WO2022148000A1 - 太阳能利用装置 - Google Patents

太阳能利用装置 Download PDF

Info

Publication number
WO2022148000A1
WO2022148000A1 PCT/CN2021/107237 CN2021107237W WO2022148000A1 WO 2022148000 A1 WO2022148000 A1 WO 2022148000A1 CN 2021107237 W CN2021107237 W CN 2021107237W WO 2022148000 A1 WO2022148000 A1 WO 2022148000A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
energy utilization
convex
light energy
solar energy
Prior art date
Application number
PCT/CN2021/107237
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立码杰通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立码杰通讯(深圳)有限公司 filed Critical 博立码杰通讯(深圳)有限公司
Priority to US18/270,836 priority Critical patent/US20240068712A1/en
Priority to EP21917043.8A priority patent/EP4266382A1/en
Priority to JP2023541331A priority patent/JP2024502147A/ja
Priority to AU2021416610A priority patent/AU2021416610A1/en
Priority to CA3207623A priority patent/CA3207623A1/en
Priority to CN202180089403.6A priority patent/CN116710714A/zh
Publication of WO2022148000A1 publication Critical patent/WO2022148000A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present application relates to a light energy conversion and utilization device.
  • This application mainly provides a novel solar energy utilization device to demonstrate a new solar energy utilization structure.
  • an embodiment of the present application provides a solar energy utilization device, including:
  • the light energy utilization device has a first light energy utilization part capable of receiving and converting sunlight;
  • the convex condensing device is a solid lens or a accommodating cavity filled with transparent liquid
  • the convex condensing device has a light-transmitting convex side wall arranged obliquely, and the sunlight can
  • the light-transmitting convex sidewall transmits into the solid lens or the transparent liquid
  • the first light energy utilization part is arranged at the bottom of the convex concentrating device
  • the convex condensing device is formed from the solid
  • the sunlight emitted by the lens or the transparent liquid toward the light-transmitting convex sidewall forms a phenomenon of total reflection, and the sunlight is concentrated on the first light energy utilization part.
  • the convex light-concentrating device has a light-transmitting bottom wall, and the first light energy utilization portion is located below the light-transmitting bottom wall.
  • the first light energy utilization portion is connected to the light-transmitting convex sidewall, and forms a bottom wall of the accommodating cavity.
  • a first light guide member is provided in the convex light concentrating device, and the first light guide member guides sunlight to the first light energy utilization part.
  • the first light guide member is a Fresnel lens, and the Fresnel lens is arranged in a vertical direction in the convex light collecting device.
  • the Fresnel lens is perpendicular to the light receiving surface of the first light energy utilization part.
  • it further includes a second light guide member, the second light guide member is arranged on the outer side of the convex light concentrating device, and is used for directing sunlight to the light-transmitting protrusions of the convex light concentrating device.
  • Side wall guide is arranged on the outer side of the convex light concentrating device, and is used for directing sunlight to the light-transmitting protrusions of the convex light concentrating device.
  • the second light guide member is a reflective member disposed on one side or both sides of the convex light concentrating device, and the reflective surface of the light reflecting member faces the convex light concentrating device.
  • the second light guide member is fixedly connected to the convex light concentrating device or the light energy utilization device, and the second light guide member has a hanging lug for installing the solar energy utilization device.
  • it also includes a closed container, the light energy utilization device and the convex concentrating device are arranged in the closed container, and the closed container has a light-transmitting surface, so that the sunlight can pass through the light-transmitting surface.
  • the light surface is injected into the convex condensing device, the closed container is provided with a working medium, and the working medium is in contact with the light energy utilization device.
  • the convex light concentrating device is communicated with the closed container, the working medium is the same transparent liquid as that in the convex light concentrating device, and the transparent liquid covers the convex light concentrating device. device.
  • the convex concentrating device is closed and disposed, and the closed container has a first external interface for the working medium to enter and exit the closed container to utilize the working medium.
  • it further includes a third light guide member, the third light guide member has a accommodating cavity, the accommodating cavity has a reflective side wall and a reflective bottom wall, the light energy utilization device and the convex light concentrating device is arranged in the accommodating cavity, the light energy utilization device has a second light energy utilization part that is away from the first light energy utilization part, and the second light energy utilization part is arranged facing the reflective bottom wall, The reflective side walls and the reflective bottom wall reflect part of the sunlight to the second light energy utilization part.
  • the reflective bottom wall has a W-shaped reflective surface.
  • the third light guide member has a light-transmitting top wall, and the light-transmitting top wall, the light-reflecting side walls and the light-reflecting bottom wall enclose a sealed accommodation cavity.
  • it further includes a reflector and a support structure, the convex concentrating device and the light energy utilization device are arranged upright or upside down and supported by the support structure, and the light energy utilization device has the same a second light energy utilization part separated from the first light energy utilization part, and the reflector is located below the convex light concentrating device and the light energy utilization device, so as to reflect sunlight to the convex light concentrating device and/or on one of the second light energy utilization part and the first light energy utilization part.
  • each light energy utilization device is correspondingly provided with two convex light concentrating devices, and the two convex light concentrating devices are respectively a first convex light concentrating device and a second convex light concentrating device, so The first convex condensing device is located above the first light energy utilization part, and the second convex condensing device is located below the second light energy utilization part.
  • the reflecting member is a Fresnel lens reflecting surface or a curved reflecting mirror.
  • the convex condensing device is a liquid lens, and the first convex condensing device and/or the second convex condensing device is provided with a second external interface for the transparent liquid to enter and exit.
  • a dust-proof device is further included, and the reflector, the support structure and the convex light-concentrating device are arranged in the dust-proof device.
  • the longitudinal section of the convex light-concentrating device is a polygon, and the number of sides of the polygon is greater than or equal to three.
  • the solar energy utilization device includes a light energy utilization device and a convex concentrating device.
  • the convex condensing device is a solid lens or a liquid lens filled with transparent liquid inside.
  • the convex condensing device has light-transmitting convex sidewalls arranged obliquely, and sunlight can be transmitted from the light-transmitting convex sidewalls into the solid lens or the transparent liquid.
  • the first light energy utilization part is arranged at the bottom of the convex concentrating device, and the sunlight emitted from the solid lens or transparent liquid to the light-transmitting convex side wall forms a total reflection phenomenon, which is more convenient for the convex concentrating device to direct the sunlight to the first light-transmitting convex sidewall.
  • the light energy utilization part is concentrated on the upper part, so as to prevent the sunlight from being refracted from the light-transmitting convex side wall after being reflected by the inner wall of the convex concentrating device into the convex condensing device, so that more sunlight is directed to the first light
  • the upper part can be used for condensing to improve the condensing efficiency. Total reflection also generally improves the angle of incidence of sunlight on the light energy utilization device, thereby reducing reflection losses.
