WO2016192588A1 - 多功能太阳能系统 - Google Patents

多功能太阳能系统 Download PDF

Info

Publication number
WO2016192588A1
WO2016192588A1 PCT/CN2016/083621 CN2016083621W WO2016192588A1 WO 2016192588 A1 WO2016192588 A1 WO 2016192588A1 CN 2016083621 W CN2016083621 W CN 2016083621W WO 2016192588 A1 WO2016192588 A1 WO 2016192588A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar energy
reflective
energy utilization
utilization devices
fresnel
Prior art date
Application number
PCT/CN2016/083621
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立码杰通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2017145937A priority Critical patent/RU2671254C1/ru
Priority to AU2016271919A priority patent/AU2016271919B2/en
Priority to ES16802511T priority patent/ES2837054T3/es
Priority to MYPI2017704467A priority patent/MY184220A/en
Priority to CA2987477A priority patent/CA2987477C/en
Priority to NZ738803A priority patent/NZ738803A/en
Priority to US15/578,681 priority patent/US10277166B2/en
Priority to KR1020177037526A priority patent/KR101983121B1/ko
Application filed by 博立码杰通讯(深圳)有限公司 filed Critical 博立码杰通讯(深圳)有限公司
Priority to BR112017025373-9A priority patent/BR112017025373A2/pt
Priority to MX2017015335A priority patent/MX2017015335A/es
Priority to EP16802511.2A priority patent/EP3306223B1/en
Priority to JP2017562356A priority patent/JP6636049B2/ja
Publication of WO2016192588A1 publication Critical patent/WO2016192588A1/zh
Priority to IL255867A priority patent/IL255867B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/80Arrangements for controlling solar heat collectors for controlling collection or absorption of solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • F24S70/65Combinations of two or more absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • F24S2020/23Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants movable or adjustable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular to a multifunctional solar energy system utilizing solar energy.
  • a multifunctional solar energy system comprising a convergence system and two solar energy utilization devices; wherein the convergence system comprises at least one concentrating refractive surface and a reflecting surface, the reflecting surface being disposed along a direction in which the sunlight is incident Below the condensing refraction surface; two solar energy utilization devices for absorbing and utilizing sunlight; at least one of the reflection surface and the two solar energy utilization devices is mobile, and if the reflection surface is mobile, two The solar energy utilization devices are respectively disposed on the optical path before and after the movement of the reflective surface. If the reflective surface is fixed, the two solar energy utilization devices are sequentially arranged on the optical path behind the reflective surface.
  • a multifunctional solar energy system has at least one mobile component, that is, a reflective surface or one of two solar energy utilization devices, by moving one of the two solar energy utilization devices in the optical path by moving the mobile component, Two solar energy utilization devices are used at different times. This makes it possible to multiply the function of the solar system with only a small increase in cost, improve the overall utilization of the system, and facilitate the fuller utilization of natural clean energy.
  • FIG. 1 is a schematic view showing the basic structure of a multifunctional solar energy system according to the present invention
  • FIG. 2 is a schematic view of two coaxial faces for generating a Fresnel refractive surface in the present invention
  • FIG. 3 is a schematic view of a convergence system having two flank surfaces in the present invention.
  • FIG. 4 is a schematic view of a Fresnel type reflective lens in the present invention.
  • FIG. 5 is a schematic diagram of a multifunctional solar energy system of Embodiment 1;
  • FIG. 6 is a schematic view of a multifunctional solar energy system of Embodiment 2;
  • FIG. 7 is a schematic view of a multifunctional solar energy system of Embodiment 3.
  • FIG. 8 is a schematic view of a multi-function solar energy system of Embodiment 4.
  • the basic structure of the multifunctional solar energy system according to the present invention can be referred to FIG. 1, including a convergence system and two solar energy utilization devices P1 and P2.
  • the convergence system includes at least one condensing refractive surface si and a reflecting surface s2, and the reflecting surface is disposed below the condensing refractive surface in a direction in which the sunlight is incident. At least one of s2, Pl, and P2 is mobile.
  • si and s2 may be provided by the same physical component, for example, a converging lens coated with a reflective film on one side, the coated surface is a reflective surface, and the other side is a concentrated refractive surface.
  • the mobile component is one of two solar energy utilization devices, and both need to be arranged above the concentrating refractive surface.
  • si and s2 may be provided by separate physical components, and the elements providing the reflective surface may also have a convergence capability to further enhance the concentrating power of the system.
  • the convergence system can have more than two concentrating refracting surfaces that can be combined with each other or with the reflecting surface to form a different combination of physical components.
  • the two solar energy utilization devices are sequentially arranged on the optical path behind the reflecting surface, as shown in FIG. 1(a).
  • P1 is mobile.
  • P2 ⁇ is needed, P1 can be moved from the optical path.
  • the dotted line in the figure indicates the optical path after P1 is moved.
  • P1 and P2 can be arranged between si and s2 or on s2.
  • optical path refers to the path of sunlight after convergence by the convergence system.
  • mobile means that the part can be moved from the placed position to the outside of the optical path or directly removed.
  • the two solar energy utilization devices are respectively arranged on the optical path before and after the movement of the reflective surface, as shown in FIG. 1(b), when it is necessary to use P2 ⁇ , the s2 is taken from the light. Move on the road, the dotted line in the figure shows the light path after the reflection surface moves.
  • P1 can be arranged between si and s2, or can be arranged in s2 On.
  • a suitable support member may be employed to support the convergence system and the two solar energy utilization devices to maintain their relative positional relationship and to meet mobile requirements.
  • the support members can have a variety of suitable configurations and can be designed as needed.
  • a movement control device for moving the mobile component in the preset program control system to facilitate an automated process such as cooking, automatic Boil water, etc.
  • the condensing and refracting surface may employ a tooth surface provided by a Fresnel lens.
  • a Fresnel lens For the sake of understanding, the related concept will be described below.
  • a Fresnel lens is a thin lens. By dividing the original original surface of the ordinary lens into segments, the Fresnel lens is formed by placing the segments on the same plane or the same substantially smooth surface after reducing the thickness of each segment.
  • This discontinuous refraction surface evolved from the original surface can be called a Fresnel refraction surface, which is generally stepped or toothed.
  • the Fresnel refractive surface has similar optical properties compared to the corresponding original surface, but the thickness is greatly reduced.
  • a Fresnel refraction surface created by an original surface (or part of the original surface) can be called a Fresnel cell.
  • the conventional original curved surface for generating a Fresnel refractive surface is generally a curved surface that is symmetrical about an optical axis, such as a rotating surface such as a spherical surface or a rotating paraboloid.
  • the focus of a traditional original surface is at a point, so it can be called a "common point surface.”
  • the original curved surface can be any form of coaxial surface, which can be specifically set according to the needs of the application.
  • the so-called coaxial plane refers to a surface whose focal points are on the same straight line (not necessarily at the same point), and the straight line can be called "coaxial".
  • the traditional common point surface can be regarded as a special case where the coaxial axis of the coaxial plane degenerates into a point.
  • the sensing element for setting the focus position can be extended from a smaller area (corresponding to the focus) to a long strip (corresponding to a common axis composed of the focus), thereby Improves signal collection and helps solve local overheating problems without significantly increasing costs.
  • Typical coaxial surfaces include rotating surfaces (including secondary or higher-order rotating surfaces), cylinders, cones, and so on.
  • the cylindrical surface can also be called the equal-section coaxial surface.
  • the curved surface is cut at any point along the vertical direction of the common axis, and the obtained cross-section has the same shape and size.
  • the cylindrical surface is a cylindrical one.
  • a special case The cross-section of the tapered surface along the common axis has a similar shape but a different size, and the conical surface is a special case of the tapered surface.
  • Figure 2 shows the above two coaxial planes, where Figure 2 (a) is an isometric coaxial surface, Figure 2 (b) It is a conical coaxial surface whose focal points F are all located on their respective common axes L.
  • a macroscopic refractive surface composed of one or more Fresnel cells may be referred to as a tooth surface, and a substantially smooth or flat surface opposite thereto may be referred to as a back surface.
  • a tooth surface containing only one Fresnel unit can be referred to as a "simple Fresnel refractive surface", and a tooth surface containing two or more Fresnel elements can be referred to as a "composite Fresnel refractive surface”.
  • each Fresnel unit on the Fresnel refractive surface can be flexibly arranged. , can be identical, partially identical, or completely different.
  • each Fresnel element on the composite Fresnel refraction surface has its own optical center, but the focus falls on the same point, or a straight line, or a limited area. This can be achieved by spatially arranging each Fresnel cell constituting the composite Fresnel refractive surface.
  • these Fresnel elements are arranged on a macroscopic surface, such as planes, quadric surfaces (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • a macroscopic surface such as planes, quadric surfaces (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • a Fresnel lens having a tooth surface and a back surface may be referred to as a "single-sided Fresnel lens".
  • the lens is “single-sided simple Fresnel” "Lens lens”
  • the tooth surface is “composite Fresnel refractive surface”
  • the lens is "single-sided composite Fresnel lens”.
  • Fresnel lenses with tooth flanks on both sides can be called “double-sided Fresnel lenses”, and can be further divided into “double-sided simple Fresnel lenses” and “double-sided composite Fresnel” according to the type of tooth flanks. lens". If one tooth surface of the double-sided Fresnel lens is a simple Fresnel refractive surface and the other tooth surface is a composite Fresnel refractive surface, it may be referred to as a "double-sided mixed Fresnel lens".
  • the tooth flanks may be replaced by a conventional convex lens surface or a concave lens surface.
  • Figure 3 shows a convergence system with two tooth flanks, wherein the composite Fresnel refractive surface s3 and the simple Fresnel refractive surface s4 can be provided by either a double-sided Fresnel lens or by Two single-sided Fresnel lenses are provided separately.
  • the reflecting surface of the convergence system used in the present invention may be a planar reflecting surface or a curved reflecting surface, such as a concave or convex reflecting surface, and may also be a reflecting surface of a tooth surface shape.
  • the macroscopic shape of the reflecting surface can be related to it in the system His concentrated refractive surface has a similar shape, such as a curved surface or a coaxial surface.
  • the reflective surface can be provided by an element having only a single reflective function, such as a flat plate with a reflective coating, the light being reflected directly on the surface of the element.
