flat, which makes the retroreflective element easy to manufacture.
  • the angle between the outer reflective element and the light receiving surface 231 of the photovoltaic panel 230 may be greater than or equal to the angle between the inner reflective element and the light receiving surface 231.
  • the angle between two planes referred to herein refers to the angle between two planes that is less than or equal to 90 degrees.
  • the embodiment further includes a transparent top cover 240 that closes the upper ends of the outer reflective elements 2 10 and 210', and may be made of glass or plastic material.
  • the transparent top cover reduces dust and environmental impact on the reflective surface and light energy utilization, making it easy to clean and extending system life.
  • the system as a whole may be formed as a closed container, for example, the lower end of the first external light reflecting member is closed by the light receiving surface of the light energy utilizing means, and the two side faces of the first external light reflecting member are also closed. This will better protect the mirror and light energy from the dust and atmospheric corrosion.
  • the transparent top cover may also be acted upon by a Fresnel condenser lens to increase the concentration ratio of the system.
  • the embodiment further includes a Fresnel condenser lens 221 disposed at an upper end of the inner reflective elements 220 and 220', which is substantially parallel to the light receiving surface 231 of the photovoltaic panel 230, and is used for The sunlight is concentrated toward the light receiving surface 231.
  • the concentrating ratio of the system is usually more than three times, so that the concentrating ratio of the system can be increased by further setting the Fresnel lens.
  • a built-in Fresnel collecting lens which can be arranged substantially parallel to the light receiving surface 231 according to its optical characteristics, which can make the opening angles of the first pair of inner reflecting elements and the second external reflecting elements can be compared.
  • the case where the Fresnel lens is not used is larger, thereby obtaining a larger concentration ratio.
  • a Fresnel astigmatic lens may be employed, which may be disposed substantially perpendicular to the light receiving surface 231. Two types of lenses can also be used together.
  • the Fresnel lens used in the present invention may be a single-sided Fresnel lens having a smooth surface on one side of the tooth surface, or a double-sided Fresnel lens having a tooth surface on both sides.
  • a double-sided Fresnel lens can be preferably used because it is not affected by external dust.
  • the embodiment further includes a heat sink 232 disposed under the photovoltaic panel 230 and thermally connected thereto, which can help reduce the temperature of the photovoltaic panel to ensure its working efficiency.
  • the heat sink can be replaced with other thermal energy utilization devices, such as heat absorbing containers, to more fully utilize energy.
  • FIG. Figure 3 is a schematic view showing the system after being decomposed along the normal direction of the light-receiving surface of the light energy utilization device (photovoltaic panel), including first external light reflecting elements 310 and 310', first pair of inner light reflecting elements 320 and 320' , photovoltaic panel 330, transparent top cover 340 and built-in Fresnel condenser lens 321 .
  • the light energy utilization device photovoltaic panel
  • the transparent top cover 340 employs a Fresnel condenser lens to obtain a larger concentration ratio. Since the exterior of the top cover is exposed to the air, a single-sided Fresnel lens may be preferably used with the teeth facing down to facilitate cleaning.
  • the embodiment further includes second external light reflecting elements 350 and 350', and second pair of inner light reflecting elements 360 and 360'.
  • External reflectors 350 and 350' are included in the embodiment.
