WO2021110103A1 - Method and system for directing radio frequency rays to radio frequency antenna - Google Patents

Method and system for directing radio frequency rays to radio frequency antenna Download PDF

Info

Publication number
WO2021110103A1
WO2021110103A1 PCT/CN2020/133639 CN2020133639W WO2021110103A1 WO 2021110103 A1 WO2021110103 A1 WO 2021110103A1 CN 2020133639 W CN2020133639 W CN 2020133639W WO 2021110103 A1 WO2021110103 A1 WO 2021110103A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
rays
lens
processor
sensor
Prior art date
Application number
PCT/CN2020/133639
Other languages
French (fr)
Inventor
Vinit
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2021110103A1 publication Critical patent/WO2021110103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/20Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable

Definitions

  • the present application generally relates to the field of electromagnetic radiations and more particularly to a system and method for directing radio frequency rays to a RF antenna.
  • the radio frequency (RF) rays are a type of electromagnetic energy and are associated with various electric and magnetic properties.
  • the RF rays are widely used in communication as well as non-communication systems.
  • RF rays are used for signal transmission and broadcasting in communication system and also used in various non-communication systems such as microwave ovens, radars and various industrial processes.
  • the specific absorption rate is a measure of the rate at which the RF energy is absorbed by the human body, wherein the said measurement is in watts per kilogram.
  • the SAR is calculated when the human body is exposed to a radio frequency (RF) electromagnetic field.
  • the absorption of the RF rays depends upon a number of factors such as the absorption of RF energy is more in the resonant conditions, for instance, when the wavelength of the RF rays are comparable to the dimensions of a human body then more RF energy gets absorbed by said human body.
  • SAR value also depends on the frequency, polarization and intensity of RF Field, which as an end user can’t be controlled.
  • a number of exposure standards for RF energy/signals have been developed over the past few years. These standards recommends safe levels of exposure to the RF signals to avoid the ill effects of RF rays. Further, for different electronic devices, different safe levels of exposure to the RF signals are specified. In an instance, the SAR values related to cellular phones are measured by considering the cellular phone’s position and calculating the amount of radiations absorbed by the human head when close to the antenna of the cellular phone, or while talking over said cellular phone.
  • an object of the present disclosure is to provide a novel method and system for directing radio frequency rays to a RF antenna. It is another object of the present disclosure to provide a system and method to improve the SAR value and other signal parameters associated with RF rays. It is also an object of the present disclosure to reduce the hazardous effect of RF rays on human body. It is yet another object of the present disclosure to improve battery life of an electronic device by providing better signal quality. One more object of the present disclosure is to minimize the call drop by improving the signal parameters.
  • the present disclosure provides a method and system for directing radio frequency rays to a RF antenna.
  • One aspect of the invention relates to a method of directing radio frequency rays to a RF antenna.
  • the method comprises receiving RF rays at an at least one RF lens and an at least one reflector.
  • the method further leads to monitoring of at least one first parameter by at least one sensor.
  • the method comprises receiving, by a processor, said at least one first parameter from the at least one sensor.
  • the processor determines at least one second parameter based on at least the received at least one first parameter.
  • the method also encompasses receiving, by a motor, the at least one second parameter from the processor.
  • the method further leads to automatically causing a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • the system comprises at least one RF lens configured to receive RF rays, at least one sensor configured to monitor at least one first parameter, at least one processor connected to said at least one sensor, wherein the processor is configured to receive said monitored at least one first parameter from the at least one sensor, and the processor is also configured to determine at least one second parameter based on at least said received at least one first parameter.
  • the system further comprises at least one reflector connected to said at least one RF lens, said reflector configured to reflect RF rays received from the at least one RF lens.
  • the system comprises at least one motor connected to said at least one RF lens, reflector and said at least one processor, wherein the at least one motor is configured to receive the at least one second parameter from the processor, and the motor also configured to automatically cause a change in configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • Yet another aspect of the invention relates to an electronic device comprising at least one RF lens configured to receive RF rays, at least one sensor configured to monitor at least one first parameter, at least one processor connected to said at least one sensor, wherein the processor is configured to receive said monitored at least one first parameter from the at least one sensor, and the processor is also configured to determine at least one second parameter based on at least said received at least one first parameter.
  • the electronic device further comprises at least one reflector connected to said at least one RF lens, said reflector configured to reflect RF rays received from the at least one RF lens.
  • the electronic device also comprises at least one motor connected to said at least one RF lens, reflector and said at least one processor, wherein the at least one motor is configured to receive the at least one second parameter from the processor and automatically causes a change in configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • FIG. 1 illustrates a block diagram of the system [100] for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure.
  • FIG. 2 illustrates an exemplary diagram of an electronic device [200] , in accordance with exemplary embodiment of the present disclosure.
  • FIG. 3 illustrates an exemplary method flow diagram [300] , depicting method for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure.
  • FIG. 4 illustrate an exemplary sequence flow diagram [400] , for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure.
  • the invention provides a method and system to control specific absorption rate (SAR) levels in an electronic device along with the improvements in signal strength. More specifically, the invention provides the users a solution to control the RF rays partially or fully to reduce its harmful effects on body.
  • the invention also enables at least one of the automatic and manual control of RF lens working.
  • the present disclosure also encompasses the monitoring of dissipate rays via at least one sensor, wherein said at least one sensor is configured to provide inputs for functionality of RF lens. Therefore the present disclosure via said monitoring of dissipate rays controls the low signal strength and harmful impact on human health caused by said dissipate rays.
  • the present disclosure receives RF rays at an at least one RF lens and an at least one reflector. After said receipt of said RF rays, the present disclosure monitors at least one first parameter from the at least one sensor.
  • the at least one first parameter is one of an ambient temperature, speed and location.
  • the present disclosure receives from said at least one sensor said at least one first parameter at a processor.
  • the processor determines at least one second parameter based on at least the received at least one first parameter.
  • the invention encompasses receiving, by a motor, the at least one second parameter from the processor.
  • the said at least second parameter is one of a gradient of said at least one RF lens, circular symmetry of the system and polar coordinates of the system.
  • the present disclosure automatically causes a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • Implementations of the present disclosure provide a system for directing RF rays to a RF antenna.
  • the system includes at least one RF lens [102] configured to receive RF rays; at least one reflector [108] connected to said at least one RF lens [102] , said reflector [108] configured to reflect RF rays received from the at least one RF lens [102] ; at least one motor [110] connected to said at least one RF lens [102] , where the at least one motor [110] is configured to: receive the at least one second parameter, and automatically cause a change in configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • the system further includes: at least one sensor [104] configured to monitor at least one first parameter; at least one processor [106] connected to said at least one sensor [104] , where the at least one processor [106] is configured to receive said monitored at least one first parameter from the at least one sensor [104] , and determine at least one second parameter based on at least said received at least one first parameter.
  • the at least one motor [110] is connected to said at least one processor [106] , and the at least one motor [110] is configured to receive the at least one second parameter from the processor [106] .
  • the at least one motor [110] is configured to receive the at least one second parameter from an input from a user.
  • the at least one sensor [104] is one of a location sensor, a temperature sensor and an accelerometer.