  • the reflective surface can also be provided by a reflective lens.
  • the so-called reflective lens refers to a lens having a reflective coating on one side, and the light is refracted from the transmitting surface into the lens and then reflected by the reflecting surface, and is again refracted through the transmitting surface.
  • a Fresnel-type reflective lens can be obtained by replacing one or both of the curved surfaces with the corresponding tooth flanks.
  • a Fresnel type reflecting lens can be referred to Fig. 4, wherein the element L1 has a plane reflecting surface s5 and a simple Fresnel reflecting surface s6. Due to the reflection, the incident light path passes through the physical refractive interface s6 twice, and the physical interface is actually equivalent to the two tooth faces, so the element L1 can also be referred to as a reflective double-sided Fresnel lens.
  • the element L1 can be formed by plating a reflective film on the back side of the single-sided Fresnel lens or pasting a patch having a reflective capability.
  • Other types of reflective lenses can also be formed by changing either side of the original lens to a reflective surface. The use of a reflective lens can easily increase the number of concentrating refracting surfaces in the optical path, reducing the cost of fabrication and installation.
  • FIG. 5 One embodiment of a multi-function solar energy system in accordance with the present invention can be seen in FIG. 5, including a Fresnel-type reflective lens 110, a first solar energy utilization device 121, and a second solar energy utilization device 122, which serve as a convergence system.
  • the first solar energy utilization device is supported on the table 131, and the second solar energy utilization device is supported on the column 132.
  • the Fresnel-type reflecting lens 110 has a smooth and circumferentially symmetrical convex surface 111 and a tooth surface 112, wherein the convex surface 111 serves as a condensing refractive surface, and the tooth surface 112 is plated with a reflecting film as a reflecting surface. Although there is only one concentrating refracting surface physically, the sunlight actually converges three times in the process of "incident through - 111 - reflection through 112 - > through 111".
  • the moving component is the first solar energy utilization device, which can be fixed or placed on the table 131.
  • the first solar energy utilization device 121 is in the optical path for use, and after the table is moved from the convergence system, the second solar energy utilization device 122 is in the optical path to provide other functions.
  • the two solar energy utilization devices may be of different types, for example, solar heating devices and photovoltaic panels, respectively, since the energy utilization efficiency of the solar heating device is usually much higher than that of the photovoltaic panels, so when there is heating demand, the solar energy is directly used.
  • the first solar energy utilization device is a solar heating device, and specifically may be a solar energy stove, a water heater, a grill, an oven, or the like.
  • the second solar energy utilization device is a photovoltaic panel, and the generated electrical energy is drawn through a wire 133 hidden in the column 132.
  • the first solar device is movable and therefore replaceable.
  • the solar cooker can be used for cooking and then replaced with a water heater to boil water.
  • the multifunctional solar energy system of the present invention includes two solar energy utilization devices, but is not limited to two, but may have multiple.
  • the second solar energy utilization device that is, one of the two solar energy utilization devices disposed above in the direction in which the sunlight is incident, is a double-sided photovoltaic panel.
  • the double-sided photovoltaic panel placed above absorbs incident sunlight from both the front and back sides, making more efficient use of solar energy.
  • the convergence system in this embodiment can be laid on the ground to form a concentrating floor or a floor tile, and is suitable for, for example, a yard of a house or a public area of a park, etc.
  • the solar energy system based on the present embodiment can provide not only outdoor power supply but also The tools of the wild donkey.
  • FIG. 6 Another embodiment of the multifunctional solar energy system according to the present invention can refer to FIG. 6.
  • the application scenario is mainly moved indoors, including a convergence system, a solar heating device 221, and a photovoltaic panel 222.
  • the convergence system includes a concentrating wall 211 and a reflective element 212.
  • the solar heating device is supported on the table 231, and the photovoltaic panel is supported on the ceiling 232.
  • the concentrating wall 211 may be constructed using a lens module having a converging ability, such as a concentrating brick made of a Fresnel lens, which provides at least one condensing refractive surface.
  • the reflective element 212 is applied to the ground and may be a flat reflective floor or a Fresnel-type reflective lens similar to that of Embodiment 1 to provide further convergence capabilities.
  • the solar heating device 221 is fixed or placed on the movable table 231, and the photovoltaic panel 222 is fixed on the ceiling 232, and the replacement process is used.
  • Example 1 is similar, and will not be described again, but the photovoltaic panel's power line needs to be along the ceiling from the wall. Leaded out.
  • the multifunctional solar energy system of the present embodiment is suitable for indoor use, such as a building or a factory building, and can maximize the utilization of solar energy that is irradiated into the room, and is suitable not only for housing but also for factories having heating needs, such as food. Processing plants, etc.
  • FIG. 7 Another embodiment of the multi-function solar energy system according to the present invention can be referred to FIG. 7, including a convergence system, a solar heating device 321 and a photovoltaic panel 322.
  • the convergence system includes a first Fresnel lens 311, a second concentrating lens 313, and a reflective element 312.
  • the solar heating device is supported on the table.
  • the photovoltaic plate is supported on the column 332.
  • the convergence system of the present embodiment employs a dual convergence structure in which the first Fresnel lens 311 is a single-sided or double-sided composite Fresnel lens, and the second condenser lens 313 is a convex lens or a Fresnel lens.
  • the reflective element 312 is mobile. When the reflective element is in the optical path, the photovoltaic panel 322 is in the optical path. When the reflective element is removed from the optical path, the solar heating device 321 is in the optical path to provide direct heating.
  • the present embodiment further includes a water tank 341 made of a transparent material.
  • the photovoltaic panel 322 i.e., one of the two solar energy utilization devices disposed above in the direction in which the sunlight is incident, is wrapped as a heat source in a heat-conducting manner by a water tank, for example, by a thermally conductive material in close contact with the water heater for heat exchange.
  • the cold water enters the water heater from the water inlet 342, and is discharged from the water outlet 343 after heat exchange with the photovoltaic panel.
  • the first Fresnel lens can be pressed by a flexible transparent material, such as a soft plastic, a flexible crystal plate, etc., and can be used as a top surface of a tent or a top surface of an umbrella, and this embodiment can be regarded as solar energy.
  • the system is used as an application scenario for outdoor umbrellas. Further, hooks or hanging holes may be provided around the first Fresnel lens.
  • the solar heating device 321 may further connect an auxiliary heat source to ensure that cooking is also possible in rainy weather.
  • the embodiment also includes the following Additional components, in other embodiments, may selectively include only one or more of them depending on the needs of the application.
  • the energy storage 351 is electrically connected to the photovoltaic panel 322 through a wire 333 for storing electrical energy.
  • the energy storage device can be selected from the group consisting of a super capacitor, a rechargeable battery, and an air compressor.
  • the AC inverter 352 is electrically connected to the energy storage device (in other embodiments, may also be directly connected to the photovoltaic panel) for converting the direct current output of the photovoltaic panel into alternating current, for example, 120 volts or 50 Hz at 60 Hz. Hertz's 220V, its connected AC terminal block 353 can provide AC output directly to the user.
  • the DC voltage output device 354 is electrically connected to the energy storage device (in other embodiments, it can also be directly connected to the photovoltaic panel) for outputting a DC voltage for user use, and the DC voltage output by the output device can be, for example. Including 12V, 9V, 5V, 3V, 1.5V and so on.
  • FIG. 8 Another embodiment of the multi-function solar energy system according to the present invention can be referred to FIG. 8, including a convergence system, a solar heating device 421, and a photovoltaic panel 422.
  • the convergence system includes a first Fresnel lens 411, a reflective element 412, and a second Fresnel lens 413.
  • the solar heating device is supported on the table 431, and the photovoltaic plate is supported on the column 432.
  • the convergence system of the present embodiment employs a dual convergence structure, and the reflective elements are disposed in front of the second Fresnel lens.
  • the first Fresnel lens 411 is a single-sided or double-sided composite Fresnel lens, similar to the embodiment 3, and can be used as a sunshade surface; the second Fresnel lens 413 is a composite or simple Fresnel lens. .
  • the convergence system of this embodiment not only achieves a good shading effect, but also enables the photovoltaic panel 422 to obtain most of the light energy that is incident on the umbrella surface with a small area.
  • the reflective element 412 is mobile, and the alternate use of the solar heating device 421 and the photovoltaic panel 422 is similar to that of the third embodiment.
  • a motion control device may also be included for moving the mobile component in the system in accordance with a preset program.
  • the reflective element can be mounted on a drive motor that moves the reflective element into or out of the optical path in accordance with a preset procedure.
  • the so-called preset program can be configured according to the needs of the scene.
  • the control program of the drive motor can be coordinated with the automatic cooking program to control the movement of the reflective element for heating after the heated material is placed on the solar heating device, and to control the reflective element after the discharge is completed. Reset to continue generating electricity.
  • the so-called preset program can also be controlled according to the environment and system parameters collected, such as light intensity or temperature.
  • the reflective element can be configured to control the movement of the reflective element at a strong illumination, such as midday in midsummer.
  • This heating device can perform high-power heating work such as seawater desalination. After the light is weakened, the control resets the reflective element. In order to continue power generation, this will help reduce the temperature of the photovoltaic panel and extend its service life.
  • a temperature and light intensity detector member 455 is mounted on the edge of the second Fresnel lens to provide parameters for intelligent control.
  • the embodiment further includes:
  • a status indicator 456, configured to detect and display operating parameters of the system, the operating parameters may be voltage
  • the AC inverter 452 of the embodiment also connects the power output to the network gateway 457 (so the AC terminal block 453 is taken out from the network gateway), and the network is connected to the external AC grid.
  • the 458 is connected such that the electrical energy generated by the solar energy system can be incorporated into the external power grid, so the system of the present embodiment can also be used to act as a solar power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Abstract

