WO2018018480A1 - 聚光式太阳能系统 - Google Patents

聚光式太阳能系统 Download PDF

Info

Publication number
WO2018018480A1
WO2018018480A1 PCT/CN2016/091988 CN2016091988W WO2018018480A1 WO 2018018480 A1 WO2018018480 A1 WO 2018018480A1 CN 2016091988 W CN2016091988 W CN 2016091988W WO 2018018480 A1 WO2018018480 A1 WO 2018018480A1
Authority
WO
WIPO (PCT)
Prior art keywords
arched cover
reflective
light
lens
arched
Prior art date
Application number
PCT/CN2016/091988
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2016/091988 priority Critical patent/WO2018018480A1/zh
Publication of WO2018018480A1 publication Critical patent/WO2018018480A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular to a concentrating solar energy system that utilizes solar energy.
  • concentrating solar systems typically face the problem of drift of the focus as the position of the sun changes.
  • a sun tracking system also known as a Japanese system.
  • the solar tracking system is mainly used to adjust the orientation and attitude of the concentrating system or photovoltaic panel as the direction of the sun changes, so that the concentrated solar energy can always fall on the photovoltaic panel as perpendicularly as possible.
  • photovoltaic panels are used to represent various photoelectric conversion devices, including but not limited to: polycrystalline silicon photovoltaic panels, monocrystalline silicon photovoltaic panels, amorphous silicon photovoltaic panels, III-V semiconductor photovoltaic panels, and copper indium gallium selenide ( CIGS) Photovoltaic panels, calcium-titanium photovoltaic panels, photovoltaic films, etc.
  • a concentrating solar energy system includes a reflective concentrating lens having a condensing refractive surface and a reflecting surface disposed opposite to the condensing refractive surface; an arched cover disposed on Above the reflective concentrating lens, the concave surface of the arched cover faces the condensing and refracting surface of the reflective concentrating lens, and the normal of the center of the arched top is coincident or parallel with the optical axis of the reflective concentrating lens, and the arched hood At least partially formed as a one-way transmission mirror that transmits light from the convex surface of the arched cover more than from the arched cover.
  • the transmittance of the concave light, the reflectance of the light from the concave surface of the arched cover is greater than the reflectance of the light from the convex surface of the arched cover; and a photovoltaic panel disposed on the reflective concentrating lens and the arched cover Between, or set on one of the opposite faces.
  • a reflective concentrating lens and a unidirectional transmission mirror are respectively disposed below and above the photovoltaic panel, and the unidirectional transmission mirror enables the light outside the arched shape to enter the arch with a high transmittance.
  • the inside of the shape, while the light inside the arch is reflected to reach the photovoltaic panel as much as possible.
  • the inner and outer parts are distinguished by an arched convex direction, and the convex surface of the arched cover faces the outer portion of the arch, and the concave surface of the arched cover faces the inner portion of the arch.
  • the magnitude of the change in the position of the sun caused by the earth revolution is small in the north-south direction, and the drift of the focus position caused by the expansion of the photovoltaic panel can be solved by slightly expanding the size of the photovoltaic panel in the north-south direction.
  • photovoltaic panels have a certain area, so this requirement can be easily met.
  • the variation of the position of the sun in the east-west direction due to the rotation of the earth is large, and the drift of the focus position caused by the rotation of the earth can be solved by providing an arched cover containing a one-way transmission mirror.
  • the system according to the present invention can achieve the effect of the Japanese in a fixed structure, and can maintain high light energy utilization efficiency without using the sun tracking system, thereby improving the overall cost performance of the system and reducing the maintenance requirement. It also makes it more suitable for solar applications in remote and harsh environments, such as fixed lighting for outdoor use.
  • the span direction of the arch cover with the east-west direction (ie, the direction in which the sun moves in the middle of the day) to obtain better light energy utilization efficiency.
  • FIG. 1 is a schematic view of a solar energy system of Embodiment 1;
  • FIG. 2 is a schematic view of several alternative shapes of a cross section of an arched cover in accordance with the present invention.
  • FIG. 3 is a schematic view of a solar energy system of Embodiment 2;
  • the optical element in the solar energy system according to the present invention may preferably employ a Fresnel lens, and a detailed description of such a lens can be found in the name "Fresnel Lens System", published on June 2, 2016.
  • the PCT application with the international publication number WO/2017/082097 is not described here.
  • FIG. 1 One embodiment of a concentrating solar energy system in accordance with the present invention can be referenced to FIG. 1, including a reflective concentrating lens 110, an arched body 120, and a photovoltaic panel 130.
  • the reflective concentrating lens has a condensing refracting surface (the upper surface of the condensing lens 110 in FIG. 1) and a reflecting surface disposed opposite to the condensing refracting surface (the lower surface of the condensing lens 110 in FIG. 1) .
  • the reflective concentrating lens in this embodiment uses a reflective Fresnel concentrating lens.
  • the so-called reflective Fresnel condenser lens may be formed by a Fresnel lens with a tooth facing upward and a back surface plated with a reflective film, or a Fresnel lens with a tooth facing downward and a reflection below it. The mirror is formed. Among them, the tooth surface of the Fresnel lens acts as a condensing refractive surface.
  • the arched cover 120 is disposed above the reflective concentrating lens 110.
