WO2018014151A1 - 自清洁太阳光接收装置 - Google Patents

自清洁太阳光接收装置 Download PDF

Info

Publication number
WO2018014151A1
WO2018014151A1 PCT/CN2016/090261 CN2016090261W WO2018014151A1 WO 2018014151 A1 WO2018014151 A1 WO 2018014151A1 CN 2016090261 W CN2016090261 W CN 2016090261W WO 2018014151 A1 WO2018014151 A1 WO 2018014151A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
vibration
vibrating
receiving surface
light
Prior art date
Application number
PCT/CN2016/090261
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2016/090261 priority Critical patent/WO2018014151A1/zh
Publication of WO2018014151A1 publication Critical patent/WO2018014151A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular to a solar light receiving device capable of automatically performing cleaning, which can be used in various solar energy utilization systems.
  • a device for receiving sunlight in a solar energy system may be referred to as a solar light receiving device.
  • the solar light receiving device may be a light energy utilizing device such as a photovoltaic panel or a photothermal power generating device.
  • photovoltaic panels are used to represent various photoelectric conversion devices, including but not limited to: polycrystalline silicon photovoltaic panels, monocrystalline silicon photovoltaic panels, amorphous silicon photovoltaic panels, III-V semiconductor photovoltaic panels, and copper indium gallium selenide ( CIGS) Photovoltaic panels, calcium-titanium photovoltaic panels, photovoltaic films, etc.
  • the solar light receiving device may also be an optical device disposed before the light energy utilizing device for concentrating or directing the sunlight to the light energy utilizing device.
  • the light-receiving surface of the solar light receiving device is exposed to the air to receive sunlight, and if the light-receiving surface is dirty, the efficiency of the entire system may be seriously affected, and local temperature rise may be caused, which may affect the life of the system. Therefore, it is necessary to clean and maintain the light receiving surface of the solar light receiving device.
  • the light-receiving surface is also treated with a coating material having a certain self-cleaning ability, but these materials are still incapable of many stains such as bird excrement, insect body fluid, mud, and the like.
  • a self-cleaning solar light receiving apparatus comprising at least one light receiving element and a vibration device.
  • the light receiving element has a light receiving surface exposed in the air.
  • the vibration device includes a vibration element and its drive The circuit, wherein the vibrating element operates in a resonant mode, and the vibrating element is mechanically coupled to the light receiving element to drive the light receiving surface to vibrate.
  • the drive circuit includes at least one inductive component and at least one capacitive component in series, the circuit resonant frequency of the drive circuit matching the mechanical resonant frequency of the vibrating component.
  • the vibration device since the vibration device is provided on the light receiving element, the light receiving surface can be vibrated by the resonance of the vibration element, and the foreign matter on the light receiving surface can be shaken off, so that the light receiving surface can be kept clean for a long period of time.
  • the energy consumption of the cleaning operation can be effectively reduced, and the cost performance of the self-cleaning function is superior.
  • FIG. 1 is a schematic view of a solar light receiving device of Embodiment 1;
  • FIG. 2 is a schematic view of a solar light receiving device of Embodiment 2;
  • FIG. 3 is a schematic view of a solar light receiving device of Embodiment 3;
  • FIG. 4 is a schematic view of a solar light receiving device of Embodiment 4.
  • the solar light receiving device may be a light energy utilizing device or an optical device disposed before the light energy utilizing device.
  • the solar light receiving device is an optical device
  • the light receiving element can preferably employ a Fresnel condenser lens.
  • a Fresnel lens is a thin lens. By dividing the original original surface of the ordinary lens into segments, the Fresnel lens is formed by placing the segments on the same plane or the same substantially smooth surface after reducing the thickness of each segment.
  • This discontinuous refraction surface evolved from the original surface can be called a Fresnel refraction surface, which is generally stepped or toothed.
  • the Fresnel refractive surface has similar optical properties compared to the corresponding original surface, but the thickness is greatly reduced.
  • a Fresnel refraction surface generated from an original surface can be called a Fresnel unit.
  • the conventional original curved surface for generating a Fresnel refractive surface is generally a curved surface that is symmetrical about an optical axis, such as a spherical surface, a rotating paraboloid, or the like.
  • the focus of a traditional original surface is at a point, so it can be called "
  • the original curved surface can be any form of coaxial surface, which can be specifically set according to the needs of the application.
  • the so-called coaxial surface refers to the focus on the same line (not necessarily at the same point)
  • the surface of the upper surface which can be called "coaxial".
  • the traditional common point surface can be regarded as a special case where the coaxial axis of the coaxial plane degenerates into a point.
  • the sensing element for setting the focus position expands from a small area (corresponding to the focus) to a long strip (corresponding to a common axis composed of the focus), thereby improving signal collection without significantly increasing the cost. It also helps to solve local overheating problems.
  • Typical coaxial surfaces include rotating surfaces (including secondary or higher-order rotating surfaces), cylinders, cones, etc.
  • the cylinders can also be called equal-section coaxial surfaces.
  • the curved surface is cut at any point along the vertical direction of the common axis, and the shape and size of the obtained cross-section are uniform.
  • the cylindrical surface is a special case of the cylindrical surface.
  • the cross-section of the tapered surface along the common axis has a phase. The shape is similar but the size is different.
  • the conical surface is a special case of the conical surface.
  • a macroscopic refractive surface composed of one or more Fresnel cells may be referred to as a tooth surface, and a substantially smooth or flat surface opposite thereto may be referred to as a back surface.
  • a tooth surface containing only one Fresnel unit can be referred to as a "simple Fresnel refractive surface", and a tooth surface containing two or more Fresnel elements can be referred to as a "composite Fresnel refractive surface”.
  • each Fresnel unit on the Fresnel refractive surface can be flexibly arranged. , can be identical, partially identical, or completely different. It can be considered that these Fresnel elements are arranged on a macroscopic surface, such as planes, quadric surfaces (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • a macroscopic surface such as planes, quadric surfaces (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • the flank and the back can be flexibly combined to form different types of components.
  • a Fresnel lens having a tooth face and a back face may be referred to as a "single-sided Fresnel lens".
  • a Fresnel lens with a tooth surface on both sides can be called a "double-sided Fresnel lens”.
  • the double-sided Fresnel lens if one of the tooth flanks is a "simple Fresnel refractive surface", the tooth flanks may be replaced by a conventional convex lens surface or concave lens surface.
  • the tooth flanks may be combined with the reflecting surface to form a reflective Fresnel lens.
  • the reflecting surface may be a flat reflecting surface or a curved reflecting surface, such as a concave or convex reflecting surface, or may be a reflecting surface of a tooth surface shape.