一种多功能太阳能系统,包括会聚系统和两个太阳能利用装置(P1, P2);其中,会聚系统包括至少一个聚光折射面(s1)和一个反射面(s2);反射面(s2)和两个太阳能利用装置(P1, P2)中的至少一者为移动式的,若反射面(s2)为移动式的,则两个太阳能利用装置(P1, P2)分别布置在反射面(s2)移动前及移动后的光路上,若反射面(s2)为固定式的,则两个太阳能利用装置(P1, P2)依次布置在反射面(s2)之后的光路上。该太阳能系统能够通过移动该移动式部件将两个太阳能利用装置(P1, P2)之一置于光路中,从而在不同时刻分别使用两个太阳能利用装置(P1, P2),大大扩展了太阳能系统的功用,提高了系统的综合利用率。

Description

说明书 发明名称:多功能太阳能系统 技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种对太阳能进行利用的多功能太阳 能系统。
[0002] 背景技术
[0003] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。 目前常见 的太阳能系统大多具有单一的功能, 例如进行光热转换的太阳能热水系统以及 进行光电转换的太阳能发电系统等。
[0004] 然而在人类的活动中, 往往在不同的吋间有不同的需要, 例如在餐吋需要对食 物进行加热或烹饪, 而在其他吋间又需要用电。 因此, 单一功能的太阳能系统 难以满足多方面的需要。
[0005] 发明内容
[0006] 依据本发明提供一种多功能太阳能系统, 包括会聚系统和两个太阳能利用装置 ; 其中, 会聚系统包括至少一个聚光折射面和一个反射面, 该反射面沿太阳光 入射的方向设置于聚光折射面的下方; 两个太阳能利用装置用于吸收和利用太 阳光; 反射面和两个太阳能利用装置中的至少一者为移动式的, 若反射面为移 动式的, 则两个太阳能利用装置分别布置在反射面移动前及移动后的光路上, 若反射面为固定式的, 则两个太阳能利用装置依次布置在反射面之后的光路上
[0007] 依据本发明的多功能太阳能系统具有至少一个移动式部件, 即反射面或两个太 阳能利用装置之一, 通过移动该移动式部件将两个太阳能利用装置之一置于光 路中, 能够在不同吋刻分别使用两个太阳能利用装置。 这使得在仅增加少量成 本的情况下, 成倍扩展太阳能系统的功用, 提高了系统的综合利用率, 有利于 更加充分地利用自然清洁能源。
[0008] 以下结合附图, 对依据本发明的具体示例进行详细说明。
[0009] 附图说明 [0010] 图 1是依据本发明的多功能太阳能系统的基本结构示意图;
[0011] 图 2是本发明中用于生成菲涅尔折射面的两种共轴面的示意图;
[0012] 图 3是本发明中具有两个齿面的会聚系统的示意图;
[0013] 图 4是本发明中的一种菲涅尔式反射透镜的示意图;
[0014] 图 5是实施例 1的多功能太阳能系统的示意图;
[0015] 图 6是实施例 2的多功能太阳能系统的示意图;
[0016] 图 7是实施例 3的多功能太阳能系统的示意图;
[0017] 图 8是实施例 4的多功能太阳能系统的示意图。
[0018] 具体实施方式
[0019] 依据本发明的多功能太阳能系统的基本结构可参考图 1, 包括会聚系统和两个 太阳能利用装置 P1和 P2。 会聚系统包括至少一个聚光折射面 si和一个反射面 s2, 反射面沿太阳光入射的方向设置于聚光折射面的下方。 s2、 Pl、 P2中的至少一 者为移动式的。
[0020] 在极简单的情况下, si和 s2可以由同一物理元件来提供, 例如一面镀有反射膜 的会聚透镜, 其镀膜面即为反射面, 而另一面则为聚光折射面, 这种情况下, 移动式部件为两个太阳能利用装置之一, 且均需布置在聚光折射面之上。
[0021] 一般而言, si和 s2可以由分离的物理元件来提供, 且提供反射面的元件同样可 具有会聚能力, 以进一步提高系统的聚光能力。 换言之, 会聚系统中可具有两 个以上的聚光折射面, 它们可以彼此结合或与反射面结合从而构成不同的物理 元件组合。
[0022] 若反射面为固定式的, 则两个太阳能利用装置依次布置在反射面之后的光路上 , 如图 1(a)所示。 这种情况下 P1是移动式的, 当需要使用 P2吋, 将 P1从光路上移 幵即可, 图中虚线即表示 P1移幵后的光路。 P1和 P2既可以布置在 si和 s2之间, 也 可以布置在 s2之上。 本文中, 所称光路是指太阳光经会聚系统会聚后的光路, 所 称"移动式"是指部件可以从所布置的位置上移动至光路外或直接被移除。
[0023] 若反射面为移动式的, 则两个太阳能利用装置分别布置在反射面移动前及移动 后的光路上, 如图 1(b)所示, 当需要使用 P2吋, 将 s2从光路上移幵即可, 图中虚 线即表示反射面移幵后的光路。 P1既可以布置在 si和 s2之间, 也可以布置在 s2之 上。
[0024] 可采用适当的支撑部件 (未图示) 来支撑会聚系统和两个太阳能利用装置, 以 保持它们之间的相对位置关系以及满足移动式的要求。 根据具体应用场景的不 同, 支撑部件可以有各种适合的形态, 可根据需要进行设计。 在某些实施例中 , 还可进一步包括移动控制装置, 其用于按照预置的程序控制系统中为移动式 的部件进行移动, 以便于实现某种自动化的处理过程, 例如定吋烹饪、 自动烧 水等。
[0025] 作为一种优选的实施方式, 聚光折射面可采用由菲涅尔透镜提供的齿面, 为便 于理解, 以下先对相关概念进行介绍。
[0026] 菲涅尔 (Fresnel) 透镜是一种薄型透镜。 通过将普通透镜连续的原始曲面分割 成若干段, 在减少每段的厚度后将各段曲面置于同一平面或同一基本光滑的曲 面上即形成为菲涅尔透镜。 这种由原始曲面演变而来的不连续的折射面可称为 菲涅尔折射面, 一般呈阶梯状或齿状。 理论上菲涅尔折射面与相应的原始曲面 相比具有近似的光学性能, 但厚度却大为减少。 可以将由一个原始曲面 (或原 始曲面的一部分) 生成的菲涅尔折射面称为一个菲涅尔单元。