  • the concave surface of the arched cover faces the condensing refractive surface of the reflective concentrating lens, and the normal to the center of the top of the arch is coincident or parallel with the optical axis of the reflective concentrating lens.
  • the arched cover body is formed by the photovoltaic panel 130 and two planar shaped one-way transmission mirrors 121.
  • the one-way transmission mirror referred to in the present invention refers to a lens having a characteristic that the transmittance from the convex surface of the arched cover is greater than the transmittance from the concave surface of the arched cover, and the concave from the concave cover The reflectivity of the light is greater than the reflectivity of the light from the convex surface of the arched cover.
  • the one-way transmission mirror can be formed by plating a one-way reflection film on the surface of a plane mirror or a lens.
  • a unidirectional transmission mirror allows most of the external sunlight to be transmitted into the interior of the enclosure and is reflected and concentrated by the reflective condenser lens onto the photovoltaic panel. If the focal plane of the reflective condenser lens moves from the photovoltaic panel because of the movement of the sun in the east-west direction, most of the light will still reach the photovoltaic panel after one or more reflections inside the arched cover, as shown in the figure. 1 arrow is shown.
  • the one-way transmission mirror may specifically be a plane mirror or a single-sided or double-sided Fresnel lens may be preferably used to further increase the concentration ratio.
  • the one-way transmission mirror is a plane mirror or a conventional lens ⁇ , both sides of which are smooth surfaces; the one-way transmission mirror is a double-sided Fresnel lens ⁇ , both sides of which are tooth surfaces; the one-way transmission mirror is single-sided Philippine Nie The lens is ⁇ , one of its two faces is a smooth face and the other is a tooth face.
  • the shape of the arched shell at the flank refers to the shape of the smooth envelope surface of the flank.
  • the shapes of the inner and outer edges of the cross section of the arched cover are all broken lines.
  • the arched cover body can also adopt various cross-sectional shapes as long as the arch having a certain span can be formed, so that when the span of the arch is disposed along the east-west direction, the inner wall of the arch can be effectively The ground blocks and reflects the drifting sunlight.
  • Fig. 2 Several alternative cross-sectional shapes are exemplarily shown in Fig. 2, wherein the inner and outer edges of Figs. 2(a) and 2(b) are both in the shape of a broken line, the inner edge of Fig.
  • the shape of the outer edge is a curve
  • the shape of the inner edge of Fig. 2(d) is a curve
  • the shape of the outer edge is a fold line.
  • the inner and outer edges are referred to herein as being distinguished by an arched convex direction, the outer edge of the convex surface and the inner edge of the concave surface.
  • the photovoltaic panel 130 in this embodiment can be considered to be disposed on the inner surface of the top of the arched cover, and the light receiving surface of the photovoltaic panel faces the reflective collecting lens.
  • the optical plate may be disposed between the reflective concentrating lens and the arched cover, or on the face of the reflective concentrating lens toward the arched cover.
  • the photovoltaic panel is located between the reflective concentrating lens and the arched cover, the light receiving surface may face the arched cover or may face the reflective concentrating lens.
  • the arched cover in this embodiment is at least partially formed as a one-way transmission mirror, and the other portion is filled by the photovoltaic panel.
  • the reason why not all photovoltaic panels are used to make the arched cover is because the photovoltaic panel will block the sunlight that is directed to the condenser lens, and on the other hand, because the cost of the photovoltaic panel is higher than the cost of the one-way transmission mirror.
  • the solar energy system provided by the embodiment achieves the solar light utilization rate close to the Japanese system with a fixed structure, has higher cost performance and higher reliability.
  • the structure described above can be considered as part of a solar power plant in a solar energy system.
  • the solar energy system in accordance with the present invention may further include peripheral configurations such as electrical devices, control systems, and the like.
  • peripheral configurations such as electrical devices, control systems, and the like.
  • it can also include:
  • a lighting device 140 comprising a battery 141 electrically connected to the photovoltaic panel and an LED lighting 142 powered by the battery, such that the solar system of the embodiment can function as an outdoor lighting device;
  • an inverter 150 electrically connected to the battery 141 for connecting the battery to the power grid; additionally or alternatively, the battery may also be connected to a DC power strip (not shown) for direct external power supply;
  • the control system 160 includes a control module 161 and an inductor 162; the control module is used to control the operation of the solar energy system; the sensor may have multiple, and may be different kinds, for providing the sensing module with the sensed The signal to achieve a variety of rich features.
  • the senor may be a light intensity sensing device that provides a light intensity signal that enables the control module to automatically turn the lighting device on and off, saving energy and extending system life.
  • the senor may be a passive infrared sensing (PIR) device or a microwave sensing (radar) or a sonar sensing device or an image sensing device (camera), which provides an inductive signal that enables the control module to implement safety monitoring or road surface. Monitoring function.
  • PIR passive infrared sensing
  • radar microwave sensing
  • sonar sonar sensing
  • image sensing device camera
  • the senor can be a temperature sensing device or a humidity sensing device or a wind speed sensing device, such that the control module can control based on these environmental parameters or implement an environmental monitoring function.
