WO2016082097A1 - 菲涅尔透镜系统 - Google Patents

菲涅尔透镜系统 Download PDF

Info

Publication number
WO2016082097A1
WO2016082097A1 PCT/CN2014/092139 CN2014092139W WO2016082097A1 WO 2016082097 A1 WO2016082097 A1 WO 2016082097A1 CN 2014092139 W CN2014092139 W CN 2014092139W WO 2016082097 A1 WO2016082097 A1 WO 2016082097A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel
tooth
fresnel lens
refractive
same
Prior art date
Application number
PCT/CN2014/092139
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2014/092139 priority Critical patent/WO2016082097A1/zh
Priority to DE112014007210.9T priority patent/DE112014007210T5/de
Priority to CA2968663A priority patent/CA2968663C/en
Priority to US15/529,078 priority patent/US10203432B2/en
Priority to AU2014412625A priority patent/AU2014412625B2/en
Priority to CN201480083630.8A priority patent/CN107003433B/zh
Priority to GB1710164.3A priority patent/GB2548756B/en
Publication of WO2016082097A1 publication Critical patent/WO2016082097A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to the field of optical components, and in particular to a Fresnel lens system.
  • a Fresnel lens is a thin lens. By dividing the continuous curved surface of the ordinary lens into several segments, the Fresnel lens is formed by placing each segment surface on the same plane or a substantially smooth curved surface after reducing the thickness of each segment.
  • the refractive surface of the Fresnel lens generally has a discontinuous step or tooth shape. In this paper, the curved surface (non-smooth surface) of the lens is called the refractive surface.
  • FIG. 1 A conventional structure of a Fresnel lens can be referred to FIG.
  • the broken line indicates the center of the curved surface
  • the original curved surface 101 of the ordinary lens 100 is divided into a plurality of concentric lens rings 201, and after reducing the thickness of each lens ring, they are placed on the same plane to become Fresnel.
  • Lens 200 This discontinuous refractive surface evolved from the original surface can be referred to as the Fresnel refractive surface. Since the refraction of light occurs on the curved surface of the lens regardless of the thickness of the lens, theoretically the Fresnel refractive surface has approximate optical properties compared to the corresponding original curved surface, but the thickness is greatly reduced. The reduction in thickness reduces the absorption and attenuation of light energy, which is an important advantage of Fresnel lenses in many applications.
  • a Fresnel refraction surface generated from an original surface can be called a Fresnel unit, and a Fresnel unit can be described by five basic parameters: center position, area, focal length, refractive surface shape, and split ring shape. Location and quantity.
  • the side with the Fresnel refractive surface is called the “tooth surface”
  • the other surface that is relatively smooth and flat is called the “back surface”
  • the Fresnel lens with one side is the tooth surface and the other side is the back surface. It is called “single-sided Fresnel lens”.
  • Fresnel lenses can be used not only to focus optical signals, such as infrared, for sensor detection, such as the passive infrared detector "PIR" shown in Figure 2, but also to focus other electromagnetic signals, such as microwave, radio, X- Light, gamma rays, etc. Therefore, the term "light” as used herein refers to the electromagnetic wave of any spectrum in the entire electromagnetic spectrum.
  • a tooth surface containing only one Fresnel unit can be referred to as a "simple Fresnel refractive surface", and a single-sided Fresnel lens using such a tooth surface can be referred to as a "single-sided simple Fresnel lens".
  • a tooth surface containing two or more Fresnel elements may be referred to as a "composite Fresnel refractive surface", and a single-sided Fresnel lens using such a tooth surface may be referred to as “single-sided composite Fresnel” lens".
  • the back side of a single-sided composite Fresnel lens is usually a macroscopic surface, such as a plane, a coaxial surface (including a rotating surface, such as a spherical surface, an ellipsoid, a cylindrical surface, a parabolic cylinder, a hyperbolic cylinder, and a high-order polynomial surface, etc.) , a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • Figure 2 shows the structure of several single-sided composite Fresnel lenses in which the dashed lines indicate the optical path through the center of each Fresnel unit. In Fig.
  • the tooth surface contains three horizontally arranged Fresnel elements, and the back surface is flat (square); in Fig. 2(b), the tooth surface contains five Fresnel elements, one is located in the center, and the other four Distributed around, the back is flat (circular); the back of Figure 2 (c) is a cylindrical surface; the back of Figure 2 (d) is a spherical surface; the back of Figure 2 (e) is a folded surface of three planes; In Fig. 2(f), the back surface is a terrace surface.
  • Fresnel lenses currently available are generally single-sided simple Fresnel lenses and single-sided composite Fresnel lenses, and the performance of these lenses is greatly limited. Therefore, it is necessary to further research and develop the Fresnel lens system.
  • a Fresnel lens system comprising at least two tooth flanks on the same optical path, each tooth flanks comprising at least one Fresnel unit, each Fresnel unit being a phenanthrene generated by an original curved surface
  • the Ner refractive surface, at least one of the two flank surfaces is a composite Fresnel refractive surface or a filled Fresnel refractive surface, or the two tooth surfaces are the same physical interface, and the elements thereof have a reflective back surface.
  • the Fresnel lens system according to the invention can have various excellent implementations, the two tooth flanks included can be arranged on two separate components, or can be combined back to back to form a double-sided Fresnel. The two faces of the lens.
  • the Fresnel lens system according to the present invention has more than two tooth faces, and can fully exert the advantage of the thinness of the Fresnel lens, and can realize a stronger optical path adjustment function without significantly increasing the thickness of the system, such as focusing. .
  • Enhanced focus reduces the focal length and sensor area, helping to reduce the size of the device.
  • the various configurations proposed in accordance with the present invention greatly enrich and extend the structure and function of conventional Fresnel lenses.
  • 1 is a schematic structural view of a conventional Fresnel lens
  • FIG. 2 is a schematic structural view of several conventional single-sided composite Fresnel lenses
  • Figure 3 is a schematic view of two coaxial faces for generating a Fresnel refractive surface in the present invention
  • Figure 4 is a schematic view of a filled Fresnel refractive surface in the present invention.
  • Figure 5 is a schematic view showing the concentric arrangement of Fresnel units on two tooth faces in the present invention
  • Figure 6 is a schematic view showing the arrangement of the Fresnel unit misalignment on the two tooth faces in the present invention
  • Figure 7 is a schematic view showing the structure of the two tooth faces back to back in the present invention.
  • Figure 8 is a schematic structural view of a reflective Fresnel lens in the present invention.
  • Figure 9 is a schematic structural view of a Fresnel lens system in Embodiment 1;
  • Figure 10 is a schematic structural view of a Fresnel lens system in Embodiment 2;
  • Figure 11 is a schematic illustration of two divisions of the spectral segments of the present invention.
  • the Fresnel lens system according to the present invention has at least two tooth flanks on the same optical path and, therefore, may be referred to as a "multi-faceted Fresnel lens system.” According to the number of tooth surfaces located on the same optical path, it can be specifically named as “double-sided Fresnel lens system", “three-sided Fresnel lens system” and the like. In the lens system according to the invention, there may be one or more elements, which may also be referred to as “single-sided Fresnel lens” or “double-sided Fresnel lens", respectively, based on the number of tooth flanks provided on a single element. "Wait.