  • the side faces of the outer reflecting members 310 and 310' are respectively disposed such that the two outer reflecting members are enclosed in a horn shape, and are formed into a closed container together with the photovoltaic plate 330 and the top cover 340.
  • Inner reflective elements 360 and 360' are disposed between outer reflective elements 350 and 350', and are oriented in different directions from inner reflective elements 320 and 320'.
  • the two pairs of internal light reflecting elements are formed in a "#" shape. The addition of two pairs of retroreflective elements inside and outside allows the system to accommodate a wider range of solar deflections.
  • This embodiment shows a generally conical concentrating solar energy system. Due to the inclusion of two pairs of internally-reflecting elements with different orientations and the top and inner Fresnel condenser lenses, not only can they achieve a larger concentration ratio, but also the system can be fixedly mounted without the need for a sun tracking system. . At present, many solar systems with high concentration ratios need to be used in conjunction with the solar tracking system.
  • FIG. Figure 4 shows a schematic view of a longitudinal section of the system, including first external light reflecting elements 410 and 410', first pair of inner light reflecting elements 420 and 420', photovoltaic panel 430, transparent top cover 440 and built-in Fresnel Lens 422.
  • the transparent top cover 440 employs a Fresnel condenser lens to obtain a larger concentration ratio.
  • the built-in Fresnel lens 422 is a Fresnel astigmatic lens disposed between the internal light reflecting elements 420 and 420', which is substantially perpendicular to the light receiving surface 431 of the photovoltaic panel 430, and is used to direct sunlight to the light receiving surface. Face 431 is deflected.
  • the Fresnel astigmatism lens can employ a linear astigmatism (astigmatism direction down) lens.
  • the so-called "line type" lens means that the focus center of the lens is a line instead of being concentrated at one point.
  • the focal line of the astigmatism lens 422 may be substantially parallel to the light receiving surface 431.
  • the embodiment further includes two overhanging light reflecting elements 470 and 470' extending upward from the upper ends of the outer reflecting elements 410 and 410', respectively, extending above the top cover 440. These overhanging retroreflective elements further increase the concentration ratio of the system.
  • the embodiment further includes an endothermic container 433 instead of the heat sink in Embodiment 2 to absorb the heat generated by the photovoltaic panel 430.
  • a thermoelectric conversion device 434 is further disposed on the heat transfer path of the photovoltaic panel 430 for heat dissipation, for example, a thermoelectric diode may be employed.
  • the thermoelectric conversion device 434 may be disposed between the photovoltaic panel 430 and the heat absorbing container 433. The heat generated by the photovoltaic panel is first passed through the thermoelectric conversion device, so that a part of the thermal energy is converted into electric energy to further increase the power generation efficiency, and the remaining heat energy is absorbed by the heat absorption container to achieve full utilization of energy.
  • the solar system of the embodiment adopts a Fresnel lens 440 (concentrated light) disposed in parallel and a Fresnel lens 422 (astigmatism) disposed vertically, and an overhanging reflective element, which can obtain a larger concentration ratio. , or can adapt to a larger sun deflection angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种聚光式太阳能系统,包括一对外反光元件(110,110'),一对内反光元件(120,120')和一光能利用装置(130)。每对反光元件包括两片彼此相对、倾斜设置的反光元件,其开口较大的一端为上端,朝向太阳光(LL)入射的方向。一对内反光元件(120,120')设置在一对外反光元件(110,110')之间。光能利用装置(130)的受光面(131)设置在一对外反光元件(110,110')的下端,而内反光元件(120,120')位于受光面(131)之上。所述系统能够以较低的成本实现较高的聚光比和聚光效率。