  • the solar energy system according to the present invention may further comprise a communication module (not shown), which can be used for communication between a plurality of solar energy systems (for example, status notification or linkage), and can also be used for Communicate with a remote control center.
  • the communication mode of the communication module can be selected from infrared communication, WiFi
  • the solar energy system according to the present invention may further comprise an external antenna (not shown) for wireless communication and a router (not shown) to enable the system to function as a wireless communication system at the same time.
  • an external antenna not shown
  • a router not shown
  • Base station or transit station to enable the system to function as a wireless communication system at the same time.
  • FIG. 3 Another embodiment of a concentrating solar energy system in accordance with the present invention can be seen in reference to FIG. 3, including a reflective concentrating lens 210, an arched body 220, a photovoltaic panel 230, and a vibrating device 270.
  • the arched cover in this embodiment is a complete arched member formed of a one-way transmission mirror.
  • the photovoltaic panel 230 is disposed on the face of the reflective concentrating lens facing the arched cover with the light receiving side facing upward.
  • the concentrating lens, the arched cover and the photovoltaic panel have a uniform centerline.
  • the vibration device 270 includes a vibration element 271 and its drive circuit (not shown).
  • the vibrating element 271 operates in a resonant mode, and the vibrating element is mechanically coupled to the reflective collecting lens to cause it to vibrate.
  • the vibrating element is fixed to the back surface of the reflective concentrating lens.
  • the drive circuit of the vibration device comprises at least one inductance element and at least one capacitance element connected in series such that the circuit resonance frequency COC of the drive circuit can be set to match (including the same or close to) the mechanical resonance frequency com of the vibration element.
  • the vibrating element may employ a piezoelectric vibrating piece that is connected in series in the driving circuit and functions as a capacitive element.
  • the embodiment further includes a mirror 211 disposed on a side of the reflective condenser lens for reflecting sunlight onto the reflective condenser lens.
  • a larger number of mirrors can also be provided. These mirrors enhance the ability of the reflective condenser lens to collect sunlight, and because the cost of the mirror is low, the cost of the system is not significantly increased.
  • the system of the present embodiment further includes a lighting device 240, a control system 260, and a communication module 280.
  • the illumination device includes a battery 241 and an LED illumination lamp 242.
  • the control system includes a control module 261 and two inductors 262 and 262'.
  • the drive circuit of the vibration device 270 can also be controlled by the control module.
  • the inductors 262 and 262' are different types of inductors. In some implementations, since some inductors have the ability to sense multiple signals, a single inductor can also act as an integrated device for providing different kinds of signals.
  • FIG. 4 Another embodiment of the concentrating solar energy system according to the present invention can refer to FIG. 4, including a reflective concentrating lens 310, an arched cover 320, a photovoltaic panel 330, a vibration device 370, a lighting device 340, and control System 360 and communication module 380.
  • the vibration device includes a vibration element 371, and the illumination device includes a battery 341 and an LED illumination lamp 342.
  • the control system includes a control module 361 and two inductors 362 and 362'.
  • Embodiment 2 The difference between this embodiment and Embodiment 2 is that the vibration element 371 is disposed at the edge of the reflective concentrating lens, and the battery 341 is disposed at the back of the reflective concentrating lens, so that the light collected by the condensing lens can be used.
  • the thermal energy generated by the photovoltaic panels and the photovoltaic panels are at an appropriate operating temperature, so the system of the present embodiment is suitable for use in cold regions.
  • the embodiment further includes Phosphorescent or fluorescent
  • the material 390 is disposed at a position that can be irradiated with sunlight, and is preferably disposed around a position where the concentrated sunlight is irradiated. Specifically, in this embodiment, it is disposed on the side of the arch cover . In other embodiments, it may also be placed around other locations where sunlight is concentrated, such as around the photovoltaic panel.
  • the phosphorescent or fluorescent material may be a phosphor powder in a fluorescent lamp, a hydroxy sulfonic acid (Pymnine), or a Quantum Dot material. These materials absorb and store light energy during daytime sunlight, and gradually release energy by fluorescing at night. Therefore, when the natural light is weak, such as early morning or evening, natural light and fluorescence can meet certain lighting needs, thereby reducing the need to illuminate the LED lighting, and correspondingly reducing the battery capacity. Or extend battery life.
  • the phosphorescent or fluorescent material is disposed around the position where the concentrated sunlight is irradiated (for example, the side of the arched cover), which is capable of absorbing sunlight several times the natural light intensity, thereby generating more at night. High brightness and longer illumination.
  • the concentrating system used in the system of the present invention enhances the function of the phosphorescent or fluorescent material, and is capable of performing a certain illumination function in addition to an aesthetically pleasing landscape effect at night.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种聚光式太阳能系统,包括一反射式聚光透镜(110),一拱形罩体(120),以及位于拱形罩体的内部空间中的光伏板(130)。拱形罩体设置于反射式聚光透镜上方,其凹面朝向反射式聚光透镜的聚光折射面,且至少部分形成为单向透射镜(121),单向透射镜对来自拱形罩体凸面的光具有较高的透射率,而对来自拱形罩体凹面的光具有较高的反射率,使得拱形罩体外部的光线能以较高的透射率进入到拱形罩体内部,而拱形罩体内部的光线则会被反射以尽可能多地到达光伏板,因此当光线的聚焦位置随着太阳的移动从光伏板上移开时,大部分光线仍能够通过一次或多次反射重新回到光伏板上,从而实现一种固定安装而无需太阳跟踪系统的聚光式太阳能系统。