  • the reflecting surface is disposed below the tooth surface in a direction in which the sunlight is incident.
  • the reflective concentrating lens 110 has a reflecting surface s3 and a Fresnel refracting surface s4. The ray is refracted from the refracting surface s4 into the lens and then reflected by the reflecting surface S3, and is again refracted through the refracting surface s4. Due to the reflection, the incident light path passes through the physical refractive interface twice, and the physical interface is actually equivalent to the two tooth faces, so that by providing the reflecting surface, the convergence effect of the system can be advantageously enhanced.
  • a reflective Fresnel lens can be composed of two parts, a lens and a base that supports the lens.
  • One of the faces of the lens and the base adjacent to each other is a reflecting surface.
  • the reflecting surface and the tooth surface can be disposed on the same component, for example, by plating a reflective film on the back surface of the Fresnel lens; the reflecting surface and the tooth surface can also be respectively disposed on different components, for example, the concentrating light toward the pedestal A reflector or a reflective film is placed on the surface of the lens.
  • the light-receiving element used for example, a Fresnel lens
  • the light-receiving element used may be formed by hot press forming using a glass or a transparent plastic material.
  • the transparent plastic material can be selected from the group consisting of: polymethyl methacrylate ( ⁇ , commonly known as acrylic), polycarbonate (PC), polycarbonate/polybutylene terephthalate (PC/PBT) mixture, acrylonitrile- Butadiene-styrene copolymer (ABS), silica gel.
  • PVDF polyvinylidene fluoride
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymer
  • An embodiment of the solar light receiving device according to the present invention may include the light receiving element 110 and the vibration device 120 with reference to FIG.
  • the solar light receiving device of the present embodiment is an optical device, and the light receiving element 110 is a reflective Fresnel collecting lens, and the light receiving surface exposed in the air is the tooth surface s4, so as to mount the vibration device on the back surface. (ie the reflective surface) on S3.
  • the light-receiving elements in the optical device can also be other types of transmissive, reflective or refractive elements, or a combination of different types of optical elements.
  • the vibration device 120 includes a vibration element 121 and its drive circuit 122.
  • the driving circuit 122 includes Containing a vibrating element 121.
  • the vibration device 120 is a piezoelectric vibration device
  • the vibration element 121 is a piezoelectric element that functions as a capacitance element in the drive circuit.
  • the drive circuit also includes an inductive element 123 in series with the piezoelectric element to form an oscillating circuit. For the sake of simplicity, only the capacitive components of the drive circuit are shown.
  • piezoelectric elements and inductive elements, those skilled in the art will readily appreciate that other circuit elements or peripheral circuits may be added as needed for practical applications.
  • the power source 124 of the vibrating device provides a drive signal for driving the piezoelectric element at a frequency of co( s ).
  • co(s) generally matches the mechanical resonance frequency co(m) of the piezoelectric element.
  • matching refers to the same or close, enabling resonance of the vibrating element by changes in electrical signals.
  • mechanical resonance frequency should not be understood as the mechanical resonance frequency of an isolated or separate vibrating element, but the mechanical resonance frequency of the vibrating element in the current installed state, which is usually associated with the vibrating element.
  • the mechanical structure of the fixed connection is related to the actual device structure, calculated by well-known mathematical means, or obtained by experimental measurement.
  • the "frequency” referred to herein refers to the circular frequency ⁇
  • the mechanical motion frequency f which is usually expressed by "times/second”
  • CO 2 tf
  • the inductance element 123 in the driving circuit enables the circuit resonance frequency of the driving circuit to be 0) by configuring parameters of each element in the circuit circuit, such as the capacitance value Cp of the piezoelectric element and/or the inductance value Li of the inductance element.
  • C Matching the mechanical resonance frequency ⁇ ( ⁇ ) of the piezoelectric element. This allows the drive circuit to also operate in a resonant state, thereby causing the drive to operate in a "double resonance" state.
  • the inductance element in the driving circuit of the embodiment may adopt an element with adjustable parameters to facilitate re-adjusting the circuit parameters to maintain double resonance after the mechanical resonance frequency drifts.
  • the capacitive element in the drive circuit can be set as a parameter adjustable element.
  • the mechanical resonance frequency of the vibrating element in this embodiment is preferably located in the ultrasonic frequency band, which can achieve both a good cleaning effect and noise pollution.
  • ultrasonic cleaning techniques have been used, they are substantially different from the applications in the present invention.
  • the existing ultrasonic cleaning method mainly uses water as a cleaning medium, and the object immersed in water is cleaned by the vibration of water.
  • the invention is The vibration device directly vibrates the object to be cleaned. It is a cleaning method that shakes off foreign matter by vibration, so it can be cleaned without water. It can also be cleaned with wind, rain, snow, or an additional water spray pipe.
  • the piezoelectric element is in the form of a sheet and is fixed to the back surface of the light receiving element opposite to the light receiving surface in a parallel manner. This allows the vibration device to be structurally integrated with the light-receiving element without taking up extra space.
  • the piezoelectric element may be fixed above or around the light receiving surface as required by the structure or the optical path design, as long as the light receiving surface can be vibrated by mechanical connection.
  • the embodiment may further include a control circuit 130 that controls the power source 124 of the vibrating device.
  • the control circuit 130 is used to activate the vibrating device to perform a cleaning operation, either under fixed conditions or under set conditions.
  • the control circuit can only have a control function for fixed cleaning. Due to the low power consumption of the vibrating device, periodic fixed cleaning does not cause too much power loss. It is well known that the longer the stain is deposited, the more difficult it is to remove it, so that the foreign matter can be shaken off regularly to achieve a good cleaning effect.
  • the term "foreign matter" refers to an object that is not a solar receiver, such as dust, ice, snow, sand, insects, or bird excrement.
  • the desired cuckoo clock signal can be provided to the control circuit by setting a cuckoo clock module or a communication module that can be connected to the remote cuckoo clock signal.
  • the control circuit can also initiate the cleaning operation according to the set conditions.
  • the setting conditions may be set weather conditions, such as rain, snow, wind, and the like. In the event of these weather events, the cleaning operation is performed, and natural forces can be used to help remove foreign matter. These weathers are also a hazard that is easily generated by dust and stains. Cleaning at these times also prevents the generation of stains.
  • the setting conditions may also be an excess of power generation, so that excess power can be used for preventive cleaning, further reducing the need for energy consumption.
  • the sensor can be used to sense the occurrence of a weather event, or to obtain an external command or weather forecast through the communication module to provide the control circuit with the required information.