[0027] 传统的用于生成菲涅尔折射面的原始曲面一般为绕光轴对称的曲面, 例如球面 、 旋转抛物面等旋转曲面。 传统的原始曲面的焦点在一个点上, 因此, 可称为" 共点面"。 在本发明中, 原始曲面可以是任何形式的共轴面, 可根据应用的需要 具体设置。 所称共轴面是指焦点在同一直线上 (而不一定是在同一个点上) 的 曲面, 该直线可称为 "共轴线"。 传统的共点面可视为共轴面的共轴线退化为一个 点吋的特例。 采用共轴但不共点的原始曲面, 可以将用于设置在聚焦位置的感 应元件从较小的面积 (对应于焦点) 扩展为长条形 (对应于由焦点组成的共轴 线) , 从而在不显著增加成本的情况下, 提升信号收集的能力并有助于解决局 部过热问题。 典型的共轴面包括旋转曲面 (含二次或高阶旋转曲面) 、 柱面、 锥面等。 其中柱面又可称为等截面共轴面, 这种曲面沿着共轴线的垂直方向在 任何一点切幵, 所得到的横截面的形状和大小都是一致的, 圆柱面是柱面的一 种特例。 锥面沿着共轴线的横截面则具有相似的形状但大小不同, 圆锥面是锥 面的一种特例。 图 2示出了以上两种共轴面, 其中图 2(a)为等截面共轴面, 图 2(b) 为锥形共轴面, 其焦点 F均位于各自的共轴线 L上。
[0028] 由一个或多个菲涅尔单元组成的宏观折射面可称为齿面, 与之相对的基本光滑 或平坦的面则可称为背面。 可将只含有一个菲涅尔单元的齿面称为"简单菲涅尔 折射面", 而将含有两个以上菲涅尔单元的齿面称为 "复合菲涅尔折射面"。 一般 而言, 复合菲涅尔折射面上各个菲涅尔单元的基本参数 (例如, 面积、 焦距、 所对应的原始曲面的形状、 分割原始曲面所使用的同心环的数量等) 均可以灵 活布置, 可以完全相同、 部分相同或完全不同。 在一种实施方式中, 复合菲涅 尔折射面上的每个菲涅尔单元各自有自己的光学中心, 但焦点落在同一个点, 或者一条直线, 或者一个有限的区域内。 这可以通过对构成该复合菲涅尔折射 面的每个菲涅尔单元进行空间布置来实现。 可以认为这些菲涅尔单元被布置在 一个宏观曲面上, 例如平面、 二次曲面 (包括球面、 椭球面、 圆柱面、 抛物柱 面、 双曲柱面) 、 高阶多项式曲面 (非球面的通常实现方式) 、 以及由多个平 面拼接成的折面以及梯台面等。
[0029] 齿面和背面可以灵活地组合以形成不同类型的元件。 例如具有一个齿面和一个 背面的菲涅尔透镜可称为"单面菲涅尔透镜", 进一步的, 若齿面为"简单菲涅尔 折射面", 则透镜为"单面简单菲涅尔透镜", 若齿面为"复合菲涅尔折射面", 则 透镜为 "单面复合菲涅尔透镜"。 两面都是齿面的菲涅尔透镜可称为 "双面菲涅尔 透镜", 并同样可根据齿面的类型进一步分为"双面简单菲涅尔透镜 "和"双面复合 菲涅尔透镜"。 若双面菲涅尔透镜的一个齿面为简单菲涅尔折射面, 而另一个齿 面为复合菲涅尔折射面, 则可称为"双面混合菲涅尔透镜"。 此外, 作为一种变形 , 在双面菲涅尔透镜中, 若齿面之一为 "简单菲涅尔折射面", 则该齿面可以由一 个传统的凸透镜面或凹透镜面来取代。
[0030] 在同一光路上设置两个或更多的齿面可以使会聚系统具有更好的会聚能力。 图 3示出了一种具有两个齿面的会聚系统, 其中, 复合菲涅尔折射面 s3和简单菲涅 尔折射面 s4既可以由一个双面菲涅尔透镜同吋提供, 也可以由两个单面菲涅尔透 镜分别提供。
[0031] 用于本发明的会聚系统的反射面可以是平面反射面或曲面反射面, 例如凹面或 凸面反射面, 还可以是齿面形状的反射面。 反射面的宏观形状可以与系统中其 他聚光折射面的形状相似, 例如为旋转曲面或共轴面。 反射面可以由仅具有单 一反射功能的元件来提供, 例如具有反射镀膜的平板, 光线直接在元件表面进 行反射。 反射面也可以由反射透镜来提供。 所称反射透镜指一面具有反射镀膜 的透镜, 光线从透射面折射进入透镜后再由反射面反射, 并再次经过透射面折 射出元件。
[0032] 将不同类型的反射面与不同类型的透射面灵活组合可以形成不同类型的反射透 镜。 特别地, 将反射透镜中的一个或两个曲面替换为相应的齿面, 即可得到菲 涅尔式反射透镜。 一种菲涅尔式反射透镜可参考图 4, 其中, 元件 L1具有平面反 射面 s5和简单菲涅尔折射面 s6。 由于反射, 入射光路两次经过物理折射界面 s6, 该物理界面实际上等效于两个齿面, 因此元件 L1也可被称为反射式双面菲涅尔 透镜。 元件 L1可以通过在单面菲涅尔透镜的背面镀反射膜或者粘贴具有反射能 力的贴片来形成, 其他类型的反射透镜也可以通过将原始透镜的任意一面变为 反射面来形成。 使用反射透镜能够简便地增加光路中聚光折射面的数量, 降低 制作和安装的成本。
[0033] 以下结合具体的应用场景对依据本发明的多功能太阳能系统的几种使用形态进 行举例说明。
[0034] 实施例 1
[0035] 依据本发明的多功能太阳能系统的一种实施方式可参考图 5, 包括用作会聚系 统的菲涅尔式反射透镜 110, 第一太阳能利用装置 121和第二太阳能利用装置 122 。 第一太阳能利用装置支撑于桌台 131, 第二太阳能利用装置支撑于立柱 132。
[0036] 菲涅尔式反射透镜 110具有一个光滑而圆周对称的凸面 111和一个齿面 112, 其 中, 凸面 111作为聚光折射面, 齿面 112镀有反射膜作为反射面。 虽然物理上只 有一个聚光折射面, 但实际上太阳光在"经 111入射- >经112反射- >经111出射"的 过程中进行了 3次会聚。
[0037] 本实施例中, 由于反射面和聚光折射面由同一个物理元件提供, 是不能移动的 , 因此移动部件为第一太阳能利用装置, 其可以固定或放置在桌台 131上。 当桌 台放置在会聚系统上方吋, 第一太阳能利用装置 121处于光路中以供使用, 当桌 台从会聚系统上移幵后, 第二太阳能利用装置 122即处于光路中以提供其他功能 [0038] 两个太阳能利用装置可以是不同的类型, 例如, 分别为太阳能加热装置和光伏 板, 由于太阳能加热装置的能量利用效率通常远高于光伏板, 因此在有加热需 求吋, 直接使用太阳能加热装置比将太阳能转化为电能后再用电加热能更好地 利用光能。 本实施例中, 第一太阳能利用装置为太阳能加热装置, 具体可以是 太阳能灶、 热水器、 烤架、 烤箱等。 第二太阳能利用装置为光伏板, 产生的电 能通过隐藏于立柱 132中的导线 133引出。 需要说明的是, 第一太阳能装置是可 移动的, 因此也是可更换的, 例如, 可以先用太阳能灶炒菜后, 再换成热水器 来烧水。 本发明多功能太阳能系统中包括两个太阳能利用装置, 但并不局限于 两个, 而是可以有多个。
[0039] 作为一种优选的实施方式, 第二太阳能利用装置, 即两个太阳能利用装置中沿 太阳光入射的方向布置在上方的一者, 为双面光伏板。 布置在上方的双面光伏 板能够从正面和反面两个方向吸收入射的太阳光, 能够更充分地利用太阳能。
[0040] 本实施例中的会聚系统可以敷设在地面上成为聚光地板或地砖, 适用于例如住 宅的院子或公园的公共区域等, 基于本实施例的太阳能系统不仅能够提供户外 供电, 也提供了野炊的工具。
[0041] 实施例 2
