WO2016090570A1 - 电磁辐射感应系统 - Google Patents

电磁辐射感应系统 Download PDF

Info

Publication number
WO2016090570A1
WO2016090570A1 PCT/CN2014/093454 CN2014093454W WO2016090570A1 WO 2016090570 A1 WO2016090570 A1 WO 2016090570A1 CN 2014093454 W CN2014093454 W CN 2014093454W WO 2016090570 A1 WO2016090570 A1 WO 2016090570A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel
electromagnetic radiation
sensing
fresnel lens
tooth
Prior art date
Application number
PCT/CN2014/093454
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to AU2014413864A priority Critical patent/AU2014413864B2/en
Priority to PCT/CN2014/093454 priority patent/WO2016090570A1/zh
Priority to EP14907948.5A priority patent/EP3226040A1/en
Priority to JP2017531299A priority patent/JP2018506705A/ja
Priority to CN201480083624.2A priority patent/CN107003432A/zh
Priority to BR112017011609A priority patent/BR112017011609A2/pt
Priority to CA2970047A priority patent/CA2970047A1/en
Priority to RU2017123879A priority patent/RU2017123879A/ru
Priority to US15/533,004 priority patent/US20170336527A1/en
Priority to NZ732492A priority patent/NZ732492A/en
Priority to KR1020177018764A priority patent/KR20170092674A/ko
Priority to MX2017007433A priority patent/MX2017007433A/es
Publication of WO2016090570A1 publication Critical patent/WO2016090570A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/009Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with infrared radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the invention relates to the technical field of absorbing and converting the energy of electromagnetic radiation, in particular to an electromagnetic radiation sensing system.
  • Electromagnetic radiation as used herein has a broad meaning and can be classified according to its wavelength range and signal source, such as solar radiation, radar radiation, gamma radiation, microwave, infrared radiation, radio waves, X-ray, and the like.
  • Signal source such as solar radiation, radar radiation, gamma radiation, microwave, infrared radiation, radio waves, X-ray, and the like.
  • Techniques for absorbing and converting the energy of electromagnetic radiation are widely used in many fields, such as radar warning, astronomical observation, radio signal transmission, and solar power generation. In these applications, enhancing the energy of the induced signal and/or increasing the efficiency of energy conversion is always the goal pursued.
  • a common practice is to converge electromagnetic radiation, which on the one hand enhances the signal and on the other hand reduces the size of the sensing element.
  • a Fresnel lens is a thin lens. By dividing the continuous curved surface of the ordinary lens into several segments, the Fresnel lens is formed by placing each segment surface on the same plane or a substantially smooth curved surface after reducing the thickness of each segment.
  • the refractive surface of the Fresnel lens generally has a discontinuous step or tooth shape. In this paper, the curved surface (non-smooth surface) of the lens is called the refractive surface.
  • FIG. 1 A conventional structure of a Fresnel lens can be referred to FIG.
  • the broken line indicates the center of the curved surface
  • the original curved surface 101 of the ordinary lens 100 is divided into a plurality of concentric lens rings 201, and after reducing the thickness of each lens ring, they are placed on the same plane to become Fresnel.
  • Lens 200 This discontinuous refractive surface evolved from the original surface can be referred to as the Fresnel refractive surface. Since the refraction of light occurs on the curved surface of the lens regardless of the thickness of the lens, theoretically the Fresnel refractive surface has approximate optical properties compared to the corresponding original curved surface, but the thickness is greatly reduced. The reduction in thickness reduces the absorption and attenuation of light energy, which is an important advantage of Fresnel lenses in many applications.
  • a Fresnel refraction surface generated from an original surface can be called a Fresnel unit, and a Fresnel unit can be described by five basic parameters: center position, area, focal length, refractive surface shape, and split ring shape. Location and quantity.
  • the side with the Fresnel refractive surface is called the “tooth surface”
  • the other surface that is relatively smooth and flat is called the “back surface”
  • the Fresnel lens with one side is the tooth surface and the other side is the back surface. It is called “single-sided Fresnel lens”.
  • Fresnel lenses can be used to converge light signals, such as infrared light, to facilitate sensing element detection, such as the passive infrared detector "PIR" shown in FIG. Obviously, Fresnel lenses can also be used to concentrate other types of electromagnetic radiation.
  • PIR passive infrared detector
  • a tooth surface containing only one Fresnel unit can be referred to as a "simple Fresnel refractive surface", and a single-sided Fresnel lens using such a tooth surface can be referred to as a "single-sided simple Fresnel lens".
  • a tooth surface containing two or more Fresnel elements may be referred to as a "composite Fresnel refractive surface", and a single-sided Fresnel lens using such a tooth surface may be referred to as “single-sided composite Fresnel” lens".
  • the back side of a single-sided composite Fresnel lens is usually a macroscopic surface, such as a plane, a coaxial surface (including a rotating surface, such as a spherical surface, an ellipsoid, a cylindrical surface, a parabolic cylinder, a hyperbolic cylinder, and a high-order polynomial surface, etc.) , a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • Figure 2 shows the structure of several single-sided composite Fresnel lenses in which the dashed lines indicate the optical path through the center of each Fresnel unit. In Fig.
  • the tooth surface contains three horizontally arranged Fresnel elements, and the back surface is flat (square); in Fig. 2(b), the tooth surface contains five Fresnel elements, one is located in the center, and the other four Distributed around, the back is flat (circular); the back of Figure 2 (c) is a cylindrical surface; the back of Figure 2 (d) is a spherical surface; the back of Figure 2 (e) is a folded surface of three planes; In Fig. 2(f), the back surface is a terrace surface.
  • an electromagnetic radiation sensing system comprising an inductive element and a Fresnel lens system for collecting electromagnetic radiation, wherein the inductive element is for sensing electromagnetic radiation concentrated by a Fresnel lens system, and the Fresnel lens system is located At least two flank surfaces on the same optical path, each tooth surface containing at least one Fresnel unit, each Fresnel unit being a Fresnel refractive surface generated by an original curved surface, at least one of the two tooth surfaces being composite
  • the Fresnel refractive surface or the filled Fresnel refractive surface, or the two tooth surfaces are the same physical interface, and the components on which they have a reflective back surface.
  • the Fresnel lens system involved in the present invention can have various excellent implementation forms, and the two tooth flanks included therein can be disposed on two separate components, or can be combined back to back to form a double-sided Fresnel.
  • the two faces of the lens, and preferably also the electromagnetic radiation spectral segments are concentrated on different focal planes, so that the correspondingly arranged sensing elements are subjected to the sensing of the spectral segments.
  • the electromagnetic radiation sensing system uses a Fresnel lens system having two or more tooth flanks, which can fully exert the advantage of the thinness of the Fresnel lens, and can achieve stronger convergence without significantly increasing the thickness of the system. ability.
  • Enhanced convergence capabilities reduce focal length and area of sensing components, helping to reduce device size and system performance.
  • the structure and use of conventional electromagnetic radiation sensing systems are greatly enriched and expanded.
  • 1 is a schematic structural view of a conventional Fresnel lens
  • FIG. 2 is a schematic structural view of several conventional single-sided composite Fresnel lenses
  • Figure 3 is a schematic view of two coaxial faces for generating a Fresnel refractive surface in the present invention
  • Figure 4 is a schematic view of a filled Fresnel refractive surface in the present invention.
  • Figure 5 is a schematic view showing the concentric arrangement of Fresnel units on two tooth faces in the present invention
  • Figure 6 is a schematic view showing the arrangement of the Fresnel unit misalignment on the two tooth faces in the present invention
  • Figure 7 is a schematic view showing the structure of the two tooth faces back to back in the present invention.
  • Figure 8 is a schematic structural view of a reflective Fresnel lens in the present invention.
  • Embodiment 9 is a schematic structural view of an electromagnetic radiation sensing system in Embodiment 1;
  • Figure 10 is a schematic structural view of an electromagnetic radiation sensing system in Embodiment 2.
  • Figure 11 is a schematic illustration of two divisions of a spectral segment in the present invention.
  • Figure 12 is a schematic structural view of an electromagnetic radiation sensing system in Embodiment 3.
  • Figure 13 is a schematic view showing the structure of an electromagnetic radiation sensing system in the fourth embodiment.
  • An electromagnetic radiation sensing system comprises an inductive element and a Fresnel lens system for collecting electromagnetic radiation, wherein the inductive element is used to induce electromagnetic radiation concentrated by the Fresnel lens system.
  • the so-called sensing element refers to a functional unit capable of absorbing or converting the energy of electromagnetic radiation, and may be, for example, a photosensitive chip (such as CCD or CMOS) or an energy detector (such as a passive infrared detector or a radar detector) according to different application requirements. ), photoelectric conversion unit (such as photovoltaic panels), radio receiving unit, etc.
  • the Fresnel lens system involved in the present invention has at least two tooth flanks on the same optical path and, therefore, may be referred to as a "multi-faceted Fresnel lens system.” According to the number of tooth surfaces located on the same optical path, it can be specifically named as “double-sided Fresnel lens system", “three-sided Fresnel lens system” and the like.
  • double-sided Fresnel lens system "three-sided Fresnel lens system” and the like.
  • there may be one or more elements which may also be referred to as “single-sided Fresnel lens” or “double-sided Fresnel lens”, respectively, based on the number of tooth flanks provided on a single element. "Wait.
  • double-sided Fresnel lens system is different from the “double-sided Fresnel lens”.
  • a double-sided Fresnel lens means that both sides of a lens are tooth flanks, and a double-sided Fresnel lens system can be composed of a double-sided Fresnel lens or two single-sided Fresnel lens systems. composition.
  • Each tooth face in the system contains at least one Fresnel unit, and each Fresnel unit is a Fresnel refractive surface generated by an original curved surface.
  • the original original surface used to generate the Fresnel refractive surface is generally a curved surface that is symmetrical about the optical axis, such as a spherical surface, a rotating paraboloid, and the like.
  • the focus of a traditional original surface is at a point and, therefore, can be referred to as a "co-point face.”
  • the original curved surface can be any form of coaxial surface, which can be specifically set according to the needs of the application.
  • coaxial plane refers to a surface whose focal points are on the same straight line (not necessarily at the same point), and the straight line can be called "coaxial".
  • the traditional common point surface can be regarded as a special case when the coaxial axis of the coaxial plane degenerates into one point.
  • the sensing element for placement at the convergence position can be extended from a smaller area (corresponding to the focus) to a long strip (corresponding to a common axis composed of the focus), thereby Improves signal collection and helps solve local overheating problems without significantly increasing costs.