Description

说明书 发明名称:聚光式太阳能系统 技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种对太阳能进行利用的聚光式太阳 能系统。
[0002] 背景技术
[0003] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。 为提高收 集太阳能的能力, 出现了聚光式太阳能系统, 其一般通过透镜将太阳光聚焦在 光伏板上, 使得较小面积的光伏板能够得到来自较大面积的透镜所会聚的太阳 光。
[0004] 然而, 聚光式太阳能系统通常会面对焦点随着太阳位置的变化而发生漂移的问 题。 一种解决方法是使用太阳跟踪系统 (又称跟日系统) 。 太阳跟踪系统主要 用于随着太阳方位的变化调整聚光系统或光伏板的方位和姿态, 以使得会聚的 太阳光能始终尽可能垂直地落在光伏板上。 简明起见, 本文中以光伏板来代表 各种光电转换器件, 包括但不限于: 多晶硅光伏板、 单晶硅光伏板、 非晶硅光 伏板、 III-V族半导体光伏板、 铜铟镓硒 (CIGS) 光伏板、 钙钛光伏板、 光伏薄 膜等。
[0005] 但是使用太阳跟踪系统显然会增加系统整体的结构复杂程度, 提高建造和维护 成本。 因此, 对于一些应用场景, 例如道路照明、 野外工作照明以及边远或环 境恶劣地区的太阳能利用等, 仍然需要更加经济的解决方案。
[0006]
[0007] 发明内容
[0008] 依据本发明提供一种聚光式太阳能系统, 包括一反射式聚光透镜, 其具有一聚 光折射面以及与聚光折射面相对设置的反射面; 一拱形罩体, 设置于反射式聚 光透镜上方, 拱形罩体的凹面朝向反射式聚光透镜的聚光折射面, 且拱形顶部 中心的法线与反射式聚光透镜的光轴一致或平行, 拱形罩体至少部分形成为单 向透射镜, 该单向透射镜对来自拱形罩体凸面的光的透射率大于来自拱形罩体 凹面的光的透射率, 对来自拱形罩体凹面的光的反射率大于来自拱形罩体凸面 的光的反射率; 以及一光伏板, 设置于反射式聚光透镜与拱形罩体之间, 或者 设置于二者相对的面中的一个面上。
[0009] 依据本发明的太阳能系统, 在光伏板的下方和上方分别设置反射式聚光透镜和 单向透射镜, 单向透射镜使得拱形外部的光线能以较高的透射率进入到拱形内 部, 而拱形内部的光线则会被反射以尽可能多地到达光伏板。 所称内部和外部 以拱形的凸出方向来区分, 拱形罩体的凸面所面对的是拱形外部, 拱形罩体的 凹面所面对的是拱形内部。 当光线的聚焦位置随着太阳的移动从光伏板上移幵 , 例如偏移到单向透射镜上吋, 大部分光线能够通过一次或多次反射重新回到 光伏板上。
[0010] 如所周知, 地球公转所导致的太阳位置在南北方向上的变化幅度是较小的, 由 此引起的聚焦位置的漂移可以通过略微扩展光伏板在南北方向上的尺寸来解决 。 在通常情况下, 光伏板具有一定的面积, 因此可以很容易地满足这个要求。 而由于地球自转所导致的太阳位置在东西方向上的变化幅度是较大的, 由此引 起的聚焦位置的漂移则可通过设置含有单向透射镜的拱形罩体来解决。 因此依 据本发明的系统能够以固定的结构近似地达到跟日的效果, 能够在不采用太阳 跟踪系统的情况下仍然保持高的光能利用效率, 不仅提高了系统的整体性价比 , 降低了维护需求, 也使得其能够更加适用于偏远及恶劣环境下的太阳能应用 , 例如作为户外的固定照明装置等。
[0011] 依据本发明的系统在安装吋, 可以优选地使拱形罩体的跨度方向与东西方向 ( 即太阳在一天中位置移动的方向) 基本保持一致, 以获得更好的光能利用效率
[0012] 以下结合附图, 对依据本发明的具体示例进行详细说明。
[0013] 附图说明
[0014] 图 1是实施例 1的太阳能系统的示意图;
[0015] 图 2是本发明中的拱形罩体的横截面的几种可选的形状的示意图;
[0016] 图 3是实施例 2的太阳能系统的示意图;
[0017] 图 4是实施例 3的太阳能系统的示意图。 [0018] 具体实施方式
[0019] 依据本发明的太阳能系统中的光学元件可以优选地采用菲涅尔透镜, 关于这种 透镜的详细介绍可参见名称为"菲涅尔透镜系统", 公布日为 2016年 6月 2日, 国际 公布号为 WO/2016/082097的 PCT申请, 在此不再赘述。
[0020] 实施例 1
[0021] 依据本发明的聚光式太阳能系统的一种实施方式可参考图 1, 包括反射式聚光 透镜 110, 拱形罩体 120和光伏板 130。