  • the vibration device can be automatically or manually activated for cleaning according to the degree of soiling of the light-receiving element.
  • control circuit can also be used to adjust the frequency and output power of the power supply.
  • a water spray pipe or a dust suction pipe may be disposed.
  • Water spray The pipeline can be used to spray water onto the light-receiving surface, and the dust suction pipe can be used to suck foreign matter on the light-receiving surface, and the control circuit can control the water-jet pipe or the dust suction pipe to work together with the vibration device.
  • the configuration of water spray pipes or vacuum suction pipes is especially suitable for areas with very harsh environments, such as multi-bird areas, multi-insect areas, and desert areas.
  • a heating device may be further provided for heating the light receiving surface to remove ice or remove snow.
  • the heating unit can work alone or in the same way as the vibrating unit.
  • the reflecting surface is made of a metal surface, for example, a metal plating film or a metal plate is provided on the back surface of the light receiving element.
  • the heating device shares the metal to face the light-receiving surface, for example, energizing the metal surface. In this case, it is easier to remove the icing and snow on the light receiving surface by heating the reflecting surface and starting the vibration device at the same time.
  • FIG. 2 Another embodiment of the solar light receiving device according to the present invention can be referred to FIG. 2, including the light receiving element 210 and the vibration device 220, and further includes a photovoltaic panel 240 as a light energy conversion element.
  • the solar light receiving device of the present embodiment is a light energy utilizing device including a front end optical element.
  • the light-receiving element 210 is an optical element, specifically a cover glass, which covers the surface of the photovoltaic panel 240.
  • the photovoltaic panel and the protective glass are both flat, and a vibration isolating element 241 is disposed between each other to attenuate the influence of the vibration of the light-receiving element on the photovoltaic panel.
  • the cover glass can be made of ordinary glass or a transparent plastic material coated with an anti-aging film.
  • the vibration device 220 employs a piezoelectric vibration device similar to that in Embodiment 1, and therefore only the piezoelectric piece 221 as a vibration element is shown in Fig. 2, and the drive circuit has been omitted.
  • the piezoelectric sheet is at least partially disposed on the light receiving surface.
  • the piezoelectric sheet is disposed perpendicular to the light receiving surface, and serves as a vibrating fan at the same time, so that the photovoltaic panel can be dissipated while being cleaned.
  • the piezoelectric sheet is erected on the light receiving surface to block sunlight, it can be placed near the edge of the light receiving surface, and the orientation should be selected according to the area of use to avoid shading. For example, if used in the northern hemisphere, the piezoelectric sheet can be placed on the north side.
  • the end of the piezoelectric piece can extend to receive light. The back of the face.
  • the front end optical element may be omitted, and the surface on which the light energy is utilized is directly used as the light receiving surface, and the vibration device is directly mounted on the light energy. On the conversion component.
  • FIG. 3 Another embodiment of the solar light receiving device according to the present invention can be referred to FIG. 3, including the light receiving element 310 and the vibration device 320.
  • the solar light receiving device of the present embodiment is an optical device, and the light receiving element 310 is a plurality of horn-shaped light guides sequentially disposed along the optical path. At least a portion of the light guides are disposed on the railcar 313, the angle of the light guides being adjustable by the corresponding axis of rotation 314, and the railcar can be glided over the track 315 to the desired position.
  • the final stage light guide directs light into the light energy utilization device 340, which may be a photovoltaic panel, a photothermal utilization device, or a combination of photovoltaic and photothermal.
  • the vibrating device 320 employs a piezoelectric vibrating device similar to that in Embodiment 1, and therefore only the piezoelectric piece 321, which is a vibrating element, is shown in Fig. 3, and the driving circuit has been omitted. Since the light receiving surface of the light guide is the inner mirror surface, the piezoelectric sheet is disposed on the outer surface of the light guide.
  • Other solar light receiving devices 300' are disposed on the optical path before the light guide, specifically a plurality of reflective Fresnel collecting lenses, which reflect the concentrated sunlight to the bell mouth of the first flared light guide. It is apparent that the solar light receiving device 300' can employ the structure described in Embodiment 1 to achieve self-cleaning.
  • FIG. 2 Another embodiment of the solar light receiving device according to the present invention can be referred to FIG. 2, including a light receiving element 410, a vibration device 420, and a light energy utilizing device 440.
  • the solar light receiving device of the present embodiment is a light energy utilizing device including a front end optical element.
  • the light receiving element 410 is a condensing Fresnel lens, and the light receiving surface exposed to the air may be a tooth surface or a smooth surface.
  • the solar light receiving device further includes two other optical components, that is, a mirror (or a reflective Fresnel lens) 410' and a reflective Fresnel lens 410".
  • the sunlight is concentrated by the light receiving element 410 and passes through two After the secondary reflection, the light energy utilization device 440 is reached.
  • the vibration device 420 includes a vibration element 421 and its drive circuit 422. In the present embodiment, the drive circuit 422 does not include the vibration element 421.
  • the vibration device 420 is an electromagnetic vibration device that excites the vibration element to generate vibration by interacting with the vibration element by the action element in the drive circuit.
  • the active component is the inductive component 423
  • the vibrating component 421 is a sheet-like magnetic material that is fixed to the inner surface edge of the light receiving component 410.
  • the active element may also be a capacitive element, depending on the driving principle.
  • the vibration principle of the vibration device 420 is similar to that of the ordinary electromagnetic sound.
  • the vibration element 421 vibrates under the driving of the inductance element 423, thereby driving the light receiving element 410 to vibrate.
  • the driving circuit further includes a capacitor element 425 for generating circuit oscillation, and the vibration element and the driving circuit can achieve "double resonance" by setting the capacitance value thereof.
  • the mechanical resonance frequency of the vibration device is easily affected by the mounting position of the vibration element and the mounting structure, so that it is difficult to maintain the resonance frequency of the resonance frequency in mass production.
  • the inductive or capacitive elements in the drive circuit can be arranged as parameter-adjustable elements to facilitate individual adjustment of the resonant frequency of the drive circuit to accommodate individual variations in the mechanical resonant frequency of the vibrating device.
  • the solar light receiving device of the present embodiment may also preferably include a control circuit 430, which is similar to Embodiment 1, and will not be described again.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种自清洁太阳光接收装置,包括至少一个受光元件(110)以及振动装置(120)。受光元件具有裸露在空气中的受光面(s4)。振动装置包括振动元件(121)及其驱动电路(122),其中,振动元件工作于共振模态,振动元件与受光元件机械连接以带动其受光面进行振动。由于在受光元件上设置振动装置,能够通过振动元件的共振带动受光面进行振动,从而抖落受光面上的异物,使得受光面能够长期保持清洁。