  • Typical coaxial surfaces include rotating surfaces (including secondary or higher-order rotating surfaces), cylinders, cones, and so on.
  • the cylindrical surface can also be called an equal-section coaxial surface, and the curved surface is cut at any point along the vertical direction of the common axis, and the obtained cross-section has the same shape and size, and the cylindrical surface is a cylindrical one.
  • the cross-section of the tapered surface along the common axis has a similar shape but a different size, and the conical surface is a special case of the tapered surface.
  • Fig. 3 shows the above two coaxial planes, wherein Fig. 3(a) is an isometric coaxial plane, and Fig. 3(b) is a tapered coaxial plane, the focal points F of which are all located on the respective common axes L.
  • the single flank may be a composite Fresnel refractive surface containing two or more Fresnel elements.
  • the basic parameters of each Fresnel unit on the Fresnel refractive surface for example, area, focal length, the shape of the corresponding original surface, the number of concentric rings, etc.
  • each Fresnel element on the composite Fresnel refractive surface has its own optical center, but the focus falls on the same point, or a straight line, or a limited area. This can be achieved by spatially arranging each Fresnel cell constituting the composite Fresnel refractive surface.
  • these Fresnel elements are arranged on a macroscopic surface, such as planes, quadrics (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • a macroscopic surface such as planes, quadrics (including spherical surfaces, ellipsoids, cylindrical surfaces, parabolic cylinders, hyperbolic cylinders), high-order polynomial surfaces (usually aspherical Implementation method), and a folding surface formed by a plurality of planes, a terrace surface, and the like.
  • the single flank can also be a filled Fresnel refractive surface.
  • the filled Fresnel refractive surface can be formed by filling a transparent material on a Fresnel refractive surface (which may be referred to as a "mother face") formed of a solid material.
  • the Fresnel refractive surface formed by the filled transparent material may be referred to as a "sub-surface", and its shape is completely complementary to the mother surface, and the material forming the sub-surface is different from the refractive index of the material forming the mother surface, and of course, the sub-surface is formed.
  • the material is also different from the refractive index of the surrounding environment (such as air).
  • the filler material forming the sub-surface is selected from a solid, a liquid or a gas.
  • the solid filling material may, for example, be acrylic, plastic or resin
  • the liquid filling material may be, for example, water
  • the gas filling material may be, for example, an inert gas.
  • material 301 forms a Fresnel unit having a convex surface 302
  • material 303 forms a Fresnel unit having a concave surface 304 that is completely complementary in shape, forming a flank by close fitting to face.
  • the Fresnel lens formed by the material 301 can be referred to as a "mother mirror", and the mother glass is enclosed in a cavity having a space and a transparent space, and then the cavity is filled with a transparent material 303 to obtain another bump.
  • a Fresnel lens whose nature is completely opposite to that of the mother mirror can be called a "sub-mirror".
  • materials 301 and 303 are different solid materials that are separately formed into Fresnel cells and then closely attached together. It should be noted that the solid filled Fresnel lens is structurally identical to the two conventional Fresnel lenses that are in close contact with each other, but the filling process, the processing difficulty, and thus the The material requirements for both the mother and the sub-mirrors are different.
  • the material 301 is a solid and the material 303 is a liquid or a gas.
  • the solid material 301 is first made into a Fresnel unit, and then the liquid or gas material 303 is filled and encapsulated on the tooth surface.
  • a filled Fresnel refractive surface is formed.
  • the liquid filling material used may be, for example, water, and the gas may be an inert gas such as nitrogen.
  • the use of liquids to make filled Fresnel refractive surfaces has many advantages. On the one hand, the lens can be easily heated or cooled by liquid. On the other hand, the liquid can be seamlessly combined with Fresnel units made of solid materials.
  • Fresnel lens system Overcoming the weakness of Fresnel lenses that are prone to glare, allows the Fresnel lens system to be used in high-resolution imaging systems such as digital cameras and cell phones.
  • the glare of a conventional Fresnel lens is usually caused by the discontinuity of the tooth surface of the Fresnel lens, and this discontinuity can be compensated by a complementary liquid or gas lens, thereby greatly reducing glare.
  • Applying such a filled Fresnel lens formed by liquid or gas filling to the first-stage lens of the wide-angle lens can greatly reduce the size of the lens.
  • the relative positions of the Fresnel elements on the two tooth faces can be arranged in two preferred ways.
  • One arrangement can be referred to FIG. 5, in which the number of Fresnel elements on the two tooth faces is the same and concentrically arranged.
  • the so-called concentric arrangement means that the optical axes of the Fresnel elements on the two tooth faces coincide.
  • other basic parameters of the Fresnel unit such as the focal length, the shape of the corresponding original curved surface, and the number of concentric rings, which may be the same or different, may be configured according to the needs of the optical design.
  • each optical axis are exemplarily shown by dashed lines, each optical axis corresponding to one Fresnel unit on each of the two tooth faces.
  • the advantage of the concentric arrangement is that it enhances the signal near the center of the Fresnel unit.
  • Another arrangement can be referred to Fig. 6, in which the number of Fresnel elements on the two tooth flanks is different and arranged in a wrong way, and the dislocation arrangement is preferably in a manner in which the staggered distances are equal.
  • the so-called misalignment arrangement means that the optical axes of the Fresnel elements on the two tooth faces are offset from each other, and the so-called offset distance is equal to mean that the optical axis of one Fresnel unit on one tooth surface is surrounded by the other tooth surface.
  • the distance between the optical axes of the nearest Fresnel units of the optical axis is equal.
  • the optical axis is indicated by a broken line, and the optical axis of a Fresnel unit on the lower tooth surface is located on the upper tooth surface.
  • the center of the optical axis of the four Fresnel cells The advantage of a misaligned and equidistant arrangement is the ability to equalize the signal and reduce dead angles and dead zones in the sensing range.
  • flank surfaces can be flexibly combined to form one or more components.
  • a composite Fresnel refractive surface is applied to a single-sided element, that is, as a single-sided composite Fresnel lens, such as the one shown in FIG.
  • a single-sided composite Fresnel lens can also be considered to be formed by arranging the back sides of two or more single-sided simple Fresnel lenses on a macroscopic curved surface.
  • the two tooth flanks are respectively located on two separate elements, forming a system consisting of two single-sided Fresnel lenses, the orientation relationship between the two elements may be the tooth facing tooth surface , or the teeth face the back, or the back to the back.
  • the two tooth flanks are disposed back to back on the same component.
  • the portions to which the two flank faces belong may be the same or different materials, so the boundary line in Fig. 7 is indicated by a broken line.
  • the back-to-back two Fresnel lenses are made of the same material, they form a double-sided Fresnel lens and can be fabricated in one piece.
  • acrylic, resin or other plastic materials can be used.
  • the shape of the mold is made, and the unevenness characteristics of the two tooth faces may be the same or different.
  • the above-listed structural forms may also be combined and expanded as needed.
  • the two tooth flanks in the system can be acted upon by the same physical interface by setting the reflective surface.
  • the element 400 has a reflective back surface 401 (the inner surface is a mirror surface), and the back surface 401 can be formed, for example, by plating a reflective film on a smooth surface of a single-sided Fresnel lens or pasting a patch having reflective ability. Due to the reflection, the incident light path passes through its physical refractive interface 402 twice, so the physical interface is equivalent to the two tooth flanks, and the element 400 can also be referred to as a reflective double-sided Fresnel lens, and the bumps of the two tooth flanks The nature is the same.
  • a reflective back surface it is possible to easily increase the number of flank surfaces in the optical path, reduce the cost of fabrication and installation, and greatly enrich the use of the Fresnel lens.
  • the electromagnetic radiation sensing system according to the present invention will be exemplified below by way of specific examples.
  • an electromagnetic radiation sensing system in accordance with the present invention can be seen in reference to Figure 9, including an inductive element 503 and a Fresnel lens system comprised of two Fresnel lenses.
  • the Fresnel lens system in this example contains two flank surfaces, one of which is a composite Fresnel refractive surface and the other flank 502 contains only one Fresnel element.
  • the dotted line in the figure shows Fresnel The optical axis of the unit.
  • the two tooth flanks are respectively disposed on two separate single-sided elements to form a single-sided composite Fresnel lens and a single-sided simple Fresnel lens.
  • the two single-sided lenses are sequentially arranged on the optical path with the teeth facing the back side for collectively concentrating signals onto the sensing element 503, wherein the composite Fresnel lens can be regarded as the objective lens of the convergence system, and thereafter A simple Fresnel lens can be considered as an eyepiece.
  • the lens system of this embodiment can be used to detect signals at a long distance, and can also be used to achieve hierarchical concentrating.
  • one or both of the two lenses can be driven by a motor.
  • a lens serving as an eyepiece is driven by a motor to perform autofocus, or a lens serving as an objective lens is further driven by a motor to perform zooming, thereby making the electromagnetic radiation sensing system an automatic zoom system.
  • an electromagnetic radiation sensing system in accordance with the present invention is a multifocal plane sensing system including three inductive elements and a three-toothed Fresnel lens system.
  • the first tooth surface 601 is a composite Fresnel refractive surface, which is disposed on a single-sided component to form a single-sided composite Fresnel lens for first focusing on the optical signal;
  • the second tooth surface and The third flank may be a composite Fresnel refractive surface or may only contain one Fresnel unit.
  • the second flank and the third flank may have a relative positional relationship as shown in FIG. 5 or FIG.
  • the two tooth flanks may be arranged together in one element or in two single-sided elements.
  • the second tooth surface 602 and the third tooth surface 603 are formed in a back-to-back manner as a double-sided Fresnel lens for second focusing of the optical signal.
  • the convergence system consisting of the two lenses converges the light waves into three different focal planes according to the central wavelength of different spectral segments, wherein the focal planes F1, F2, and F3 correspond to the three spectral segments respectively.
  • the central wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 are respectively provided with sensing elements on each focal plane, which are sequentially sensing elements 604, 605, 606, and the difference between the adjacent focal planes is not less than that of the sensing elements on the previous focal plane.
  • the thickness is such that a plurality of sensing elements are stacked, and the former focal plane refers to a focal plane having a short focal length. In general, the focal length and wavelength of the lens are monotonically increasing.