[0022] 反射式聚光透镜具有一聚光折射面 (图 1中聚光透镜 110的上表面) 以及与该聚 光折射面相对设置的反射面 (图 1中聚光透镜 110的下表面) 。 作为一种优选的 实施方式, 本实施例中反射式聚光透镜采用反射式菲涅尔聚光透镜。 所称的反 射式菲涅尔聚光透镜可以由一齿面向上且背面镀有反射膜的菲涅尔透镜形成, 或者也可以由一齿面向下的菲涅尔透镜和位于其下方的一反射镜形成。 其中, 菲涅尔透镜的齿面即充当为聚光折射面。
[0023] 拱形罩体 120设置于反射式聚光透镜 110上方。 拱形罩体的凹面朝向反射式聚光 透镜的聚光折射面, 且拱形顶部中心的法线与反射式聚光透镜的光轴一致或平 行。
[0024] 本实施例中, 拱形罩体由光伏板 130和两个平面形状的单向透射镜 121形成。 本 发明中所称单向透射镜是指具有如下特性的透镜: 其对来自拱形罩体凸面的光 的透射率大于来自拱形罩体凹面的光的透射率, 对来自拱形罩体凹面的光的反 射率大于来自拱形罩体凸面的光的反射率。 单向透射镜可以通过在平面镜或透 镜的表面镀单向反射膜来形成。 使用单向透射镜使得外部的太阳光大部分能够 透射进入到罩体内部, 并被反射式聚光透镜反射和会聚到光伏板上。 如果因为 太阳在东西方向的移动导致反射式聚光透镜的焦平面从光伏板上移幵, 大部分 光线也仍然会在拱形罩体内部经过一次或多次反射后重新到达光伏板, 如图 1中 箭头所示。
[0025] 单向透射镜具体可以是平面镜也可以优选地采用单面或双面菲涅尔透镜, 以进 一步增加聚光比。 单向透射镜为平面镜或常规透镜吋, 其两个面均为光滑面; 单向透射镜为双面菲涅尔透镜吋, 其两个面均为齿面; 单向透射镜为单面菲涅 尔透镜吋, 其两个面中的一者为光滑面另一者为齿面。 当单向透射镜具有齿面 吋, 拱形罩体在齿面处的形状是指齿面的光滑包络面的形状。
[0026] 由于本实施例中的光伏板和单向透射镜均为平面形状, 因此拱形罩体的横截面 的内边缘和外边缘的形状均为折线。 在其他实施方式中, 拱形罩体也可以采用 各种不同的横截面形状, 只要能够形成具有一定跨度的拱即可, 这样, 当拱的 跨度沿东西方向设置吋, 拱的内壁即可有效地阻挡和反射发生漂移的太阳光。 图 2中示例性地示出了几种可选的截面形状, 其中图 2(a)和图 2(b)的内边缘和外边 缘的形状均为折线, 图 2(c)的内边缘和外边缘的形状均为曲线, 图 2(d)的内边缘 的形状为曲线而外边缘的形状为折线。 本文中所称内边缘和外边缘是以拱形的 凸出方向来区分的, 位于凸面的为外边缘, 位于凹面的为内边缘。
[0027] 本实施例中的光伏板 130可以视为设置在拱形罩体顶部的内表面上, 光伏板的 受光面朝向反射式聚光透镜, 。 在其他实施方式中, 根据光路设计的不同, 光 伏板还可设置于反射式聚光透镜与拱形罩体之间, 或者设置于反射式聚光透镜 朝向拱形罩体的面上。 当光伏板位于反射式聚光透镜与拱形罩体之间吋, 其受 光面可以朝向拱形罩体也可以朝向反射式聚光透镜。 此外, 在各种实施方式中 也可优选地采用双面光伏板, 即光伏板的两面均为受光面。
[0028] 本实施例中的拱形罩体至少部分形成为单向透射镜, 另外部分则由光伏板来充 当。 之所以不全部使用光伏板来制作拱形罩体, 一方面是因为光伏板会遮挡射 向聚光透镜的太阳光, 另一方面则是因为光伏板的成本高于单向透射镜的成本
。 本实施例所提供的太阳能系统以固定的结构实现与跟日系统接近的太阳光利 用率, 具有更高的性价比, 可靠性也更高。
[0029] 以上描述的结构可以被视为太阳能系统中的太阳能发电装置部分。 依据本发明 的太阳能系统还可进一步包括例如用电装置、 控制系统等周边配置。 例如, 参 考图 1, 还可包括:
[0030] 照明装置 140, 其包括与光伏板电连接的电池 141以及由该电池供电的 LED照明 灯 142, 使得本实施例太阳能系统可充当为户外照明设备;
[0031] 逆变器 150, 其与电池 141电连接, 用于将电池连接到电网; 附加地或替代地, 电池还可以连接直流接线板 (未图示) , 用于直接对外供电; [0032] 控制系统 160, 其包括控制模块 161以及感应器 162; 控制模块用于控制太阳能 系统的工作; 感应器可以有多个, 且可以是不同种类的, 用于为控制模块提供 所感应到的信号, 以实现各种丰富的功能。
[0033] 例如, 感应器可以是光强感应装置, 其提供的光强信号使得控制模块能自动幵 启和关闭照明装置, 不仅节省能源, 还能延长系统寿命。