  • the at least one first parameter is one of an ambient temperature, speed and location.
  • the at least one second parameter is one of a gradient of said at least one RF lens [102] , circular symmetry of the system, and polar coordinates of the system.
  • Implementations of the present disclosure further provide a method directing RF rays to a RF antenna.
  • the method includes: receiving RF rays at an at least one RF lens [102] and an at least one reflector [108] ; receiving, by a motor [110] , the at least one second parameter; and automatically causing a change in a configuration by a motor [110] of at least one of the at least one RF lens [102] and at least one reflector [106] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • the method further includes: monitoring at least one first parameter by at least one sensor [104] ; receiving, by a processor [106] , said at least one first parameter; and determining, by the processor [106] , at least one second parameter based on at least the received at least one first parameter.
  • Receiving, by the motor [110] , the at least one second parameter includes: receiving, by the motor [110] , the at least one second parameter from the processor [106] .
  • receiving, by the motor [110] , the at least one second parameter includes: receiving, by the motor [110] , the at least one second parameter from an input from a user.
  • the method further includes: monitoring at least one first parameter by at least one sensor [104] ; receiving, by a processor [106] , said at least one first parameter; receiving an input from a user; determining, by the processor, the at least one second parameter based on the received at least one first parameter and the input from the user.
  • Receiving, by the motor [110] , the at least one second parameter includes: receiving, by the motor [110] , the at least one second parameter from the processor [106] .
  • the at least one first parameter is one of an ambient temperature, speed and location.
  • the at least one second parameter is one of a gradient of said at least one RF lens, circular symmetry of the system and polar coordinates of the system.
  • the RF rays received at the at least one RF lens and the at least one reflector are received from a base station.
  • Implementations of the present disclosure further provide an electronic device [200] .
  • the electronic device [200] includes at least one RF lens [206] configured to receive RF rays; at least one sensor [210] configured to monitor at least one first parameter; at least one processor [212] connected to said at least one sensor [210] , where the processor is configured to receive said monitored at least one first parameter from the at least one sensor [210] , and determine at least one second parameter based on at least said received at least one first parameter; at least one reflector [204] connected to said at least one RF lens [206] , said reflector [204] configured to reflect RF rays received from the at least one RF lens [206] ; and at least one motor connected to said at least one RF lens [206] and said at least one processor [212] .
  • the at least one motor is configured to: receive the at least one second parameter from the processor [212] , and automatically cause a change in configuration of at least one of the at least one RF lens [206] and at least one reflector [204] , based on said at least one second parameter, to direct said RF rays to the RF antenna [202] .
  • the at least one sensor [210] is one of a location sensor, a temperature sensor and an accelerometer.
  • the at least one first parameter is one of an ambient temperature, speed and location.
  • the at least one second parameter is one of a gradient of said at least one RF lens [206] , circular symmetry of the system, and polar coordinates of the system.
  • FIG. 1 illustrates a block diagram of the system for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure.
  • the system [100] comprises at least one RF lens [102] , at least one sensor [104] , at least one processor [106] , at least one reflector [108] and at least one motor [110] , wherein all the components are assumed to be connected to each other unless otherwise indicated below.
  • only one RF lens [102] , sensor [104] , processor [106] , reflector [108] and motor [110] are shown in the present disclosure, however, it will be appreciated by those skilled in the art that the invention encompasses multiple such units as may be necessary to implement the features of the invention.
  • the RF lens [102] of the present disclosure is one of a single radio frequency (RF) lens and combination of RF lenses.
  • the said RF lens is associated with a number of parameters and is configured to collect the RF rays.
  • the RF lens may be placed inside an electronic device before or after an RF antenna (not shown in the fig. ) .
  • the RF lens [102] may be placed inside the back cover of the electronic device or behind the display of said electronic device, however the placement of RF lens may be different for different electronic devices.
  • the RF lens [102] on the basis of selected parameters directs all the RF rays towards the RF antenna.
  • the Sensor [104] of the present disclosure provides inputs for the functionality of the RF lens [102] .
  • the sensor [104] is configured to monitor at least one first parameter, wherein the first parameter is one of an ambient temperature, speed and location.
  • the “sensor” may include but not limited to a temperature sensor, proximity sensor, accelerometer, gyroscope, magnetometer, barometer, GPS, ambient light sensor, and the other sensors obvious to the person skilled in the known art.
  • the Processor [106] connected to said sensor [104] of the present disclosure receives said at least one first parameter from said at least one sensor [104] and is further configured to determine at least one second parameter based on at least the received at least one first parameter.
  • the second parameter is one of a gradient of said at least one RF lens [102] , circular symmetry of the system and polar coordinates of the system.
  • a desired gradient of the RF lens [102] , circular symmetry of the system and polar coordinates of the system may be derived.
  • the reflector [108] connected to said RF lens [102] of the present disclosure is configured receive RF rays from at least one RF lens [102] and said reflector is also configured to reflect the RF rays received from said RF lens [102] .
  • the reflector [108] diverts the received RF rays towards the RF antenna.
  • the invention may use one or multiple RF reflectors [108] as may be necessary to implement the features of the invention.
  • the motor [110] connected to said RF lens [102] , said reflector [108] and said processor [106] of the present disclosure, is configured to receive the at least one second parameter from the processor [106] .
  • the motor [110] further automatically causes a change in configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • the motor [110] is configured for the movement of RF lens [102] and RF reflectors [108] to various positions, if needed. In an instance the invention may use one or multiple motors [110] as may be necessary to implement the features of the invention.
  • the present disclosure directs the RF rays to the RF antenna via said at least one RF lens [102] , at least one sensor [104] , at least one processor [106] , at least one reflector [108] and at least one motor [110] in connection with each other.
  • said direction of RF rays towards the RF antenna may be achieved via unidirectional direction or multidirectional path as may be necessary to implement the features of the invention in said particular event.
  • a “processing unit” or “processor” includes one or more processors, wherein processor refers to any logic circuitry for processing instructions.
  • a processor may be a general-purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits, Field Programmable Gate Array circuits, any other type of integrated circuits, etc.
  • the processor may perform signal coding data processing, input/output processing, and/or any other functionality that enables the working of the system according to the present disclosure. More specifically, the processor or processing unit is a hardware processor.
  • FIG. 2 illustrates an exemplary diagram of an electronic device [200] , in accordance with exemplary embodiment of the present disclosure.
  • the electronic device [200] comprises a RF antenna [202] , a reflector [204] , a sensor [210] , a processor [212] and two RF lens [206 (A) ] and [206 (B) ] . Further the RF rays [208] received by the electronic device [200] are also shown in Fig. 2.
  • the electronic device [200] also comprises at least one motor connected to said reflector [204] , processor [212] and said two RF lens [206 (A) ] and [206 (B) ] , said motor is not shown in Fig. 2 for clarity purpose.
  • the motor is configured to adjust the position of said reflector [204] and two RF lens [206 (A) ] and [206 (B) ] on the basis of input received from the processor [212] .
  • the RF rays [208] are received on said electronic device [200] via at least one base station (not shown in the figure) .
  • the said RF rays [208] are further monitored via at least one sensor [210] .
  • the electronic device [200] is receiving the RF rays [208] from a base station and in order to reduce the effect of specific absorption rate (SAR) , two RF lenses [206 (A) ] and [206 (B) ] are configured to receive said RF rays [208] .
  • the said RF lenses [206 (A) ] and [206 (B) ] are also configured to direct the said RF rays [208] to the RF antenna [202] .
  • the said direction of said RF rays [208] to the RF antenna [202] also improves the signal strength of the said electronic device [200] .
  • the placement of RF lenses [206 (A) ] and [206 (B) ] in said electronic device is such that the maximum RF rays [208] are deviated towards the RF antenna [202] .