Description

聚光式太阳能系统 技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及聚光式太阳能系统。
背景技术
[0002] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。 目前常见 的直接采用光伏板作为原始光能采集面的太阳能系统, 已经很难继续降低成本 , 而聚光式太阳能系统由于能提高太阳能的利用效率和降低综合成本, 正受到 越来越多的重视。
[0003] 例如, 公布日为 2017年 2月 2日, 公布号为 WO2017015901A1, 名称为"封闭式 太阳能利用装置及系统"的 PCT申请中提出了采用光导的聚光太阳能系统。 有必 要进行进一步研究, 以使得上述方案更加完善或获得更高的性价比。
技术问题
问题的解决方案
技术解决方案
[0004] 依据本发明提供一种聚光式太阳能系统, 包括一对外反光元件, 一对内反光元 件和一光能利用装置。 每对反光元件包括两片彼此相对、 倾斜设置的反光元件 , 其幵口较大的一端为上端, 朝向太阳光入射的方向。 一对内反光元件设置在 一对外反光元件之间。 一对外反光元件的彼此相对的面为反光面。 一对内反光 元件的彼此相对的面为反光面, 或者, 两面均为反光面。 各个反光面为平面或 者曲面。 光能利用装置的受光面设置在一对外反光元件的下端, 而内反光元件 位于受光面之上。
发明的有益效果
有益效果
[0005] 依据本发明的聚光式太阳能系统, 具有内外两对反光元件, 相比只有一对反光 元件的光导或聚光筒而言, 能够以较低的成本实现较高的聚光比和聚光效率, 且对于太阳偏转具有更强的适应能力, 并且有助于改善光能利用装置的受光面 接收到的太阳光的入射角度, 从而减少受光面的反射损失, 提高太阳能的利用 效率。
[0006] 优选地, 系统中还可进一步包括平行或垂直于光能利用装置的受光面的菲涅尔 透镜, 从而提高系统的聚光比或者增强对太阳照射角的适应范围。
[0007] 以下结合附图, 对依据本发明的具体示例进行详细说明。 本文中所使用的表示 位置的词语, 例如"上"、 "下"、 "左"、 "右"、 "顶部"、 "底部"、 "侧面"、 "垂直" 、 "平行 "等, 仅表示相对的位置关系, 不具有绝对性的含义。 本文中所使用的编 号或序号, 例如"第一"、 "第二 "等, 仅起到标识性作用, 不具有任何限制性含义 对附图的简要说明
附图说明
[0008] 图 1是实施例 1的聚光式太阳能系统的示意图;
[0009] 图 2是实施例 2的聚光式太阳能系统的示意图;
[0010] 图 3是实施例 3的聚光式太阳能系统的示意图;
[0011] 图 4是实施例 4的聚光式太阳能系统的示意图。
本发明的实施方式
[0012] 具体实施方式
[0013] 实施例 1
[0014] 依据本发明的聚光式太阳能系统的一种实施方式可参考图 1。 图 1示出了该系统 的一个纵向截面的示意图, 包括第一对外反光元件 110和 110', 第一对内反光元 件 120和 120', 以及光能利用装置 130。
[0015] 每对反光元件包括两片彼此相对、 倾斜设置的反光元件。 每一对倾斜设置的反 光元件的幵口较大的一端为其上端, 太阳光 LL从上端照射到反光元件上, 被引 导向下端。
[0016] 外反光元件 110和 110'彼此相对的面为反光面。 内反光元件 120和 120'设置在外 反光元件 110和 110'之间, 其彼此相对的面为反光面。 作为优选的实施方式, 本 实施例中, 内反光元件 120和 120'朝向外反光元件的面也为反光面, 以协助外反 光元件将光线向下引导。
[0017] 各个反光元件的反光面可以是平面, 也可以是曲面。 例如, 本实施例中, 外反 光元件的反光面为平面, 形成位于外部的喇叭形敞口, 而内反光元件的反光面 为光滑的曲面, 形成位于内部的喇叭形敞口。 各个反光面的类型可以任意选择 , 不过平面的斜率或曲面的曲率等参数需要按照光学设计的要求进行设置, 使 得照射到反光面上的太阳光能够被汇聚到光能利用装置上。