[0034] 又如, 感应器可以是被动红外感应 (PIR) 装置或微波感应 (雷达) 或声纳感 应装置或影像感应装置 (摄像头) , 其提供的感应信号使得控制模块能实现安 全监控或路面监控功能。
[0035] 再如, 感应器可以是温度感应装置或湿度感应装置或风速感应装置, 使得控制 模块能基于这些环境参数进行控制或者实现实吋的环境监控功能。
[0036] 优选地, 依据本发明的太阳能系统可进一步包括通信模块 (未图示) , 其既可 用于在多个太阳能系统之间进行通信 (例如进行状态通知或联动幵启) , 也可 用于与远程的控制中心进行通信。 通信模块的通信方式可选自红外通信, WiFi
, 蓝牙通信, 3G/4G/5G通信, 光通信等。
[0037] 优选地, 依据本发明的太阳能系统可进一步包括用于无线通信的外置天线 (未 图示) 和路由器 (未图示) , 以使得该系统还能够同吋充当为无线通信系统的 基站或中转站。
[0038] 除明确指出的区别之处以外, 上述关于太阳能发电装置的各个组件及其周边配 置的描述均可应用于本发明的其他实施方式, 不再赘述。
[0039] 实施例 2
[0040] 依据本发明的聚光式太阳能系统的另一种实施方式可参考图 3, 包括反射式聚 光透镜 210, 拱形罩体 220, 光伏板 230和振动装置 270。
[0041] 与实施例 1不同的是, 本实施例中的拱形罩体是由单向透射镜形成的完整的圆 拱形状的部件。 光伏板 230设置在反射式聚光透镜朝向拱形罩体的面上, 其受光 面朝上。 聚光透镜, 拱形罩体和光伏板三者具有一致的中心线。
[0042] 振动装置 270包括一振动元件 271及其驱动电路 (未图示) 。 振动元件 271工作 于共振模态, 振动元件与反射式聚光透镜机械连接以带动其进行振动。 本实施 例中, 振动元件固定在反射式聚光透镜的背面。 通过定吋或在设定条件满足吋 幵启振动装置, 能够及吋抖落聚光透镜以及相连的拱形罩体上的灰尘或异物, 实现自动清洁的功能。 优选地, 振动装置的驱动电路包括串联的至少一个电感 元件和至少一个电容元件, 使得能够将驱动电路的电路共振频率 COC设置为与振 动元件的机械共振频率 com相匹配 (包括相同或接近) 。 在具体实现中, 振动元 件可以采用压电振动片, 其串联在驱动电路中并充当为电容元件。
[0043] 作为一种优选的实施方式, 本实施例中还包括一反射镜 211, 设置在反射式聚 光透镜的侧面, 用于将太阳光反射到反射式聚光透镜上。 在其他实施方式中, 也可以设置更多数量的反射镜。 这些反射镜能够增强反射式聚光透镜收集太阳 光的能力, 而由于反射镜的成本很低, 因此不会明显增加系统的成本。
[0044] 本实施例系统还进一步包含照明装置 240, 控制系统 260, 通信模块 280。 其中 , 照明装置包括电池 241以及 LED照明灯 242; 控制系统包括控制模块 261以及两 个感应器 262和 262', 振动装置 270的驱动电路也可以由控制模块进行控制。 感应 器 262和 262'是不同类型的感应器, 在具体实现吋, 由于一些感应器自身具有感 应多种信号的能力, 因此单个感应器也可充当为提供不同种类信号的集成器件
[0045] 实施例 3
[0046] 依据本发明的聚光式太阳能系统的另一种实施方式可参考图 4, 包括反射式聚 光透镜 310, 拱形罩体 320, 光伏板 330, 振动装置 370, 照明装置 340, 控制系统 360和通信模块 380。
[0047] 其中, 振动装置包括振动元件 371, 照明装置包括电池 341以及 LED照明灯 342
, 控制系统包括控制模块 361以及两个感应器 362和 362'。
[0048] 本实施例与实施例 2的区别在于, 振动元件 371设置在反射式聚光透镜的边缘, 而电池 341则设置在反光式聚光透镜的背面, 使得能够利用聚光透镜聚集的光能 以及光伏板产生的热能令电池处于适当的工作温度, 因此本实施例系统适合被 应用于寒冷地区。
[0049] 作为一种优选的实施方式, 本实施例中还包括磷光 (Phosphorescent) 或荧光
(Fluorescence) 材料 390, 设置于能够被太阳光照射到的位置, 优选地设置于会 聚后的太阳光照射的位置周围。 具体地, 本实施例中设置在拱形罩体的侧面上 。 在其他实施方式中, 也可以设置在其他太阳光聚集的位置周围, 例如光伏板 的四周。