  • double-sided Fresnel lens system is different from the “double-sided Fresnel lens”.
  • a double-sided Fresnel lens means that both sides of a lens are tooth flanks, and a double-sided Fresnel lens system can be composed of a double-sided Fresnel lens or two single-sided Fresnel lens systems. composition.
  • Each tooth face in the system contains at least one Fresnel unit, and each Fresnel unit is a Fresnel refractive surface generated by an original curved surface.
  • the original original surface used to generate the Fresnel refractive surface is generally a curved surface that is symmetrical about the optical axis, such as a spherical surface, a rotating paraboloid, and the like.
  • the focus of a traditional original surface is at a point and, therefore, can be referred to as a "co-point face.”
  • the original curved surface can be any form of coaxial surface, which can be specifically set according to the needs of the application.
  • coaxial plane refers to a surface whose focal points are on the same straight line (not necessarily at the same point), and the straight line can be called "coaxial".
  • the traditional common point surface can be regarded as a special case when the coaxial axis of the coaxial plane degenerates into one point.
  • the sensing device for setting the focus position can be extended from a small area (corresponding to the focus) to a long strip (corresponding to a common axis composed of the focus), thereby Improves signal collection and helps solve local overheating problems without significantly increasing costs.
  • Typical coaxial surfaces include rotating surfaces (including secondary or higher-order rotating surfaces), cylinders, cones, and so on.
  • the cylindrical surface can also be called an equal-section coaxial surface, and the curved surface is cut at any point along the vertical direction of the common axis, and the obtained cross-section has the same shape and size, and the cylindrical surface is a cylindrical one.
  • the cross-section of the tapered surface along the common axis has a similar shape but a different size, and the conical surface is a special case of the tapered surface.
  • Fig. 3 shows the above two coaxial planes, wherein Fig. 3(a) is an isometric coaxial plane, and Fig. 3(b) is a tapered coaxial plane, the focal points F of which are all located on the respective common axes L.
  • the single flank may be a composite Fresnel refractive surface containing two or more Fresnel elements.
  • the basic parameters of each Fresnel unit on the Fresnel refractive surface for example, area, focal length, the shape of the corresponding original surface, the number of concentric rings, etc.
  • each Fresnel element on the composite Fresnel refractive surface has its own optical center, but the focus falls on the same point, or a straight line, or a limited area. This can be achieved by spatially arranging each Fresnel cell constituting the composite Fresnel refractive surface.
  • these Fresnel elements are arranged on a macroscopic surface, such as planes, quadrics (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • a macroscopic surface such as planes, quadrics (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • the single flank can also be a filled Fresnel refractive surface.
  • the filled Fresnel refractive surface can be formed by filling a transparent material on a Fresnel refractive surface (which may be referred to as a "mother face") formed of a solid material.
  • the Fresnel refractive surface formed by the filled transparent material may be referred to as a "sub-surface", and its shape is completely complementary to the mother surface, and the material forming the sub-surface is different from the refractive index of the material forming the mother surface, and of course, the sub-surface is formed.
  • the material is also different from the refractive index of the surrounding environment (such as air).
  • the filler material forming the sub-surface is selected from a solid, a liquid or a gas.
  • the solid filling material may, for example, be acrylic, plastic or resin
  • the liquid filling material may be, for example, water
  • the gas filling material may be, for example, an inert gas.
  • material 301 forms a Fresnel unit having a convex surface 302
  • material 303 forms a Fresnel unit having a concave surface 304 that is completely complementary in shape, forming a flank by close fitting to face.
  • the Fresnel lens formed by the material 301 can be referred to as a "mother mirror", and the mother glass is enclosed in a cavity having a space and a transparent space, and then the cavity is filled with a transparent material 303 to obtain another bump.
  • a Fresnel lens whose nature is completely opposite to that of the mother mirror can be called a "sub-mirror".
  • materials 301 and 303 are different solid materials that are separately formed into Fresnel cells and then closely attached together. It should be noted that the solid filled Fresnel lens is structurally identical to the two conventional Fresnel lenses that are in close contact with each other, but the filling process, the processing difficulty, and thus the The material requirements for both the mother and the sub-mirrors are different.
  • the material 301 is a solid and the material 303 is a liquid or a gas.
  • the solid material 301 is first made into a Fresnel unit, and then the liquid or gas material 303 is filled and encapsulated on the tooth surface.
  • a filled Fresnel refractive surface is formed.
  • the liquid filling material used may be, for example, water, and the gas may be an inert gas such as nitrogen.
  • the use of liquids to make filled Fresnel refractive surfaces has many advantages. On the one hand, the lens can be easily heated or cooled by liquid. On the other hand, the liquid can be seamlessly combined with Fresnel units made of solid materials.
  • the Fresnel lens system can be used to overcome the weakness of glare, making the Fresnel lens system suitable for high-resolution imaging systems, such as digital cameras and mobile phone lenses.
  • the glare of a conventional Fresnel lens is usually caused by the discontinuity of the tooth surface of the Fresnel lens, and this discontinuity can be compensated by a complementary liquid or gas lens, thereby greatly reducing glare.
  • Applying such a filled Fresnel lens formed by liquid or gas filling to the first-stage lens of the wide-angle lens can greatly reduce the size of the lens.
  • the relative positions of the Fresnel elements on the two tooth faces can be arranged in two preferred ways.
  • One arrangement can be referred to FIG. 5, in which the number of Fresnel elements on the two tooth faces is the same and concentrically arranged.
  • the so-called concentric arrangement means that the optical axes of the Fresnel elements on the two tooth faces coincide.
  • other basic parameters of the Fresnel unit such as the focal length, the shape of the corresponding original curved surface, and the number of concentric rings, which may be the same or different, may be configured according to the needs of the optical design.
  • each optical axis are exemplarily shown by dashed lines, each optical axis corresponding to one Fresnel unit on each of the two tooth faces.
  • the advantage of the concentric arrangement is that it enhances the signal near the center of the Fresnel unit.
  • Another arrangement can be referred to Fig. 6, in which the number of Fresnel elements on the two tooth flanks is different and arranged in a wrong way, and the dislocation arrangement is preferably in a manner in which the staggered distances are equal.
  • the so-called misalignment arrangement means that the optical axes of the Fresnel elements on the two tooth faces are offset from each other, and the so-called offset distance is equal to mean that the optical axis of one Fresnel unit on one tooth surface is surrounded by the other tooth surface.