  • the principle can be adapted and utilized to implement a multifocal plane system, as well as a multi-lens sensing system.
  • Those skilled in the art can better converge light waves of different wavelengths on focal planes of different focal lengths by optically designing the tooth surface and applying appropriate coating, etc., that is, separating the convergence positions of different spectral segments.
  • the number of focal planes can be 1 to 4.
  • the focal plane is designed to be one, it means that the effect of the wavelength focusing distance should be eliminated as much as the conventional lens design.
  • the use of multiple focal planes not only makes the optical design easier, but also the light of different spectral segments can be better utilized and processed in different focal planes.
  • the sensitive sensing interval of each sensing element can be adapted to the spectral segment corresponding to the focal plane in which it is located to achieve an optimal response to the wavelengths belonging to the spectral segment, thereby maximally utilizing the incident electromagnetic Radiation energy can effectively improve the signal-to-noise ratio of the sensing system.
  • the sensing element can have better response characteristics to electromagnetic radiation in one or certain wavelength ranges compared to other ranges, such as better sensitivity or higher absorption and utilization efficiency. Therefore, these intervals can be referred to as sensitive sensing intervals of the sensing elements, and can also be referred to as optimal sensing intervals.
  • each inductive element can be adapted to the area of convergence of the Fresnel lens system in the focal plane on which it is located, for example, in the case of multiple focal planes, cascading settings
  • the plurality of sensing elements may have a pyramid-like overall structure, i.e., the sensing elements located on a focal plane having a longer focal length have a larger area. The above two preferred modes can be applied alternatively or simultaneously.
  • the sensing elements on each focal plane can be realized by separate devices (for example, respectively, placing photosensitive chips on each focal plane), or can be realized by each layer of the multilayer device.
  • the devices may be filled with voids or with a transparent material as an interlayer.
  • the device positioned on the optical path is preferably made as thin as possible. So that the electromagnetic waves leading to the latter device are more easily transmitted.
  • the focal planes of the different spectral segments can be designed on different sensing layers of the multilayer device by optically designing the Fresnel lens system.
  • the so-called multilayer device refers to devices having different sensing layers at different depths, such as multilayer multi-spectral sensing chips fabricated using the depth filtering principle.
  • the multilayer device can be fabricated by one-sided production, that is, two or more laminated sensing layers are formed on one surface of the base layer, or two-sided manufacturing can be used, that is, one or more of the two sides of the base layer are respectively formed. Sensing layer.
  • the sensing method applied to the sensing element of the present invention can be either one-way sensing or two-way sensing, and can be selected and designed according to the needs of a specific application.
  • unidirectional induction is meant the induction of incident electromagnetic radiation from only one direction of the component, such as the front or the back.
  • the so-called two-way induction means that the incident electromagnetic radiation is induced from the front and back sides of the element simultaneously or at different times.
  • various multi-faceted Fresnel lens systems as described above can be provided in each direction.
  • the three focal planes in this embodiment correspond to the divided three spectral segments.
  • the spectral range of interest may be divided into different intervals according to the wavelength ⁇ .
  • the specific division manner may refer to existing general rules, or may be adjusted according to actual application requirements.
  • Figure 11 shows two common divisions. One is to divide the spectrum into two sections of the visible spectrum segment 701 and the (near) infrared spectrum segment 702. Referring to FIG. 11(a), the position of the central wavelength of the two intervals is shown by a broken line, and the visible spectrum segment includes Red 703, green 704, and blue 705 are three spectral segments. The other is to divide the spectrum into three sections of the ultraviolet spectrum section 706, the visible spectrum section 707 and the infrared spectrum section 708, with reference to Fig. 11(b), wherein the positions of the center wavelengths of the three sections are also shown by broken lines.
  • the principle of this embodiment can also be applied to designing antennas in the field of modern wireless communication, so that the antenna can simultaneously receive signals of different frequency bands, because the electromagnetic radiation sensing system based on the present invention can be applied to any spectral segment of electromagnetic waves.
  • FIG. 12 Another embodiment of an electromagnetic radiation sensing system in accordance with the present invention can be seen in Figure 12, which includes a plurality of Fresnel lens systems.
  • the radiation source 801 is used to generate electromagnetic radiation;
  • the sensing element 802 is a bidirectional sensing element capable of simultaneously sensing electromagnetic radiation in both directions;
  • Fresnel lenses 803 and 804 are two transmissive Fresnel lenses.
  • the Fresnel lens 803 can be a single-sided composite Fresnel lens to have a large sensing range, and the Fresnel lens 804 can be a double-sided Fresnel lens with two tooth flanks back to back.
  • the method consists of having a strong convergence capability;
  • the Fresnel lenses 805 and 806 are two reflective Fresnel lenses consisting of a tooth flanks and a reflective back face.
  • the combination of lenses 803 and 804 can be considered as a Fresnel lens system
  • the combination of lenses 805 and 804 is considered as the second Fresnel lens system
  • the lens 806 is regarded as the third Fresnel
  • the lens systems each converge electromagnetic radiation within their own sensing range from different directions to the bidirectional sensing element 802. Due to the use of the reflective Fresnel lens, the sensing range of the system is greatly expanded, which can double the intensity of the concentrated electromagnetic radiation, and considering the thinness of the Fresnel lens, the energy attenuation of the electromagnetic radiation as it passes through Low, so the system of this embodiment is particularly suitable for solar power generation and radar signal or space signal detection.
  • the radiation source 801 can be the sun
  • the bidirectional sensing element 802 can be a photovoltaic panel, specifically a single-sided photovoltaic panel or a double-sided photovoltaic panel.
  • a simple one-sided bidirectional sensing element is fabricated by making the sensing element thin so that electromagnetic radiation (e.g., light) can reach the region of the element where it is induced from both directions.
  • the double-sided sensing element can be obtained by simply stacking two single-sided sensing elements back to back.
  • the tooth surface of the reflective double-sided Fresnel lens may further preferably be a filled Fresnel refractive surface formed by closely fitting two complementary tooth surfaces, either The solid tooth surface is bonded to the solid tooth surface, and the solid tooth surface may be attached to the liquid tooth surface.
  • FIG. 13 Another embodiment of an electromagnetic radiation sensing system in accordance with the present invention can be seen in FIG. 13, including an inductive element 901, a Fresnel lens system comprised of two Fresnel lenses 902 and 903, and a heat exchange system.
  • the lens 902 can adopt a single-faceted Fresnel lens with the teeth facing outward, and the lens 903 is a liquid-filled Fresnel lens.
  • the back surface of the lens 902 and the tooth surface of the lens 903 can be formed as a closed space. Filled with liquid.
  • the sensing element 901 serves as a heat dissipating end for heat exchange with the medium of the heat exchange system through a thermally conductive material.
  • the sensing element is heat exchanged with the medium through the cooling bath 904.
  • the sensing element can also be immersed in the medium of the heat exchange system either directly or with a thermally conductive material.
  • the heat exchange system includes a cooling tank 904, a storage unit 905 for storing the heat collecting medium, and a duct 908 that communicates the respective areas.
  • the medium used for heat exchange flows through the various areas through the pipe.
  • the heat collecting medium directly flows between the respective regions as a medium for performing heat exchange.
  • the heat collecting medium and the medium may be isolated from each other, and the same or different substances may be used for heat exchange through the heat exchange structure in the storage unit.
  • the incident electromagnetic radiation (shown by the arrow in the figure) is focused on the sensing element through the Fresnel lens system, and the medium enters the storage unit through the inflow port 906, according to the principle of liquid heat convection (the hot medium goes up)
  • the heat sink that flows into the sensing element via the communicating pipe exchanges heat with the sensing element, and then enters the closed space between the lenses 902 and 903 via the communicating pipe to exchange heat with the lens and acts as a filling liquid, and then via the connected pipe.
  • the outflow port 907 The above description of the heat exchange process is merely an example, and the area through which the medium flows may be increased or decreased according to the needs of the actual application.
  • the filling space of the filled Fresnel lens may be completely closed, and the medium is not used as a filling liquid.
  • the system may further include an automatic valve, a pressure control system, a temperature control system, and the like.
  • the electromagnetic radiation sensing system of this embodiment can be used as a household solar power generation and hot water system, wherein the sensing element is a photovoltaic panel, the medium of the heat exchange system is water, and the storage unit is a hot water tank. Part of the incident sunlight is converted into electrical energy by the photovoltaic panel, and the other part is converted into thermal energy. The generated thermal energy is absorbed by the heat exchange system for heating the water, thereby improving the utilization of solar energy and correspondingly reducing the heat of the household. The energy needed for water. In this case, the self-flow inlet 906 flows into the cold water, and the self-flow outlet 907 flows out of the hot water for domestic use.
  • the electromagnetic radiation sensing system of the embodiment can also be used as an infrared night vision system with a cooling system, wherein the sensing element is an infrared photosensitive chip, the storage unit is a cooler, and the medium acts as a coolant to flow through the lens space and to cool the sensing element. Cool it while the tank is in use.
  • the infrared night vision system in order to reduce the influence of the thermal radiation of the surrounding object including the lens (lens) on the sensing element, it is usually necessary to cool the lens and the sensing element to a temperature much lower than the observation object.
  • the conventional lens In the conventional infrared night vision system, the conventional lens is used, the thickness is large, and the cooling is generally performed externally, so the cooling speed is slow, and a long pre-cooling time is required before the system is used.
  • the infrared night vision system adopting the structure of the embodiment not only has a thin lens thickness, but also directly cools from the inside, the cooling speed is greatly improved, the signal-to-noise ratio of the sensing element can be effectively improved, and the liquid-filled Fresnel lens is adopted. It also provides high quality imaging.
  • the lens and the sensing element may be heated by a heat exchange system as needed.