[0042] 依据本发明的多功能太阳能系统的另一种实施方式可参考图 6, 与实施例 1相比 , 主要是将应用场景移动到了室内, 包括会聚系统, 太阳能加热装置 221和光伏 板 222。 其中, 会聚系统包括聚光墙 211和反射元件 212, 太阳能加热装置支撑于 桌台 231, 光伏板支撑于天花板 232。
[0043] 聚光墙 211可采用具有会聚能力的透镜模块砌成, 例如菲涅尔透镜制成的聚光 砖, 其提供至少一个聚光折射面。 反射元件 212敷设在地面上, 可以是平面反光 地板, 也可以是类似于实施例 1中的菲涅尔式反射透镜, 以提供进一步的会聚能 力。
[0044] 本实施例中, 由于反射元件设置于地面, 是不能移动的, 因此太阳能加热装置 221固定或放置在可移动的桌台 231上, 光伏板 222固定在天花板 232上, 替换使 用过程与实施例 1类似, 不再赘述, 不过光伏板的输电线需要沿着天花板从墙体 中引出。
[0045] 本实施例的多功能太阳能系统适合在室内使用, 例如楼房或厂房, 能够最大化 地利用照射到室内的太阳能, 不仅适合用于住宅, 也适合用于具有加热需要的 工厂, 例如食品加工厂等。
[0046] 实施例 3
[0047] 依据本发明的多功能太阳能系统的另一种实施方式可参考图 7, 包括会聚系统 , 太阳能加热装置 321和光伏板 322。 其中, 会聚系统包括第一菲涅尔透镜 311、 第二聚光透镜 313和反射元件 312, 太阳能加热装置支撑于桌台 331, 光伏板支撑 于立柱 332。
[0048] 本实施例的会聚系统采用双重会聚结构, 其中, 第一菲涅尔透镜 311为单面或 双面复合菲涅尔透镜, 第二聚光透镜 313为凸透镜或菲涅尔透镜。
[0049] 反射元件 312为移动式的, 当反射元件位于光路上吋, 光伏板 322处于光路中, 当反射元件移出光路后, 太阳能加热装置 321即处于光路中以提供直接加热的功 能。
[0050] 为更充分地利用太阳能, 本实施例中还包括以透明材料制作的水箱 341。 光伏 板 322, 即两个太阳能利用装置中沿太阳光入射的方向布置在上方的一者, 作为 热源以热传导的方式被水箱包裹, 例如通过导热材质与热水器紧密接触以进行 热交换。 冷水从进水口 342进入热水器, 与光伏板进行热交换后从出水口 343流 出。
[0051] 第一菲涅尔透镜可采用柔性透明材料压制而成, 例如软质塑胶、 柔性水晶板等 , 可用于作为帐篷的顶面或伞的顶面, 则本实施例可以视为将太阳能系统用作 户外遮阳伞的应用场景。 还可进一步在第一菲涅尔透镜的周围设置挂钩或挂孔
(未图示) , 以用于安装围帐 334, 从而将本实施例的太阳能系统变成一个可供 居住的太阳能帐篷。 若第一菲涅尔透镜采用硬质材料制成, 并将围帐 334替换成 围墙, 则本实施例可视为安装在厨房里的屋顶太阳能系统。 在其他实施方式中 , 为确保在阴雨天吋也能进行烹饪, 太阳能加热装置 321还可进一步连接辅助热 源。
[0052] 为更好地存储和利用由太阳能转换得到的电能, 本实施例中还包含以下列出的 附加元件, 在其他实施方式中, 可以根据应用的需要选择性地只包含其中的一 种或几种。
[0053] 能量存储器 351, 与光伏板 322通过导线 333电连接, 用于储存电能。 能量存储 器可选自超级电容、 可充电电池和空气压缩机。
[0054] 交流逆变器 352, 与能量存储器电连接 (在其他实施方式中, 也可以直接与光 伏板电连接) , 用于将光伏板输出的直流电转换为交流电, 例如 60赫兹的 120V 或 50赫兹的 220V, 其连接的交流接线板 353可以直接向用户提供交流输出。
[0055] 直流电压输出装置 354, 与能量存储器电连接 (在其他实施方式中, 也可以直 接与光伏板电连接) , 用于输出直流电压, 以便于用户使用, 输出装置输出的 直流电压例如可包括 12V、 9V、 5V、 3V、 1.5V等。
[0056] 实施例 4
[0057] 依据本发明的多功能太阳能系统的另一种实施方式可参考图 8, 包括会聚系统 , 太阳能加热装置 421和光伏板 422。 其中, 会聚系统包括第一菲涅尔透镜 411、 反射元件 412和第二菲涅尔透镜 413, 太阳能加热装置支撑于桌台 431, 光伏板支 撑于立柱 432。
[0058] 本实施例的会聚系统采用双重会聚结构, 且反射元件布置在第二菲涅尔透镜之 前。 其中, 第一菲涅尔透镜 411为单面或双面复合菲涅尔透镜, 与实施例 3中类 似, 可用作遮阳伞面; 第二菲涅尔透镜 413为复合或简单菲涅尔透镜。 本实施例 的会聚系统不仅能够获得良好的遮阳效果, 也使得光伏板 422能够以较小的面积 获得大部分照射到伞面上的光能。
[0059] 反射元件 412为移动式的, 太阳能加热装置 421和光伏板 422的交替使用方式与 实施例 3类似。
[0060] 为实现自动化的交替控制, 还可进一步包括移动控制装置 (未图示) , 其用于 按照预置的程序控制系统中为移动式的部件进行移动。 对于本实施例而言, 可 以将反射元件安装在一个驱动电机上, 按照预置的程序将反射元件移入或移出 光路。 所称预置的程序可以根据场景的需要进行配置。 例如, 对于自动烹饪类 应用, 驱动电机的控制程序可以与自动烹饪程序协同, 在被加热材料投放到太 阳能加热装置后控制将反射元件移幵以进行加热, 在完成出料后控制反射元件 复位以继续发电。 所称预置的程序还可以根据实吋采集的环境及系统参数来进 行控制, 例如光强或温度等。 例如, 可以配置为在光照强烈的吋候, 如盛夏的 正午, 控制将反射元件移幵, 此吋加热装置可以进行海水淡化等需要大功率的 加热工作, 在光照减弱后, 控制将反射元件复位以继续发电, 这样有利于降低 光伏板的温度, 延长其使用寿命。 本实施例中, 在第二菲涅尔透镜边缘安装有 温度和光强探测器件 455, 以为智能控制提供参数。
[0061] 在附加元件方面, 除了与实施例 3类似的能量存储器 451、 交流逆变器 452、 交 流接线板 453、 直流电压输出装置 454以外, 本实施例还包括:
[0062] 状态指示器 456, 用于检测并显示系统的运行参数, 这些运行参数可以是电压
、 电流、 功率、 温度等, 以便于用户掌握太阳能系统的运行状况; 可通过设置 与所需要的参数类型对应的检测器件来获得这些参数, 例如温度探头等; 移动 部件的智能控制程序可以与状态指示器集成在一起。