  • the distance between the optical axes of the nearest Fresnel units of the optical axis is equal.
  • the optical axis is indicated by a broken line, and the optical axis of a Fresnel unit on the lower tooth surface is located on the upper tooth surface.
  • the center of the optical axis of the four Fresnel cells The advantage of a misaligned and equidistant arrangement is the ability to equalize the signal and reduce dead angles and dead zones in the sensing range.
  • flank surfaces can be flexibly combined to form one or more components.
  • a composite Fresnel refractive surface is applied to a single-sided element, that is, as a single-sided composite Fresnel lens, such as the one shown in FIG.
  • a single-sided composite Fresnel lens can also be considered to be formed by arranging the back sides of two or more single-sided simple Fresnel lenses on a macroscopic curved surface.
  • the two tooth flanks are respectively located on two separate elements, forming a system consisting of two single-sided Fresnel lenses, the orientation relationship between the two elements may be the tooth facing tooth surface , or the teeth face the back, or the back to the back.
  • the two tooth flanks are disposed back to back on the same component.
  • the portions to which the two flank faces belong may be the same or different materials, so the boundary line in Fig. 7 is indicated by a broken line.
  • the back-to-back two Fresnel lenses are made of the same material, they form a double-sided Fresnel lens and can be fabricated in one piece.
  • acrylic, resin or other plastic materials can be used.
  • the shape of the mold is made, and the unevenness characteristics of the two tooth faces may be the same or different.
  • the above-listed structural forms may also be combined and expanded as needed.
  • the two tooth flanks in the system can be acted upon by the same physical interface by setting the reflective surface.
  • the element 400 has a reflective back surface 401 (the inner surface is a mirror surface), and the back surface 401 can be formed, for example, by plating a reflective film on a smooth surface of a single-sided Fresnel lens or pasting a patch having reflective ability. Due to the reflection, the incident light path passes through its physical refractive interface 402 twice, so the physical interface is equivalent to the two tooth flanks, and the element 400 can also be referred to as a reflective double-sided Fresnel lens, and the bumps of the two tooth flanks The nature is the same.
  • a reflective back surface it is possible to easily increase the number of flank surfaces in the optical path, reduce the cost of fabrication and installation, and greatly enrich the use of the Fresnel lens.
  • An embodiment of the Fresnel lens system according to the present invention can refer to FIG. 9 and includes two tooth flanks, one of which is a composite Fresnel refractive surface and the other toothed surface 502 contains only one Fresnel unit.
  • the dotted line in the figure shows the optical axis of the Fresnel unit.
  • the two tooth flanks are respectively disposed on two separate single-sided elements to form a single-sided composite Fresnel lens and a single-sided simple Fresnel lens.
  • the two single-sided lenses are sequentially arranged on the optical path with the teeth facing the back for collectively focusing the signal onto the sensor 503, wherein the composite Fresnel lens can be regarded as the objective lens of the focusing system, and thereafter A simple Fresnel lens can be considered as an eyepiece.
  • the lens system of this embodiment can be used to detect signals at a long distance, and can also be used to achieve hierarchical concentrating.
  • one or both of the two lenses can be driven by a motor.
  • a lens serving as an eyepiece is driven by a motor to perform autofocus, or a lens serving as an objective lens is further driven by a motor to perform zooming.
  • the Fresnel lens system in accordance with the present invention contains three flank surfaces.
  • the first tooth surface 601 is a composite Fresnel refractive surface, which is disposed on a single-sided element to form a single-sided composite Fresnel lens for first focusing the optical signal;
  • the second tooth surface and The third flank may be a composite Fresnel refractive surface or may only contain one Fresnel unit.
  • the second flank and the third flank may have a relative positional relationship as shown in FIG. 5 or FIG.
  • the two tooth flanks may be arranged together in one element or in two single-sided elements.
  • the second flank 602 and the third flank 603 are formed in a back-to-back manner as a double-sided Fresnel lens for focusing the optical signal a second time.
  • the focusing system composed of the above two lenses focuses the light waves on three different focal planes according to the central wavelength of different spectral segments, wherein the focal planes F1, F2, and F3 correspond to the three spectral segments respectively.
  • the focal length and wavelength of the lens are monotonically increasing. In other words, the longer the center wavelength of the light wave, the farther the focal plane it focuses on. This relationship is usually overcome in traditional lens design.
  • the principle can be adapted and utilized to produce a plurality of focal planes. Those skilled in the art can better focus light waves of different wavelengths on focal planes of different focal lengths by optically designing the tooth flanks and applying appropriate coatings and the like.
  • the number of focal planes can be 1 to 4.
  • the focal plane is designed to be one, it means that the effect of the wavelength focusing distance should be eliminated as much as the conventional lens design.
  • the use of multiple focal planes not only makes the optical design easier, but also the light of different spectral segments can be better utilized and processed in different focal planes.
  • sensors of corresponding spectral segments can be disposed on each focal plane to achieve an optimal response to wavelengths belonging to the spectral segment, and different sensors can be disposed on different focal planes to maximize utilization.
  • focusing light of different spectral segments onto different focal planes facilitates multilayer sensitization.
  • the three focal planes in this embodiment correspond to the divided three spectral segments.
  • the spectral range of interest may be divided into different intervals according to the wavelength ⁇ .
  • the specific division manner may refer to existing general rules, or may be adjusted according to actual application requirements.
  • Figure 11 shows two common divisions. One is to divide the spectrum into two sections of the visible spectrum segment 701 and the (near) infrared spectrum segment 702. Referring to FIG.
  • the position of the central wavelength of the two intervals is shown by a broken line, and the visible spectrum segment includes Red 703, green 704, and blue 705 are three spectral segments.
  • the other is to divide the spectrum into three sections of the ultraviolet spectrum section 706, the visible spectrum section 707 and the infrared spectrum section 708, with reference to Fig. 11(b), wherein the positions of the center wavelengths of the three sections are also shown by broken lines.
  • the principle of this embodiment can also be applied to designing antennas in the field of modern wireless communication, so that the antenna can simultaneously receive signals of different frequency bands, because the Fresnel lens system based on the present invention can be applied to any spectral segment of electromagnetic waves.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种菲涅尔透镜系统,包括位于同一光路上的至少两个齿面(501,502),每个齿面(501,502)含有至少一个菲涅尔单元,每个菲涅尔单元为由一个原始曲面生成的菲涅尔折射面,两个齿面(501,502)中至少一个为复合菲涅尔折射面或者填充式菲涅尔折射面,或者,两个齿面(501,502)为同一物理界面,其所在的元件具有反射式的背面。所述菲涅尔透镜系统能够充分发挥菲涅尔透镜厚度薄的优势,在不明显增加系统厚度的情况下即可实现更强的光路调整功能。