Description

自清洁太阳光接收装置
技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种能够自动进行清洁的太阳光接收 装置, 可用于各种太阳能利用系统中。
[0002] 背景技术
[0003] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。 目前对太 阳能的利用仍然是成本较高的, 如何降低太阳能系统在使用过程中的维护成本 , 以及长期保持太阳能系统的效率是值得研究的课题。
[0004] 可以将太阳能系统中用于接收太阳光的装置称为太阳光接收装置。 太阳光接收 装置可以是光能利用装置, 例如光伏板或者光热发电装置等。 简明起见, 本文 中以光伏板来代表各种光电转换器件, 包括但不限于: 多晶硅光伏板、 单晶硅 光伏板、 非晶硅光伏板、 III-V族半导体光伏板、 铜铟镓硒 (CIGS) 光伏板、 钙 钛光伏板、 光伏薄膜等。 太阳光接收装置也可以是设置在光能利用装置之前的 光学装置, 用来将太阳光会聚或者引导到光能利用装置。
[0005] 一方面, 太阳光接收装置的受光面裸露在空气中以接受太阳光的照射, 如果受 光面脏污会严重影响整个系统的效率, 还可能导致局部的温度升高, 影响系统 寿命, 因此需要对太阳光接收装置的受光面进行清洁维护。
[0006] 另一方面, 由于利用太阳能需要使用大量的地球表面积, 大型电站一般建造在 环境恶劣的地方, 在这些地方进行清洁维护会产生高昂的成本。 对于小规模的 太阳能利用, 例如安装在建筑屋顶或外墙的太阳能系统, 也不便于对受光面进 行清洁。
[0007] 目前, 也有采用具有一定自清洁能力的镀膜材料对受光面进行处理, 但是这些 材料对于很多污渍, 例如鸟类排泄物、 昆虫体液、 泥浆等仍然无能为力。
[0008] 发明内容
[0009] 依据本发明提供一种自清洁太阳光接收装置, 包括至少一个受光元件以及振动 装置。 受光元件具有裸露在空气中的受光面。 振动装置包括振动元件及其驱动 电路, 其中, 振动元件工作于共振模态, 振动元件与受光元件机械连接以带动 其受光面进行振动。
[0010] 优选地, 驱动电路包括串联的至少一个电感元件和至少一个电容元件, 驱动电 路的电路共振频率与振动元件的机械共振频率相匹配。
[0011] 依据本发明的太阳光接收装置, 由于在受光元件上设置振动装置, 能够通过振 动元件的共振带动受光面进行振动, 从而抖落受光面上的异物, 使得受光面能 够长期保持清洁。
[0012] 尤其是在本发明优选提供的双共振模态下, 即电路振荡与机械振动均达到共振 的情况下, 能够有效降低清洁操作的能耗, 使得自清洁功能的性价比更为优越
[0013] 以下结合附图, 对依据本发明的具体示例进行详细说明。
[0014] 附图说明
[0015] 图 1是实施例 1的太阳光接收装置的示意图;
[0016] 图 2是实施例 2的太阳光接收装置的示意图;
[0017] 图 3是实施例 3的太阳光接收装置的示意图;
[0018] 图 4是实施例 4的太阳光接收装置的示意图。
[0019] 具体实施方式
[0020] 依据本发明的太阳光接收装置可以是光能利用装置, 也可以是设置在光能利用 装置之前的光学装置。 当太阳光接收装置为光学装置吋, 其受光元件可以优选 地采用菲涅尔聚光透镜, 为便于理解, 以下先对相关概念进行介绍。
[0021] 菲涅尔 (Fresnel) 透镜是一种薄型透镜。 通过将普通透镜连续的原始曲面分割 成若干段, 在减少每段的厚度后将各段曲面置于同一平面或同一基本光滑的曲 面上即形成为菲涅尔透镜。 这种由原始曲面演变而来的不连续的折射面可称为 菲涅尔折射面, 一般呈阶梯状或齿状。 理论上菲涅尔折射面与相应的原始曲面 相比具有近似的光学性能, 但厚度却大为减少。 可以将由一个原始曲面生成的 菲涅尔折射面称为一个菲涅尔单元。
[0022] 传统的用于生成菲涅尔折射面的原始曲面一般为绕光轴对称的曲面, 例如球面 、 旋转抛物面等旋转曲面。 传统的原始曲面的焦点在一个点上, 因此, 可称为" 共点面"。 在本发明中, 原始曲面可以是任何形式的共轴面, 可根据应用的需要 具体设置。 所称共轴面是指焦点在同一直线上 (而不一定是在同一个点上) 的 曲面, 该直线可称为 "共轴线"。 传统的共点面可视为共轴面的共轴线退化为一个 点吋的特例。 采用共轴但不共点的原始曲面, 可以将用于设置在聚焦位置的感 应元件从较小的面积 (对应于焦点) 扩展为长条形 (对应于由焦点组成的共轴 线) , 从而在不显著增加成本的情况下, 提升信号收集的能力并有助于解决局 部过热问题。 典型的共轴面包括旋转曲面 (含二次或高阶旋转曲面) 、 柱面、 锥面等。 其中柱面又可称为等截面共轴面, 这种曲面沿着共轴线的垂直方向在 任何一点切幵, 所得到的横截面的形状和大小都是一致的, 圆柱面是柱面的一 种特例。 锥面沿着共轴线的横截面则具有相似的形状但大小不同, 圆锥面是锥 面的一种特例。
[0023] 由一个或多个菲涅尔单元组成的宏观折射面可称为齿面, 与之相对的基本光滑 或平坦的面则可称为背面。 可将只含有一个菲涅尔单元的齿面称为"简单菲涅尔 折射面", 而将含有两个以上菲涅尔单元的齿面称为 "复合菲涅尔折射面"。 一般 而言, 复合菲涅尔折射面上各个菲涅尔单元的基本参数 (例如, 面积、 焦距、 所对应的原始曲面的形状、 分割原始曲面所使用的同心环的数量等) 均可以灵 活布置, 可以完全相同、 部分相同或完全不同。 可以认为这些菲涅尔单元被布 置在一个宏观曲面上, 例如平面、 二次曲面 (包括球面、 椭球面、 圆柱面、 抛 物柱面、 双曲柱面) 、 高阶多项式曲面 (非球面的通常实现方式) 、 以及由多 个平面拼接成的折面以及梯台面等。