  • FIG. 1 This is a schematic longitudinal cross-sectional view of the solar energy utilization device in the first embodiment of the present application.
  • FIG. 2 This is a schematic longitudinal cross-sectional view of the solar energy utilization device in the second embodiment of the present application.
  • FIG. 3 This is a schematic longitudinal cross-sectional view of the solar energy utilization device in the third embodiment of the present application, which can be installed in a high-latitude area in a flat-lying manner.
  • FIG. 4 This is a schematic longitudinal cross-sectional view of the solar energy utilization device in the fourth embodiment of the present application, which shows a double-sided light-concentrating structure.
  • FIG. 5 is a schematic longitudinal cross-sectional view of a solar energy utilization device in a fifth embodiment of the present application, which shows an array-type double-sided light-concentrating structure .
  • connection and “connection” mentioned in this application, unless otherwise specified, include both direct and indirect connections (connections).
  • This embodiment provides a solar energy utilization device, which is used for receiving and utilizing sunlight for energy conversion, and converting the sunlight into electrical energy, thermal energy and other forms of energy for people to use.
  • the solar energy utilization device shown in this embodiment includes at least one light energy utilization device and at least one convex concentrating device.
  • the light energy utilization device has a first light energy utilization part capable of receiving and converting sunlight.
  • the first light energy utilization part and other light energy utilization parts can be photovoltaic panels, photothermal utilization devices, photoelectric and thermal energy comprehensive utilization devices, concentrators, etc.
  • the photovoltaic panel generally refers to any device that directly converts light energy into electrical energy, including various semiconductor photovoltaic panels, photovoltaic thin films, quantum dot photoelectric conversion devices, and the like.
  • the first light energy utilization part may also be other forms of sunlight utilization conversion structures.
  • the convex condensing device has a solid lens or an accommodating cavity filled with transparent liquid.
  • the convex light-concentrating device has light-transmitting convex sidewalls arranged obliquely, and sunlight can be transmitted from the light-transmitting convex sidewalls into the convex light-concentrating device.
  • Convex concentrators with inclined light-transmitting convex sidewalls can adapt to incident light with a larger deflection angle, and can be used not only to cope with the north-south return deflection of sunlight, but also to cope with the east-west deflection of sunlight.
  • the light-transmitting convex sidewall may be formed by a flat surface, a folded surface, a curved surface, or a combination of the above surfaces.
  • the first light energy utilization part is arranged at the bottom of the convex condensing device.
  • the sunlight emitted from the solid lens or transparent liquid to the light-transmitting convex side wall forms a phenomenon of total reflection, and the sunlight is directed to the first
  • the light energy utilization part is concentrated on the upper part.
  • the structure of the convex concentrating device is set as follows: the sunlight emitted from the transparent to the light-transmitting convex side wall forms a phenomenon of total internal reflection (or total internal reflection), that is, the sunlight reflected into the transparent will not or Most of the light will not be emitted from the light-transmitting convex sidewall, but continue to propagate in the convex light-concentrating device under the action of total reflection, and finally be collected on the first light energy utilization part.
  • the light-transmitting convex sidewall not only plays the role of light transmission, but also plays the role of total reflection.
  • the convex condensing device can collect more sunlight onto the first light energy utilization part, thereby increasing the condensing ratio.
  • the incident angle of the totally reflected light is improved relative to the light energy utilization device, so the reflection loss of the light energy utilization device is reduced, and the utilization efficiency of the light energy is improved.
  • the convex concentrating device collects all or most of the transmitted sunlight onto the light energy utilization device.
  • the light energy utilization device may be located outside the convex light concentrating device, and the first light energy utilization part is attached to the convex light concentrating device, so that the sunlight in the convex light concentrating device can be concentrated to the first light energy utilization part.
  • the first light energy utilization part is directly arranged in the accommodating cavity, or, the first light energy utilization part forms part of the cavity wall of the light concentrating groove body.
  • the convex light-concentrating device has a light-transmitting bottom wall, and the first light-energy utilization portion is attached to the outside of the light-transmitting bottom wall.
  • the first light energy utilizing portion and the convex light-concentrating portion are Fixed connection on the outside of the device.
  • the sunlight is condensed toward the first light energy utilization part, and is incident on the first light energy utilization part.
  • the convex condensing device is a liquid lens
  • the light energy utilization device can be directly immersed in the transparent liquid
  • the first light energy utilization part can directly receive sunlight transmitted from the transparent liquid
  • the first light energy utilization part is used as a part of the convex concentrating device, and the outer wall of the first light energy utilization part (the surface on the side for receiving sunlight) and the light-transmitting convex side wall are directly or Indirect connection, and form the bottom wall of the accommodating cavity.
  • the space in the convex concentrator is filled with transparent liquid.
  • the transparent liquid substantially fills the entire accommodating cavity to obtain better effects.
  • the light energy utilization device may have one or more first light energy utilization parts, or one or more light energy utilization devices may be provided to be used in combination with the convex concentrating device.
  • the light energy utilization device may be a light energy utilization device with its own concentrator.
  • the light energy utilization device is provided with the first light energy utilization portion on one side, or the light energy utilization device is provided with the first light energy utilization portion on both sides.
  • the convex condensing device is made of transparent glass or plastic to make a solid lens, or a transparent accommodating cavity is made of transparent glass or plastic, and a transparent liquid is arranged in the accommodating cavity, and the transparent liquid can be Purified water (water), antifreeze liquid (mixture of water and ethylene glycol), or other ring-protected clear liquid (eg, a mixture of water and glycerin).
  • Purified water water
  • antifreeze liquid mixture of water and ethylene glycol
  • other ring-protected clear liquid eg, a mixture of water and glycerin
  • the transparent liquid can also directly or indirectly form a heat transfer structure with the first light energy utilization part, thereby cooling or absorbing heat to the first light energy utilization part, and improving the utilization rate of light energy.
  • the solar energy utilization device disclosed in this embodiment includes a convex concentrating device 100 and a light energy utilization device 200 .
  • the convex condensing device 100 is a closed structure, enclosing a closed accommodating cavity, and the accommodating cavity is filled with transparent liquid 130 .
  • the accommodating cavity has a light-transmitting convex side wall 110 and a light-transmitting bottom wall 120 .
  • the light energy utilization device 200 has a first light energy utilization part 210 capable of receiving and converting sunlight (the first light energy utilization part 210 and the light-transmitting bottom wall 120 are in close contact with each other in the figure, so they are marked together).
  • the first light energy utilization part 210 is located at the outer side of the transparent bottom wall 120 and is closely attached to the transparent bottom wall 120 .