[0050] 磷光或荧光材料可采用日光灯中的磷光粉、 羟基芘磺酸 (Pymnine) 、 或量子 点 (Quantum Dot) 材料等。 这些材料能够在白天太阳光照射的吋候吸收和储存 光能, 而在夜晚通过发出荧光将能量逐渐释放出来。 因此, 当自然光线较弱的 吋候, 例如清晨或傍晚, 自然光配合荧光即可满足一定的照明需求, 从而可以 减少需要点亮 LED照明灯的吋间, 还可相应地减少对电池容量的需求或延长电池 寿命。
[0051] 尤其是将磷光或荧光材料设置于会聚后的太阳光照射的位置周围 (例如拱形罩 体侧面) 吋, 其能够吸收到数倍于自然光强的太阳光, 从而在夜间产生更高的 亮度以及更长的照明吋间。 本发明系统中使用的聚光系统使得磷光或荧光材料 的功能得以增强, 除了能够在夜间呈现美观的景观效果外还能够承担一定的照 明功能。
[0052]
[0053] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种聚光式太阳能系统, 其特征在于, 包括
一反射式聚光透镜, 其具有一聚光折射面以及与所述聚光折射面相对 设置的反射面;
一拱形罩体, 设置于所述反射式聚光透镜上方, 所述拱形罩体的凹面 朝向所述反射式聚光透镜的聚光折射面, 且拱形顶部中心的法线与所 述反射式聚光透镜的光轴一致或平行, 所述拱形罩体至少部分形成为 单向透射镜, 所述单向透射镜对来自拱形罩体凸面的光的透射率大于 来自拱形罩体凹面的光的透射率, 对来自拱形罩体凹面的光的反射率 大于来自拱形罩体凸面的光的反射率; 以及
一光伏板, 设置于所述反射式聚光透镜与所述拱形罩体之间, 或者设 置于二者相对的面中的一个面上。
[权利要求 2] 如权利要求 1所述的系统, 其特征在于,
所述拱形罩体的横截面的内边缘和外边缘的形状均为折线, 或均为曲 线, 或一者为折线另一者为曲线。
[权利要求 3] 如权利要求 1或 2所述的系统, 其特征在于,
所述反射式聚光透镜为反射式菲涅尔聚光透镜, 其由一齿面向上且背 面镀有反射膜的菲涅尔透镜形成, 或者由一齿面向下的菲涅尔透镜和 位于其下方的一反射镜形成。
[权利要求 4] 如权利要求 1至 3任意一项所述的系统, 其特征在于,
所述单向透射镜的两个面均为光滑面, 或均为齿面, 或一者为光滑面 另一者为齿面。
[权利要求 5] 如权利要求 1至 4任意一项所述的系统, 其特征在于, 还包括
一反射镜, 设置在所述反射式聚光透镜的侧面, 用于将太阳光反射到 所述反射式聚光透镜上。
[权利要求 6] 如权利要求 1至 5任意一项所述的系统, 其特征在于, 还包括
一振动装置, 其包括一振动元件及其驱动电路, 所述振动元件工作于 共振模态, 所述振动元件与所述反射式聚光透镜机械连接以带动其进 行振动, 所述驱动电路包括串联的至少一个电感元件和至少一个电容 元件, 所述驱动电路的电路共振频率与所述振动元件的机械共振频率 相匹配。
[权利要求 7] 如权利要求 1至 6任意一项所述的系统, 其特征在于, 还包括
磷光或荧光材料, 设置于能够被太阳光照射到的位置。
[权利要求 8] 如权利要求 7所述的系统, 其特征在于,
所述磷光或荧光材料设置于会聚后的太阳光照射的位置周围。
[权利要求 9] 如权利要求 1至 8任意一项所述的系统, 其特征在于, 还包括
照明装置, 其包括与光伏板电连接的电池以及由所述电池供电的 LED 照明灯。
[权利要求 10] 如权利要求 9所述的系统, 其特征在于, 还包括以下装置中的至少一 种: 逆变器, 其与所述电池电连接, 用于将所述电池连接到电网; 控制系统, 其包括用于控制所述太阳能系统的工作的控制模块以及至 少一个为所述控制模块提供信号的感应器;
通信模块, 用于在多个所述太阳能系统之间进行通信, 或用于与远程 的控制中心进行通信;
用于无线通信的外置天线和路由器;
直流接线板, 其与所述电池电连接, 用于直接对外供电。
PCT/CN2016/091988 2016-07-28 2016-07-28 聚光式太阳能系统 WO2018018480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091988 WO2018018480A1 (zh) 2016-07-28 2016-07-28 聚光式太阳能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091988 WO2018018480A1 (zh) 2016-07-28 2016-07-28 聚光式太阳能系统