  • the electronic device [200] comprises a sensor [210] , wherein the said sensor [210] is configured to monitor at least one first parameter.
  • the said at least one first parameter may include but not limited to one of an ambient temperature, speed and location.
  • the sensor may be a temperature sensor, proximity sensor, accelerometer, gyroscope, magnetometer, barometer, GPS, ambient light sensor, thermometer and the other sensors obvious to the person skilled in the known art.
  • the electronic device [200] comprises a processor [212] connected to said at least one sensor [210] , wherein the processor is configured to receive said monitored at least one first parameter from the at least one sensor [210] .
  • the processor [212] is also configured to determine at least one second parameter based on at least said received at least one first parameter.
  • the said second parameter may include but not limited to one of a desired gradient of said RF lenses [206 (A) ] and [206 (B) ] , circular symmetry of the electronic device [200] and polar coordinates of the electronic device [200] .
  • the two RF lenses [206 (A) ] and [206 (B) ] of the electronic device [200] are further connected to the reflector [204] , wherein said reflector [204] is configured to reflect RF rays [208] received from the RF lenses [206 (A) ] and [206 (B) ] .
  • the reflector [204] directs/reflects the RF rays [208] towards the RF antenna [202] .
  • the placement of the reflector [204] in said electronic device is such that the maximum RF rays [208] are directed towards the RF antenna [202] .
  • the electronic device [200] also comprises at least one motor connected to said reflector [204] , two RF lenses [206 (A) ] and [206 (B) ] and processor [212] .
  • the said motor is configured to receive the at least one second parameter from the processor.
  • the motor further automatically cause a change in configuration of at least one of the at least one RF lenses [206 (A) ] and [206 (B) ] and the reflector [204] , based on said at least one second parameter, to direct said RF rays [208] to the RF antenna [202] .
  • the said direction of RF rays towards the RF antenna may be achieved via unidirectional direction or multidirectional path as may be necessary to implement the features of the invention in said particular event.
  • FIG. 3 an exemplary method flow diagram [300] , depicting method for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure is shown. As shown in Fig. 3, the method begins at step [302] .
  • the method comprises receiving RF rays at an at least one RF lens [102] and an at least one reflector [108] .
  • the RF rays are received from at least one base station.
  • the said at least one RF lens [102] and an at least one reflector [108] are configured to direct maximum received RF rays towards the RF antenna of an electronic device.
  • the direction of said RF rays towards the RF antenna provides the better signal strength and also reduces the SAR value.
  • the RF reflector [108] is also configured to receive RF rays from the RF lens [102] .
  • the reflector [108] reflects said received RF rays towards the RF antenna.
  • At least one first parameter is monitored by at least one sensor [104] , wherein said at least one first parameter may include but not limited to one of an ambient temperature, speed and location.
  • the sensor [104] may be a temperature sensor, proximity sensor, location sensor, accelerometer, gyroscope, magnetometer, barometer, GPS, ambient light sensor and the other sensors obvious to the person skilled in the known art.
  • the method further at step [308] comprises, receiving, by a processor [106] , said at least one first parameter from the at least one sensor [104] and after receiving said first parameter, the processor [106] , at step [310] determines at least one second parameter based on at least the received at least one first parameter.
  • the said second parameter is one of a desired gradient of said at least one RF lens [102] , circular symmetry of the lens [102] and polar coordinates of the lens [102] .
  • the method at step [312] encompasses, receiving, by a motor [110] , the at least one second parameter from the processor [106] .
  • the motor [110] at step [314] on receipt of said second parameters from the processor [106] , is further configured to automatically causing a change in a configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
  • the said direction of RF rays towards the RF antenna may be achieved via unidirectional direction or multidirectional paths as may be necessary to implement the features of the invention in said particular event.
  • the method terminates at step [316] , after directing radio frequency rays to a RF antenna.
  • the user may provide manual inputs to direct said RF rays to the RF antenna, wherein the user input may include positioning of the at least one RF lens [104] and at least one reflector [108] to direct maximum RF rays towards the RF antenna and also to adjust the SAR value of an electronic device.
  • the processor [106] determine at least one second parameter based on at least one first parameter received from sensor [104] and the user input.
  • the at least one motor [110] receives said at least one second parameter from the processor [106] and then causes a change in configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna and to reduce the effect of SAR value of the RF rays.
  • the sensor [104] may monitor at least one first associated parameter related to the weather conditions.
  • the processor [106] determines at least one second parameter based on the said at least one first parameter.
  • the motor [110] on the basis of said second parameters changes the configuration of at least one of the at least one RF lens [102] and at least one reflector [108] and as a result the lens functionality will be minimized, and the gradient will be reset to receive maximum signals.
  • the senor [104] may monitor at least one first associated parameter related to the movement of said electronic device/device.
  • the processor [106] determines at least one second parameter based on the said at least one first parameter.
  • the motor [110] on the basis of said second parameters changes the configuration of at least one of the at least one RF lens [102] and at least one reflector [108] and as a result the gradient can be varied to a value where the maximum RF rays can be re-directed, as there is no change of base station or direction for RF rays in still devices.
  • other rules can also be defined, where based on current environment and RF rays intensity and direction, the lens functionality can be optimized to receive a balanced RF rays for good signal quality and minimum dissipate rays.
  • FIG. 4 an exemplary sequence flow diagram [400] , for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure is shown.
  • the process begins at step [402] and proceeds further wherein the RF rays are received at a RF lens [102] from a base station at step [404] .
  • the RF lens [102] is configured to collect the said RF rays at step [406] .
  • the RF lens [102] may be a single RF lens or a combination of multiple RF lenses as may be necessary to implement the features of the invention.
  • the electronic device/device is configured to check whether the directing of radio frequency rays to a RF antenna is to be achieved via an automatic mode or input based mode. If said mode is an input based mode, the process further leads to step [410] or if said mode is automatic mode the said process will lead to step [416] .
  • the electronic device receives a manual input to direct radio frequency rays to a RF antenna.
  • the user at step [412] can manually set the parameters or the user can turn off the input based mode.
  • the said manual setting of parameters may include the adjustment of the received RF rays by manually directing the RF rays towards RF antenna.
  • the processor [106] on the basis of said manual inputs and at least one first parameter, determine at least one second parameter.
  • the said at least one second parameter may include but not limited to one of a gradient of said at least one RF lens, circular symmetry of the electronic device and polar coordinates of the electronic device.
  • step [412] then leads to step [414] .
  • step [414] said input mode is disabled and which further leads to termination of the process at step [422] .
  • step [412] then leads to step [420] .
  • the RF lens [102] will start working based on the input mode to direct said RF rays to the RF antenna.
  • at least one motor [110] is configured to automatically cause a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter and said manual input, to direct said RF rays to the RF antenna.
  • the process further terminates at step [422] .
  • the process will further leads to step [416] .
  • the at least one parameter can be set automatically on the basis of sensor input i.e. first parameter (such as per location, weather, signal or speed) .
  • the processor [106] is configured to determine at least one second parameter on the basis of at least one first parameter, wherein the said first parameter is monitored by the sensor [104] .
  • the said at least one second parameter includes at least one of a gradient of said at least one RF lens, circular symmetry of the electronic device and polar coordinates of the electronic device.
  • the process at step [418] encompasses automatically setting of appropriate parameters to direct the said RF rays to the RF antenna.
  • the RF lens [102] will start working based on the automatic mode. If the signal strength changes in the automatic mode the parameters will be changed automatically.
  • at least one motor [110] is configured to automatically cause a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna automatically.
  • step [420] After automatically directing radio frequency rays to a RF antenna at step [420] , the process further terminates at step [422] .