Description

菲涅尔透镜系统 技术领域
本发明涉及光学元件技术领域,具体涉及菲涅尔透镜系统。
背景技术
菲涅尔(Fresnel)透镜是一种薄型透镜。通过将普通透镜连续的曲面分割成若干段,在减少每段的厚度后将各段曲面置于同一平面或基本光滑的曲面上即形成为菲涅尔透镜。菲涅尔透镜的折射面一般呈不连续的阶梯状或齿状。本文中,将透镜的曲面(非光滑面)称为折射面。
菲涅尔透镜的一种常规的结构可参考图1。图1中,虚线表示曲面的中心,普通透镜100的原始曲面101被分割成若干个同心的镜片环201,在降低每个镜片环的厚度后将它们设置在同一个平面上即成为菲涅尔透镜200。这种由原始曲面演变而来的不连续的折射面可称为菲涅尔折射面。由于光线的折射发生在透镜的曲面上而与透镜的厚度无关,因此理论上菲涅尔折射面与相应的原始曲面相比具有近似的光学性能,但厚度却大为减少。厚度减少可以减少光能的吸收和衰减,在很多应用中,这是菲涅尔透镜的一个重要优点。
可以将由一个原始曲面生成的菲涅尔折射面称为一个菲涅尔单元,而一个菲涅尔单元可以采用五组基本参数来描述:中心位置、面积、焦距、折射面形状、以及分割环的位置和数量。
简明起见,本文中将具有菲涅尔折射面的一面称为“齿面”,将相对光滑和平坦的另一面称为“背面”,将一面为齿面而另一面为背面的菲涅尔透镜称为“单面菲涅尔透镜”。
菲涅尔透镜不仅可用于聚焦光信号,例如红外线,以便于感应器探测,例如图2中示出的被动红外探测器“PIR”,也可用于聚焦其它电磁波信号,如微波、无线电、X-光、伽玛射线等。因此,本文中所称的“光”,可以指整个电磁波谱里任意谱段的电磁波。
由于单个菲涅尔单元的聚焦范围有限,为增加信号感应范围,也有在齿面上集合多个菲涅尔单元的情况。可将只含有一个菲涅尔单元的齿面称为“简单菲涅尔折射面”,采用这种齿面的单面菲涅尔透镜可称为“单面简单菲涅尔透镜”。相应地,可将含有两个以上菲涅尔单元的齿面称为“复合菲涅尔折射面”,而采用这种齿面的单面菲涅尔透镜可称为“单面复合菲涅尔透镜”。
单面复合菲涅尔透镜的背面通常为宏观曲面,例如平面、共轴面(包括旋转曲面,如球面、椭球面、圆柱面、抛物柱面、双曲柱面,以及高阶多项式曲面等)、由多个平面拼接成的折面以及梯台面等。图2示出了几种单面复合菲涅尔透镜的结构,其中,虚线表示经过各个菲涅尔单元的中心的光路。图2(a)中齿面含有三个水平排列的菲涅尔单元,背面为平面(方形);图2(b)中齿面含有五个菲涅尔单元,1个位于中央,其他4个分布在四周,背面为平面(圆形);图2(c)中背面为圆柱面;图2(d)中背面为球面;图2(e)中背面为三个平面拼接成的折面;图2(f)中背面为梯台面。
目前已有的菲涅尔透镜一般是单面简单菲涅尔透镜以及单面复合菲涅尔透镜,这些透镜的性能受到极大的限制。因此,有必要对菲涅尔透镜系统进行进一步的研究和发展。
发明内容
依据本发明提供一种菲涅尔透镜系统,包括位于同一光路上的至少两个齿面,每个齿面含有至少一个菲涅尔单元,每个菲涅尔单元为由一个原始曲面生成的菲涅尔折射面,两个齿面中至少一个为复合菲涅尔折射面或者填充式菲涅尔折射面,或者,两个齿面为同一物理界面,其所在的元件具有反射式的背面。
依据本发明的菲涅尔透镜系统可以有各种优秀的实现形式,其所包含的两个齿面可以设置在两个分离的元件上,也可以背靠背地合在一起成为一个双面菲涅尔透镜的两个面。
依据本发明的菲涅尔透镜系统具有两个以上的齿面,能够充分发挥菲涅尔透镜厚度薄的优势,在不明显增加系统厚度的情况下即可实现更强的光路调整功能,例如聚焦。增强的聚焦能力能够减小焦距以及感应器的面积,有助于缩小器件的尺寸。此外,依据本发明提出的各种优选方案,极大地丰富和扩展了传统菲涅尔透镜的结构和功能。
以下结合附图,对依据本发明的具体示例进行详细说明。
附图说明
图1是现有菲涅尔透镜的一种结构原理示意图;
图2是现有几种单面复合菲涅尔透镜的结构示意图;
图3是本发明中用于生成菲涅尔折射面的两种共轴面的示意图;
图4是本发明中填充式菲涅尔折射面的示意图;
图5是本发明中两个齿面上菲涅尔单元同心布置的示意图;
图6是本发明中两个齿面上菲涅尔单元错心布置的示意图;
图7是本发明中两个齿面背靠背结合的结构示意图;
图8是本发明中反射式菲涅尔透镜的结构示意图;
图9是实施例1中菲涅尔透镜系统的结构示意图;
图10是实施例2中菲涅尔透镜系统的结构示意图;
图11是本发明中光谱段的两种划分方式的示意图。
具体实施方式
依据本发明的菲涅尔透镜系统具有位于同一光路上的至少两个齿面,因此,可称为“多面菲涅尔透镜系统”。根据位于同一光路上齿面的数量,可以具体命名为“双面菲涅尔透镜系统”、“三面菲涅尔透镜系统”等。在依据本发明的透镜系统中,可以有一个或多个元件,基于单个元件上所设置的齿面的数量,同样可分别称为“单面菲涅尔透镜”、“双面菲涅尔透镜”等。
需要注意的是,“双面菲涅尔透镜系统”与“双面菲涅尔透镜”是有差别的。双面菲涅尔透镜是指一个透镜的两个面都是齿面,而一个双面菲涅尔透镜系统可以由一个双面菲涅尔透镜组成,也可由两个单面菲涅尔透镜系统组成。