Publications (1)

Publication Number Publication Date
WO2018018480A1 true WO2018018480A1 (zh) 2018-02-01

Family

ID=61015878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091988 WO2018018480A1 (zh) 2016-07-28 2016-07-28 聚光式太阳能系统

Country Status (1)

Country Link
WO (1) WO2018018480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030421A (zh) * 2018-06-15 2018-12-18 长飞光纤光缆股份有限公司 一种基于反射率的光伏面板监测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101156A (zh) * 2007-07-23 2008-01-09 上海海想自动控制技术有限公司 太阳能热水器
CN101630699A (zh) * 2008-07-16 2010-01-20 精碟科技股份有限公司 可回收光能的太阳能芯片模块及其制造方法
CN102254962A (zh) * 2010-07-01 2011-11-23 王子韩 一种太阳能瓦形槽式柱面聚光器
CN102615069A (zh) * 2011-01-28 2012-08-01 佳能株式会社 振动部件驱动电路
CN103631215A (zh) * 2013-05-17 2014-03-12 黄涛 用于路灯的可远程监控式太阳能并网发电控制系统
WO2016082097A1 (zh) * 2014-11-25 2016-06-02 博立多媒体控股有限公司 菲涅尔透镜系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101156A (zh) * 2007-07-23 2008-01-09 上海海想自动控制技术有限公司 太阳能热水器
CN101630699A (zh) * 2008-07-16 2010-01-20 精碟科技股份有限公司 可回收光能的太阳能芯片模块及其制造方法
CN102254962A (zh) * 2010-07-01 2011-11-23 王子韩 一种太阳能瓦形槽式柱面聚光器
CN102615069A (zh) * 2011-01-28 2012-08-01 佳能株式会社 振动部件驱动电路
CN103631215A (zh) * 2013-05-17 2014-03-12 黄涛 用于路灯的可远程监控式太阳能并网发电控制系统
WO2016082097A1 (zh) * 2014-11-25 2016-06-02 博立多媒体控股有限公司 菲涅尔透镜系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030421A (zh) * 2018-06-15 2018-12-18 长飞光纤光缆股份有限公司 一种基于反射率的光伏面板监测方法及系统

Similar Documents

Publication Publication Date Title
US10020413B2 (en) Fabrication of a local concentrator system
EP3382764B1 (en) Light-concentrating solar system
WO2019084707A1 (zh) 聚光式太阳能系统
AU2016434337B2 (en) Concentrating solar apparatus
CN201029095Y (zh) 集光型光伏电池组件
WO2018018480A1 (zh) 聚光式太阳能系统
CN113228500A (zh) 聚光太阳能装置
CN101795100A (zh) 一种太阳能光伏发电系统
CN103095176A (zh) 聚光型太阳能双发电组件
TWI435459B (zh) 多向式太陽能集光系統
KR100930090B1 (ko) 태양광 추적센서 및 이를 이용한 태양광 집광장치
JP2000091614A (ja) 太陽電池モジュール並びに太陽電池アレイ
US9159858B2 (en) Three-dimensional total internal reflection solar cell
CN201732793U (zh) 太阳能电池板
TWM381072U (en) Light condensing lens, light condensing module, and photoelectric thansducing apparatus thereof
US10199527B2 (en) Solar concentrator and illumination apparatus
JP2003056455A (ja) 太陽光発電装置及びこれに用いる反射鏡
KR0185653B1 (ko) 채광관 장치의 구조
CN202662648U (zh) 聚光型太阳能双发电组件
JP3084125U (ja) 太陽電池パネル構造
WO2018090277A1 (zh) 聚光式光能接收装置
CN102191836A (zh) 波形瓦聚光电池组件
CN201113848Y (zh) 一种太阳能吸收装置
WO2014116498A1 (en) Solar waveguide concentrator
JP6734216B2 (ja) 光発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910061

Country of ref document: EP

Kind code of ref document: A1