[0018] 光能利用装置 130的受光面 131设置在外反光元件 110和 110'的下端, 内反光元 件 120和 120'位于受光面 131之上。 例如, 可以通过透明的支撑件 (未图示) 将内 反光元件固定在受光面 131上, 或者也可以在侧边处 (即内反光元件横向延伸的 两端) 固定内反光元件。 本实施例中的光能利用装置为光伏板, 其泛指任何直 接将光能转换为电能的光电转换器件, 包括各种半导体光伏板、 光伏薄膜、 量 子点光电转换器件、 光电转换材料等。 在其他实施方式中, 由于依据本发明的 太阳能系统能获得较高的聚光比, 因此, 光能利用装置也可包括热电转换器件 或热能利用器件等, 以实现更高的太阳能利用效率。 其中, 热能利用器件包括 热水器和热能发电机 (如斯特林发电机或蒸汽发电机) 等。
[0019] 光伏板 130与位于两侧的外反光元件 110和 110'形成为楔形槽, 来自大的幵口 ( 上端) 的光线被汇聚到底部。 而位于槽内部的内反光元件 120和 120'的引入, 不 仅可以扩大外反光元件的张角, 从而提高聚光比和对太阳偏角的适应能力, 还 可以改善太阳光在受光面 131上的入射角, 从而减少反射损失, 提高太阳能的利 用效率。
[0020] 本实施例示出了依据本发明的太阳能系统的一种基本形式, 在此基础上可以有 各种变换或改进。 例如在系统顶部设置顶盖, 或在汇聚光线的光路中增加更有 效的光学元件 (如菲涅尔透镜) 等, 以适应不同的需求或达到更好的效果。
[0021] 实施例 2
[0022] 依据本发明的聚光式太阳能系统的另一种实施方式可参考图 2。 图 2示出了该系 统的一个纵向截面的示意图, 包括第一对外反光元件 210和 210', 第一对内反光 元件 220和 220', 以及光伏板 230。 [0023] 本实施例与实施例 1的区别在于: 各反光面均为平面, 这使得反光元件容易制 作。 优选地, 为了获得较大的聚光比, 外反光元件与光伏板 230的受光面 231之 间的夹角可大于或等于内反光元件与受光面 231之间的夹角。 本文中所称两个平 面之间的夹角是指两个平面之间小于或等于 90度的那个夹角。
[0024] 此外:
[0025] 作为一种优选的实施方式, 本实施例还包括透明顶盖 240, 其封闭外反光元件 2 10和 210'的上端, 具体可采用玻璃或塑料材质制成。 透明顶盖可以减少灰尘和环 境对于反光面和光能利用装置的影响, 既便于清洗, 又有助于延长系统寿命。 进一步优选地, 可以将系统整体形成为封闭的容器, 例如, 以光能利用装置的 受光面封闭第一对外反光元件的下端, 此外还封闭第一对外反光元件的两个侧 面。 这样可以更好地保护镜面和光能利用装置免受灰尘污染和大气腐蚀。 在其 他实施方式中, 透明顶盖也可以采用菲涅尔聚光透镜来充当, 以增加系统的聚 光比。
[0026] 作为一种优选的实施方式, 本实施例还包括菲涅尔聚光透镜 221, 设置在内反 光元件 220和 220'的上端, 其基本平行于光伏板 230的受光面 231, 用于将太阳光 朝向受光面 231会聚。 在仅采用反光元件的情况下, 系统的聚光比通常很难超过 3倍, 因此可通过进一步设置菲涅尔透镜来增大系统的聚光比。 本实施例中采用 了内置的菲涅尔聚光透镜, 根据其光学特点可基本平行于受光面 231布置, 其使 得第一对内反光元件和第二对外反光元件的幵口张角都可以比不采用菲涅尔透 镜的情况更大, 从而获得更大的聚光比。 在其他实施方式中, 也可以采用菲涅 尔散光透镜, 可基本垂直于受光面 231布置。 两种类型的透镜也可配合使用。
[0027] 本发明中使用的菲涅尔透镜, 可以是一面为齿面一面为光滑表面的单面菲涅尔 透镜, 也可以是两面均为齿面的双面菲涅尔透镜。 当菲涅尔透镜被设置在封闭 的容器内吋, 由于不受外部灰尘的影响, 可优选采用双面菲涅尔透镜。