[0063] 此外, 本实施例的交流逆变器 452还将电力输出连接至连网幵关柜 457 (因此交 流接线板 453自连网幵关柜引出) , 连网幵关柜与外部交流电网 458相连, 使得 太阳能系统产生的电能可以并入到外部电网中, 因此本实施例系统还可用于充 当太阳能电站。
[0064] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
一种多功能太阳能系统, 其特征在于, 包括,
会聚系统, 其包括至少一个聚光折射面 (sl)和一个反射面 (s2), 所述 反射面沿太阳光入射的方向设置于所述聚光折射面的下方; 两个太阳能利用装置 (PI, P2) , 用于吸收和利用太阳光;
所述反射面和两个太阳能利用装置中的至少一者为移动式的, 若所述反射面为移动式的, 所述两个太阳能利用装置分别布置在反射 面移动前及移动后的光路上,
若所述反射面为固定式的, 所述两个太阳能利用装置依次布置在所述 反射面之后的光路上。
如权利要求 1所述的太阳能系统, 其特征在于, 所述至少一个聚光折 射面为齿面, 含有至少一个菲涅尔单元。
如权利要求 2所述的太阳能系统, 其特征在于, 所述齿面和 /或所述反 射面的宏观曲面的形状为旋转曲面或共轴面。
如权利要求 2所述的太阳能系统, 其特征在于, 所述会聚系统包括第 一菲涅尔透镜和反射元件, 其中,
第一菲涅尔透镜的类型选自: 单面简单菲涅尔透镜、 单面复合菲涅尔 透镜、 双面简单菲涅尔透镜、 双面复合菲涅尔透镜、 双面混合菲涅尔 透镜;
所述反射元件的类型选自: 仅具有单一反射平面或反射曲面的反射元 件、 平面反射镜、 由平面反射面与凹面或凸面透射面组合成的反射透 镜、 菲涅尔式反射透镜。
如权利要求 1所述的太阳能系统, 其特征在于, 还包括移动控制装置 , 所述移动控制装置用于按照预置的程序控制所述系统中为移动式的 部件进行移动。
如权利要求 1至 5任意一项所述的太阳能系统, 其特征在于, 所述两个 太阳能利用装置的类型分别选自如下类型之一: 太阳能加热装置, 光 伏板。 [权利要求 7] 如权利要求 1至 5任意一项所述的太阳能系统, 其特征在于, 所述两个 太阳能利用装置中, 沿太阳光入射的方向布置在上方的一者为双面光 伏板。
[权利要求 8] 如权利要求 1至 5任意一项所述的太阳能系统, 其特征在于, 还包括以 透明材料制作的水箱, 所述两个太阳能利用装置中, 沿太阳光入射的 方向布置在上方的一者作为热源以热传导的方式被所述水箱包裹。
[权利要求 9] 如权利要求 1至 5任意一项所述的太阳能系统, 其特征在于, 所述聚光 折射面或反射面的周围设置有挂钩或挂孔, 所述挂钩或挂孔用于安装 围帐。
[权利要求 10] 如权利要求 6所述的太阳能系统, 其特征在于, 所述两个太阳能利用 装置中至少一者的类型为光伏板, 所述系统还包括以下元件中的一种 或多种:
能量存储器, 与所述光伏板电连接, 用于储存电能, 所述能量存储器 选自超级电容、 可充电电池和空气压缩机;
交流逆变器, 与所述光伏板电连接, 用于将光伏板输出的直流电转换 为交流电;
直流电压输出装置, 与双面光伏板电连接, 用于输出直流电压; 状态指示器, 用于检测并显示系统的运行参数, 所述运行参数选自电 压、 电流、 功率、 温度。
PCT/CN2016/083621 2015-06-01 2016-05-27 多功能太阳能系统 WO2016192588A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US15/578,681 US10277166B2 (en) 2015-06-01 2016-05-27 Multifunctional solar energy system
ES16802511T ES2837054T3 (es) 2015-06-01 2016-05-27 Sistema de energía solar multifuncional
MYPI2017704467A MY184220A (en) 2015-06-01 2016-05-27 Multifunctional solar energy system
CA2987477A CA2987477C (en) 2015-06-01 2016-05-27 Multifunctional solar energy system
NZ738803A NZ738803A (en) 2015-06-01 2016-05-27 Multifunctional solar energy system
RU2017145937A RU2671254C1 (ru) 2015-06-01 2016-05-27 Многофункциональная солнечная энергетическая система
KR1020177037526A KR101983121B1 (ko) 2015-06-01 2016-05-27 다기능 태양 에너지 시스템
AU2016271919A AU2016271919B2 (en) 2015-06-01 2016-05-27 Multifunctional solar energy system
BR112017025373-9A BR112017025373A2 (pt) 2015-06-01 2016-05-27 sistema de energia solar multifuncional
MX2017015335A MX2017015335A (es) 2015-06-01 2016-05-27 Sistema de energia solar multifuncional.
EP16802511.2A EP3306223B1 (en) 2015-06-01 2016-05-27 Multifunctional solar energy system
JP2017562356A JP6636049B2 (ja) 2015-06-01 2016-05-27 多機能な太陽エネルギーシステム
IL255867A IL255867B (en) 2015-06-01 2017-11-22 Multipurpose solar energy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510291476.XA CN106288437B (zh) 2015-06-01 2015-06-01 多功能太阳能系统
CN201510291476.X 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016192588A1 true WO2016192588A1 (zh) 2016-12-08