Abstract

The application provides methods and system for directing radio frequency rays to a RF antenna. The method comprises: receiving RF rays at an at least one RF lens and an at least one reflector; monitoring at least one first parameter by at least one sensor; receiving, by a processor, said first parameter from said sensor; determining, by the processor, at least one second parameter based on at least the received said first parameter; receiving, by a motor, the at least one second parameter from the processor and automatically causing a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.

Description

METHOD AND SYSTEM FOR DIRECTING RADIO FREQUENCY RAYS TO RADIO FREQUENCY ANTENNA
FIELD OF INVENTION
The present application generally relates to the field of electromagnetic radiations and more particularly to a system and method for directing radio frequency rays to a RF antenna.
BACKGROUND
This section is intended to provide information relating to field of the invention and thus any approach or functionality described below should not be assumed to be qualified as prior art merely by its inclusion in this section.
The radio frequency (RF) rays are a type of electromagnetic energy and are associated with various electric and magnetic properties. The RF rays are widely used in communication as well as non-communication systems. For example, RF rays are used for signal transmission and broadcasting in communication system and also used in various non-communication systems such as microwave ovens, radars and various industrial processes.
It is a property of the RF rays that the said rays gets absorbed by the human body at a specific rate (SAR) , which leads to negative impact on the health of human beings. The specific absorption rate (SAR) is a measure of the rate at which the RF energy is absorbed by the human body, wherein the said measurement is in watts per kilogram. The SAR is calculated when the human body is exposed to a radio frequency (RF) electromagnetic field.
Further, the absorption of the RF rays depends upon a number of factors such as the absorption of RF energy is more in the resonant conditions, for instance, when the wavelength of the RF rays are comparable to the dimensions of a human body then more RF energy gets absorbed by said human body. Along with this, SAR value also depends on the frequency, polarization and intensity of RF Field, which as an end user can’t be controlled.
In an electronic device which is using a wireless network, there will be some RF loss, which will increase SAR level of said device. Also there are instances where the loss of RF rays/signals may occur which leads to the poor quality signals at the destination, as the RF rays not properly directed to the antenna of the electronic device/destination. Further, there may be situations, for instance, where the recommended limits for safe exposure of human beings to RF rays could exceed, such as in an environment near the high-powered RF sources. In such situations, proper control measures or actions are required to ensure the safe use of RF rays/signals.
A number of exposure standards for RF energy/signals have been developed over the past few years. These standards recommends safe levels of exposure to the RF signals to avoid the ill effects of RF rays. Further, for different electronic devices, different safe levels of exposure to the RF signals are specified. In an instance, the SAR values related to cellular phones are measured by considering the cellular phone’s position and calculating the amount of  radiations absorbed by the human head when close to the antenna of the cellular phone, or while talking over said cellular phone.
In order to reduce the negative impacts of RF rays and to provide better signal quality there arises a need for proper management of the RF rays. Also a number of solutions to provide better management of RF signals have been developed, but said prior art solutions fails to direct the RF signal path. The prior art solutions also failed to control the dissipate RF rays, further leading to loss of signals/rays and harmful effects on users.
Furthermore, the prior art solutions lacks both manual and automatic methods to direct the RF signals. In view of these and other existing limitations, there arises an imperative need to provide a solution to overcome the limitations of prior existing solutions and to provide a more efficient method and system for directing radio frequency rays to a RF antenna.
SUMMARY
This section is provided to introduce certain objects and aspects of the present disclosure in a simplified form that are further described below in the detailed description. This summary is not intended to identify the key features or the scope of the claimed subject matter.
In order to overcome at least a few problems associated with the known solutions as provided in the previous section, an object of the present disclosure is to provide a novel method and system for directing radio frequency rays to a RF antenna. It is another object of the present disclosure to provide a system and method to improve the SAR value and other signal parameters associated with RF rays. It is also an object of the present disclosure to reduce the hazardous effect of RF rays on human body. It is yet another object of the present disclosure to improve battery life of an electronic device by providing better signal quality. One more object of the present disclosure is to minimize the call drop by improving the signal parameters.
In order to achieve the afore-mentioned objectives, the present disclosure provides a method and system for directing radio frequency rays to a RF antenna. One aspect of the invention relates to a method of directing radio frequency rays to a RF antenna. The method comprises receiving RF rays at an at least one RF lens and an at least one reflector. The method further leads to monitoring of at least one first parameter by at least one sensor. Thereafter the method comprises receiving, by a processor, said at least one first parameter from the at least one sensor. The processor then determines at least one second parameter based on at least the received at least one first parameter. The method also encompasses receiving, by a motor, the at least one second parameter from the processor. The method further leads to automatically causing a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
Further, another aspect of the invention relates to a system for directing radio frequency rays to a RF antenna. The system comprises at least one RF lens configured to receive RF rays, at least one sensor configured to monitor at least one first parameter, at least one processor connected to said at least one sensor, wherein the processor is configured to receive said monitored at least one first parameter from the at least one sensor, and the processor is also configured to determine at least one second parameter based on at least said received at least one  first parameter. The system further comprises at least one reflector connected to said at least one RF lens, said reflector configured to reflect RF rays received from the at least one RF lens. Also the system comprises at least one motor connected to said at least one RF lens, reflector and said at least one processor, wherein the at least one motor is configured to receive the at least one second parameter from the processor, and the motor also configured to automatically cause a change in configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
Yet another aspect of the invention relates to an electronic device comprising at least one RF lens configured to receive RF rays, at least one sensor configured to monitor at least one first parameter, at least one processor connected to said at least one sensor, wherein the processor is configured to receive said monitored at least one first parameter from the at least one sensor, and the processor is also configured to determine at least one second parameter based on at least said received at least one first parameter. The electronic device further comprises at least one reflector connected to said at least one RF lens, said reflector configured to reflect RF rays received from the at least one RF lens. The electronic device also comprises at least one motor connected to said at least one RF lens, reflector and said at least one processor, wherein the at least one motor is configured to receive the at least one second parameter from the processor and automatically causes a change in configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein, and constitute a part of this disclosure, illustrate exemplary embodiments of the disclosed methods and systems in which like reference numerals refer to the same parts throughout the different drawings. Components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Some drawings may indicate the components using block diagrams and may not represent the internal circuitry of each component. It will be appreciated by those skilled in the art that disclosure of such drawings includes disclosure of electrical components, electronic components or circuitry commonly used to implement such components.
FIG. 1 illustrates a block diagram of the system [100] for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure.
FIG. 2 illustrates an exemplary diagram of an electronic device [200] , in accordance with exemplary embodiment of the present disclosure.
FIG. 3 illustrates an exemplary method flow diagram [300] , depicting method for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure.
FIG. 4 illustrate an exemplary sequence flow diagram [400] , for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure.
The foregoing shall be more apparent from the following more detailed description of the disclosure.
DESCRIPTION OF THE INVENTION
In the following description, for the purposes of explanation, various specific details are set forth in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent, however, that embodiments of the present disclosure may be practiced without these specific details. Several features described hereafter can each be used independently of one another or with any combination of other features. An individual feature may not address any of the problems discussed above or might address only some of the problems discussed above. Some of the problems discussed above might not be fully addressed by any of the features described herein.
The invention provides a method and system to control specific absorption rate (SAR) levels in an electronic device along with the improvements in signal strength. More specifically, the invention provides the users a solution to control the RF rays partially or fully to reduce its harmful effects on body. The invention also enables at least one of the automatic and manual control of RF lens working. The present disclosure also encompasses the monitoring of dissipate rays via at least one sensor, wherein said at least one sensor is configured to provide inputs for functionality of RF lens. Therefore the present disclosure via said monitoring of dissipate rays controls the low signal strength and harmful impact on human health caused by said dissipate rays.
Furthermore, in order to control SAR levels in an electronic device, the present disclosure receives RF rays at an at least one RF lens and an at least one reflector. After said receipt of said RF rays, the present disclosure monitors at least one first parameter from the at least one sensor. The at least one first parameter is one of an ambient temperature, speed and location. The present disclosure then receives from said at least one sensor said at least one first parameter at a processor. The processor determines at least one second parameter based on at least the received at least one first parameter. Thereafter the invention encompasses receiving, by a motor, the at least one second parameter from the processor. The said at least second parameter is one of a gradient of said at least one RF lens, circular symmetry of the system and polar coordinates of the system. Thereafter the present disclosure automatically causes a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna.