[0028] 作为一种优选的实施方式, 本实施例还包括散热片 232, 设置在光伏板 230下方 并与其导热连接, 能够有助于降低光伏板的温度以保障其工作效率。 在其他实 施方式中, 也可以将散热片替换为其他热能利用装置, 例如吸热容器, 以对能 量进行更充分的利用。 [0029] 实施例 3
[0030] 依据本发明的聚光式太阳能系统的另一种实施方式可参考图 3。 图 3示出了该系 统沿着光能利用装置 (光伏板) 的受光面的法线方向分解后的示意图, 包括第 一对外反光元件 310和 310', 第一对内反光元件 320和 320', 光伏板 330, 透明顶 盖 340以及内置的菲涅尔聚光透镜 321。
[0031] 本实施例与实施例 2的区别在于: 透明顶盖 340采用一菲涅尔聚光透镜, 以获得 更大的聚光比。 由于顶盖的外部暴露在空气中, 可优选采用单面菲涅尔透镜, 齿面向下进行布置, 以便于清洁。
[0032] 此外:
[0033] 作为一种优选的实施方式, 本实施例还包括第二对外反光元件 350和 350', 以 及第二对内反光元件 360和 360'。 外反光元件 350和 350'
分别设置在外反光元件 310和 310'的侧面, 使得两对外反光元件围成喇叭筒形, 并与光伏板 330和顶盖 340—起形成为封闭的容器。 内反光元件 360和 360'设置在 外反光元件 350和 350'之间, 与内反光元件 320和 320'朝向不同的方向。 示例性地 , 本实施例中两对内反光元件形成为" #"字形。 增加的内外两对反光元件使得系 统能够适应更宽广的太阳偏转范围。
[0034] 本实施例示出了一种大致为锥形的聚光式太阳能系统。 由于包含了两对不同朝 向的内反光元件以及顶部和内部的菲涅尔聚光透镜, 其不仅可获得更大的聚光 比, 还使得本系统可以采用固定安装方式而不需要配备太阳跟踪系统。 而目前 很多具有高聚光比的太阳能系统都需要配合太阳跟踪系统同吋使用。
[0035] 实施例 4
[0036] 依据本发明的聚光式太阳能系统的另一种实施方式可参考图 4。 图 4示出了该系 统的一个纵向截面的示意图, 包括第一对外反光元件 410和 410', 第一对内反光 元件 420和 420', 光伏板 430, 透明顶盖 440以及内置的菲涅尔透镜 422。
[0037] 本实施例与实施例 2的区别在于:
[0038] 1.透明顶盖 440采用一菲涅尔聚光透镜, 以获得更大的聚光比。
[0039] 2.内置的菲涅尔透镜 422为菲涅尔散光透镜, 设置在内反光元件 420和 420'之间 , 其基本垂直于光伏板 430的受光面 431, 用于将太阳光朝向受光面 431偏转。 该 菲涅尔散光透镜可采用线型散光 (散光方向向下) 透镜。 所称"线型"透镜, 是指 透镜的聚焦中心为一条线, 而不是集中在一个点上。 散光透镜 422的焦线可基本 平行于受光面 431。
[0040] 此外:
[0041] 作为一种优选的实施方式, 本实施例还包括两个外伸反光元件 470和 470', 分 别自外反光元件 410和 410'的上端向上延伸, 伸展于顶盖 440上方。 这些外伸的反 光元件可进一步提高系统的聚光比。
[0042] 作为一种优选的实施方式, 本实施例还包括吸热容器 433以取代实施例 2中的散 热片来吸收光伏板 430产生的热量。 进一步优选地, 光伏板 430进行散热的热传 导路径上还设置有热电转换器件 434, 例如, 可采用热电二极管。 具体地, 热电 转换器件 434可设置在光伏板 430与吸热容器 433之间。 光伏板所产生的热量首先 通过热电转换器件, 使得一部分热能被转换为电能以进一步提高发电效率, 剩 余的热能则被吸热容器吸收以达到能量的充分利用。
[0043] 本实施例太阳能系统同吋采用了平行设置的菲涅尔透镜 440 (聚光) 和垂直设 置的菲涅尔透镜 422 (散光) 以及外伸反光元件, 能够获得较大的聚光比, 或者 能够适应较大的太阳偏转角。
[0044]
[0045] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。