Family

ID=57440196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083621 WO2016192588A1 (zh) 2015-06-01 2016-05-27 多功能太阳能系统

Country Status (15)

Country Link
US (1) US10277166B2 (zh)
EP (1) EP3306223B1 (zh)
JP (1) JP6636049B2 (zh)
KR (1) KR101983121B1 (zh)
CN (1) CN106288437B (zh)
AU (1) AU2016271919B2 (zh)
BR (1) BR112017025373A2 (zh)
CA (1) CA2987477C (zh)
ES (1) ES2837054T3 (zh)
IL (1) IL255867B (zh)
MX (1) MX2017015335A (zh)
MY (1) MY184220A (zh)
NZ (1) NZ738803A (zh)
RU (1) RU2671254C1 (zh)
WO (1) WO2016192588A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133116A1 (zh) * 2017-01-23 2018-07-26 博立多媒体控股有限公司 菲涅尔聚光装置
CN108931063A (zh) * 2018-08-09 2018-12-04 北京兆阳能源技术有限公司 太阳能利用装置、太阳能发电或热利用系统以及构筑物
TWI704764B (zh) * 2019-05-10 2020-09-11 黃培勛 集光鏡片、集光模組、太陽能電池裝置以及太陽能電池系統
CN110967118B (zh) * 2019-11-26 2021-09-28 博立码杰通讯(深圳)有限公司 菲涅尔透镜单元感应装置
CN113783504A (zh) * 2021-07-26 2021-12-10 天津科技大学 光伏光热系统及其控制方法
US11619399B1 (en) * 2021-09-22 2023-04-04 William H. White Systems and methods for direct use of solar energy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943484A (zh) * 2010-06-28 2011-01-12 肖立峰 静止反射面聚光太阳能锅炉
WO2012020146A1 (es) * 2010-08-09 2012-02-16 Compañia Valenciana De Energias Renovables, S.A. Concentrador solar con sistema de soporte y seguimiento solar
US20150053253A1 (en) * 2012-09-02 2015-02-26 Mark Joseph O'Neill Fresnel Lens Solar Concentrator Configured to Focus Sunlight at Large Longitudinal Incidence Angles onto an Articulating Energy Receiver