[0024] 一般而言, 齿面和背面可以灵活地组合以形成不同类型的元件。 例如具有一个 齿面和一个背面的菲涅尔透镜可称为"单面菲涅尔透镜"。 两面都是齿面的菲涅尔 透镜可称为"双面菲涅尔透镜"。 此外, 作为一种变形, 在双面菲涅尔透镜中, 若 齿面之一为"简单菲涅尔折射面", 则该齿面可以由一个传统的凸透镜面或凹透镜 面来取代。
[0025] 除了上述透射式菲涅尔透镜, 齿面还可以与反射面结合形成为反射式菲涅尔透 镜。 反射面可以是平面反射面或曲面反射面, 例如凹面或凸面反射面, 还可以 是齿面形状的反射面。 反射面沿太阳光入射的方向设置于齿面的下方。 参考图 1 , 反射式聚光透镜 110具有反射面 s3和菲涅尔折射面 s4, 光线从折射面 s4折射进 入透镜后再由反射面 S3反射, 并再次经过折射面 s4折射出元件。 由于反射, 入射 光路两次经过物理折射界面, 该物理界面实际上等效于两个齿面, 因此通过设 置反射面, 能够有利地增强系统的会聚效果。
[0026] 在具体实现吋, 反射式菲涅尔透镜可由两部分组成, 即透镜和支撑该透镜的底 座。 透镜与底座彼此相邻的面中的一者为反射面。 换言之, 反射面与齿面可以 设置于同一元件, 例如通过在菲涅尔透镜的背面上镀反射膜来实现; 反射面与 齿面也可以分别设置在不同的元件, 例如, 在底座朝向聚光透镜的面上设置反 光板或者镀反射膜。
[0027] 由于受光面的面积通常比较大, 为便于大规模生产, 所使用的受光元件, 例如 菲涅尔透镜, 可以采用玻璃通过热压成型方式制成, 也可以采用透明塑胶材料 制成。 透明塑胶材料可选自: 聚甲基丙烯酸甲酯 (ΡΜΜΑ, 俗称亚克力) , 聚 碳酸酯 (PC) , 聚碳酸酯 /聚对苯二甲酸丁二醇酯 (PC/PBT) 混合物, 丙烯腈- 丁二烯-苯乙烯共聚物 (ABS) , 硅胶。 使用塑胶材料制作透镜比用玻璃更方便 且更安全 (例如在安装于屋顶的情况下) , 但是普通塑胶材料的抗老化性能较 差, 因此, 优选地, 还可以在透明塑胶材料的受光面上设置透明的防老化涂层 。 可以用作防老化涂层的材料包括: 聚偏氟乙烯 (PVDF) , 乙烯-四氟乙烯共聚 物 (ETFE) , 四氟乙烯-全氟烷氧基乙烯基醚共聚物 (PFA) , 高质量的硅胶, 金属镀膜等。
[0028] 以下结合具体的示例对依据本发明的太阳光接收装置进行举例说明。
[0029] 实施例 1
[0030] 依据本发明的太阳光接收装置的一种实施方式可参考图 1, 包括受光元件 110和 振动装置 120。
[0031] 本实施例太阳光接收装置是一种光学装置, 受光元件 110为反射式菲涅尔聚光 透镜, 其裸露在空气中的受光面为齿面 s4, 以便于将振动装置安装在背面 (即反 射面) S3上。 在其他实施方式中, 光学装置中的受光元件也可以是其他类型的透 射、 反射或折射元件, 或者是不同类型的光学元件的组合。
[0032] 振动装置 120包括振动元件 121及其驱动电路 122。 本实施例中, 驱动电路 122包 含振动元件 121。 具体而言, 振动装置 120是一种压电振动装置, 振动元件 121为 压电元件, 其充当为驱动电路中的电容元件。 驱动电路还包括与压电元件串联 的电感元件 123以形成振荡回路。 简明起见, 图中仅示出了驱动电路的电容元件
(压电元件) 和电感元件, 本领域技术人员容易理解, 还可以根据实际应用的 需要增加其他的电路元件或周边电路。
[0033] 振动装置的电源 124提供驱动压电元件的驱动信号, 其频率为 co(s)。 为使压电元 件工作于机械共振状态, co(s)通常与压电元件的机械共振频率 co(m)相匹配。 本文 中, 所称"匹配"是指相同或接近, 使得能够通过电信号的变化令振动元件产生共 振。 需要说明的是, 本文中所称"机械共振频率 "不应被理解为孤立的或分离的振 动元件的机械共振频率, 而是振动元件在当前安装状态下的机械共振频率, 这 通常与振动元件所固定连接的机械结构有关, 可根据实际装置结构, 采用公知 数学手段进行计算, 或者通过实验测量来获得。 此外, 简明起见, 本文中所称" 频率"均指圆频率 ω, 对于通常采用 "次 /秒"来表示的机械运动频率 f, 可按照周知 的公式 CO=2 tf进行换算, 不再赘述。
[0034] 在驱动电路中引入电感元件 123使得能够通过配置电路回路中各元件的参数, 例如压电元件的电容值 Cp和 /或电感元件的电感值 Li, 使得驱动电路的电路共振 频率 0)(C)与压电元件的机械共振频率 ω(ιη)相匹配。 由此即可使得驱动电路也工作 于共振状态, 从而使得驱动装置工作于"双共振"状态。 对于图 1中所示的简单 LC 振荡回路, 共振频率可简单表示为 co(c)=co(m)=lW(Li*Cp)。 在双共振状态下, 驱 动电路的功耗将明显降低, 从而进一步降低自清洁功能的使用成本。
[0035] 作为一种优选的实施方式, 本实施例的驱动电路中的电感元件可采用参数可调 的元件, 以便于在机械共振频率发生漂移吋重新调整电路参数以保持双共振。 在其他实施方式中, 若振动元件充当为电感元件, 则可将驱动电路中的电容元 件设置为参数可调的元件。
[0036] 本实施例中的振动元件的机械共振频率优选地位于超声波频段, 既能够达到很 好的清洁效果也避免产生噪声污染。 需要说明的是, 虽然超声波清洗技术已有 使用, 但与在本发明中的应用有实质性区别。 已有的超声波清洗方式主要使用 水作为清洗介质, 通过水的振动对浸泡在水中的物体进行清洗。 而本发明则是 通过振动装置直接振动被清洁物体本身, 是一种通过振动来抖落异物的清洁方 式, 因此不用水即可完成清洁, 此外也可以配合风、 雨、 雪、 或额外的喷水管 道进行清洗。
[0037] 本实施例中, 压电元件为片状, 以平行贴合的方式固定在受光元件的与受光面 相对的背面上。 这使得振动装置与受光元件在结构上集成在一起, 不需要占用 额外的空间。 在其他实施方式中, 根据结构或光路设计的需要, 压电元件也可 以固定在受光面上方或者周围, 只要能够通过机械连接带动受光面进行振动即 可。