  • the first light energy utilization part 210 of the light energy utilization device 200 can be used as the bottom wall of the convex condensing device 100 , so that the light energy utilization device 200 and the convex condensing device 100 form a whole structure.
  • FIG. 1 shows a process in which the incident light L is totally reflected by the light-transmitting convex sidewall 110 to the light energy utilization device 200 .
  • This is one of the main differences between the present application and other light concentrating devices, that is, the total reflection function of the transparent liquid 130 in the convex light concentrating device 100 is fully utilized to realize the light concentrating function.
  • the transparent liquid 130 can also be used to cool or absorb heat of the light energy utilization device 200 , so as to improve the light energy utilization rate of the light energy utilization device 200 . That is to say, the light-transmitting convex sidewall 110 has two functions at the same time: first transmit the incident light from the outside through one surface, and then totally reflect the light from the transparent liquid 130 through the one surface.
  • the longitudinal (vertical direction is the longitudinal direction, the same below) cross-section of the convex concentrating device 100 is a triangular folded surface.
  • the cavity wall of the convex concentrating device 100 may also be a curved surface or a folded surface of other shapes, for example, a folded surface of a quadrilateral or pentagonal cross-section.
  • the longitudinal section of the convex light concentrating device 100 may also be other shapes that are protruded upward.
  • the convex concentrating device 100 is a symmetrical structure along the center line C of the light energy utilizing device 200 , and the light energy utilizing device 200 is disposed on the light transmitting portion of the convex concentrating device 100 . the center of the bottom wall 120 .
  • the convex condensing device 100 may have an asymmetric structure.
  • the light energy utilization device 200 may also be disposed at a position where the light-transmitting bottom wall 120 is biased to one side, and does not necessarily need to be located in the center of the light-transmitting bottom wall 120 .
  • the size of the light-transmitting bottom wall 120 is the same as the size of the light-receiving surface (the side that receives sunlight) of the first light energy utilizing portion 210 .
  • the light-transmitting bottom wall 120 may be larger than the light-receiving surface area of the first light-energy utilizing portion 210 or smaller than the light-receiving surface area of the first light-energy utilizing portion 210 .
  • the light-transmitting convex sidewall 110 has a symmetrical structure (along the center line C of the light energy utilization device 200 ). In other embodiments, the light-transmitting convex sidewall 110 may be Asymmetric structure.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the solar energy utilization device disclosed in this embodiment includes a convex concentrating device 100 and a light energy utilization device 200 .
  • the convex concentrating device 100 is provided with a first light guide member 140, and the first light guide member 140 directs sunlight to the first light energy utilization part 210 Boot.
  • the way of guiding can be refraction or reflection.
  • the first light guide member 140 is a Fresnel lens that is substantially perpendicular to the light-transmitting bottom wall 120 and deflects the incident light toward the light-transmitting bottom wall 120 .
  • the Fresnel lens may be a linear Fresnel lens, a double-sided Fresnel lens or a double-sided linear Fresnel lens.
  • the vertically erected Fresnel lens will greatly enhance the light deflection capability of the convex condensing device 100 in this embodiment, so that it can be used to adapt to the east-west deflection of the sun and save the sun-following system.
  • the first light guide member 140 may also be a reflective member (eg, a reflective Fresnel lens).
  • the first light guide member 140 may also be disposed in the convex light concentrating device 100 at other angles, such as a certain angle relative to the vertical direction.
  • the solar energy utilization device further includes a second light guide member 300 .
  • the second light guide member 300 is disposed on the outer side of the convex concentrating device 100 for guiding sunlight to the light-transmitting convex sidewall 110 of the convex concentrating device 100 .
  • the second light guide member 300 is a reflective member disposed on one side or both sides of the convex condensing device 100 , and the reflective surface of the reflective member faces the convex condensing device 100 , so that the The sunlight is reflected to the convex concentrator 100 .
  • the two second light guide members 300 form an opening structure with a large top and a small bottom, so that more sunlight can be irradiated into the opening structure from the openings, thereby collecting more sunlight.
  • the guiding manner may be reflection or transmission.
  • the second light guide member 300 is fixedly connected to the convex light concentrating device 100 or the light energy utilization device, wherein the second light guide member 300 has hanging ears 310 for installation
  • the solar energy utilization device for example, the entire solar energy utilization device is hung on other objects or another solar energy utilization device through the hanging ears 310 .
  • the solar energy utilization device disclosed in this embodiment includes a convex concentrating device 100 and a light energy utilization device 200 .
  • the solar energy utilization device further includes a closed container 500 , and the convex concentrating device 100 and the light energy utilization device 200 are arranged in the closed container 500 .
  • the closed container 500 can simultaneously form protection for the convex condensing device 100 and the light energy utilizing device 200 , such as dustproof, waterproof and so on.
  • the closed container 500 has a light-transmitting surface 530 made of a light-transmitting material, so that sunlight can enter the convex concentrating device 100 from the light-transmitting surface 530 .
  • the light-transmitting surface 530 may be either the top surface of the closed container 500 or one or several surfaces of the closed container 500 .
  • the closed container 500 is provided with a working medium 510, and the working medium 510 is in contact with the light energy utilization device 200, and can dissipate and cool the light energy utilization device 200, and utilize the heat.
  • the convex concentrating device 100 is an accommodating cavity filled with transparent liquid, and the accommodating cavity communicates with the closed container 500 , for example, communicates with the closed container 500 from the bottom or side of the convex concentrating device 100 .
  • the working medium 510 is the same transparent liquid 130 as that in the convex condensing device 100 , so that the transparent liquid 130 can flow between the cavity of the closed container 500 and the convex concentrating device 100 .
  • the transparent liquid 130 can cover the convex condensing device 100, and its liquid level is higher than the convex condensing device 100, so that the convex condensing device 100 can be filled with the transparent liquid 130, and can also prevent the occurrence of The case where the liquid in the convex condensing device 100 is reduced.
  • the convex condensing device 100 is a solid lens.
  • the working medium 510 can be stored in the closed container 500, for example, it can be air, water or other liquids.
  • the closed container 500 can have a first external interface 520, so as to be connected with the external pipeline, for the working medium 510 to enter and exit the closed container 500, so as to use the working medium 510 for other applications, such as realizing thermal circulation with the outside, and in the power generation At the same time, hot water is provided.
  • the present embodiment shows a convex concentrating device 100 and a light-transmitting convex sidewall 110 having an asymmetric structure relative to the center line C of the light energy utilization device 200 to cope with sunlight.
  • This embodiment can be installed in high latitudes in a lay-flat manner.
  • the convex condensing device 100 or the light-transmitting convex sidewall 110 can also be designed to be symmetrical with respect to the center line C of the light energy utilizing device 200 .
  • the convex condensing device 100 may also be provided with a first light guide member 140 , and the first light guide member 140 guides sunlight toward the first light energy utilization portion 210 .
  • the way of guiding can be refraction or reflection.