系统中的每个齿面含有至少一个菲涅尔单元,每个菲涅尔单元为由一个原始曲面生成的菲涅尔折射面。传统的用于生成菲涅尔折射面的原始曲面一般为绕光轴对称的曲面,例如球面、旋转抛物面等旋转曲面。传统的原始曲面的焦点在一个点上,因此,可称为“共点面”。在本发明中,原始曲面可以是任何形式的共轴面,可根据应用的需要具体设置。所称共轴面是指焦点在同一直线上(而不一定是在同一个点上)的曲面,该直线可称为“共轴线”。传统的共点面可视为共轴面的共轴线退化为一个点时的特例。采用共轴但不共点的原始曲面,可以将用于设置在聚焦位置的感应器件从较小的面积(对应于焦点)扩展为长条形(对应于由焦点组成的共轴线),从而在不显著增加成本的情况下,提升信号收集的能力并有助于解决局部过热问题。典型的共轴面包括旋转曲面(含二次或高阶旋转曲面)、柱面、锥面等。其中柱面又可称为等截面共轴面,这种曲面沿着共轴线的垂直方向在任何一点切开,所得到的横截面的形状和大小都是一致的,圆柱面是柱面的一种特例。锥面沿着共轴线的横截面则具有相似的形状但大小不同,圆锥面是锥面的一种特例。图3示出了以上两种共轴面,其中图3(a)为等截面共轴面,图3(b)为锥形共轴面,其焦点F均位于各自的共轴线L上。
单个齿面可以是含有两个以上菲涅尔单元的复合菲涅尔折射面。一般而言,复合菲涅尔折射面上各个菲涅尔单元的基本参数(例如,面积、焦距、所对应的原始曲面的形状、同心环的数量等)均可以灵活布置,可以完全相同、部分相同或完全不同。在一种实施方式中,复合菲涅尔折射面上的每个菲涅尔单元各自有自己的光学中心,但焦点落在同一个点,或者一条直线,或者一个有限的区域内。这可以通过对构成该复合菲涅尔折射面的每个菲涅尔单元进行空间布置来实现。可以认为这些菲涅尔单元被布置在一个宏观曲面上,例如平面、二次曲面(包括球面、椭球面、圆柱面、抛物柱面、双曲柱面)、高阶多项式曲面(非球面的通常实现方式)、以及由多个平面拼接成的折面以及梯台面等。
单个齿面还可以是填充式菲涅尔折射面。所称填充式菲涅尔折射面可通过在一个由固体材料形成的菲涅尔折射面(可称为“母面”)上填充透明材料而形成。由填充的透明材料所形成的菲涅尔折射面可称为“子面”,其形状与母面完全互补,形成子面的材料与形成母面的材料的折射率不同,当然,形成子面的材料也与周围环境(例如空气)的折射率不同。形成子面的填充材料选自固体、液体或气体。固体填充材料例如可选择亚克力、塑胶或树脂,液体填充材料例如可选择水,气体填充材料例如可选择惰性气体。
参考图4,材料301形成具有凸面302的菲涅尔单元,材料303形成具有凹面304的菲涅尔单元,这两个菲涅尔单元的形状完全互补,通过面对面紧密贴合形成一个齿面。可以将材料301形成的菲涅尔透镜称为“母镜”,将母镜封闭在一个上部留有空间并且透明的腔体里,然后在腔体中填充透明材料303,即可获得另一个凹凸性质与母镜完全相反的菲涅尔透镜,可称为“子镜”。
填充式菲涅尔折射面的结构使得能够通过调整齿面两侧材料的折射率来获得不同的聚焦能力,为菲涅尔透镜系统的光学设计提供更多的灵活度并降低成本。在一种实施方式中,材料301和303是不同的固体材料,分别制成菲涅尔单元后再紧密贴合在一起。需要说明的是,固体的填充式菲涅尔透镜与两个面对面紧贴在一起的传统菲涅尔透镜在结构上是一样的,但其填充式的加工过程、加工难度、以及由此对(母镜和子镜的)材料的要求都是不同的。在另一种优选的实施方式中,材料301为固体而材料303为液体或气体,先将固体材料301制成菲涅尔单元,然后在其齿面上填充并封装液体或气体材料303即可形成填充式菲涅尔折射面。采用这种方式可省去一个菲涅尔单元的加工。所使用的液体填充材料例如可以是水,气体可以是惰性气体如氮气。利用液体来制作填充式菲涅尔折射面有诸多优点,一方面可以通过液体轻易地对透镜进行加热或冷却,另一方面,液体能够与固体材料制成的菲涅尔单元无缝结合,轻易地克服菲涅尔透镜容易产生炫光的弱点,使得菲涅尔透镜系统能够用于高分辨率的成像系统,例如数码相机和手机的镜头。传统菲涅尔透镜的炫光通常是由于菲涅尔透镜的齿面的不连续性引起的,而这种不连续性能够由互补的液体或气体透镜进行补偿,从而大幅削弱炫光。将这种通过液体或气体填充形成的填充式菲涅尔透镜应用于广角镜头的第一级镜头,能够大幅度减小镜头的尺寸。
两个齿面上的菲涅尔单元的相对位置可以有两种优选的布置方式。一种布置方式可参考图5,其中,两个齿面上的菲涅尔单元的数量相同且同心布置。所谓同心布置指两个齿面上的菲涅尔单元的光轴两两重合。至于菲涅尔单元的其他基本参数,例如焦距、所对应的原始曲面的形状以及同心环的数量等可以相同也可以不同,可根据光学设计的需要进行配置。图5中示例性地用虚线画出了两个光轴,每个光轴对应于两个齿面上的各一个菲涅尔单元。同心布置方式的优点在于能够加强菲涅尔单元中心附近的信号。另一种布置方式可参考图6,其中,两个齿面上的菲涅尔单元的数量不同且错心布置,并且错心布置优选采用错开距离相等的方式。所谓错心布置指两个齿面上的菲涅尔单元的光轴彼此错开,所称错开距离相等是指,一个齿面上的某个菲涅尔单元的光轴与另一个齿面上围绕该光轴的最近的几个菲涅尔单元的光轴之间的距离相等,图6中,光轴以虚线表示,下方齿面上的一个菲涅尔单元的光轴位于上方齿面上的四个菲涅尔单元的光轴的中心。错心且等距的布置方式的优点在于能够均衡信号,减少感应范围中的死角和盲区。