[0038] 为提高自清洁功能的智能化程度, 优选地, 本实施例还可包括控制电路 130, 其对振动装置的电源 124进行控制。 控制电路 130用于定吋地或在设定条件下启 动振动装置执行清洁操作。
[0039] 在简单的情况下, 控制电路可以只具备定吋清洁的控制功能。 由于振动装置的 功耗很低, 使得周期性的定吋清洁不会带来太大的功率损耗。 众所周知, 污渍 沉积越久越难以清除, 因此定期将异物抖落能达到良好的清洁效果。 所称异物 指不属于太阳光接收装置的物体, 例如灰尘、 冰雪、 沙石、 昆虫遗体或鸟类排 泄物等。 可通过设置吋钟模块或者能够连接到远程吋钟信号的通信模块来为控 制电路提供所需要的吋钟信号。
[0040] 为了更精确地控制执行清洁操作的吋机, 控制电路也可以根据设定条件来启动 清洁操作。 设定条件可以是设定的气象条件, 例如下雨、 下雪、 刮风等。 在发 生这些气象事件吋执行清洁操作, 能够利用自然力帮助除去异物, 并且, 这些 吋候也是灰尘和污渍容易产生的吋候, 在这些吋候进行清洁还能预防污渍的产 生。 设定条件也可以是发电过剩的情况, 从而可以利用过剩的电能进行预防性 清洁, 进一步降低对能耗的需求。 可通过设置传感器来感知气象事件的发生, 或者通过通信模块获取外部指令或天气预报来为控制电路提供所需要的信息。 此外, 也可根据受光元件的脏污程度自动或手动启动振动装置进行清洁。
[0041] 此外, 常规地, 控制电路还可用于调整电源的频率和输出功率。
[0042] 为达到更好的清洁效果, 尤其是在控制电路不具备根据气象条件执行清洁操作 的功能的情况下, 优选地, 还可配置喷水管道或者吸尘管道 (未图示) 。 喷水 管道可用于向受光面喷水, 吸尘管道可用于抽吸受光面上的异物, 控制电路可 控制喷水管道或吸尘管道与振动装置同吋工作。 配置喷水管道或吸尘管道尤其 适用于环境十分恶劣的地区, 例如多鸟地区、 多昆虫地区、 沙漠地区等。
[0043] 此外, 对于冬季寒冷的地区, 受光面上可能会结冰或有积雪。 可进一步设置加 热装置, 用于对受光面进行加热以除冰或除雪。 加热装置可以单独工作也可以 与振动装置同吋工作。 对于本实施例而言, 一种优选的方式是, 反射面采用金 属面, 例如在受光元件背面进行金属镀膜或设置金属板等。 加热装置则共用该 金属面对受光面进行加热, 例如对金属面进行通电。 在这种情况下, 利用反射 面进行加热并同吋启动振动装置, 能够更加容易地清除受光面上的结冰和积雪
[0044] 除明确指出的区别之处以外, 上述关于双共振、 控制电路、 喷水管道、 吸尘管 道、 加热装置等的描述均可应用于本发明的其他实施方式, 不再赘述。
[0045] 实施例 2
[0046] 依据本发明的太阳光接收装置的另一种实施方式可参考图 2, 包括受光元件 210 和振动装置 220, 还包括作为光能转换元件的光伏板 240。
[0047] 本实施例太阳光接收装置是一种含有前端光学元件的光能利用装置。 受光元件 210为光学元件, 具体为防护玻璃, 其覆盖在光伏板 240表面。 光伏板与防护玻 璃均为平面, 彼此之间还设置有振动隔离元件 241以衰减受光元件的振动对光伏 板的影响。 防护玻璃可采用普通的玻璃制成, 也可采用涂有防老化膜的透明塑 胶材料来充当。
[0048] 振动装置 220采用与实施例 1中类似的压电振动装置, 因此图 2中仅示出了作为 振动元件的压电片 221, 驱动电路已省略。 与实施例 1中不同的是, 本实施例中 , 压电片至少部分设置在受光面上。
[0049] 作为一种优选的实施方式, 本实施中, 压电片垂直于受光面设置, 以同吋充当 为振动式风扇, 从而能够在起到清洁作用的同吋对光伏板进行散热。 考虑到压 电片竖立在受光面上可能会遮挡太阳光, 可以将其设置在受光面靠近边缘的位 置, 并且设置的方位应根据使用地区进行选择以避免遮光。 例如, 若用于北半 球地区则可将压电片设置在北侧。 此外, 压电片延伸的端部还可以伸出至受光 面的背部。
[0050] 在其他实施方式中, 若振动对光能转换元件自身的性能影响不大, 也可以省去 前端光学元件, 直接以实现光能利用的表面作为受光面, 振动装置直接安装在 光能转换元件上。
[0051] 实施例 3
[0052] 依据本发明的太阳光接收装置的另一种实施方式可参考图 3, 包括受光元件 310 和振动装置 320。
[0053] 本实施例太阳光接收装置是一种光学装置, 受光元件 310为多个沿光路顺次设 置的喇叭形光导。 至少部分光导设置在轨道车 313上, 这些光导的角度可通过相 应的旋转轴 314来调整, 轨道车可以在轨道 315上滑行以到达期望的位置。 最后 一级光导将光线导入到光能利用装置 340, 该光能利用装置可以是光伏板、 光热 利用装置、 或光电和光热的综合利用装置。
[0054] 振动装置 320采用与实施例 1中类似的压电振动装置, 因此图 3中仅示出了作为 振动元件的压电片 321, 驱动电路已省略。 由于光导的受光面为内部的镜面, 因 此压电片设置在光导的外表面上。
[0055] 光导之前的光路上还设置有其他太阳光接收装置 300', 具体为多个反射式菲涅 尔聚光透镜, 他们将会聚的太阳光反射到第一个喇叭形光导的喇叭口。 显然, 太阳光接收装置 300'可采用实施例 1所描述的结构以实现自清洁。
[0056] 通过本实施例可以看出, 对于复杂的太阳能系统而言, 可能具有多个受光面, 任意受光面均可采用本发明的自清洁方式。
[0057] 实施例 4
[0058] 依据本发明的太阳光接收装置的另一种实施方式可参考图 2, 包括受光元件 410 、 振动装置 420和光能利用装置 440。