  • the solar energy utilization device further includes a second light guide member 300 .
  • the second light guide member 300 is disposed outside the convex concentrating device 100 and inside the closed container 500 for guiding sunlight to the light-transmitting convex sidewall 110 of the convex concentrating device 100 .
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the solar energy utilization device disclosed in this embodiment includes a convex concentrating device 100 and a light energy utilization device 200 .
  • the solar energy utilization device further includes a third light guide member 600 .
  • the third light guide 600 has an accommodation cavity.
  • the accommodating cavity has a reflective side wall 610 and a reflective bottom wall 620, and the convex concentrating device 100 and the light energy utilizing device 200 are arranged in the accommodating cavity.
  • the light energy utilization device 200 has a second light energy utilization portion 220 that is away from the first light energy utilization portion 210 , the second light energy utilization portion 220 is disposed facing the reflective bottom wall 620 , and the reflective sidewall 610 and the reflective bottom wall 620 are partially separated.
  • the sunlight is reflected to the second light energy utilization part 220 .
  • the reflective sidewall 610 and the light-emitting bottom wall can be made of various materials and structures capable of reflecting light, such as a reflective mirror or a reflective Fresnel lens surface.
  • the first light energy utilization part 210 of the light energy utilization device 200 is disposed upward, and the second light energy utilization part 220 is disposed downward.
  • the reflective sidewall 610 may reflect part of the sunlight to the convex concentrating device 100 . Part of the sunlight will enter below the second light energy utilization part 220 and be reflected on the second light energy utilization part 220 by the reflective side wall 610 and the reflective bottom wall 620 .
  • the reflective bottom wall 620 has a W-shaped reflective surface.
  • the reflective bottom wall 620 can also have other shapes, such as V-shape or U-shape.
  • the reflective bottom wall 620 is a simple W-shaped reflective surface.
  • the W-shaped reflective surface can also be replaced by a reflective Fresnel lens surface.
  • the third light guide 600 has a light-transmitting top wall 630 , and the light-transmitting top wall 630 , the light-reflecting side walls 610 and the light-reflecting bottom wall 620 enclose a sealed receiving cavity, so that the The third light guide member 600 can protect the convex condensing device 100 and the light energy utilizing device 200, such as dustproof and waterproof.
  • the area of the light-transmitting bottom wall 120 may be the same as the area of the light-receiving surface of the first light energy utilizing portion 210, or may be different. Referring to FIG. 4 , the area of the light-transmitting bottom wall 120 is larger than the area of the light-receiving surface of the second light-energy utilization part 220 , and the sunlight entering this part from the transparent liquid 130 can enter under the second light-energy utilization part 220 Therefore, the sunlight is reflected to the second light energy utilization part 220 through the reflection of the reflective bottom wall 620 , so as to increase the sunlight entering the second light energy utilization part 220 .
  • the solar energy utilization device shown in this embodiment has two light energy utilization parts 210 and 220 and a third light guide member 600 , which can further improve the light concentrating efficiency, and is also beneficial to improve the compactness and compactness of the solar energy utilization device.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the solar energy utilization device disclosed in this embodiment includes a convex concentrating device 100 and a light energy utilization device 200 .
  • the solar energy utilization device further includes a reflector 800 and a support structure 900 .
  • the convex concentrating devices 100 There are two convex concentrating devices 100 , which are a first convex condensing device 101 and a second convex condensing device 102 respectively. Two light energy utilization parts 220 .
  • the first convex condensing device 101 is located above the first light energy utilization part 210
  • the second convex condensing device 102 is located below the second light energy utilization part 220 .
  • the first convex concentrating device 101 , the second convex concentrating device 102 and the light energy utilizing device 200 are mounted on the support structure 900 .
  • the reflector 800 is located below the second convex concentrating device 102 and the light energy utilizing device 200 to reflect sunlight onto the second convex concentrating device 102 and/or the second light energy utilizing part 220 .
  • the second convex condensing device 102 is a liquid lens, and a transparent liquid 130 is provided therein.
  • the reflector 800 may adopt various structures capable of reflecting sunlight, such as a U-shaped reflector or a reflective Fresnel lens.
  • this embodiment shows an array structure.
  • L represents sunlight
  • FIG. 5 shows the process in which the reflector 800 at the bottom reflects sunlight to the second convex concentrating device 102 , wherein the interior of the second convex condensing device 102 also forms a total reflection phenomenon.
  • the sunlight that enters the transparent liquid 130 in the second convex concentrating device 102 from the light-transmitting convex sidewall 110 of the second convex concentrating device 102 can also be completely absorbed when it strikes the light-transmitting convex sidewall 110 .
  • the reflected light is finally collected on the second light energy utilization part 220 .
  • the second light energy utilization part 220 can also be disposed on the outer side of the light-transmitting bottom wall 120 of the second convex condensing device 102 , or can be used as the bottom wall of the second convex condensing device 102 , which is connected with the second convex condensing device 102 .
  • the light device 102 forms a unitary structure.
  • the first convex concentrating device 101 and/or the second convex condensing device 102 is provided with a second external interface 103, which can be connected to an external pipe for transparency
  • the liquid 130 enters and exits, so that the transparent liquid 130 is applied, such as heat exchange with an external thermal circulation system, and the thermal energy obtained by the transparent liquid 130 is fully utilized.
  • Reflectors can also be used in conjunction with a single convex concentrator.
  • the second convex concentrating device 102 can be eliminated, and only the first light energy utilization device 200 having the first light energy utilization portion 210 and the second light energy utilization portion 220 is provided with the first light energy utilization device 200 .
  • Convex concentrator 101 In this case (the convex concentrating device 101 is arranged above the light energy utilization device 200 ), we call it an upright arrangement.
  • the first convex light-concentrating device 101 can be eliminated, and only the second convex-shaped light-concentrating device 200 is provided under the light-energy utilizing device 200 having the first light-energy utilizing portion 210 and the second light-energy utilizing portion 220 Concentrator 102 .
  • This situation (light energy utilization device 200 disposed above convex concentrating device 102) is referred to as an inverted configuration.
  • the case where the light energy utilization device 200 has convex condensing devices 101 and 102 on both sides is referred to as a bilateral arrangement.
  • Figure 5 shows the case of a bilateral setup.
  • a dustproof device 1000 (such as a dust cover) is further included, and the reflector 800 , the supporting structure 900 and the convex concentrating device 100 are arranged in the dustproof device 1000 to Easy to clean dust.
  • the convex condensing device 100 and the light energy utilizing device 200 can be used in two groups or more, so as to be used in groups.
  • a reflector 800 and a dustproof device 1000 may be shared between different groups of convex concentrating devices 100 and light energy utilization devices 200 , or corresponding reflector 800 and dustproof device 1000 may be set separately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种太阳能利用装置,其包括光能利用装置(200)以及凸形聚光装置(100)。该凸形聚光装置(100)内填充有透明液体(130)。凸形聚光装置(100)具有倾斜设置的透光凸侧壁(110),太阳光能够从透光凸侧壁(110)透射至所述透明液体(130)中。第一光能利用部(210)设于容置腔的底部,自透明液体(130)射向透光凸侧壁(110)的太阳光形成全反射现象,更便于凸形聚光装置(100)将太阳光向第一光能利用部(210)上汇聚,从而避免太阳光在被凸形聚光装置(100)的内壁反射到透明液体(130)中后,又从透光凸侧壁(110)折射出去,使更多的太阳光向第一光能利用部(210)上汇聚,提高聚光效率。