一般而言,两个以上的齿面可以灵活地组合以形成为一个或多个元件。例如将复合菲涅尔折射面应用于单面元件,即形成为单面复合菲涅尔透镜,例如图2中所示的几种。单面复合菲涅尔透镜也可以被认为是把两个以上的单面简单菲涅尔透镜的背面布置在一个宏观曲面上形成的。在一种实施方式中,两个齿面分别位于两个分离的元件上,形成由两个单面菲涅尔透镜组成的系统,这两个元件之间的朝向关系可以是齿面对齿面,或齿面对背面,或背面对背面。在另一种实施方式中,参考图7,两个齿面以背靠背的方式设置在同一元件上。两个齿面所属的部分可采用相同或不同的材料,因此图7中的分界线以虚线表示。当背靠背式的两个菲涅尔透镜由相同的材料制成时,就构成了双面菲涅尔透镜,并可采用一体成型的方式来制作,例如可采用亚克力、树脂或其它塑胶材料通过压模的方式来制作,其两个齿面的凹凸特性可以相同也可以不同。在另一种实施方式中,系统中有三个齿面,一个应用于单面元件,另外两个形成为背靠背式的双面菲涅尔透镜。在其他实施方式中,还可根据需要对上述列举的结构形式进行组合和扩展。
值得一提的是,系统中的两个齿面可以通过设置反射面的方式由同一个物理界面来充当。参考图8,元件400具有反射式的背面401(内表面为镜面),背面401可采用例如在单面菲涅尔透镜的光滑面镀反射膜或者粘贴具有反射能力的贴片等方式形成。由于反射,入射光路两次经过其物理折射界面402,因此该物理界面等效于两个齿面,元件400也可被称为反射式双面菲涅尔透镜,并且这两个齿面的凹凸性质是一致的。通过设置反射式背面的方式,能够简便地增加光路中的齿面数,降低制作和安装的成本,并且大大丰富了菲涅尔透镜的使用形态。
以下通过具体示例来对依据本发明的菲涅尔透镜系统的应用进行举例说明。
实施例1
依据本发明的菲涅尔透镜系统的一种实施方式可参考图9,含有两个齿面,其中一个齿面501为复合菲涅尔折射面,另一个齿面502仅包含一个菲涅尔单元,图中虚线所示为菲涅尔单元的光轴。这两个齿面分别设置在两个分离的单面元件上,形成一个单面复合菲涅尔透镜和一个单面简单菲涅尔透镜。这两个单面透镜以齿面对背面的方式依次排列在光路上,用于共同将信号聚焦到感应器503上,其中,复合菲涅尔透镜可视为该聚焦系统的物镜,而其后的简单菲涅尔透镜可视为目镜。本实施例透镜系统可用于检测远距离的信号,也可用于实现分级聚光。
作为一种优选的实施方式,这两个透镜中的一个或者两个可以由电机驱动。例如,由电机驱动充当目镜的透镜以进行自动对焦,或者,进一步由电机驱动充当物镜的透镜以进行变焦。
实施例2
依据本发明的菲涅尔透镜系统的另一种实施方式可参考图10,含有三个齿面。其中,第一个齿面601为复合菲涅尔折射面,设置在一个单面元件上,形成单面复合菲涅尔透镜,用于对光信号进行第一次聚焦;第二个齿面和第三个齿面可以是复合菲涅尔折射面也可以仅包含一个菲涅尔单元,例如,第二个齿面和第三个齿面可具有如图5或图6所示的相对位置关系,这两个齿面可以共同布置于一个元件,也可以分别设置于两个单面元件。本实施例中,第二个齿面602和第三个齿面603以背靠背的方式形成为一个双面菲涅尔透镜,用于对光信号进行第二次聚焦。
本实施例中,由上述两个透镜组成的聚焦系统将光波按照不同光谱段的中心波长,聚焦到3个不同的焦平面上,其中焦平面F1、F2、F3分别对应于三个光谱段的中心波长λ1、λ2、λ3。一般而言,镜头的焦距与波长为单调递增的关系,换言之,光波的中心波长越长,其所聚焦到的焦平面就越远,这种关系在传统的镜头设计中通常是需要克服的,但在本实施例中,可顺应并利用该原理来产生多个焦平面。对本领域技术人员而言,可以通过对齿面进行光学设计以及施加适当的镀膜等,来更好地将不同波长的光波聚焦在不同焦距的焦平面上。根据实际需要,焦平面的数量可以为1至4个。当焦平面设计为1个时,意味着需要像传统镜头设计一样,尽量消除波长对焦距的影响。而采用多个焦平面,不仅光学设计更加容易,不同谱段的光也能够在不同的焦平面得到更好的特殊利用和处理。
本实施例中,可以在各个焦平面上设置相应光谱段的感应器,来达到对属于该光谱段的波长的最佳响应,在不同的焦平面上设置不同的感应器还能达到最大化利用入射光能量的效果。此外,将不同光谱段的光聚焦到不同的焦平面上,从而为多层感光提供便利。本实施例中的三个焦平面对应于划分的三个光谱段。在其他实施方式中,可以将感兴趣的光谱范围按照波长λ划分为不同的区间,具体划分方式可参考已有的通用规则,也可根据实际应用的需要进行调整。图11示出了两种常见的划分方式。一种是将光谱分为可见光谱段701和(近)红外光谱段702两个区间,参考图11(a),其中以虚线示出了这两个区间的中心波长的位置,可见光谱段包含红703、绿704、蓝705三个谱段。另一种是将光谱分为紫外光谱段706、可见光谱段707和红外光谱段708三个区间,参考图11(b),其中同样以虚线示出了三个区间的中心波长的位置。
本实施例的原理,还可应用于设计现代无线通信领域里的天线,使得天线能够同时接收不同频段的信号,因为基于本发明的菲涅尔透镜系统可适用于电磁波的任何谱段。
以上应用具体个例对本发明的原理及实施方式进行了阐述,应该理解,以上实施方式只是用于帮助理解本发明,而不应理解为对本发明的限制。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (10)