[0059] 本实施例太阳光接收装置是一种含有前端光学元件的光能利用装置。 受光元件 410为聚光式菲涅尔透镜, 其裸露在空气中的受光面可以是齿面也可以是光滑面 。 此外, 该太阳光接收装置中还包括另外两个光学元件, 即反射镜 (或反射式 菲涅尔透镜) 410'以及反射式菲涅尔透镜 410"。 太阳光经过受光元件 410会聚并 经过两次反射后到达光能利用装置 440。 [0060] 振动装置 420包括振动元件 421及其驱动电路 422。 本实施例中, 驱动电路 422不 包含振动元件 421。 具体而言, 振动装置 420是一种电磁振动装置, 通过驱动电 路中的作用元件与振动元件发生相互作用来激发振动元件产生振动。 具体地, 本实施例中, 作用元件为电感元件 423, 振动元件 421为片状受磁材料, 固定在 受光元件 410的内表面边缘处。 在其他实施方式中, 根据驱动原理的不同, 作用 元件也可以是电容元件。
[0061] 振动装置 420的振动原理与普通的电磁式音响的振动发声原理类似, 当电源 424 提供交变电压吋, 振动元件 421会在电感元件 423的驱动下振动, 从而带动受光 元件 410进行振动。 不同之处在于驱动电路中还包含用于产生电路振荡的电容元 件 425, 通过设置其电容值可以使得振动元件与驱动电路达到"双共振"。
[0062] 在本实施例中, 振动装置的机械共振频率容易受到振动元件的安装位置和安装 结构的影响, 因此在大规模生产吋其共振频率很难保持一致。 作为一种优选的 实施方式, 可以将驱动电路中的电感元件或电容元件设置为参数可调的元件, 以便于单个调整驱动电路的共振频率来适应振动装置的机械共振频率的个体变 化。
[0063] 本实施例太阳光接收装置还可优选地包括控制电路 430, 与实施例 1类似, 不再 赘述。
[0064]
[0065] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种自清洁太阳光接收装置, 其特征在于, 包括,
至少一个受光元件, 其具有裸露在空气中的受光面; 以及, 振动装置, 其包括振动元件及其驱动电路, 所述振动元件工作于共振 模态, 所述振动元件与所述受光元件机械连接以带动所述受光面进行 振动。
[权利要求 2] 如权利要求 1所述的装置, 其特征在于,
所述驱动电路包括串联的至少一个电感元件和至少一个电容元件, 所 述驱动电路的电路共振频率与所述振动元件的机械共振频率相匹配。
[权利要求 3] 如权利要求 2所述的装置, 其特征在于,
所述驱动电路不包含所述振动元件, 所述驱动电路通过作用元件与所 述振动元件发生相互作用以激发所述振动元件产生振动, 所述作用元 件为电感元件或者电容元件; 或者,
所述驱动电路包含所述振动元件, 所述振动元件充当为电感元件或者 电容元件。
[权利要求 4] 如权利要求 3所述的装置, 其特征在于,
所述振动元件为压电元件, 其充当为所述驱动电路中的电容元件; 或 者,
所述振动元件为片状受磁材料, 所述驱动电路通过充当为作用元件的 电感元件激发所述振动元件产生振动。
[权利要求 5] 如权利要求 2至 4任意一项所述的装置, 其特征在于, 包括以下特征中 的一种或多种:
所述振动元件的机械共振频率位于超声波频段; 所述电感元件或电容元件为参数可调的元件。
[权利要求 6] 如权利要求 1至 5任意一项所述的装置, 其特征在于,
所述受光元件为光学元件或光能转换元件。
[权利要求 7] 如权利要求 6所述的装置, 其特征在于,
所述受光元件为防护玻璃, 所述太阳光接收装置还包括光伏板, 所述 防护玻璃覆盖在所述光伏板表面, 所述光伏板与所述防护玻璃之间还 设置有振动隔离元件以衰减受光元件的振动对光伏板的影响。
[权利要求 8] 如权利要求 7所述的装置, 其特征在于,
所述振动元件为片状, 垂直于所述受光面设置, 以同吋充当为振动式 风扇。
[权利要求 9] 如权利要求 6所述的装置, 其特征在于,
所述受光元件为菲涅尔聚光透镜。
[权利要求 10] 如权利要求 9所述的装置, 其特征在于, 包括以下特征中的一种或多 种: 所述受光面为齿面或光滑面;
所述菲涅尔聚光透镜采用玻璃制成, 或者, 采用透明塑胶材料制成, 且在所述透明塑胶材料的受光面上设置透明的防老化涂层; 所述透明 塑胶材料选自: PMMA, PC, PC/PBT混合物, ABS, 硅胶; 所述防 老化涂层选自: PVDF, ETFE, PFA, 硅胶, 金属镀膜;
所述振动元件设置在所述菲涅尔聚光透镜的与受光面相对的背面上。
[权利要求 11] 如权利要求 1至 10任意一项所述的装置, 其特征在于, 还包括:
控制电路, 用于定吋地或在设定条件下启动所述振动装置执行清洁操 作, 所述设定条件选自: 设定的气象条件, 发电过剩的情况。
[权利要求 12] 如权利要求 1至 11任意一项所述的装置, 其特征在于, 还包括:
加热装置, 用于对所述受光面进行加热, 所述加热装置单独工作或者 与所述振动装置同吋工作。
[权利要求 13] 如权利要求 12所述的装置, 其特征在于,
所述受光元件的与所述受光面相对的背面为金属面, 所述加热装置共 用所述金属面对所述受光面进行加热。
[权利要求 14] 如权利要求 1至 13任意一项所述的装置, 其特征在于, 还包括:
喷水管道, 用于向所述受光面喷水, 所述喷水管道与所述振动装置同 吋工作; 或者,
吸尘管道, 用于抽吸所述受光面上的异物所述吸尘管道与所述所述振 动装置同吋工作。
PCT/CN2016/090261 2016-07-18 2016-07-18 自清洁太阳光接收装置 WO2018014151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090261 WO2018014151A1 (zh) 2016-07-18 2016-07-18 自清洁太阳光接收装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090261 WO2018014151A1 (zh) 2016-07-18 2016-07-18 自清洁太阳光接收装置