Description

太阳能利用装置 技术领域
本申请涉及光能转换利用装置。
背景技术
随着光伏板的成本的降低和效率的增加,太阳能系统得到越来越多的应用。但,随着太阳能系统被广泛应用,相关问题也接踵而至,比如,土地成本的增加,电站的维护(包括灰尘的清洗和冰雪打扫)成本问题以及光伏板的回收困难问题
技术问题
本申请主要提供一种新型的太阳能利用装置,以展示一种新的太阳能利用结构。
技术解决方案
基于上述目的,本申请一种实施例中提供了一种太阳能利用装置,包括:
光能利用装置,所述光能利用装置具有能够接收并转换利用太阳光的第一光能利用部;
以及凸形聚光装置,所述凸形聚光装置为固体镜头或充有透明液体的容置腔,所述凸形聚光装置具有倾斜设置的透光凸侧壁,所述太阳光能够从所述透光凸侧壁透射至所述固体镜头或透明液体中;所述第一光能利用部设于所述凸形聚光装置的底部,所述凸形聚光装置中自所述固体镜头或透明液体射向所述透光凸侧壁的太阳光形成全反射现象,将所述太阳光向所述第一光能利用部上汇聚。
一种实施例中,所述凸形聚光装置具有透光底壁,所述第一光能利用部位于所述透光底壁的下方。
一种实施例中,所述第一光能利用部与所述透光凸侧壁连接,并形成所述容置腔的底壁。
一种实施例中,所述凸形聚光装置内设有第一导光件,所述第一导光件将太阳光向所述第一光能利用部引导。
一种实施例中,所述第一导光件为菲涅尔透镜,所述菲涅尔透镜在所述凸形聚光装置内沿竖直方向设置。
一种实施例中,所述菲涅尔透镜与相对所述第一光能利用部的受光面垂直设置。
一种实施例中,还包括第二导光件,所述第二导光件设于所述凸形聚光装置的外侧,用以将太阳光向所述凸形聚光装置的透光凸侧壁引导。
一种实施例中,所述第二导光件为设置在所述凸形聚光装置一侧或两侧的反光件,所述反光件的反光面朝向所述凸形聚光装置。
一种实施例中,所述第二导光件与凸形聚光装置或光能利用装置固定连接,所述第二导光件具有挂耳,用以安装所述太阳能利用装置。
一种实施例中,还包括封闭容器,所述光能利用装置和凸形聚光装置设于所述封闭容器内,所述封闭容器具有透光面,以便所述太阳光能够从所述透光面射入所述凸形聚光装置中,所述封闭容器内设有工质,所述工质与所述光能利用装置接触。
一种实施例中,所述凸形聚光装置与所述封闭容器连通,所述工质为与所述凸形聚光装置内相同的透明液体,所述透明液体覆盖所述凸形聚光装置。
一种实施例中,所述凸形聚光装置封闭设置,所述封闭容器具有第一对外接口,用于所述工质进出所述封闭容器,以利用所述工质。
一种实施例中,还包括第三导光件,所述第三导光件具有容纳腔,所述容纳腔具有反光侧壁和反光底壁,所述光能利用装置和凸形聚光装置设于所述容纳腔内,所述光能利用装置具有与所述第一光能利用部相背离的第二光能利用部,所述第二光能利用部面向所述反光底壁设置,所述反光侧壁和反光底壁将部分太阳光反射至所述第二光能利用部。
一种实施例中,所述反光底壁具有W形的反射面。
一种实施例中,所述第三导光件具有透光顶壁,所述透光顶壁、反光侧壁和反光底壁围成密封的容纳腔。
一种实施例中,还包括反射件和支撑结构,所述凸形聚光装置和所述光能利用装置正立或倒立设置并通过所述的支撑结构支撑,所述光能利用装置具有与所述第一光能利用部相背离的第二光能利用部,所述反射件位于所述凸形聚光装置和光能利用装置的下方,以将太阳光反射至所述凸形聚光装置和/或所述第二光能利用部和第一光能利用部中的一个上。
一种实施例中,每个光能利用装置对应设置两个凸形聚光装置,所述两个凸形聚光装置分别为第一凸形聚光装置和第二凸形聚光装置,所述第一凸形聚光装置位于所述第一光能利用部的上方,所述第二凸形聚光装置位于所述第二光能利用部的下方。
一种实施例中,所述反射件为菲涅尔透镜反射面或曲面反射镜。一种实施例中,凸形聚光装置为液体镜头,所述第一凸形聚光装置和/或第二凸形聚光装置上设有第二对外接口,用以所述透明液体进出。
一种实施例中,还包括防尘装置,所述反射件、支撑结构和凸形聚光装置设于所述防尘装置中。
一种实施例中,所述凸形聚光装置的纵向截面为多边形,所述多边形的边数大于或等于三。
有益效果
依据上述实施例的太阳能利用装置,其包括光能利用装置以及凸形聚光装置。该凸形聚光装置为固体镜头或内部填充有透明液体的液体镜头。凸形聚光装置具有倾斜设置的透光凸侧壁,太阳光能够从透光凸侧壁透射至所述固体镜头或透明液体中。第一光能利用部设于凸形聚光装置的底部,自固体镜头或透明液体射向透光凸侧壁的太阳光形成全反射现象,更便于凸形聚光装置将太阳光向第一光能利用部上汇聚,从而避免太阳光在被凸形聚光装置的内壁反射到凸形聚光装置中后,又从透光凸侧壁折射出去,使更多的太阳光向第一光能利用部上汇聚,提高聚光效率。全反射通常还能改进太阳光对于光能利用装置的入射角,从而减少反射损失。
附图说明
1 为本申请第一种实施例中太阳能利用装置的纵向截面示意图。
2 为本申请第二种实施例中太阳能利用装置的纵向截面示意图。
3 为本申请第三种实施例中太阳能利用装置的纵向截面示意图,其可以以平躺的方式在高纬度地区安装。
4 为本申请第四种实施例中太阳能利用装置的纵向截面示意图,其显示一种双面聚光结构。
5 为本申请第五种实施例中太阳能利用装置的纵向截面示意图,其显示一种阵列式双面聚光结构
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本文中的上、下等位置关系,均为相对而言,并不具有绝对的意义。
本实施例提供了一种太阳能利用装置,其用于接收并利用太阳光进行能量转换,将太阳光转换成电能、热能以及其他形式的能量,以供人们使用。
该实施例所示的太阳能利用装置包括至少一个光能利用装置以及至少一个凸形聚光装置。
该光能利用装置具有能够接收并转换利用太阳光的第一光能利用部。一种实施例中,该第一光能利用部及其他光能利用部(如后文中的第二光能利用部)可以为光伏板、光热利用装置、光电和热能综合利用装置、聚光式光能利用装置中的一个或多个。该光伏板泛指任何直接将光能转换为电能的器件,包括各种半导体光伏板、光伏薄膜、量子点光电转换器件等。在其他实施例中,该第一光能利用部还可以为其他形式的太阳光利用转换结构。
该凸形聚光装置具有固体镜头或内部充有透明液体的容置腔。凸形聚光装置具有倾斜设置的透光凸侧壁,太阳光能够从透光凸侧壁透射至凸形聚光装置中。具有倾斜透光凸侧壁的凸形聚光装置可以适应更大偏转角的入射光,不仅可以用来应付太阳光的南北回归偏转,也可以用来应付太阳光的东西偏转。一种实施例中,该透光凸侧壁可以由平面、折面、曲面或者以上各面的组合而成。
该第一光能利用部设于凸形聚光装置的底部,凸形聚光装置中自固体镜头或透明液体射向透光凸侧壁的太阳光形成全反射现象,将太阳光向第一光能利用部上汇聚。其中,该凸形聚光装置的结构设置为:自透明射向透光凸侧壁的太阳光形成全反射(或称为全内反射)现象,即被反射到透明中的太阳光不会或大部分不会从透光凸侧壁射出,而是在全反射作用下,继续在凸形聚光装置内传播,并最终汇集到第一光能利用部上。