Implementations of the present disclosure provide a system for directing RF rays to a RF antenna. The system includes at least one RF lens [102] configured to receive RF rays; at least one reflector [108] connected to said at least one RF lens [102] , said reflector [108] configured to reflect RF rays received from the at least one RF lens [102] ; at least one motor [110] connected to said at least one RF lens [102] , where the at least one motor [110] is configured to: receive the at least one second parameter, and automatically cause a change in configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
In at least one implementation, the system further includes: at least one sensor [104] configured to monitor at least one first parameter; at least one processor [106] connected to said at least one sensor [104] , where the at least one processor [106] is configured to receive said  monitored at least one first parameter from the at least one sensor [104] , and determine at least one second parameter based on at least said received at least one first parameter. The at least one motor [110] is connected to said at least one processor [106] , and the at least one motor [110] is configured to receive the at least one second parameter from the processor [106] .
In at least one implementation, the at least one motor [110] is configured to receive the at least one second parameter from an input from a user.
In at least one implementation, the at least one sensor [104] is one of a location sensor, a temperature sensor and an accelerometer.
In at least one implementation, the at least one first parameter is one of an ambient temperature, speed and location. In at least one implementation, the at least one second parameter is one of a gradient of said at least one RF lens [102] , circular symmetry of the system, and polar coordinates of the system.
Implementations of the present disclosure further provide a method directing RF rays to a RF antenna. The method includes: receiving RF rays at an at least one RF lens [102] and an at least one reflector [108] ; receiving, by a motor [110] , the at least one second parameter; and automatically causing a change in a configuration by a motor [110] of at least one of the at least one RF lens [102] and at least one reflector [106] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
In at least one implementation, the method further includes: monitoring at least one first parameter by at least one sensor [104] ; receiving, by a processor [106] , said at least one first parameter; and determining, by the processor [106] , at least one second parameter based on at least the received at least one first parameter. Receiving, by the motor [110] , the at least one second parameter includes: receiving, by the motor [110] , the at least one second parameter from the processor [106] .
In at least one implementation, receiving, by the motor [110] , the at least one second parameter includes: receiving, by the motor [110] , the at least one second parameter from an input from a user.
In at least one implementation, the method further includes: monitoring at least one first parameter by at least one sensor [104] ; receiving, by a processor [106] , said at least one first parameter; receiving an input from a user; determining, by the processor, the at least one second parameter based on the received at least one first parameter and the input from the user. Receiving, by the motor [110] , the at least one second parameter includes: receiving, by the motor [110] , the at least one second parameter from the processor [106] .
In at least one implementation, the at least one first parameter is one of an ambient temperature, speed and location.
In at least one implementation, the at least one second parameter is one of a gradient of said at least one RF lens, circular symmetry of the system and polar coordinates of the system.
In at least one implementation, the RF rays received at the at least one RF lens and the at least one reflector, are received from a base station.
Implementations of the present disclosure further provide an electronic device [200] . The electronic device [200] includes at least one RF lens [206] configured to receive RF rays; at least one sensor [210] configured to monitor at least one first parameter; at least one processor [212] connected to said at least one sensor [210] , where the processor is configured to receive said  monitored at least one first parameter from the at least one sensor [210] , and determine at least one second parameter based on at least said received at least one first parameter; at least one reflector [204] connected to said at least one RF lens [206] , said reflector [204] configured to reflect RF rays received from the at least one RF lens [206] ; and at least one motor connected to said at least one RF lens [206] and said at least one processor [212] . The at least one motor is configured to: receive the at least one second parameter from the processor [212] , and automatically cause a change in configuration of at least one of the at least one RF lens [206] and at least one reflector [204] , based on said at least one second parameter, to direct said RF rays to the RF antenna [202] .
In at least one implementation, the at least one sensor [210] is one of a location sensor, a temperature sensor and an accelerometer.
In at least one implementation, the at least one first parameter is one of an ambient temperature, speed and location.
In at least one implementation, the at least one second parameter is one of a gradient of said at least one RF lens [206] , circular symmetry of the system, and polar coordinates of the system.
The disclosure is further explained in detail below with reference now to the diagrams.
FIG. 1 illustrates a block diagram of the system for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure. As shown in Fig. 1, the system [100] comprises at least one RF lens [102] , at least one sensor [104] , at least one processor [106] , at least one reflector [108] and at least one motor [110] , wherein all the components are assumed to be connected to each other unless otherwise indicated below. Also, only one RF lens [102] , sensor [104] , processor [106] , reflector [108] and motor [110] are shown in the present disclosure, however, it will be appreciated by those skilled in the art that the invention encompasses multiple such units as may be necessary to implement the features of the invention.
The RF lens [102] of the present disclosure is one of a single radio frequency (RF) lens and combination of RF lenses. The said RF lens is associated with a number of parameters and is configured to collect the RF rays. The RF lens may be placed inside an electronic device before or after an RF antenna (not shown in the fig. ) . In an instance, the RF lens [102] may be placed inside the back cover of the electronic device or behind the display of said electronic device, however the placement of RF lens may be different for different electronic devices. The RF lens [102] , on the basis of selected parameters directs all the RF rays towards the RF antenna.
The Sensor [104] of the present disclosure provides inputs for the functionality of the RF lens [102] . The sensor [104] is configured to monitor at least one first parameter, wherein the first parameter is one of an ambient temperature, speed and location. As used herein the “sensor” may include but not limited to a temperature sensor, proximity sensor, accelerometer, gyroscope, magnetometer, barometer, GPS, ambient light sensor, and the other sensors obvious to the person skilled in the known art.
The Processor [106] connected to said sensor [104] of the present disclosure receives said at least one first parameter from said at least one sensor [104] and is further configured to determine at least one second parameter based on at least the received at least one first parameter. The second parameter is one of a gradient of said at least one RF lens [102] , circular symmetry  of the system and polar coordinates of the system. Thus, based on the ambient temperature, speed and location of the device, a desired gradient of the RF lens [102] , circular symmetry of the system and polar coordinates of the system may be derived.
The reflector [108] connected to said RF lens [102] of the present disclosure, is configured receive RF rays from at least one RF lens [102] and said reflector is also configured to reflect the RF rays received from said RF lens [102] . The reflector [108] , diverts the received RF rays towards the RF antenna. In an instance the invention may use one or multiple RF reflectors [108] as may be necessary to implement the features of the invention.
The motor [110] connected to said RF lens [102] , said reflector [108] and said processor [106] of the present disclosure, is configured to receive the at least one second parameter from the processor [106] . The motor [110] further automatically causes a change in configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna. Further the motor [110] , is configured for the movement of RF lens [102] and RF reflectors [108] to various positions, if needed. In an instance the invention may use one or multiple motors [110] as may be necessary to implement the features of the invention.
Furthermore, the present disclosure directs the RF rays to the RF antenna via said at least one RF lens [102] , at least one sensor [104] , at least one processor [106] , at least one reflector [108] and at least one motor [110] in connection with each other. In an event the said direction of RF rays towards the RF antenna may be achieved via unidirectional direction or multidirectional path as may be necessary to implement the features of the invention in said particular event.
As used herein, a “processing unit” or “processor” includes one or more processors, wherein processor refers to any logic circuitry for processing instructions. A processor may be a general-purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits, Field Programmable Gate Array circuits, any other type of integrated circuits, etc. The processor may perform signal coding data processing, input/output processing, and/or any other functionality that enables the working of the system according to the present disclosure. More specifically, the processor or processing unit is a hardware processor.
FIG. 2 illustrates an exemplary diagram of an electronic device [200] , in accordance with exemplary embodiment of the present disclosure.
As shown in Fig. 2 the electronic device [200] comprises a RF antenna [202] , a reflector [204] , a sensor [210] , a processor [212] and two RF lens [206 (A) ] and [206 (B) ] . Further the RF rays [208] received by the electronic device [200] are also shown in Fig. 2.
The electronic device [200] also comprises at least one motor connected to said reflector [204] , processor [212] and said two RF lens [206 (A) ] and [206 (B) ] , said motor is not shown in Fig. 2 for clarity purpose. The motor is configured to adjust the position of said reflector [204] and two RF lens [206 (A) ] and [206 (B) ] on the basis of input received from the processor [212] . The RF rays [208] are received on said electronic device [200] via at least one base station (not shown in the figure) . The said RF rays [208] are further monitored via at least one sensor [210] .
Although a particular number of units/components are shown in said electronic device [200] in Fig. 2 for the purpose of clarity, however, it will be appreciated by those skilled in the  art that the invention encompasses multiple such units as may be necessary to implement the features of the invention. Also in an instance all the components of said electronic device [200] may be connected to each other to implement the features of the invention.