Publications (1)

Publication Number Publication Date
WO2018014151A1 true WO2018014151A1 (zh) 2018-01-25

Family

ID=60991689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090261 WO2018014151A1 (zh) 2016-07-18 2016-07-18 自清洁太阳光接收装置

Country Status (1)

Country Link
WO (1) WO2018014151A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242009A (zh) * 2021-05-10 2021-08-10 陈倩 一种智能电网用太阳能光伏发电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527125A (zh) * 2003-03-03 2004-09-08 奥林巴斯株式会社 电子摄像装置
CN1573506A (zh) * 2003-06-23 2005-02-02 奥林巴斯株式会社 用于摄像装置的防尘单元和具有该单元的摄像装置
CN1984253A (zh) * 2002-05-17 2007-06-20 奥林巴斯光学工业株式会社 电子摄像装置
JP2013055749A (ja) * 2011-09-01 2013-03-21 Canon Inc 撮像装置
CN205017262U (zh) * 2015-07-01 2016-02-03 重庆科技学院 光伏电池振动除尘装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984253A (zh) * 2002-05-17 2007-06-20 奥林巴斯光学工业株式会社 电子摄像装置
CN1527125A (zh) * 2003-03-03 2004-09-08 奥林巴斯株式会社 电子摄像装置
CN1573506A (zh) * 2003-06-23 2005-02-02 奥林巴斯株式会社 用于摄像装置的防尘单元和具有该单元的摄像装置
JP2013055749A (ja) * 2011-09-01 2013-03-21 Canon Inc 撮像装置
CN205017262U (zh) * 2015-07-01 2016-02-03 重庆科技学院 光伏电池振动除尘装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242009A (zh) * 2021-05-10 2021-08-10 陈倩 一种智能电网用太阳能光伏发电装置
CN113242009B (zh) * 2021-05-10 2022-05-17 珠海华成电力设计院股份有限公司 一种智能电网用太阳能光伏发电装置

Similar Documents

Publication Publication Date Title
CN102208473B (zh) 一种太阳能发电低倍聚光发电组件
RU2008129791A (ru) Фотоэлектрическое устройство и установка с избирательным концентрированием падающего излучения
CN107209294A (zh) 聚光式太阳能系统
JP6814890B2 (ja) 集光型太陽エネルギー装置
WO2016192588A1 (zh) 多功能太阳能系统
WO2018014151A1 (zh) 自清洁太阳光接收装置
CN207095062U (zh) 聚光式太阳能瓦
JPH06275859A (ja) 太陽電池用集光装置
CN101789547A (zh) 可实现太阳能发电的射电望远镜
CN105577093B (zh) 新洁净光伏板
WO2017206140A1 (zh) 跟日太阳能系统
CN104990285A (zh) 免跟踪太阳能聚光器
CN208046557U (zh) 一种具有辅助清洗光伏板功能的光伏支架
WO2018053822A1 (zh) 光能接收装置
KR101383781B1 (ko) 음파 집음기 및 이를 포함하는 음파 발전 장치
KR20160062451A (ko) 태양광 모듈 제조 방법
WO2018090277A1 (zh) 聚光式光能接收装置
CN201311112Y (zh) 一种太阳能反射聚焦板
CN201401966Y (zh) 带有反光聚光板的真空管太阳能热水器
WO2018107456A1 (zh) 反射式聚光太阳能装置
CN202150811U (zh) 一种太阳能发电低倍聚光发电组件
KR102656003B1 (ko) 태양광 집광모듈 설치용 프레임
CN218678973U (zh) 一种单片式光伏太阳能集中器
WO2018018480A1 (zh) 聚光式太阳能系统
CN212962251U (zh) 一种槽式聚光器镜片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909082

Country of ref document: EP

Kind code of ref document: A1