该实施例中,透光凸侧壁既起到透光的作用,又起到全反射的作用。与现有技术相比,在同等条件下,该凸形聚光装置能够汇集更多的太阳光至第一光能利用部上,加大聚光比。同时,相对于光能利用装置而言,被全反射的光的入射角得到改善,因此,光能利用装置的反射损失被减少,光能的利用效率得到提高。
进一步地,该凸形聚光装置将全部或大部分透射进来的太阳光汇集到光能利用装置上。为了接收这些太阳光,光能利用装置可以位于凸形聚光装置的外侧,第一光能利用部贴附在凸形聚光装置上,以使凸形聚光装置内的太阳光能够被汇聚到第一光能利用部上。或,第一光能利用部直接设于容置腔内,再或,第一光能利用部组成聚光槽体的部分腔壁。
具体地,一种实施例中,该凸形聚光装置具有透光底壁,第一光能利用部与该透光底壁外侧贴合,例如,第一光能利用部与凸形聚光装置的外侧固定连接。在凸形聚光装置中,太阳光向第一光能利用部汇聚,并射入第一光能利用部。
另一种实施例中,凸形聚光装置为液体镜头,光能利用装置可直接浸泡在透明液体中,第一光能利用部可直接接受从透明液体中透射而来的太阳光。
另一种实施例中,该第一光能利用部作为凸形聚光装置的一部分,第一光能利用部的外壁(用于接收太阳光的一侧表面)与透光凸侧壁直接或间接连接,并形成容置腔的底壁。
该凸形聚光装置内部分空间或全部空间填充透明液体。较好的,一种实施例中,透明液体基本填满整个容置腔,以获得更好的效果。
在对该凸形聚光装置进行利用时,其可以使用一个或一个以上的凸形聚光装置进行聚光。对应地,该光能利用装置可以具有一个或一个以上的第一光能利用部,或者,设置一个或一个以上的光能利用装置,以与凸形聚光装置进行组合使用。甚或,光能利用装置可以是一个自带聚光器的光能利用装置。例如,该光能利用装置单面设有第一光能利用部,或所述光能利用装置双面均设有第一光能利用部。
一种实施例中,该凸形聚光装置采用透明玻璃或塑料做成实心镜头,或者,采用透明玻璃、塑料做成透明的容置腔,在容置腔内设置透明液体,透明液体可以是纯净水(水)、防冻液体(水和乙二醇的混合物)或其它的环保护透明液体(如水和甘油的混合物)。
此外,该透明液体还可以直接或间接与第一光能利用部形成热传递结构,进而对第一光能利用部起到降温或吸热的作用,提高光能利用率。
基于上述发明构思,以下通过几种不同的实施例进一步说明,以更好的展示本申请创造。
实施例一:
请参考图1,本实施例公开的太阳能利用装置包括凸形聚光装置100和光能利用装置200。该凸形聚光装置100为封闭结构,围成一个封闭的容置腔,容置腔内填充满透明液体130。该容置腔具有透光凸侧壁110和透光底壁120。该光能利用装置200具有能够接收并转换利用太阳光的第一光能利用部210(图中第一光能利用部210与透光底壁120紧贴在一起,故标注在一起),该第一光能利用部210位于透光底壁120的外侧,并紧贴该透光底壁120。
当然,在其他实施例中,该光能利用装置200的第一光能利用部210可以作为凸形聚光装置100的底壁,使光能利用装置200与凸形聚光装置100形成一个整体结构。
图1显示了入射光L被透光凸侧壁110全反射到光能利用装置200的过程。这是本申请与其他聚光装置主要不同的地方之一,即充分利用凸形聚光装置100中透明液体130的全反射功能,来实现聚光功能。同时,透明液体130还可以用来对光能利用装置200进行冷却或吸热,提高光能利用装置200的光能利用率。也就是说,透光凸侧壁110同时具备两种功能:先通过一处表面透射来自外部的入射光,再通过其一处表面全反射来自透明液体130的光。
请参考图1,在本实施例中,凸形聚光装置100的纵向(竖直方向为纵向,下同)截面为一个三角形的折面。在其它的实施例中,凸形聚光装置100的腔壁也可以为曲面或其他形状的折面,例如截面为四边形或五边形的折面。凸形聚光装置100的纵向截面也可以为向上凸起设置的其他形状。
请继续参考图1,在本实施例中,凸形聚光装置100为沿光能利用装置200的中心线C呈对称的结构,光能利用装置200设置在凸形聚光装置100的透光底壁120的中央。而在其它的实施例里,凸形聚光装置100可以为非对称结构。在其他实施例中,光能利用装置200也可以设置在透光底壁120偏向一侧的位置,并非必须位于透光底壁120的中央。
请继续参考图1,在本实施例中,透光底壁120尺寸与第一光能利用部210的受光表面(接收太阳光的一面)尺寸一样。而在其它的实施例里,透光底壁120可以大于第一光能利用部210的受光表面面积或者小于第一光能利用部210的受光表面面积。
请继续参考图1,本实施例中,透光凸侧壁110具有(沿光能利用装置200的中心线C)对称的结构,而在其它的实施例里,透光凸侧壁110可以为非对称的结构。
实施例二:
请参考图2,本实施例公开的太阳能利用装置包括凸形聚光装置100和光能利用装置200。
该实施例所示太阳能利用装置与实施例一的一个区别为,该凸形聚光装置100内设有第一导光件140,第一导光件140将太阳光向第一光能利用部210引导。引导的方式可以为折射或者反射。
请参考图2,本实施例中,该第一导光件140为与透光底壁120基本垂直、将入射光向透光底壁120方向偏转的菲涅尔透镜。一种实施例中,菲涅尔透镜可采用线型菲涅尔透镜、双面菲涅尔透镜或双面线型菲涅尔透镜。
该垂直设立的菲涅尔透镜将极大的增强本实施例中凸形聚光装置100的光线偏转能力,从而可以用来适应太阳的东西方向偏转,而节省跟日系统。
此外,在其他实施例中,该第一导光件140也可以为反射件(例如反射式菲尼尔透镜)。该第一导光件140也可以其他角度设置于凸形聚光装置100内,如相对竖直方向倾斜一定角度。
另一方面,请继续参考图2,该实施例所示太阳能利用装置与实施例一的另一区别为,该太阳能利用装置还包括第二导光件300。第二导光件300设于凸形聚光装置100的外侧,用以将太阳光向凸形聚光装置100的透光凸侧壁110引导。
请继续参考图2,本实施例中,第二导光件300为设置在凸形聚光装置100一侧或两侧的反光件,反光件的反光面朝向凸形聚光装置100,从而将太阳光反射至凸形聚光装置100。在图2中,该两个第二导光件300形成上大下小的开口结构,以便更多太阳光能够从开口处照射至该开口结构内,从而汇集更多太阳光。
在其他实施例中,该引导方式可以为反射,也可以为透射。
进一步地,请参考图2,本实施例中,该第二导光件300与凸形聚光装置100或光能利用装置固定连接,其中第二导光件300具有挂耳310,用以安装太阳能利用装置,例如通过挂耳310将整个太阳能利用装置挂在其他物体或另一个太阳能利用装置上。
实施例三:
请参考图3,本实施例公开的太阳能利用装置包括凸形聚光装置100和光能利用装置200。此外,该太阳能利用装置还包括封闭容器500,凸形聚光装置100和光能利用装置200设于封闭容器500内。该封闭容器500同时能够对凸形聚光装置100和光能利用装置200形成保护,例如防尘、防水等。该封闭容器500具有透光材料制成的透光面530,以便太阳光能够从透光面530射入凸形聚光装置100中。该透光面530既可能为封闭容器500的顶面,也可能为封闭容器500的一个或几个面。该封闭容器500内设有工质510,工质510与光能利用装置200接触,能够对光能利用装置200进行散热和冷却,并利用这些热量。