Abstract

一种电磁辐射感应系统,包括感应元件(604,605,606)以及用于会聚电磁辐射的菲涅尔透镜系统,其中感应元件(604,605,606)用于感应菲涅尔透镜系统会聚的电磁辐射,菲涅尔透镜系统包括位于同一光路上的至少两个齿面(601,602,603),每个齿面含有至少一个菲涅尔单元,两个齿面中至少一个为复合菲涅尔折射面或者填充式菲涅尔折射面,或者,两个齿面为同一物理界面,其所在的元件具有反射式的背面。依据所述的电磁辐射感应系统能够充分发挥菲涅尔透镜厚度薄的优势,在不明显增加系统厚度的情况下即可实现更强的会聚能力,有助于缩小器件的尺寸以及提高系统的性能。

Description

电磁辐射感应系统 技术领域
本发明涉及对电磁辐射的能量进行吸收和转换的技术领域,具体涉及电磁辐射感应系统。
背景技术
本文中所称电磁辐射具有广义的含义,可根据其波长范围以及信号来源进行分类,例如可以是太阳光辐射、雷达辐射、伽马射线、微波、红外辐射、无线电波、X-光等。对电磁辐射的能量进行吸收和转换的技术广泛使用于诸多领域中,例如,雷达预警,天文观测,无线电信号传输,太阳能发电等。在这些应用中,增强所感应信号的能量和/或提高能量转换的效率始终是所追求的目标。一种常见的做法是对电磁辐射进行会聚,一方面能够增强信号,另一方面也能减小感应元件的尺寸。
菲涅尔(Fresnel)透镜是一种薄型透镜。通过将普通透镜连续的曲面分割成若干段,在减少每段的厚度后将各段曲面置于同一平面或基本光滑的曲面上即形成为菲涅尔透镜。菲涅尔透镜的折射面一般呈不连续的阶梯状或齿状。本文中,将透镜的曲面(非光滑面)称为折射面。
菲涅尔透镜的一种常规的结构可参考图1。图1中,虚线表示曲面的中心,普通透镜100的原始曲面101被分割成若干个同心的镜片环201,在降低每个镜片环的厚度后将它们设置在同一个平面上即成为菲涅尔透镜200。这种由原始曲面演变而来的不连续的折射面可称为菲涅尔折射面。由于光线的折射发生在透镜的曲面上而与透镜的厚度无关,因此理论上菲涅尔折射面与相应的原始曲面相比具有近似的光学性能,但厚度却大为减少。厚度减少可以减少光能的吸收和衰减,在很多应用中,这是菲涅尔透镜的一个重要优点。
可以将由一个原始曲面生成的菲涅尔折射面称为一个菲涅尔单元,而一个菲涅尔单元可以采用五组基本参数来描述:中心位置、面积、焦距、折射面形状、以及分割环的位置和数量。
简明起见,本文中将具有菲涅尔折射面的一面称为“齿面”,将相对光滑和平坦的另一面称为“背面”,将一面为齿面而另一面为背面的菲涅尔透镜称为“单面菲涅尔透镜”。
菲涅尔透镜可用于会聚光信号,例如红外线,以便于感应元件探测,例如图2中示出的被动红外探测器“PIR”。显然,菲涅尔透镜也可用于会聚其他种类的电磁辐射。
由于单个菲涅尔单元的会聚范围有限,为增加信号感应范围,也有在齿面上集合多个菲涅尔单元的情况。可将只含有一个菲涅尔单元的齿面称为“简单菲涅尔折射面”,采用这种齿面的单面菲涅尔透镜可称为“单面简单菲涅尔透镜”。相应地,可将含有两个以上菲涅尔单元的齿面称为“复合菲涅尔折射面”,而采用这种齿面的单面菲涅尔透镜可称为“单面复合菲涅尔透镜”。
单面复合菲涅尔透镜的背面通常为宏观曲面,例如平面、共轴面(包括旋转曲面,如球面、椭球面、圆柱面、抛物柱面、双曲柱面,以及高阶多项式曲面等)、由多个平面拼接成的折面以及梯台面等。图2示出了几种单面复合菲涅尔透镜的结构,其中,虚线表示经过各个菲涅尔单元的中心的光路。图2(a)中齿面含有三个水平排列的菲涅尔单元,背面为平面(方形);图2(b)中齿面含有五个菲涅尔单元,1个位于中央,其他4个分布在四周,背面为平面(圆形);图2(c)中背面为圆柱面;图2(d)中背面为球面;图2(e)中背面为三个平面拼接成的折面;图2(f)中背面为梯台面。
通过发展菲涅尔透镜系统并利用其对电磁辐射感应系统的性能进行改进是值得研究的方向。
发明内容
依据本发明提供一种电磁辐射感应系统,包括感应元件以及用于会聚电磁辐射的菲涅尔透镜系统,其中感应元件用于感应菲涅尔透镜系统会聚的电磁辐射,菲涅尔透镜系统包括位于同一光路上的至少两个齿面,每个齿面含有至少一个菲涅尔单元,每个菲涅尔单元为由一个原始曲面生成的菲涅尔折射面,两个齿面中至少一个为复合菲涅尔折射面或者填充式菲涅尔折射面,或者,两个齿面为同一物理界面,其所在的元件具有反射式的背面。
本发明中涉及的菲涅尔透镜系统可以有各种优秀的实现形式,其所包含的两个齿面可以设置在两个分离的元件上,也可以背靠背地合在一起成为一个双面菲涅尔透镜的两个面,以及还能优选地将电磁辐射分谱段会聚在不同的焦平面上,以便于相应设置的感应元件进行分谱段的感应。
依据本发明的电磁辐射感应系统使用具有两个以上齿面的菲涅尔透镜系统,能够充分发挥菲涅尔透镜厚度薄的优势,在不明显增加系统厚度的情况下即可实现更强的会聚能力。增强的会聚能力能够减小焦距以及感应元件的面积,有助于缩小器件的尺寸以及提高系统的性能。此外,依据本发明提出的各种优选方案,极大地丰富和扩展了传统电磁辐射感应系统的结构和使用形态。
以下结合附图,对依据本发明的具体示例进行详细说明。
附图说明
图1是现有菲涅尔透镜的一种结构原理示意图;
图2是现有几种单面复合菲涅尔透镜的结构示意图;
图3是本发明中用于生成菲涅尔折射面的两种共轴面的示意图;
图4是本发明中填充式菲涅尔折射面的示意图;
图5是本发明中两个齿面上菲涅尔单元同心布置的示意图;
图6是本发明中两个齿面上菲涅尔单元错心布置的示意图;
图7是本发明中两个齿面背靠背结合的结构示意图;
图8是本发明中反射式菲涅尔透镜的结构示意图;
图9是实施例1中电磁辐射感应系统的结构示意图;
图10是实施例2中电磁辐射感应系统的结构示意图;
图11是本发明中光谱段的两种划分方式的示意图;
图12是实施例3中电磁辐射感应系统的结构示意图;
图13是实施例4中电磁辐射感应系统的结构示意图。
具体实施方式
依据本发明的电磁辐射感应系统,包括感应元件以及用于会聚电磁辐射的菲涅尔透镜系统,其中感应元件用于感应菲涅尔透镜系统会聚的电磁辐射。所称感应元件指能够对电磁辐射的能量进行吸收或转换的功能单元,根据不同的应用需要,可以是例如感光芯片(如CCD或CMOS)、能量探测器(如被动红外探测器或雷达探测器)、光电转换单元(如光伏板)、无线电接收单元等。
本发明中涉及的菲涅尔透镜系统具有位于同一光路上的至少两个齿面,因此,可称为“多面菲涅尔透镜系统”。根据位于同一光路上齿面的数量,可以具体命名为“双面菲涅尔透镜系统”、“三面菲涅尔透镜系统”等。在依据本发明的透镜系统中,可以有一个或多个元件,基于单个元件上所设置的齿面的数量,同样可分别称为“单面菲涅尔透镜”、“双面菲涅尔透镜”等。
需要注意的是,“双面菲涅尔透镜系统”与“双面菲涅尔透镜”是有差别的。双面菲涅尔透镜是指一个透镜的两个面都是齿面,而一个双面菲涅尔透镜系统可以由一个双面菲涅尔透镜组成,也可由两个单面菲涅尔透镜系统组成。
系统中的每个齿面含有至少一个菲涅尔单元,每个菲涅尔单元为由一个原始曲面生成的菲涅尔折射面。传统的用于生成菲涅尔折射面的原始曲面一般为绕光轴对称的曲面,例如球面、旋转抛物面等旋转曲面。传统的原始曲面的焦点在一个点上,因此,可称为“共点面”。在本发明中,原始曲面可以是任何形式的共轴面,可根据应用的需要具体设置。所称共轴面是指焦点在同一直线上(而不一定是在同一个点上)的曲面,该直线可称为“共轴线”。传统的共点面可视为共轴面的共轴线退化为一个点时的特例。采用共轴但不共点的原始曲面,可以将用于设置在会聚位置的感应元件从较小的面积(对应于焦点)扩展为长条形(对应于由焦点组成的共轴线),从而在不显著增加成本的情况下,提升信号收集的能力并有助于解决局部过热问题。典型的共轴面包括旋转曲面(含二次或高阶旋转曲面)、柱面、锥面等。其中柱面又可称为等截面共轴面,这种曲面沿着共轴线的垂直方向在任何一点切开,所得到的横截面的形状和大小都是一致的,圆柱面是柱面的一种特例。锥面沿着共轴线的横截面则具有相似的形状但大小不同,圆锥面是锥面的一种特例。图3示出了以上两种共轴面,其中图3(a)为等截面共轴面,图3(b)为锥形共轴面,其焦点F均位于各自的共轴线L上。