Claims

权利要求书
[权利要求 1] 一种聚光式太阳能系统, 其特征在于, 包括
第一对外反光元件, 包括两片彼此相对、 倾斜设置的反光元件, 其彼 此相对的面为反光面,
第一对内反光元件, 设置在第一对外反光元件之间, 包括两片彼此相 对、 倾斜设置的反光元件, 其彼此相对的面为反光面, 或者, 两面均 为反光面,
其中, 每一对倾斜设置的反光元件的幵口较大的一端为其上端, 所述 上端朝向太阳光入射的方向, 各个反光面为平面或者曲面; 以及 一光能利用装置, 其受光面设置在第一对外反光元件的下端, 第一对 内反光元件位于所述受光面之上。
[权利要求 2] 如权利要求 1所述的系统, 其特征在于, 还包括
一菲涅尔聚光透镜, 设置在第一对内反光元件的上端, 其基本平行于 所述光能利用装置的受光面, 用于将太阳光朝向所述受光面会聚。
[权利要求 3] 如权利要求 1或 2所述的系统, 其特征在于, 还包括
一菲涅尔散光透镜, 设置在第一对内反光元件之间, 其基本垂直于所 述光能利用装置的受光面, 用于将太阳光朝向所述受光面偏转。
[权利要求 4] 如权利要求 1至 3任意一项所述的系统, 其特征在于, 还包括
一透明顶盖, 其封闭第一对外反光元件的上端, 所述光能利用装置的 受光面封闭第一对外反光元件的下端。
[权利要求 5] 如权利要求 4所述的系统, 其特征在于,
所述透明顶盖为菲涅尔聚光透镜。
[权利要求 6] 如权利要求 1至 5任意一项所述的系统, 其特征在于, 还包括
第二对外反光元件, 包括两片彼此相对、 倾斜设置的反光元件, 分别 设置在第一对外反光元件的侧面, 使得两对外反光元件围成喇叭筒形
[权利要求 7] 如权利要求 6所述的系统, 其特征在于, 还包括
第二对内反光元件, 设置在第二对外反光元件之间, 与第一对内反光 元件朝向不同的方向。
[权利要求 8] 如权利要求 1至 7任意一项所述的系统, 其特征在于, 还包括
至少一个外伸反光元件, 自任一外反光元件的上端向上延伸。
[权利要求 9] 如权利要求 1至 8任意一项所述的系统, 其特征在于,
各个反光面为平面, 外反光元件与所述光能利用装置的受光面之间的 夹角大于或等于内反光元件与所述光能利用装置的受光面之间的夹角
[权利要求 10] 如权利要求 1至 8任意一项所述的系统, 其特征在于,
所述光能利用装置包括一光电转换器件, 还包括一散热片或吸热容器
, 所述散热片或吸热容器设置在所述光电转换器件下方并与其导热连
[权利要求 11] 如权利要求 10所述的系统, 其特征在于,
所述光能利用装置还包括热电转换器件, 设置在所述光电转换器件进 行散热的热传导路径上。
PCT/CN2017/108251 2017-10-30 2017-10-30 聚光式太阳能系统 WO2019084707A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17930782.2A EP3703253A4 (en) 2017-10-30 2017-10-30 LIGHT CONCENTRATING SOLAR ENERGY SYSTEM
PCT/CN2017/108251 WO2019084707A1 (zh) 2017-10-30 2017-10-30 聚光式太阳能系统
CN201780095767.9A CN111213318A (zh) 2017-10-30 2017-10-30 聚光式太阳能系统
US16/756,863 US20200274481A1 (en) 2017-10-30 2017-10-30 Light-concentrating solar energy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108251 WO2019084707A1 (zh) 2017-10-30 2017-10-30 聚光式太阳能系统

Publications (1)

Publication Number Publication Date
WO2019084707A1 true WO2019084707A1 (zh) 2019-05-09

Family

ID=66332042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108251 WO2019084707A1 (zh) 2017-10-30 2017-10-30 聚光式太阳能系统

Country Status (4)

Country Link
US (1) US20200274481A1 (zh)
EP (1) EP3703253A4 (zh)
CN (1) CN111213318A (zh)
WO (1) WO2019084707A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061729A1 (zh) * 2020-09-25 2022-03-31 博立多媒体控股有限公司 太阳能利用装置
WO2022109943A1 (zh) * 2020-11-26 2022-06-02 博立多媒体控股有限公司 太阳能利用装置
WO2022178826A1 (zh) * 2021-02-26 2022-09-01 博立码杰通讯(深圳)有限公司 太阳能利用装置
WO2023193168A1 (zh) * 2022-04-07 2023-10-12 博立码杰通讯(深圳)有限公司 太阳能利用单元