一种实施例中,凸形聚光装置100为充有透明液体的容置腔,容置腔与封闭容器500连通,例如从凸形聚光装置100底部或侧面与封闭容器500连通。该工质510为与凸形聚光装置100内相同的透明液体130,以便透明液体130能够在封闭容器500的腔体和凸形聚光装置100之间流动。一种实施例中,该透明液体130能够覆盖凸形聚光装置100,其液面高于凸形聚光装置100,使凸形聚光装置100内能够充满透明液体130,而且还能够防止出现凸形聚光装置100内液体减少的情况。
另一种实施例中,该凸形聚光装置100为固体镜头。此时,封闭容器500内可以存放工质510,例如可以为空气、水或其他液体。同时,该封闭容器500能够具有第一对外接口520,以便与外部管路对接,用于工质510进出封闭容器500,以利用工质510进行其他运用,例如与外部实现热循环,在发电的同时,提供热水。
进一步地,请参考图3,本实施例显示了一种通过相对光能利用装置200的中心线C呈非对称结构的凸形聚光装置100和透光凸侧壁110,来应对太阳光的方向性偏移的情况。本实施例可以平躺的方式在高纬度地区安装。
当然,该凸形聚光装置100或透光凸侧壁110也可以被设计为相对光能利用装置200的中心线C呈对称设计。
进一步地,请参考图2,该凸形聚光装置100内也可以设有第一导光件140,第一导光件140将太阳光向第一光能利用部210引导。引导的方式可以为折射或者反射。
进一步地,请参考图3,该太阳能利用装置还包括第二导光件300。第二导光件300设于凸形聚光装置100的外侧,且位于封闭容器500内,用以将太阳光向凸形聚光装置100的透光凸侧壁110引导。
实施例四:
请参考图4,本实施例公开的太阳能利用装置包括凸形聚光装置100和光能利用装置200。此外,该太阳能利用装置还包括第三导光件600。第三导光件600具有容纳腔。容纳腔具有反光侧壁610和反光底壁620,凸形聚光装置100和光能利用装置200设于容纳腔内。光能利用装置200具有与第一光能利用部210相背离的第二光能利用部220,第二光能利用部220面向反光底壁620设置,反光侧壁610和反光底壁620将部分太阳光反射至第二光能利用部220。该反光侧壁610和发光底壁可采用各种能够进行反光的材料和结构制成,如反射镜或反射式菲涅尔透镜面等。
请参考图4,一种实施例中,该光能利用装置200中第一光能利用部210朝上设置,第二光能利用部220朝下设置。反光侧壁610可以将部分太阳光反射至凸形聚光装置100。部分太阳光会进入到第二光能利用部220的下方,并被反光侧壁610和反光底壁620反射到第二光能利用部220上。
请继续参考图4,为了更好的将太阳光反射到第二光能利用部220上,一种实施例中,该反光底壁620具有W形的反射面。当然,该反光底壁620也可以为其他形状,如V形或者U形等。在本实施例里,该反光底壁620为简单的W形反射面。在其它的实施例里,这个W形反射面也可以用反射式菲涅尔透镜面取代。
另一种实施例中,请参考图4,该第三导光件600具有透光顶壁630,透光顶壁630、反光侧壁610和反光底壁620围成密封的容纳腔,从而使该第三导光件600能够对凸形聚光装置100和光能利用装置200起到保护作用,例如防尘、防水。
进一步地,该透光底壁120的面积可与第一光能利用部210的受光面面积一致,也可以不同。请参考图4,该透光底壁120的面积大于第二光能利用部220的受光面的面积,从透明液体130内射入至这部分的太阳光能够进入第二光能利用部220下方的空间,从而经反光底壁620的反射,将太阳光反射到第二光能利用部220,以增加射入到第二光能利用部220的太阳光。
本实施例所示太阳能利用装置具有两个光能利用部210、220和第三导光件600,能够进一步地提高聚光效率,同时还有利于提高太阳能利用装置的紧凑性和小巧性。
实施例五:
请参考图5,本实施例公开的太阳能利用装置包括凸形聚光装置100和光能利用装置200。此外,该太阳能利用装置还包括反射件800和支撑结构900。
该凸形聚光装置100为两个,其分别为第一凸形聚光装置101和第二凸形聚光装置102,光能利用装置200具有与第一光能利用部210相背离的第二光能利用部220。第一凸形聚光装置101位于第一光能利用部210的上方,第二凸形聚光装置102位于第二光能利用部220的下方。第一凸形聚光装置101、第二凸形聚光装置102和光能利用装置200安装在支撑结构900上。反射件800位于第二凸形聚光装置102和光能利用装置200的下方,以将太阳光反射至第二凸形聚光装置102和/或第二光能利用部220上。本实施例中,第二凸形聚光装置102为液体镜头,其中设置有透明液体130。反射件800可采用各种能够实现太阳光反射的结构,例如U型反射镜或反射式菲涅尔透镜。
具体地,请参考图5,本实施例显示了一种阵列式结构。图5中L代表太阳光,图5显示了底部的反射件800将太阳光反射至第二凸形聚光装置102的过程,其中该第二凸形聚光装置102内部同样也形成全反射现象。从第二凸形聚光装置102的透光凸侧壁110射入到第二凸形聚光装置102内透明液体130中的太阳光,同样能够在射向透光凸侧壁110时被全反射,最终汇集到第二光能利用部220上。该第二光能利用部220同样可以设置在第二凸形聚光装置102的透光底壁120的外侧,也可以作为第二凸形聚光装置102的底壁,与第二凸形聚光装置102形成一个整体结构。
请参考图5,一种实施例中,该第一凸形聚光装置101和/或第二凸形聚光装置102上设有第二对外接口103,其可与外部管道相连,用以透明液体130进出,从而对透明液体130进行应用,如与外部热循环系统做热交换,充分利用透明液体130所获取的热能。
反射件也可与单个凸形聚光装置联合使用。请参考图5,一种实施例中,第二凸形聚光装置102可以取消,只在具有第一光能利用部210和第二光能利用部220的光能利用装置200上设置第一凸形聚光装置101。这种情况(凸形聚光装置101设置在光能利用装置200之上)我们称之为正立设置。在另一种实施例中,第一凸形聚光装置101可以取消,只在具有第一光能利用部210和第二光能利用部220的光能利用装置200之下设置第二凸形聚光装置102。这种情况(光能利用装置200设置在凸形聚光装置102之上)我们称之为倒立设置。光能利用装置200的两边都有凸形聚光装置101、102的情况称之为双边设置。图5显示的是双边设置的情况。
进一步地,请参考图5,一种实施例中,还包括防尘装置1000(如防尘罩),反射件800、支撑结构900和凸形聚光装置100设于防尘装置1000中,以方便灰尘的清洗。
进一步地,一种实施例中,请参考图5,该凸形聚光装置100和光能利用装置200可以为两组或者以上,实现成组使用。不同组的凸形聚光装置100和光能利用装置200之间可以共用一个反射件800和防尘装置1000,也可以分设对应的反射件800和防尘装置1000。
以上应用了具体个例对本申请进行阐述,只是用于帮助理解本申请,并不用以限制本申请。对于本领域的一般技术人员,依据本申请的思想,可以对上述具体实施例进行变化。