单个齿面可以是含有两个以上菲涅尔单元的复合菲涅尔折射面。一般而言,复合菲涅尔折射面上各个菲涅尔单元的基本参数(例如,面积、焦距、所对应的原始曲面的形状、同心环的数量等)均可以灵活布置,可以完全相同、部分相同或完全不同。在一种实施方式中,复合菲涅尔折射面上的每个菲涅尔单元各自有自己的光学中心,但焦点落在同一个点,或者一条直线,或者一个有限的区域内。这可以通过对构成该复合菲涅尔折射面的每个菲涅尔单元进行空间布置来实现。可以认为这些菲涅尔单元被布置在一个宏观曲面上,例如平面、二次曲面(包括球面、椭球面、圆柱面、抛物柱面、双曲柱面)、高阶多项式曲面(非球面的通常实现方式)、以及由多个平面拼接成的折面以及梯台面等。
单个齿面还可以是填充式菲涅尔折射面。所称填充式菲涅尔折射面可通过在一个由固体材料形成的菲涅尔折射面(可称为“母面”)上填充透明材料而形成。由填充的透明材料所形成的菲涅尔折射面可称为“子面”,其形状与母面完全互补,形成子面的材料与形成母面的材料的折射率不同,当然,形成子面的材料也与周围环境(例如空气)的折射率不同。形成子面的填充材料选自固体、液体或气体。固体填充材料例如可选择亚克力、塑胶或树脂,液体填充材料例如可选择水,气体填充材料例如可选择惰性气体。
参考图4,材料301形成具有凸面302的菲涅尔单元,材料303形成具有凹面304的菲涅尔单元,这两个菲涅尔单元的形状完全互补,通过面对面紧密贴合形成一个齿面。可以将材料301形成的菲涅尔透镜称为“母镜”,将母镜封闭在一个上部留有空间并且透明的腔体里,然后在腔体中填充透明材料303,即可获得另一个凹凸性质与母镜完全相反的菲涅尔透镜,可称为“子镜”。
填充式菲涅尔折射面的结构使得能够通过调整齿面两侧材料的折射率来获得不同的会聚能力,为菲涅尔透镜系统的光学设计提供更多的灵活度并降低成本。在一种实施方式中,材料301和303是不同的固体材料,分别制成菲涅尔单元后再紧密贴合在一起。需要说明的是,固体的填充式菲涅尔透镜与两个面对面紧贴在一起的传统菲涅尔透镜在结构上是一样的,但其填充式的加工过程、加工难度、以及由此对(母镜和子镜的)材料的要求都是不同的。在另一种优选的实施方式中,材料301为固体而材料303为液体或气体,先将固体材料301制成菲涅尔单元,然后在其齿面上填充并封装液体或气体材料303即可形成填充式菲涅尔折射面。采用这种方式可省去一个菲涅尔单元的加工。所使用的液体填充材料例如可以是水,气体可以是惰性气体如氮气。利用液体来制作填充式菲涅尔折射面有诸多优点,一方面可以通过液体轻易地对透镜进行加热或冷却,另一方面,液体能够与固体材料制成的菲涅尔单元无缝结合,轻易地克服菲涅尔透镜容易产生眩光的弱点,使得菲涅尔透镜系统能够用于高分辨率的成像系统,例如数码相机和手机的镜头。传统菲涅尔透镜的炫光通常是由于菲涅尔透镜的齿面的不连续性引起的,而这种不连续性能够由互补的液体或气体透镜进行补偿,从而大幅削弱炫光。将这种通过液体或气体填充形成的填充式菲涅尔透镜应用于广角镜头的第一级镜头,能够大幅度减小镜头的尺寸。
两个齿面上的菲涅尔单元的相对位置可以有两种优选的布置方式。一种布置方式可参考图5,其中,两个齿面上的菲涅尔单元的数量相同且同心布置。所谓同心布置指两个齿面上的菲涅尔单元的光轴两两重合。至于菲涅尔单元的其他基本参数,例如焦距、所对应的原始曲面的形状以及同心环的数量等可以相同也可以不同,可根据光学设计的需要进行配置。图5中示例性地用虚线画出了两个光轴,每个光轴对应于两个齿面上的各一个菲涅尔单元。同心布置方式的优点在于能够加强菲涅尔单元中心附近的信号。另一种布置方式可参考图6,其中,两个齿面上的菲涅尔单元的数量不同且错心布置,并且错心布置优选采用错开距离相等的方式。所谓错心布置指两个齿面上的菲涅尔单元的光轴彼此错开,所称错开距离相等是指,一个齿面上的某个菲涅尔单元的光轴与另一个齿面上围绕该光轴的最近的几个菲涅尔单元的光轴之间的距离相等,图6中,光轴以虚线表示,下方齿面上的一个菲涅尔单元的光轴位于上方齿面上的四个菲涅尔单元的光轴的中心。错心且等距的布置方式的优点在于能够均衡信号,减少感应范围中的死角和盲区。
一般而言,两个以上的齿面可以灵活地组合以形成为一个或多个元件。例如将复合菲涅尔折射面应用于单面元件,即形成为单面复合菲涅尔透镜,例如图2中所示的几种。单面复合菲涅尔透镜也可以被认为是把两个以上的单面简单菲涅尔透镜的背面布置在一个宏观曲面上形成的。在一种实施方式中,两个齿面分别位于两个分离的元件上,形成由两个单面菲涅尔透镜组成的系统,这两个元件之间的朝向关系可以是齿面对齿面,或齿面对背面,或背面对背面。在另一种实施方式中,参考图7,两个齿面以背靠背的方式设置在同一元件上。两个齿面所属的部分可采用相同或不同的材料,因此图7中的分界线以虚线表示。当背靠背式的两个菲涅尔透镜由相同的材料制成时,就构成了双面菲涅尔透镜,并可采用一体成型的方式来制作,例如可采用亚克力、树脂或其它塑胶材料通过压模的方式来制作,其两个齿面的凹凸特性可以相同也可以不同。在另一种实施方式中,系统中有三个齿面,一个应用于单面元件,另外两个形成为背靠背式的双面菲涅尔透镜。在其他实施方式中,还可根据需要对上述列举的结构形式进行组合和扩展。
值得一提的是,系统中的两个齿面可以通过设置反射面的方式由同一个物理界面来充当。参考图8,元件400具有反射式的背面401(内表面为镜面),背面401可采用例如在单面菲涅尔透镜的光滑面镀反射膜或者粘贴具有反射能力的贴片等方式形成。由于反射,入射光路两次经过其物理折射界面402,因此该物理界面等效于两个齿面,元件400也可被称为反射式双面菲涅尔透镜,并且这两个齿面的凹凸性质是一致的。通过设置反射式背面的方式,能够简便地增加光路中的齿面数,降低制作和安装的成本,并且大大丰富了菲涅尔透镜的使用形态。
以下通过具体示例来对依据本发明的电磁辐射感应系统进行举例说明。
实施例1
依据本发明的电磁辐射感应系统的一种实施方式可参考图9,包括感应元件503和由两个菲涅尔透镜组成的菲涅尔透镜系统。本例中的菲涅尔透镜系统含有两个齿面,其中一个齿面501为复合菲涅尔折射面,另一个齿面502仅包含一个菲涅尔单元,图中虚线所示为菲涅尔单元的光轴。这两个齿面分别设置在两个分离的单面元件上,形成一个单面复合菲涅尔透镜和一个单面简单菲涅尔透镜。这两个单面透镜以齿面对背面的方式依次排列在光路上,用于共同将信号会聚到感应元件503上,其中,复合菲涅尔透镜可视为该会聚系统的物镜,而其后的简单菲涅尔透镜可视为目镜。本实施例透镜系统可用于检测远距离的信号,也可用于实现分级聚光。
作为一种优选的实施方式,这两个透镜中的一个或者两个可以由电机驱动。例如,由电机驱动充当目镜的透镜以进行自动对焦,或者,进一步由电机驱动充当物镜的透镜以进行变焦,从而使得该电磁辐射感应系统成为自动变焦系统。
实施例2
依据本发明的电磁辐射感应系统的另一种实施方式可参考图10,是一种多焦平面感应系统,包括三个感应元件和一个三齿面菲涅尔透镜系统。其中,第一个齿面601为复合菲涅尔折射面,设置在一个单面元件上,形成单面复合菲涅尔透镜,用于对光信号进行第一次会聚;第二个齿面和第三个齿面可以是复合菲涅尔折射面也可以仅包含一个菲涅尔单元,例如,第二个齿面和第三个齿面可具有如图5或图6所示的相对位置关系,这两个齿面可以共同布置于一个元件,也可以分别设置于两个单面元件。本实施例中,第二个齿面602和第三个齿面603以背靠背的方式形成为一个双面菲涅尔透镜,用于对光信号进行第二次会聚。
本实施例中,由上述两个透镜组成的会聚系统将光波按照不同光谱段的中心波长,会聚到3个不同的焦平面上,其中焦平面F1、F2、F3分别对应于三个光谱段的中心波长λ1、λ2、λ3,每个焦平面上分别设置有感应元件,依次为感应元件604,605,606,相邻焦平面之间的距离之差不小于前一焦平面上的感应元件的厚度,以便于多个感应元件的层叠设置,所称前一焦平面指焦距较短的焦平面。一般而言,镜头的焦距与波长为单调递增的关系,换言之,光波的中心波长越长,其所会聚到的焦平面就越远,这种关系在传统的镜头设计中通常是需要克服的,但在本实施例中,可顺应并利用该原理来实现多焦平面系统,以及多镜头感应系统。对本领域技术人员而言,可以通过对齿面进行光学设计以及施加适当的镀膜等,来更好地将不同波长的光波会聚在不同焦距的焦平面上,即对不同谱段的会聚位置进行分离。根据实际需要,焦平面的数量可以为1至4个。当焦平面设计为1个时,意味着需要像传统镜头设计一样,尽量消除波长对焦距的影响。而采用多个焦平面,不仅光学设计更加容易,不同谱段的光也能够在不同的焦平面得到更好的特殊利用和处理。