  1. 一种菲涅尔透镜系统,其特征在于,包括位于同一光路上的至少两个齿面,每个齿面含有至少一个菲涅尔单元,每个菲涅尔单元为由一个原始曲面生成的菲涅尔折射面,
    所述两个齿面中至少一个为复合菲涅尔折射面或者填充式菲涅尔折射面,或者,
    所述两个齿面为同一物理界面,其所在的元件具有反射式的背面。
  2. 如权利要求1所述的系统,其特征在于,所述原始曲面为焦点在同一直线上的共轴面,所述共轴面包括旋转二次曲面、旋转高阶多项式曲面、柱面和锥面。
  3. 如权利要求1所述的系统,其特征在于,所述填充式菲涅尔折射面的填充材料选自固体、液体或气体,所述固体优选自亚克力、塑胶和树脂,所述液体优选为水,所述气体优选为惰性气体。
  4. 如权利要求1-3任一项所述的系统,其特征在于,每个齿面上的菲涅尔单元共背,并且背面形成为宏观曲面。
  5. 如权利要求4所述的系统,其特征在于,所述宏观曲面选自平面、共轴面、由多个平面拼接成的折面和梯台面。
  6. 如权利要求1-5任一项所述的系统,其特征在于,同一齿面上的菲涅尔透镜单元,对相同谱段的光,都聚焦在同一个点,或者一条直线,或者一个有限的区域内。
  7. 如权利要求1-6任一项所述的系统,其特征在于,所述系统将光按照不同谱段的中心波长,聚焦到相应的焦平面上,以便于在所述焦平面上设置相应谱段的感应器,所述焦平面的数量为1至4个。
  8. 如权利要求7所述的系统,其特征在于,所述焦平面的焦距越长,所对应的中心波长越长。
  9. 如权利要求1所述的系统,其特征在于,所述两个齿面均为复合菲涅尔折射面,两个所述复合菲涅尔折射面上的菲涅尔单元的数量相同且同心布置,或者,两个所述复合菲涅尔折射面上的菲涅尔单元的数量不同且错心布置,所述错心布置优选采用错开距离相等的方式。
  10. 如权利要求1-9任一项所述的系统,其特征在于,所述两个齿面分别位于两个分离的元件上,所述两个分离的元件中的一个由电机驱动以进行自动对焦,和/或,所述两个分离的元件中的另一个由电机驱动以进行变焦。
PCT/CN2014/092139 2014-11-25 2014-11-25 菲涅尔透镜系统 WO2016082097A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2014/092139 WO2016082097A1 (zh) 2014-11-25 2014-11-25 菲涅尔透镜系统
DE112014007210.9T DE112014007210T5 (de) 2014-11-25 2014-11-25 Fresnellinsensystem
CA2968663A CA2968663C (en) 2014-11-25 2014-11-25 Fresnel lens system
US15/529,078 US10203432B2 (en) 2014-11-25 2014-11-25 Fresnel lens system
AU2014412625A AU2014412625B2 (en) 2014-11-25 2014-11-25 Fresnel lens system
CN201480083630.8A CN107003433B (zh) 2014-11-25 2014-11-25 菲涅尔透镜系统
GB1710164.3A GB2548756B (en) 2014-11-25 2014-11-25 Fresnel lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092139 WO2016082097A1 (zh) 2014-11-25 2014-11-25 菲涅尔透镜系统