Furthermore, as shown in the Fig. 2, the electronic device [200] , is receiving the RF rays [208] from a base station and in order to reduce the effect of specific absorption rate (SAR) , two RF lenses [206 (A) ] and [206 (B) ] are configured to receive said RF rays [208] . The said RF lenses [206 (A) ] and [206 (B) ] are also configured to direct the said RF rays [208] to the RF antenna [202] . The said direction of said RF rays [208] to the RF antenna [202] also improves the signal strength of the said electronic device [200] . In an instance, the placement of RF lenses [206 (A) ] and [206 (B) ] in said electronic device is such that the maximum RF rays [208] are deviated towards the RF antenna [202] .
Further, the electronic device [200] comprises a sensor [210] , wherein the said sensor [210] is configured to monitor at least one first parameter. The said at least one first parameter may include but not limited to one of an ambient temperature, speed and location. Also the sensor may be a temperature sensor, proximity sensor, accelerometer, gyroscope, magnetometer, barometer, GPS, ambient light sensor, thermometer and the other sensors obvious to the person skilled in the known art.
Also, the electronic device [200] comprises a processor [212] connected to said at least one sensor [210] , wherein the processor is configured to receive said monitored at least one first parameter from the at least one sensor [210] . The processor [212] is also configured to determine at least one second parameter based on at least said received at least one first parameter. The said second parameter may include but not limited to one of a desired gradient of said RF lenses [206 (A) ] and [206 (B) ] , circular symmetry of the electronic device [200] and polar coordinates of the electronic device [200] .
The two RF lenses [206 (A) ] and [206 (B) ] of the electronic device [200] are further connected to the reflector [204] , wherein said reflector [204] is configured to reflect RF rays [208] received from the RF lenses [206 (A) ] and [206 (B) ] . The reflector [204] directs/reflects the RF rays [208] towards the RF antenna [202] . In an instance the placement of the reflector [204] in said electronic device is such that the maximum RF rays [208] are directed towards the RF antenna [202] .
The electronic device [200] also comprises at least one motor connected to said reflector [204] , two RF lenses [206 (A) ] and [206 (B) ] and processor [212] . The said motor is configured to receive the at least one second parameter from the processor. The motor further automatically cause a change in configuration of at least one of the at least one RF lenses [206 (A) ] and [206 (B) ] and the reflector [204] , based on said at least one second parameter, to direct said RF rays [208] to the RF antenna [202] . In an event the said direction of RF rays towards the RF antenna may be achieved via unidirectional direction or multidirectional path as may be necessary to implement the features of the invention in said particular event.
Referring to Fig. 3, an exemplary method flow diagram [300] , depicting method for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure is shown. As shown in Fig. 3, the method begins at step [302] .
At step [304] , the method comprises receiving RF rays at an at least one RF lens [102] and an at least one reflector [108] . The RF rays are received from at least one base station. The  said at least one RF lens [102] and an at least one reflector [108] are configured to direct maximum received RF rays towards the RF antenna of an electronic device. The direction of said RF rays towards the RF antenna provides the better signal strength and also reduces the SAR value. Further the RF reflector [108] is also configured to receive RF rays from the RF lens [102] . The reflector [108] , reflects said received RF rays towards the RF antenna.
Thereafter at step [306] , at least one first parameter is monitored by at least one sensor [104] , wherein said at least one first parameter may include but not limited to one of an ambient temperature, speed and location. The sensor [104] may be a temperature sensor, proximity sensor, location sensor, accelerometer, gyroscope, magnetometer, barometer, GPS, ambient light sensor and the other sensors obvious to the person skilled in the known art.
The method further at step [308] comprises, receiving, by a processor [106] , said at least one first parameter from the at least one sensor [104] and after receiving said first parameter, the processor [106] , at step [310] determines at least one second parameter based on at least the received at least one first parameter. The said second parameter is one of a desired gradient of said at least one RF lens [102] , circular symmetry of the lens [102] and polar coordinates of the lens [102] .
Furthermore, the method at step [312] encompasses, receiving, by a motor [110] , the at least one second parameter from the processor [106] . The motor [110] at step [314] , on receipt of said second parameters from the processor [106] , is further configured to automatically causing a change in a configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna. In an event the said direction of RF rays towards the RF antenna may be achieved via unidirectional direction or multidirectional paths as may be necessary to implement the features of the invention in said particular event. Thereafter, the method terminates at step [316] , after directing radio frequency rays to a RF antenna.
Also, in an instance the user may provide manual inputs to direct said RF rays to the RF antenna, wherein the user input may include positioning of the at least one RF lens [104] and at least one reflector [108] to direct maximum RF rays towards the RF antenna and also to adjust the SAR value of an electronic device. Thereafter, the processor [106] , determine at least one second parameter based on at least one first parameter received from sensor [104] and the user input. Further, the at least one motor [110] , receives said at least one second parameter from the processor [106] and then causes a change in configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna and to reduce the effect of SAR value of the RF rays.
Also, the method of directing radio frequency rays to a RF antenna may be explained by the following examples:
In an instance, when the weather is bad and the signal strength is low, the sensor [104] may monitor at least one first associated parameter related to the weather conditions. The processor [106] then determines at least one second parameter based on the said at least one first parameter. Thereafter the motor [110] on the basis of said second parameters changes the configuration of at least one of the at least one RF lens [102] and at least one reflector [108] and as a result the lens functionality will be minimized, and the gradient will be reset to receive maximum signals.
In one more instance, if an electronic device is not in motion, the sensor [104] may monitor at least one first associated parameter related to the movement of said electronic device/device. The processor [106] then determines at least one second parameter based on the said at least one first parameter. Thereafter the motor [110] on the basis of said second parameters changes the configuration of at least one of the at least one RF lens [102] and at least one reflector [108] and as a result the gradient can be varied to a value where the maximum RF rays can be re-directed, as there is no change of base station or direction for RF rays in still devices.
In yet another instance, other rules can also be defined, where based on current environment and RF rays intensity and direction, the lens functionality can be optimized to receive a balanced RF rays for good signal quality and minimum dissipate rays.
Referring to Fig. 4, an exemplary sequence flow diagram [400] , for directing radio frequency rays to a RF antenna, in accordance with exemplary embodiment of the present disclosure is shown. As shown in Fig. 4, the process begins at step [402] and proceeds further wherein the RF rays are received at a RF lens [102] from a base station at step [404] .
Thereafter the RF lens [102] is configured to collect the said RF rays at step [406] . The RF lens [102] may be a single RF lens or a combination of multiple RF lenses as may be necessary to implement the features of the invention.
Further at step [408] , the electronic device/device is configured to check whether the directing of radio frequency rays to a RF antenna is to be achieved via an automatic mode or input based mode. If said mode is an input based mode, the process further leads to step [410] or if said mode is automatic mode the said process will lead to step [416] .
Next, at step [410] , the electronic device receives a manual input to direct radio frequency rays to a RF antenna. Thereafter, the user at step [412] can manually set the parameters or the user can turn off the input based mode. In an instance the said manual setting of parameters may include the adjustment of the received RF rays by manually directing the RF rays towards RF antenna. The processor [106] on the basis of said manual inputs and at least one first parameter, determine at least one second parameter. The said at least one second parameter may include but not limited to one of a gradient of said at least one RF lens, circular symmetry of the electronic device and polar coordinates of the electronic device.
Next, if the user turns off the input based mode on step [412] , the step [412] then leads to step [414] . At step [414] said input mode is disabled and which further leads to termination of the process at step [422] .
Also, if the user manually sets the parameters at step [412] , the step [412] then leads to step [420] . At step [420] the RF lens [102] will start working based on the input mode to direct said RF rays to the RF antenna. Further, at least one motor [110] is configured to automatically cause a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter and said manual input, to direct said RF rays to the RF antenna. After manually directing radio frequency rays to a RF antenna at step [420] , the process further terminates at step [422] .
Furthermore, if at step [408] , the electronic device is operating in automatic mode to direct radio frequency rays to a RF antenna, the process will further leads to step [416] . At step [416] , the at least one parameter (second parameter) can be set automatically on the basis of  sensor input i.e. first parameter (such as per location, weather, signal or speed) . The processor [106] is configured to determine at least one second parameter on the basis of at least one first parameter, wherein the said first parameter is monitored by the sensor [104] . The said at least one second parameter includes at least one of a gradient of said at least one RF lens, circular symmetry of the electronic device and polar coordinates of the electronic device.
Thereafter, the process at step [418] encompasses automatically setting of appropriate parameters to direct the said RF rays to the RF antenna. Further at step [420] the RF lens [102] will start working based on the automatic mode. If the signal strength changes in the automatic mode the parameters will be changed automatically. Also, at least one motor [110] is configured to automatically cause a change in a configuration of at least one of the at least one RF lens and at least one reflector, based on said at least one second parameter, to direct said RF rays to the RF antenna automatically.
After automatically directing radio frequency rays to a RF antenna at step [420] , the process further terminates at step [422] .
While considerable emphasis has been placed herein on the disclosed embodiments, it will be appreciated that many embodiments can be made and that many changes can be made to the embodiments without departing from the principles of the present disclosure. These and other changes in the embodiments of the present disclosure will be apparent to those skilled in the art, whereby it is to be understood that the foregoing descriptive matter to be implemented is illustrative and non-limiting.