作为一种优选的实施方式,每个感应元件的敏感感应区间可以与其所在的焦平面对应的谱段相适配,以达到对属于该谱段的波长的最佳响应,从而最大化地利用入射的电磁辐射的能量,能够有效提升感应系统的信噪比。基于不同的材料和结构设计,感应元件可以对某个或某些波长范围内的电磁辐射具有与其他范围相比更好的响应特性,例如具有更好的灵敏度或更高的吸收和利用效率等,因此,可以将这些区间称为感应元件的敏感感应区间,也可称为最佳感应区间。作为另一种优选的实施方式,每个感应元件的尺寸可以与菲涅尔透镜系统在其所在的焦平面上的会聚面积相适配,例如,在具有多个焦平面的情况下,层叠设置的多个感应元件可具有类似金字塔的整体结构,即,位于焦距较长的焦平面上的感应元件具有较大的面积。上述两种优选方式可择一或同时应用。
本实施例中,各个焦平面上的感应元件既可以分别由独立的器件来实现(例如在每个焦平面上分别放置感光芯片),也可以由多层器件的每一层来实现。当采用独立的器件来实现分谱段感应时,器件之间可以为空隙或者以透明材料作为夹层来填充,这种情况下,在光路上位置靠前的器件优选地被做得尽量的薄,以使得通往靠后的器件的电磁波更易于透过。当采用多层器件的每一层来充当感应元件时,可以通过对菲涅尔透镜系统进行光学设计,将不同谱段的焦平面设计在多层器件的不同感应层上。所称多层器件是指在不同的深度上具有不同的感应层的器件,例如利用深度滤波原理制作的多层多光谱感应芯片。多层器件可以采用单面制作方式,即在基层的一个面上制作两个或以上层叠的感应层,也可以采用双面制作方式,即在基层的正反两个面上分别制作一个或以上的感应层。
应用于本发明的感应元件的感应方式既可以是单向感应,也可以是双向感应,可根据具体应用的需要进行选择和设计。所称单向感应是指只从元件的一个方向,例如正面或反面,感应入射电磁辐射。所称双向感应是指同时或异时从元件的正面和反面感应入射电磁辐射。在双向感应的情况下,每个方向上均可设置如前所述的各种多面菲涅尔透镜系统。
本实施例中的三个焦平面对应于划分的三个光谱段。在其他实施方式中,可以将感兴趣的光谱范围按照波长λ划分为不同的区间,具体划分方式可参考已有的通用规则,也可根据实际应用的需要进行调整。图11示出了两种常见的划分方式。一种是将光谱分为可见光谱段701和(近)红外光谱段702两个区间,参考图11(a),其中以虚线示出了这两个区间的中心波长的位置,可见光谱段包含红703、绿704、蓝705三个谱段。另一种是将光谱分为紫外光谱段706、可见光谱段707和红外光谱段708三个区间,参考图11(b),其中同样以虚线示出了三个区间的中心波长的位置。
本实施例的原理,还可应用于设计现代无线通信领域里的天线,使得天线能够同时接收不同频段的信号,因为基于本发明的电磁辐射感应系统可适用于电磁波的任何谱段。
实施例3
依据本发明的电磁辐射感应系统的另一种实施方式可参考图12,其中包含有多个菲涅尔透镜系统。图12中,辐射源801用于产生电磁辐射;感应元件802为双向感应元件,能够同时感应正反两个方向的电磁辐射;菲涅尔透镜803和804是两个透射式的菲涅尔透镜,例如,菲涅尔透镜803可以是一个单面复合菲涅尔透镜,以具有较大的感应范围,菲涅尔透镜804可以是一个双面菲涅尔透镜,由两个齿面以背靠背的方式组成,以具有强的会聚能力;菲涅尔透镜805和806是两个反射式的菲涅尔透镜,由一个齿面和一个反射式的背面组成。
本实施例中,可以将透镜803和804的组合视为一个菲涅尔透镜系统,将透镜805和804的组合视为第二个菲涅尔透镜系统,将透镜806视为第三个菲涅尔透镜系统,它们各自将自身感应范围内的电磁辐射从不同的方向会聚到双向感应元件802上。由于反射式菲涅尔透镜的使用,使得系统的感应范围大为扩展,能够成倍提高所会聚电磁辐射的强度,并且考虑到菲涅尔透镜的厚度薄,电磁辐射经过其传输时的能量衰减低,因此本实施例系统特别适用于太阳能发电以及雷达信号或太空信号检测领域。例如,在太阳能发电应用中,辐射源801可以是太阳,双向感应元件802可以是光伏板,具体可以是单面的光伏板或双面的光伏板。作为一种优选的实施方式,一种简单的单面双向感应元件的制作方法是,将感应元件制作得很薄,使得电磁辐射(例如光)能够从两个方向到达元件中发生感应的区域。作为另一种优选的实施方式,双面感应元件则可以采用将两个单面感应元件简单地背靠背叠放来获得。
此外,在一种实施方式中,反射式双面菲涅尔透镜的齿面还可以进一步优选为填充式菲涅尔折射面,由两个形状互补的齿面紧密贴合来形成,既可以是固体齿面与固体齿面贴合,也可以是固体齿面与液体齿面贴合。
实施例4
依据本发明的电磁辐射感应系统的另一种实施方式可参考图13,包括感应元件901,由两个菲涅尔透镜902和903组成的菲涅尔透镜系统,以及热交换系统。
透镜902可采用齿面向外的单面菲涅尔透镜,透镜903则为液体填充式菲涅尔透镜,具体地,可以将透镜902的背面与透镜903的齿面之间形成为封闭空间,在其中填充液体。
感应元件901作为散热端通过导热材料与热交换系统的媒质进行热交换。本实施例中,感应元件是通过冷却槽904与媒质进行热交换。在其他实施例中,感应元件也可直接或采用导热材料包裹后浸泡在热交换系统的媒质中。
热交换系统包括冷却槽904、用于储存集热介质的储存单元905以及连通各个区域的管道908。用于进行热交换的媒质通过管道流经各个区域。本实施例中,集热介质直接作为进行热交换的媒质在各区域间流动。在另一种实施方式中,集热介质与媒质可以是彼此隔离的,采用相同或不同的物质,通过储存单元中的换热结构进行热交换。
感应系统工作时,入射的电磁辐射(如图中箭头所示)通过菲涅尔透镜系统聚焦到感应元件上,媒质通过流入口906进入储存单元,根据液体热对流的原理(热的媒质向上走),经由连通的管道流入感应元件的冷却槽与感应元件进行热交换,再经由连通的管道进入透镜902与903之间的封闭空间与透镜进行热交换并充当为填充液体,随后经由连通的管道回到储存单元,最后通过流出口907流出。上述对热交换过程的描述仅为示例,根据实际应用的需要可以对媒质流经的区域进行增加或减少,例如,填充式菲涅尔透镜的填充空间可以完全封闭,媒质不用于充当填充液体。在实际使用中,系统还可进一步包括自动阀门,压力控制系统,温度控制系统等。
本实施例电磁辐射感应系统可用作家用太阳能发电及热水系统,其中,感应元件为光伏板,热交换系统的媒质为水,储存单元为热水罐。入射的太阳光一部分被光伏板转换为电能,另一部分则被转换为热能,产生的热能通过热交换系统被吸收用于对水进行加热,提高了对太阳能的利用率,也相应减少了家用热水所需要的能量。这种情况下,自流入口906流入的是冷水,而自流出口907流出的即为可供家用的热水。
本实施例电磁辐射感应系统也可用作带冷却系统的红外夜视系统,其中,感应元件为红外感光芯片,储存单元为冷却器,媒质作为冷却剂在流经透镜空间以及放置感应元件的冷却槽时对其进行降温。在红外夜视系统的应用中,为了减少周边物体包括镜头(透镜)的热辐射对感应元件的影响,通常需要将镜头和感应元件冷却到比观测对象低很多的温度。在传统的红外夜视系统中,采用传统的透镜,厚度较大,且冷却也一般在外部进行,因此冷却速度较慢,在系统使用前需要经过较长的预冷时间。而采用本实施例结构的红外夜视系统,不仅透镜厚度薄,且直接从内部进行冷却,冷却速度大幅提高,能有效改进感应元件的信噪比,并且所采用的液体填充式菲涅尔透镜还能够提供高品质的成像。此外,在某些应用中,根据需要也可以反过来通过热交换系统对镜头以及感应元件进行加热。
以上应用具体个例对本发明的原理及实施方式进行了阐述,应该理解,以上实施方式只是用于帮助理解本发明,而不应理解为对本发明的限制。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (15)