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833521B2 (ja) * 1975-07-14 1983-07-20 ナダグチ アキラ 複合フレネル凹、凸柱面をもつレンズ
JPS5877262A (ja) * 1981-10-20 1983-05-10 ビクト−ル・フオスカノウイツチ・アフイアン 太陽電池
JPS6190473A (ja) * 1984-10-09 1986-05-08 Nec Corp 集光式太陽光発電装置
JPH03263549A (ja) * 1990-03-13 1991-11-25 Kyocera Corp 太陽エネルギー収集装置
RU2225965C1 (ru) * 2003-04-01 2004-03-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный модуль с концентратором
RU2252371C2 (ru) * 2003-07-09 2005-05-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Солнечный модуль с концентратором
US20050081909A1 (en) * 2003-10-20 2005-04-21 Paull James B. Concentrating solar roofing shingle
US20050092360A1 (en) * 2003-10-30 2005-05-05 Roy Clark Optical concentrator for solar cell electrical power generation
US20070137691A1 (en) * 2005-12-19 2007-06-21 Cobb Joshua M Light collector and concentrator
NL1031544C2 (nl) * 2006-04-07 2007-10-09 Suncycle B V Inrichting voor het omzetten van zonne-energie.
FR2927155B1 (fr) * 2007-03-05 2010-04-02 R & D Ind Sarl Capteur solaire.
FR2927154A1 (fr) * 2007-03-05 2009-08-07 R & D Ind Sarl Capteur solaire
WO2009075195A1 (ja) * 2007-12-10 2009-06-18 Toyota Jidosha Kabushiki Kaisha 太陽電池モジュール
CN101251641B (zh) * 2008-03-28 2010-08-25 陕西科技大学 透射式太阳能聚光器
CN101261045A (zh) * 2008-04-15 2008-09-10 孙暖 大型太阳能巡日集能系统
KR20100044605A (ko) * 2008-10-22 2010-04-30 한국썬코아 주식회사 태양광 발전시스템의 집광장치
JP5359195B2 (ja) * 2008-10-30 2013-12-04 株式会社ノーリツ ソーラーシステム
RU2382953C1 (ru) * 2008-12-29 2010-02-27 Федеральное государственное унитарное предприятие "Всероссийский Электротехнический институт им. В.И. Ленина" (ФГУП ВЭИ) Комбинированная солнечно-энергетическая станция
JP2011253130A (ja) * 2010-06-04 2011-12-15 Hitachi Consumer Electronics Co Ltd 背面投射型映像表示装置
CN103138631A (zh) * 2011-11-24 2013-06-05 陕西科林能源发展股份有限公司 一种太阳能聚焦光热分离元件
KR20130088516A (ko) * 2012-01-31 2013-08-08 기세웅 프레넬 렌즈를 이용한 태양에너지 이용 장치
CN102734943A (zh) * 2012-06-27 2012-10-17 苏州阳光四季太阳能有限公司 分体式平板太阳能光热光伏系统
EP2954266A1 (en) * 2013-02-05 2015-12-16 Helioslite Tracking photovoltaic solar system, and methods for installing or for using such tracking photovoltaic solar system
US9236516B2 (en) * 2013-03-01 2016-01-12 Glenn M. Goldsby Solar energy collector apparatus
CN103258894B (zh) * 2013-04-16 2015-07-01 杨浩仁 太阳能电热利用装置及其利用方法
KR101521707B1 (ko) * 2013-09-16 2015-05-28 허정행 태양열 에너지의 집광비 조절장치
US9842951B2 (en) * 2014-06-27 2017-12-12 Sunpower Corporation Encapsulants for photovoltaic modules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943484A (zh) * 2010-06-28 2011-01-12 肖立峰 静止反射面聚光太阳能锅炉
WO2012020146A1 (es) * 2010-08-09 2012-02-16 Compañia Valenciana De Energias Renovables, S.A. Concentrador solar con sistema de soporte y seguimiento solar
US20150053253A1 (en) * 2012-09-02 2015-02-26 Mark Joseph O'Neill Fresnel Lens Solar Concentrator Configured to Focus Sunlight at Large Longitudinal Incidence Angles onto an Articulating Energy Receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306223A4 *

Also Published As

Publication number Publication date
NZ738803A (en) 2019-04-26
CN106288437A (zh) 2017-01-04
MY184220A (en) 2021-03-26
EP3306223A4 (en) 2019-01-02
AU2016271919B2 (en) 2019-01-17
EP3306223B1 (en) 2020-09-30
MX2017015335A (es) 2018-03-28
IL255867A (en) 2018-01-31
BR112017025373A2 (pt) 2018-08-07
IL255867B (en) 2021-05-31
CN106288437B (zh) 2018-11-20
EP3306223A1 (en) 2018-04-11
CA2987477A1 (en) 2016-12-08
RU2671254C1 (ru) 2018-10-30
JP6636049B2 (ja) 2020-01-29
KR20180014049A (ko) 2018-02-07
ES2837054T3 (es) 2021-06-29
CA2987477C (en) 2019-12-17
AU2016271919A1 (en) 2018-02-01
US20180159465A1 (en) 2018-06-07
US10277166B2 (en) 2019-04-30
KR101983121B1 (ko) 2019-05-29
JP2018522191A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2016192588A1 (zh) 多功能太阳能系统
CN104061525B (zh) 一种太阳能照明装置
EP1883770A2 (en) Apparatus and method for collecting energy
CN204005711U (zh) 一种多功能太阳能照明装置
WO2016133484A1 (ru) Солнечно-ветровая установка
AU2015382917B2 (en) Concentrated solar energy system
CN103199743A (zh) 一种可控双状态反光聚光太阳能集热发电装置
AU2015404010A1 (en) Enclosed solar energy utilization device and system
JP2018512833A (ja) 表面ソーラーシステム
US10554168B2 (en) Light-concentrating solar system
CN202547126U (zh) 一种双管式自给电多功能太阳能灶具
CN205066192U (zh) 一种机电一体化蝶式太阳能聚热装置
CN102635958A (zh) 一种双管式自给电多功能太阳能灶具
CN102313363B (zh) 家用太阳能综合利用系统
CN2177202Y (zh) 太阳能采集瓦
CN207863319U (zh) 一种透光构件及具有该透光构件的温室大棚、房屋结构
CN109539599A (zh) 一种充分利用太阳能的方法、装置、控制系统及热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 255867

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2987477

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015335

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017562356

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177037526

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016802511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2017145937

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016271919

Country of ref document: AU

Date of ref document: 20160527

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025373

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017025373

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171127