Publications (1)

Publication Number Publication Date
WO2016082097A1 true WO2016082097A1 (zh) 2016-06-02

Family

ID=56073306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092139 WO2016082097A1 (zh) 2014-11-25 2014-11-25 菲涅尔透镜系统

Country Status (7)

Country Link
US (1) US10203432B2 (zh)
CN (1) CN107003433B (zh)
AU (1) AU2014412625B2 (zh)
CA (1) CA2968663C (zh)
DE (1) DE112014007210T5 (zh)
GB (1) GB2548756B (zh)
WO (1) WO2016082097A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018018480A1 (zh) * 2016-07-28 2018-02-01 博立多媒体控股有限公司 聚光式太阳能系统
WO2018098800A1 (zh) 2016-12-02 2018-06-07 博立多媒体控股有限公司 太阳能电站
WO2018119994A1 (zh) 2016-12-30 2018-07-05 博立多媒体控股有限公司 聚光太阳能装置
WO2018133116A1 (zh) * 2017-01-23 2018-07-26 博立多媒体控股有限公司 菲涅尔聚光装置
DE112017006888T5 (de) 2017-02-27 2019-10-02 Bolymedia Holdings Co. Ltd Solarvorrichtung vom energiespeichertyp

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017123879A (ru) * 2014-12-10 2019-01-11 Болимедиа Холдингз Ко. Лтд. Система измерения электромагнитного излучения
CN109659663B (zh) * 2018-12-11 2020-09-25 安徽伟迈信息技术有限公司 一种家用路由器可调定向路由天线
CN110967118B (zh) * 2019-11-26 2021-09-28 博立码杰通讯(深圳)有限公司 菲涅尔透镜单元感应装置
CN112051677A (zh) * 2020-08-29 2020-12-08 付祖家 一种复合菲涅尔眼镜片制作方法
CN113777678A (zh) * 2021-08-30 2021-12-10 深圳市百康光电有限公司 菲涅尔透镜及探测器
CN114296162B (zh) * 2021-12-10 2023-07-21 集美大学 一种双曲面菲涅尔透镜结构及其设计方法
CN114374787A (zh) * 2022-01-17 2022-04-19 合肥联宝信息技术有限公司 一种可实现广角的镜片、图像采集装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305009A2 (en) * 1987-08-28 1989-03-01 Koninklijke Philips Electronics N.V. Improved one-piece projection screen
WO2008153435A1 (fr) * 2007-06-15 2008-12-18 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Procédé de fabrication d'un panneau de concentration à lentilles composite pour modules photoélectriques
JP2012252227A (ja) * 2011-06-03 2012-12-20 Dainippon Printing Co Ltd 反射型スクリーン、反射型スクリーンの製造方法、及び反射型投射システム
US20140092471A1 (en) * 2012-09-28 2014-04-03 Dai Nippon Printing Co., Ltd. Reflection screen and image display system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414255A (en) * 1993-11-08 1995-05-09 Scantronic Limited Intrusion detector having a generally planar fresnel lens provided on a planar mirror surface
US5642226A (en) * 1995-01-18 1997-06-24 Rosenthal; Bruce A. Lenticular optical system
JP4293857B2 (ja) * 2003-07-29 2009-07-08 シチズン電子株式会社 フレネルレンズを用いた照明装置
CN2879218Y (zh) * 2006-03-15 2007-03-14 叶全丰 菲涅耳透镜
TW201011349A (en) * 2008-09-10 2010-03-16 E Pin Optical Industry Co Ltd Plano-Fresnel LED lens for angular distribution patterns and LED assembly thereof
CN102590879B (zh) * 2011-01-06 2015-01-07 博立码杰通讯(深圳)有限公司 一种菲涅尔透镜感应方法及系统
CN103091738A (zh) * 2012-10-23 2013-05-08 马楚 一种广角度热释红外菲涅尔透镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305009A2 (en) * 1987-08-28 1989-03-01 Koninklijke Philips Electronics N.V. Improved one-piece projection screen
WO2008153435A1 (fr) * 2007-06-15 2008-12-18 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Procédé de fabrication d'un panneau de concentration à lentilles composite pour modules photoélectriques
JP2012252227A (ja) * 2011-06-03 2012-12-20 Dainippon Printing Co Ltd 反射型スクリーン、反射型スクリーンの製造方法、及び反射型投射システム
US20140092471A1 (en) * 2012-09-28 2014-04-03 Dai Nippon Printing Co., Ltd. Reflection screen and image display system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018018480A1 (zh) * 2016-07-28 2018-02-01 博立多媒体控股有限公司 聚光式太阳能系统
WO2018098800A1 (zh) 2016-12-02 2018-06-07 博立多媒体控股有限公司 太阳能电站
WO2018119994A1 (zh) 2016-12-30 2018-07-05 博立多媒体控股有限公司 聚光太阳能装置
WO2018133116A1 (zh) * 2017-01-23 2018-07-26 博立多媒体控股有限公司 菲涅尔聚光装置
DE112017006888T5 (de) 2017-02-27 2019-10-02 Bolymedia Holdings Co. Ltd Solarvorrichtung vom energiespeichertyp

Also Published As

Publication number Publication date
AU2014412625B2 (en) 2018-05-17
DE112014007210T5 (de) 2017-08-03
GB2548756A (en) 2017-09-27
CN107003433B (zh) 2019-05-07
AU2014412625A1 (en) 2017-07-13
CA2968663C (en) 2019-08-27
US20170261652A1 (en) 2017-09-14
GB201710164D0 (en) 2017-08-09
GB2548756B (en) 2021-04-21
CN107003433A (zh) 2017-08-01
CA2968663A1 (en) 2016-06-02
US10203432B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2016082097A1 (zh) 菲涅尔透镜系统
WO2016090570A1 (zh) 电磁辐射感应系统
CN101523267B (zh) 照明器方法和设备
US20190324234A1 (en) Optical imaging system
CN108444600B (zh) 一种高通量宽谱段小型化成像光谱仪
WO2015070695A1 (zh) 一种 led 可变焦成像灯的光学系统
Cheng et al. Design of an ultrawide angle catadioptric lens with an annularly stitched aspherical surface
CN111025528A (zh) 一种成像系统、摄像模组及移动终端
US10054756B2 (en) Lens module
CN104267484B (zh) 一种小尺寸非制冷双视场红外光学系统
US8902521B2 (en) Lens module
EP1770435A4 (en) ILLUSTRATION DEVICE
CN106249392A (zh) 一种变焦光学系统
WO2023051476A1 (zh) 滤光组件、摄像模组和电子设备
KR20060005393A (ko) 모놀리식 렌즈/반사경 광학 부품
KR20160123671A (ko) 다층 구조의 렌즈 및 그 렌즈 제조 방법
CN104656169A (zh) 菲涅尔透镜、探测器及安防系统
WO2020125291A1 (zh) 成像组件及其制造方法、摄像模组和电子设备
KR102258458B1 (ko) 주간과 야간에 동시에 사용할 수 있으며 배율변화가 가능한 전방위 줌 광학계
CN109541787B (zh) 一种非制冷型双波段全景凝视成像光学系统
CN106199919B (zh) 一种光学消热差、高像素、高照度、低成本的红外热成像系统
JP2014134790A (ja) 集光装置及び集光モジュール
TW202334694A (zh) 光學系統及具有其之攝像模組
CN218298725U (zh) 基于超透镜的闪光灯及具有其的移动设备
TW202334695A (zh) 光學系統及包括其之攝像模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2968663

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15529078

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014007210

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 201710164

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141125

ENP Entry into the national phase

Ref document number: 2014412625

Country of ref document: AU

Date of ref document: 20141125

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14907068

Country of ref document: EP

Kind code of ref document: A1