  1. 一种电磁辐射感应系统,其特征在于,包括感应元件以及用于会聚电磁辐射的菲涅尔透镜系统,所述感应元件用于感应所述菲涅尔透镜系统会聚的电磁辐射,
    所述菲涅尔透镜系统包括位于同一光路上的至少两个齿面,每个齿面含有至少一个菲涅尔单元,每个菲涅尔单元为由一个原始曲面生成的菲涅尔折射面,
    所述两个齿面中至少一个为复合菲涅尔折射面或者填充式菲涅尔折射面,或者,
    所述两个齿面为同一物理界面,其所在的元件具有反射式的背面。
  2. 如权利要求1所述的电磁辐射感应系统,其特征在于,所述原始曲面为焦点在同一直线上的共轴面,所述共轴面包括旋转二次曲面、旋转高阶多项式曲面、柱面和锥面。
  3. 如权利要求1所述的电磁辐射感应系统,其特征在于,每个齿面上的菲涅尔单元共背,并且背面形成为宏观曲面。
  4. 如权利要求3所述的电磁辐射感应系统,其特征在于,所述宏观曲面选自平面、共轴面、由多个平面拼接成的折面和梯台面。
  5. 如权利要求1-4任一项所述的电磁辐射感应系统,其特征在于,同一齿面上的菲涅尔透镜单元,对相同谱段的光,都会聚在同一个点,或者一条直线,或者一个有限的区域内。
  6. 如权利要求1-4任一项所述的电磁辐射感应系统,其特征在于,所述菲涅尔透镜系统将电磁辐射按照不同谱段的中心波长,会聚到相应的焦平面上,所述焦平面的数量为1至4个,每个焦平面上分别设置有感应元件,相邻焦平面之间的距离之差不小于前一焦平面上的感应元件的厚度。
  7. 如权利要求6所述的电磁辐射感应系统,其特征在于,所述焦平面的焦距越长,所对应的中心波长越长。
  8. 如权利要求7所述的电磁辐射感应系统,其特征在于,每个感应元件的敏感感应区间与其所在的焦平面对应的谱段相适配,和/或,每个感应元件的尺寸与所述菲涅尔透镜系统在其所在的焦平面上的会聚面积相适配。
  9. 如权利要求7或8所述的电磁辐射感应系统,其特征在于,各个焦平面上的感应元件分别由独立的器件来实现,所述独立的器件之间为空隙或者以透明材料作为夹层来填充;或者,各个焦平面上的感应元件分别由多层器件的每一层来实现,
    所述感应元件的感应方式为单向感应或双向感应。
  10. 如权利要求1-9任一项所述的电磁辐射感应系统,其特征在于,所述两个齿面均为复合菲涅尔折射面,两个所述复合菲涅尔折射面上的菲涅尔单元的数量相同且同心布置,或者,两个所述复合菲涅尔折射面上的菲涅尔单元的数量不同且错心布置,所述错心布置优选采用错开距离相等的方式。
  11. 如权利要求1所述的电磁辐射感应系统,其特征在于,所述填充式菲涅尔折射面的填充材料选自固体、液体或气体,所述固体优选自亚克力、塑胶和树脂,所述液体优选为水,所述气体优选为惰性气体。
  12. 如权利要求1-11任一项所述的电磁辐射感应系统,其特征在于,所述菲涅尔透镜系统包括一个双面菲涅尔透镜,所述双面菲涅尔透镜由一个齿面和一个反射式的背面组成,或者,
    所述双面菲涅尔透镜由两个齿面以背靠背的方式组成。
  13. 如权利要求1所述的电磁辐射感应系统,其特征在于,所述两个齿面分别位于两个分离的元件上,所述两个分离的元件中的一个由电机驱动以进行自动对焦,和/或,所述两个分离的元件中的另一个由电机驱动以进行变焦。
  14. 如权利要求1-13任一项所述的电磁辐射感应系统,其特征在于,还包括热交换系统,所述感应元件作为散热端直接浸泡在所述热交换系统的媒质中,或者,所述感应元件通过导热材料与所述热交换系统的媒质进行热交换。
  15. 如权利要求14所述的电磁辐射感应系统,其特征在于,所述感应元件为太阳能光伏板,所述热交换系统用作热水系统;或者,所述感应元件为红外感光芯片,所述热交换系统用作冷却系统。
PCT/CN2014/093454 2014-12-10 2014-12-10 电磁辐射感应系统 WO2016090570A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2014413864A AU2014413864B2 (en) 2014-12-10 2014-12-10 Electromagnetic radiation sensing system
PCT/CN2014/093454 WO2016090570A1 (zh) 2014-12-10 2014-12-10 电磁辐射感应系统
EP14907948.5A EP3226040A1 (en) 2014-12-10 2014-12-10 Electromagnetic radiation sensing system
JP2017531299A JP2018506705A (ja) 2014-12-10 2014-12-10 電磁放射感知システム
CN201480083624.2A CN107003432A (zh) 2014-12-10 2014-12-10 电磁辐射感应系统
BR112017011609A BR112017011609A2 (pt) 2014-12-10 2014-12-10 sistema de detecção de radiação eletromagnética
CA2970047A CA2970047A1 (en) 2014-12-10 2014-12-10 Electromagnetic radiation sensing system
RU2017123879A RU2017123879A (ru) 2014-12-10 2014-12-10 Система измерения электромагнитного излучения
US15/533,004 US20170336527A1 (en) 2014-12-10 2014-12-10 Electromagnetic radiation sensing system
NZ732492A NZ732492A (en) 2014-12-10 2014-12-10 Electromagnetic radiation sensing system
KR1020177018764A KR20170092674A (ko) 2014-12-10 2014-12-10 전자기 복사 감지 시스템
MX2017007433A MX2017007433A (es) 2014-12-10 2014-12-10 Sistema de sensado de radiacion electromagnetica.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093454 WO2016090570A1 (zh) 2014-12-10 2014-12-10 电磁辐射感应系统