Claims (18)

  1. A system for directing Radio Frequency (RF) rays to a RF antenna, the system comprising:
    at least one RF lens [102] configured to receive RF rays;
    at least one reflector [108] connected to said at least one RF lens [102] , said reflector [108] configured to reflect RF rays received from the at least one RF lens [102] ; and
    at least one motor [110] connected to said at least one RF lens [102] , wherein the at least one motor [110] is configured to:
    receive the at least one second parameter, and
    automatically cause a change in configuration of at least one of the at least one RF lens [102] and at least one reflector [108] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
  2. The system of claim 1, further comprising:
    at least one sensor [104] configured to monitor at least one first parameter;
    at least one processor [106] connected to said at least one sensor [104] , wherein the at least one processor [106] is configured to receive said monitored at least one first parameter from the at least one sensor [104] , and determine at least one second parameter based on at least said received at least one first parameter; and
    wherein the at least one motor [110] is connected to said at least one processor [106] , and the at least one motor [110] is configured to receive the at least one second parameter from the processor [106] .
  3. The system of claim 1, wherein the at least one motor [110] is further configured to receive the at least one second parameter from an user input.
  4. The system of any of claims 1 to 3, wherein the at least one sensor [104] is one of a location sensor, a temperature sensor, and an accelerometer.
  5. The system of any of claims 1 to 4, wherein the at least one first parameter is one of an ambient temperature, speed, and location.
  6. The system of any of claims 1 to 5, wherein the at least one second parameter is one of a gradient of said at least one RF lens [102] , circular symmetry of the system, and polar coordinates of the system.
  7. A method for directing Radio Frequency (RF) rays to a RF antenna, the method comprising:
    receiving RF rays at an at least one RF lens [102] and an at least one reflector [108] ;
    receiving, by a motor [110] , the at least one second parameter; and
    automatically causing a change in a configuration by a motor [110] of at least one of the at least one RF lens [102] and at least one reflector [106] , based on said at least one second parameter, to direct said RF rays to the RF antenna.
  8. The method of claim 7, further comprising:
    monitoring at least one first parameter by at least one sensor [104] ;
    receiving, by a processor [106] , said at least one first parameter; and
    determining, by the processor [106] , at least one second parameter based on at least the at least one first parameter received;
    wherein receiving, by the motor [110] , the at least one second parameter comprises:
    receiving, by the motor [110] , the at least one second parameter from the processor [106] .
  9. The method of claim 7, wherein receiving, by the motor [110] , the at least one second parameter comprises:
    receiving, by the motor [110] , the at least one second parameter from an user input.
  10. The method of claim 7, further comprising:
    monitoring at least one first parameter by at least one sensor [104] ;
    receiving, by a processor [106] , said at least one first parameter;
    receiving an user input ;
    determining, by the processor, the at least one second parameter based on the received at least one first parameter and the input from the user; and
    wherein receiving, by the motor [110] , the at least one second parameter comprises: receiving, by the motor [110] , the at least one second parameter from the processor [106] .
  11. The method of any of claims 7 to 10, wherein the at least one first parameter is one of an ambient temperature, speed, and location.
  12. The method of claims 7 to 11, wherein the at least one second parameter is one of a gradient of said at least one RF lens, circular symmetry of the system, and polar coordinates of the system.
  13. The method of claims 7 to 12, wherein the RF rays received at the at least one RF lens and the at least one reflector, are received from a base station.
  14. An electronic device [200] comprising:
    at least one RF lens [206] configured to receive RF rays;
    at least one sensor [210] configured to monitor at least one first parameter;
    at least one processor [212] connected to said at least one sensor [210] , wherein the processor is configured to receive said monitored at least one first parameter from the at least one sensor [210] , and determine at least one second parameter based on at least said received at least one first parameter;
    at least one reflector [204] connected to said at least one RF lens [206] , said reflector [204] configured to reflect RF rays received from the at least one RF lens [206] ; and
    at least one motor connected to said at least one RF lens [206] and said at least one processor [212] , wherein the at least one motor is configured to:
    receive the at least one second parameter from the processor [212] , and
    automatically cause a change in configuration of at least one of the at least one RF lens [206] and at least one reflector [204] , based on said at least one second parameter, to direct said RF rays to the RF antenna [202] .
  15. The electronic device of claim 14, wherein the at least one sensor [210] is one of a location sensor, a temperature sensor, and an accelerometer.
  16. The electronic device of claim 14 or 15, wherein the at least one first parameter is one of an ambient temperature, speed, and location.
  17. The electronic device of any of claims 14 to 16, wherein the at least one second parameter is one of a gradient of said at least one RF lens [206] , circular symmetry of the system, and polar coordinates of the system.
  18. The electronic device of any of claims 14 to 17, wherein the RF rays, which are received at the at least one RF lens and the at least one reflector, are received from a base station.
PCT/CN2020/133639 2019-12-07 2020-12-03 Method and system for directing radio frequency rays to radio frequency antenna WO2021110103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201941050632 2019-12-07
IN201941050632 2019-12-07