Claims (21)

  1. 一种太阳能利用装置,其特征在于,包括:
    光能利用装置,所述光能利用装置具有能够接收并转换利用太阳光的第一光能利用部;
    以及凸形聚光装置,所述凸形聚光装置为固体镜头或充有透明液体的容置腔,所述凸形聚光装置具有倾斜设置的透光凸侧壁,所述太阳光能够从所述透光凸侧壁透射至所述固体镜头或透明液体中;所述第一光能利用部设于所述凸形聚光装置的底部,所述凸形聚光装置中自所述固体镜头或透明液体射向所述透光凸侧壁的太阳光形成全反射现象,将所述太阳光向所述第一光能利用部上汇聚。
  2. 如权利要求1所述的太阳能利用装置,其特征在于,所述凸形聚光装置具有透光底壁,所述第一光能利用部位于所述透光底壁的下方。
  3. 如权利要求1所述的太阳能利用装置,其特征在于,所述第一光能利用部与所述透光凸侧壁连接,并形成所述凸形聚光装置的底壁。
  4. 如权利要求1-3任一项所述的太阳能利用装置,其特征在于,所述凸形聚光装置内设有第一导光件,所述第一导光件将太阳光向所述第一光能利用部引导。
  5. 如权利要求4所述的太阳能利用装置,其特征在于,所述第一导光件为菲涅尔透镜,所述菲涅尔透镜在所述凸形聚光装置内沿竖直方向设置。
  6. 如权利要求5所述的太阳能利用装置,其特征在于,所述菲涅尔透镜与相对所述第一光能利用部的受光面垂直设置。
  7. 如权利要求1至6中任一项所述的太阳能利用装置,其特征在于,还包括第二导光件,所述第二导光件设于所述凸形聚光装置的外侧,用以将太阳光向所述凸形聚光装置的透光凸侧壁引导。
  8. 如权利要求7所述的太阳能利用装置,其特征在于,所述第二导光件为设置在所述凸形聚光装置一侧或两侧的反光件,所述反光件的反光面朝向所述凸形聚光装置。
  9. 如权利要求8所述的太阳能利用装置,其特征在于,所述第二导光件与凸形聚光装置或光能利用装置固定连接,所述第二导光件具有挂耳,用以安装所述太阳能利用装置。
  10. 如权利要求1至9中任一项所述的太阳能利用装置,其特征在于,还包括封闭容器,所述光能利用装置和凸形聚光装置设于所述封闭容器内,所述封闭容器具有透光面,以便所述太阳光能够从所述透光面射入所述凸形聚光装置中,所述封闭容器内设有工质,所述工质与所述光能利用装置接触。
  11. 如权利要求10所述的太阳能利用装置,其特征在于,所述凸形聚光装置与所述封闭容器连通,所述工质为与所述凸形聚光装置内相同的透明液体,所述透明覆盖所述凸形聚光装置。
  12. 如权利要求10所述的太阳能利用装置,其特征在于,所述凸形聚光装置封闭设置,所述封闭容器具有第一对外接口,用于所述工质进出所述封闭容器,以利用所述工质。
  13. 如权利要求1至6中任一项所述的太阳能利用装置,其特征在于,还包括第三导光件,所述第三导光件具有容纳腔,所述容纳腔具有反光侧壁和反光底壁,所述光能利用装置和凸形聚光装置设于所述容纳腔内,所述光能利用装置具有与所述第一光能利用部相背离的第二光能利用部,所述第二光能利用部面向所述反光底壁设置,所述反光侧壁和反光底壁将部分太阳光反射至所述第二光能利用部。
  14. 如权利要求13所述的太阳能利用装置,其特征在于,所述反光底壁具有W形的反射面。
  15. 如权利要求13所述的太阳能利用装置,其特征在于,所述第三导光件具有透光顶壁,所述透光顶壁、反光侧壁和反光底壁围成密封的容纳腔。
  16. 如权利要求1至6中任一项所述的太阳能利用装置,其特征在于,还包括反射件和支撑结构,所述凸形聚光装置和所述光能利用装置正立或倒立设置并通过所述的支撑结构支撑,所述光能利用装置具有与所述第一光能利用部相背离的第二光能利用部,所述反射件位于所述凸形聚光装置和光能利用装置的下方,以将太阳光反射至所述凸形聚光装置和/或所述第二光能利用部和第一光能利用部中的一个之上。
  17. 如权利要求16所述的太阳能利用装置,其特征在于,每个光能利用装置对应设置两个凸形聚光装置,所述两个凸形聚光装置分别为第一凸形聚光装置和第二凸形聚光装置,所述第一凸形聚光装置位于所述第一光能利用部的上方,所述第二凸形聚光装置位于所述第二光能利用部的下方。
  18. 如权利要求16或17所述的太阳能利用装置,其特征在于,所述反射件为菲涅尔透镜反射面或曲面反射镜。
  19. 如权利要求17所述的太阳能利用装置,其特征在于,所述第一凸形聚光装置和/或第二凸形聚光装置上设有第二对外接口,用以所述透明进出。
  20. 如权利要求16至19任一项所述的太阳能利用装置,其特征在于,还包括防尘装置,所述反射件、支撑结构和凸形聚光装置设于所述防尘装置中。
  21. 如权利要求1至20中任一项所述的太阳能利用装置,其特征在于,所述凸形聚光装置的纵向截面为多边形,所述多边形的边数大于或等于三。
PCT/CN2021/107237 2021-01-07 2021-07-20 太阳能利用装置 WO2022148000A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/270,836 US20240068712A1 (en) 2021-01-07 2021-07-20 Solar energy utilization device
EP21917043.8A EP4266382A1 (en) 2021-01-07 2021-07-20 Solar energy utilization device
JP2023541331A JP2024502147A (ja) 2021-01-07 2021-07-20 太陽エネルギー利用装置
AU2021416610A AU2021416610A1 (en) 2021-01-07 2021-07-20 Solar energy utilization device
CA3207623A CA3207623A1 (en) 2021-01-07 2021-07-20 Solar energy utilization device
CN202180089403.6A CN116710714A (zh) 2021-01-07 2021-07-20 太阳能利用装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/070582 WO2022147704A1 (zh) 2021-01-07 2021-01-07 太阳能利用装置
CNPCT/CN2021/070582 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022148000A1 true WO2022148000A1 (zh) 2022-07-14

Family

ID=82357042

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/070582 WO2022147704A1 (zh) 2021-01-07 2021-01-07 太阳能利用装置
PCT/CN2021/107237 WO2022148000A1 (zh) 2021-01-07 2021-07-20 太阳能利用装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070582 WO2022147704A1 (zh) 2021-01-07 2021-01-07 太阳能利用装置

Country Status (7)

Country Link
US (1) US20240068712A1 (zh)
EP (1) EP4266382A1 (zh)
JP (1) JP2024502147A (zh)
CN (1) CN116710714A (zh)
AU (1) AU2021416610A1 (zh)
CA (1) CA3207623A1 (zh)
WO (2) WO2022147704A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087112A (zh) * 2006-06-11 2007-12-12 邓运明 一种太阳能聚光发电装置
WO2011024084A2 (en) * 2009-08-26 2011-03-03 Hunt Robert D Solar thermal energy concentrating building material
CN106396224A (zh) * 2016-06-17 2017-02-15 北京理工大学 一种基于聚光的微腔体式太阳能海水淡化单元
WO2018053821A1 (zh) * 2016-09-26 2018-03-29 博立多媒体控股有限公司 导光装置和太阳能系统
CN110186206A (zh) * 2019-06-13 2019-08-30 湖南科技大学 一种双轴跟踪多菲涅尔透镜集成式太阳能聚光集热系统
CN112005489A (zh) * 2018-05-08 2020-11-27 博立码杰通讯(深圳)有限公司 双面聚光太阳能装置和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122423A (zh) * 2006-08-13 2008-02-13 杜振兴 全反射太阳光聚焦管
CN108323214A (zh) * 2015-12-01 2018-07-24 博立多媒体控股有限公司 聚光式太阳能系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087112A (zh) * 2006-06-11 2007-12-12 邓运明 一种太阳能聚光发电装置
WO2011024084A2 (en) * 2009-08-26 2011-03-03 Hunt Robert D Solar thermal energy concentrating building material
CN106396224A (zh) * 2016-06-17 2017-02-15 北京理工大学 一种基于聚光的微腔体式太阳能海水淡化单元
WO2018053821A1 (zh) * 2016-09-26 2018-03-29 博立多媒体控股有限公司 导光装置和太阳能系统
CN112005489A (zh) * 2018-05-08 2020-11-27 博立码杰通讯(深圳)有限公司 双面聚光太阳能装置和系统
CN110186206A (zh) * 2019-06-13 2019-08-30 湖南科技大学 一种双轴跟踪多菲涅尔透镜集成式太阳能聚光集热系统

Also Published As

Publication number Publication date
AU2021416610A1 (en) 2023-08-03
AU2021416610A9 (en) 2024-05-16
US20240068712A1 (en) 2024-02-29
CA3207623A1 (en) 2022-07-14
JP2024502147A (ja) 2024-01-17
EP4266382A1 (en) 2023-10-25
CN116710714A (zh) 2023-09-05
WO2022147704A1 (zh) 2022-07-14

Similar Documents

Publication Publication Date Title
CN213072566U (zh) 太阳能利用装置
WO2019084707A1 (zh) 聚光式太阳能系统
WO2022148000A1 (zh) 太阳能利用装置
AU2021448792B2 (en) Solar energy utilization unit and combined structure thereof
WO2022178826A1 (zh) 太阳能利用装置
CN206237360U (zh) 一种管状聚光光伏电池组件及阵列
WO2023193168A1 (zh) 太阳能利用单元
EP4387086A1 (en) Solar energy utilization unit and combined structure thereof
WO2022061729A1 (zh) 太阳能利用装置
WO2022109943A1 (zh) 太阳能利用装置
WO2022094777A1 (zh) 太阳能利用装置
AU2021437231B2 (en) Solar energy utilization device
WO2021212422A1 (zh) 立式太阳能装置
CN118872079A (zh) 太阳能利用单元
WO2022236804A1 (zh) 太阳能利用装置及太阳能利用装置的组合结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270836

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180089403.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023541331

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3207623

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202327051429

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021416610

Country of ref document: AU

Date of ref document: 20210720

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021917043

Country of ref document: EP

Effective date: 20230717

NENP Non-entry into the national phase

Ref country code: DE