Publications (1)

Publication Number Publication Date
WO2016090570A1 true WO2016090570A1 (zh) 2016-06-16

Family

ID=56106439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093454 WO2016090570A1 (zh) 2014-12-10 2014-12-10 电磁辐射感应系统

Country Status (12)

Country Link
US (1) US20170336527A1 (zh)
EP (1) EP3226040A1 (zh)
JP (1) JP2018506705A (zh)
KR (1) KR20170092674A (zh)
CN (1) CN107003432A (zh)
AU (1) AU2014413864B2 (zh)
BR (1) BR112017011609A2 (zh)
CA (1) CA2970047A1 (zh)
MX (1) MX2017007433A (zh)
NZ (1) NZ732492A (zh)
RU (1) RU2017123879A (zh)
WO (1) WO2016090570A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550221A4 (en) * 2016-12-02 2020-06-17 Bolymedia Holdings Co. Ltd. SOLAR POWER PLANT
JP2020525833A (ja) * 2017-07-03 2020-08-27 ボリーメディア ホールディングス カンパニー リミテッドBolymedia Holdings Co. Ltd. フレネル集光装置及び集光型太陽エネルギーシステム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016109917B4 (de) * 2016-05-30 2022-05-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Linse und Blitzlicht
US20190235218A1 (en) * 2016-07-05 2019-08-01 Bolymedia Holdings Co. Ltd. Panoramic sensing apparatus
US11349041B2 (en) * 2018-05-08 2022-05-31 Boly Media Communications (Shenzhen) Co., Ltd. Double-sided light-concentrating solar apparatus and system
CN110967118B (zh) * 2019-11-26 2021-09-28 博立码杰通讯(深圳)有限公司 菲涅尔透镜单元感应装置
WO2021110103A1 (en) * 2019-12-07 2021-06-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and system for directing radio frequency rays to radio frequency antenna
US20220196999A1 (en) * 2020-12-23 2022-06-23 Stephen D. Newman Solar optical collection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147019A (ja) * 1990-10-11 1992-05-20 Nippon Arefu:Kk 光学センサ
US5414255A (en) * 1993-11-08 1995-05-09 Scantronic Limited Intrusion detector having a generally planar fresnel lens provided on a planar mirror surface
CN101477735A (zh) * 2008-11-28 2009-07-08 深圳市信威电子有限公司 三光束主动红外线入侵探测器
CN101915947A (zh) * 2010-08-24 2010-12-15 深圳市豪恩安全科技有限公司 一种菲涅尔透镜、探测器及安防系统
CN102590879A (zh) * 2011-01-06 2012-07-18 博立码杰通讯(深圳)有限公司 一种菲涅尔透镜感应方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027552A (zh) * 1973-07-10 1975-03-20
JPS5833521B2 (ja) * 1975-07-14 1983-07-20 ナダグチ アキラ 複合フレネル凹、凸柱面をもつレンズ
JPS583182B2 (ja) * 1978-07-03 1983-01-20 森 敬 集光集熱装置
JPS55162064U (zh) * 1979-05-11 1980-11-20
JPS6161101A (ja) * 1984-08-31 1986-03-28 Takashi Mori 集光レンズ
US4773731A (en) * 1987-08-28 1988-09-27 North American Philips Corp. One-piece projection screen
JP4293857B2 (ja) * 2003-07-29 2009-07-08 シチズン電子株式会社 フレネルレンズを用いた照明装置
JP2007311899A (ja) * 2006-05-16 2007-11-29 Toshiba Corp 撮像装置及び撮像方法
CN101877556B (zh) * 2009-04-30 2014-02-19 鸿富锦精密工业(深圳)有限公司 太阳能收集装置
US20110186106A1 (en) * 2010-02-03 2011-08-04 510Nano Inc. Hybrid concentrator solar energy device
WO2012073604A1 (en) * 2010-12-01 2012-06-07 Panasonic Corporation Fresnel-fly's eye microlens arrays for concentrating solar cell
CA2968663C (en) * 2014-11-25 2019-08-27 Bolymedia Holdings Co. Ltd. Fresnel lens system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147019A (ja) * 1990-10-11 1992-05-20 Nippon Arefu:Kk 光学センサ
US5414255A (en) * 1993-11-08 1995-05-09 Scantronic Limited Intrusion detector having a generally planar fresnel lens provided on a planar mirror surface
CN101477735A (zh) * 2008-11-28 2009-07-08 深圳市信威电子有限公司 三光束主动红外线入侵探测器
CN101915947A (zh) * 2010-08-24 2010-12-15 深圳市豪恩安全科技有限公司 一种菲涅尔透镜、探测器及安防系统
CN102590879A (zh) * 2011-01-06 2012-07-18 博立码杰通讯(深圳)有限公司 一种菲涅尔透镜感应方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550221A4 (en) * 2016-12-02 2020-06-17 Bolymedia Holdings Co. Ltd. SOLAR POWER PLANT
JP2020525833A (ja) * 2017-07-03 2020-08-27 ボリーメディア ホールディングス カンパニー リミテッドBolymedia Holdings Co. Ltd. フレネル集光装置及び集光型太陽エネルギーシステム

Also Published As

Publication number Publication date
RU2017123879A (ru) 2019-01-11
BR112017011609A2 (pt) 2018-01-16
KR20170092674A (ko) 2017-08-11
US20170336527A1 (en) 2017-11-23
AU2014413864A1 (en) 2017-06-29
NZ732492A (en) 2018-11-30
RU2017123879A3 (zh) 2019-01-11
JP2018506705A (ja) 2018-03-08
EP3226040A1 (en) 2017-10-04
AU2014413864B2 (en) 2017-12-14
MX2017007433A (es) 2017-11-08
CA2970047A1 (en) 2016-06-16
CN107003432A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2016090570A1 (zh) 电磁辐射感应系统
WO2016082097A1 (zh) 菲涅尔透镜系统
JP5837746B2 (ja) 導光ソーラーパネルおよびその製造方法
KR101455892B1 (ko) 광 에너지의 집광, 집결 및 조명을 위한 소형 광소자
CN103026496B (zh) 单片式光伏太阳能集中器
KR101232120B1 (ko) 고온 환경을 위한 태양에너지 발전시스템
KR101313723B1 (ko) 태양광 집광 구조와 다중집광 방법 및 태양광 송광장치
CN104241310A (zh) 一种具有双微透镜层的cmos图像像素阵列
TWM561365U (zh) 聚光式光能接收裝置
CN201845780U (zh) 水冷式ccd图像传感器
CN107209294A (zh) 聚光式太阳能系统
WO2023051476A1 (zh) 滤光组件、摄像模组和电子设备
CN102931201A (zh) 基于红外焦平面阵列的聚能微镜阵列及其制作方法
CN113467063B (zh) 一体式液体填充光谱滤光聚光器、系统及其光能调控方法
CN104656169A (zh) 菲涅尔透镜、探测器及安防系统
CN109541787B (zh) 一种非制冷型双波段全景凝视成像光学系统
PL222444B1 (pl) Hybrydowy konwerter energii słonecznej
TWI446014B (zh) 成像系統及其光學模組
CN203434931U (zh) 太阳能聚光分频光伏利用装置
CN203630379U (zh) 菲涅尔透镜、探测器及安防系统
WO2018152828A1 (zh) 储能式太阳能装置
AU2017422421B2 (en) Fresnel light-concentrating apparatus and light-concentrating solar system
CN115278024A (zh) 图像传感器、摄像模组和电子设备
WO2023028735A1 (zh) 太阳能利用单元及其组合结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2970047

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/007433

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017531299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017011609

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014907948

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014413864

Country of ref document: AU

Date of ref document: 20141210

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177018764

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017123879

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017011609

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170601