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527558A (zh) * 2022-02-14 2022-05-24 华北电力大学 一种考虑太阳张角的类球面反射聚光器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2481784Y (zh) * 2001-06-19 2002-03-13 伍太光 太阳光采光装置
CN201256372Y (zh) * 2008-09-10 2009-06-10 陈应天 太阳能低倍聚光器
CN101635314A (zh) * 2008-07-25 2010-01-27 晶元光电股份有限公司 太阳能电池的聚光装置
CN201430546Y (zh) * 2008-12-26 2010-03-24 重庆京渝激光生物研究所 一种聚光光伏发电装置
EP2610649A1 (en) * 2010-08-27 2013-07-03 Chengdu Zsun Science and Technology Developing Co., Ltd. Condensing lens, compound-eye lens condenser, and compound-eye concentrating solar cell assembly
WO2017015901A1 (zh) 2015-07-29 2017-02-02 博立多媒体控股有限公司 封闭式太阳能利用装置及系统
CN206099878U (zh) * 2016-10-20 2017-04-12 博立码杰通讯(深圳)有限公司 聚光式光能接收装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131485A (en) * 1977-08-08 1978-12-26 Motorola, Inc. Solar energy collector and concentrator
US4892593A (en) * 1984-10-09 1990-01-09 Lew Hyok S Solar trap

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2481784Y (zh) * 2001-06-19 2002-03-13 伍太光 太阳光采光装置
CN101635314A (zh) * 2008-07-25 2010-01-27 晶元光电股份有限公司 太阳能电池的聚光装置
CN201256372Y (zh) * 2008-09-10 2009-06-10 陈应天 太阳能低倍聚光器
CN201430546Y (zh) * 2008-12-26 2010-03-24 重庆京渝激光生物研究所 一种聚光光伏发电装置
EP2610649A1 (en) * 2010-08-27 2013-07-03 Chengdu Zsun Science and Technology Developing Co., Ltd. Condensing lens, compound-eye lens condenser, and compound-eye concentrating solar cell assembly
WO2017015901A1 (zh) 2015-07-29 2017-02-02 博立多媒体控股有限公司 封闭式太阳能利用装置及系统
CN206099878U (zh) * 2016-10-20 2017-04-12 博立码杰通讯(深圳)有限公司 聚光式光能接收装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703253A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061729A1 (zh) * 2020-09-25 2022-03-31 博立多媒体控股有限公司 太阳能利用装置
WO2022109943A1 (zh) * 2020-11-26 2022-06-02 博立多媒体控股有限公司 太阳能利用装置
WO2022178826A1 (zh) * 2021-02-26 2022-09-01 博立码杰通讯(深圳)有限公司 太阳能利用装置
WO2023193168A1 (zh) * 2022-04-07 2023-10-12 博立码杰通讯(深圳)有限公司 太阳能利用单元

Also Published As

Publication number Publication date
CN111213318A (zh) 2020-05-29
EP3703253A4 (en) 2021-07-07
EP3703253A1 (en) 2020-09-02
US20200274481A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2019084707A1 (zh) 聚光式太阳能系统
US9464783B2 (en) Concentrated photovoltaic panel
US20070137691A1 (en) Light collector and concentrator
WO2011150849A1 (zh) 一种锥形聚光系统
KR20070104300A (ko) 태양전지 집속모듈 구조
TWM561365U (zh) 聚光式光能接收裝置
JP5117839B2 (ja) 集光型太陽光発電装置
US20140048117A1 (en) Solar energy systems using external reflectors
CN111801888A (zh) 侧面聚光太阳能装置
EP3780384A1 (en) Solar concentrator
US10199527B2 (en) Solar concentrator and illumination apparatus
TW201312065A (zh) 太陽能集能裝置
TW201351674A (zh) 太陽能發電系統及其太陽能集熱裝置
CN218099671U (zh) 一种太阳能光热利用的球面或非球面平凸柱面透镜阵列
WO2022148000A1 (zh) 太阳能利用装置
CN217817512U (zh) 一种太阳能光热利用的非球面或球面的平凸透镜阵列
JP2003056455A (ja) 太陽光発電装置及びこれに用いる反射鏡
CN102608742B (zh) 太阳能条形平行光超薄聚光器
CN203146140U (zh) 提高太阳能斯特林发动机加热头效率的装置
KR101217247B1 (ko) 집광형 태양전지
WO2017206140A1 (zh) 跟日太阳能系统
KR20010002649A (ko) 태양열 열전발전 장치의 고집적 집속기
WO2022061729A1 (zh) 太阳能利用装置
WO2023028735A1 (zh) 太阳能利用单元及其组合结构
WO2022251992A1 (zh) 太阳能利用单元及其组合结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017930782

Country of ref document: EP

Effective date: 20200528