Publications (1)

Publication Number Publication Date
WO2021110103A1 true WO2021110103A1 (en) 2021-06-10

Family

ID=76222240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133639 WO2021110103A1 (en) 2019-12-07 2020-12-03 Method and system for directing radio frequency rays to radio frequency antenna

Country Status (1)

Country Link
WO (1) WO2021110103A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539303A (en) * 2008-06-05 2015-04-22 苹果公司 Electronic device with proximity-based radio power control
CN105552574A (en) * 2016-03-13 2016-05-04 北京工业大学 Millimeter wave antenna
EP3226040A1 (en) * 2014-12-10 2017-10-04 Bolymedia Holdings Co. Ltd. Electromagnetic radiation sensing system
EP3525287A1 (en) * 2016-10-04 2019-08-14 Hitachi Automotive Systems, Ltd. Antenna, sensor, and vehicle mounted system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539303A (en) * 2008-06-05 2015-04-22 苹果公司 Electronic device with proximity-based radio power control
EP3226040A1 (en) * 2014-12-10 2017-10-04 Bolymedia Holdings Co. Ltd. Electromagnetic radiation sensing system
CN105552574A (en) * 2016-03-13 2016-05-04 北京工业大学 Millimeter wave antenna
EP3525287A1 (en) * 2016-10-04 2019-08-14 Hitachi Automotive Systems, Ltd. Antenna, sensor, and vehicle mounted system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DELPINO,MARIA ALONSO.: "Beam Scanning of Silicon Lens Antennas Using Integrated Piezomotors at SubmillimeterWavelengths.", IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY., vol. 9, no. 1, 31 January 2019 (2019-01-31), pages 47 - 52, XP011696291, DOI: 10.1109/TTHZ.2018.2881930 *

Similar Documents

Publication Publication Date Title
US8995938B2 (en) Radiation power level control system and method for a wireless communication device having tunable elements
US20150333788A1 (en) Mobile terminal and specific absorption rate reduction method
US20160270001A1 (en) Method and apparatus for adjusting transmission power of terminal as well as the terminal
CN103797726A (en) Antenna switching system with adaptive switching criteria
US9819376B1 (en) Proximal user detection with a complex measurement receiver
US11782121B2 (en) Method and device for positioning utilizing beam information
US20180048054A1 (en) Mobile terminal and method for balancing radiation
US11557183B2 (en) Social distancing device, system and method
CN103368662A (en) Detection method of electromagnetic radiation and electronic equipment
US10014897B2 (en) Proximal user detection with measurement receiver
WO2021110103A1 (en) Method and system for directing radio frequency rays to radio frequency antenna
Lee et al. SAR comparison of SAM phantom and anatomical head models for a typical bar-type phone model
CN103957540A (en) Electromagnetic interference testing method of multimode multi-standby terminal
CN110741560A (en) Communication control device, communication terminal, control method for communication terminal, control program, and data structure
WO2021197986A1 (en) Conditional measurement reporting mode for positioning
US7551890B2 (en) Method for reducing the radiation load by a mobile radio terminal with directional emission, and a mobile radio terminal with directional emission
KR102342396B1 (en) Method, apparatus and computer readable storage medium for measuring radio performance of a receiver of a wireless terminal
KR20070033509A (en) Apparatus and method for reducing hand effect of terminal having internal type antenna
CN114071360B (en) Positioning method and base station
US11032724B2 (en) System and method for optimizing signal path calibration
US20180041288A1 (en) Methods using a hand phantom for evaluating tablets in a wireless communication system
KR101954342B1 (en) Electromagnetic monitoring devices and monitoring methods for high power radars
JP2000039460A (en) Evaluation method for radio apparatus
CN108541056A (en) A kind of determining transmission power method and device
US20220390548A1 (en) Accuracy and latency improvements for rel-17 nr positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895790

Country of ref document: EP

Kind code of ref document: A1