WO2018098800A1 - 太阳能电站 - Google Patents

太阳能电站 Download PDF

Info

Publication number
WO2018098800A1
WO2018098800A1 PCT/CN2016/108341 CN2016108341W WO2018098800A1 WO 2018098800 A1 WO2018098800 A1 WO 2018098800A1 CN 2016108341 W CN2016108341 W CN 2016108341W WO 2018098800 A1 WO2018098800 A1 WO 2018098800A1
Authority
WO
WIPO (PCT)
Prior art keywords
working surface
light
solar power
receiving device
working
Prior art date
Application number
PCT/CN2016/108341
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to NZ754724A priority Critical patent/NZ754724A/en
Priority to AU2016431377A priority patent/AU2016431377B2/en
Priority to CA3045540A priority patent/CA3045540C/en
Priority to MYPI2019003146A priority patent/MY195470A/en
Priority to BR112019011148-4A priority patent/BR112019011148B1/pt
Priority to US16/465,148 priority patent/US20190393829A1/en
Priority to RU2019119389A priority patent/RU2730188C1/ru
Priority to CN201680091181.0A priority patent/CN109997002B/zh
Priority to PCT/CN2016/108341 priority patent/WO2018098800A1/zh
Priority to EP16923127.1A priority patent/EP3550221B1/en
Priority to JP2019528897A priority patent/JP6905060B2/ja
Priority to MX2019006166A priority patent/MX2019006166A/es
Priority to ES16923127T priority patent/ES2950333T3/es
Priority to PL16923127.1T priority patent/PL3550221T3/pl
Publication of WO2018098800A1 publication Critical patent/WO2018098800A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/001Devices for producing mechanical power from solar energy having photovoltaic cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/20Arrangements for moving or orienting solar heat collector modules for linear movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/422Vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • F24S2030/145Tracks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular, to a solar power station.
  • a solar tracking system also known as a Japanese system
  • the heel system is primarily used to adjust the orientation and attitude of the light-receiving surface in the system as the direction of the sun changes, so that as long as the coverage area is limited, sunlight is received as much as possible.
  • each relatively independent light receiving surface of the system is equipped with an independent Japanese system.
  • Each day system usually includes a rotating shaft and a supporting platform.
  • the distributed Japanese system enables the light-receiving surface of the system to perform daily movements, but also causes a substantial increase in installation, commissioning, operation, and maintenance costs. And a certain amount of active space needs to be reserved between multiple Japanese systems, making it practically difficult to reduce the need for ground surface area.
  • a solar power plant includes a first light receiving device having a substantially planar first working surface, and a second light receiving device having a second working surface that is substantially vertical with respect to the first working surface. And the first driving mechanism; wherein the first and second working faces are configured such that the sunlight passes through the second working surface and then illuminates the first working surface, or passes through the first working surface and then illuminates the second working surface.
  • the second light receiving device is fixed on the first driving mechanism, and the first driving mechanism is configured to drive the second working surface to move or rotate relative to the first working surface according to the movement of the sun.
  • the solar power station according to the present invention divides the light-receiving device into two types: substantially flat and substantially vertical, and concentrates on the substantially vertical light-receiving device for the first driving mechanism of the day, so that the overall structure of the solar power station And the configuration is simpler, which in turn helps to reduce the cost of the solar power plant and greatly reduces the need for ground surface area.
  • FIG. 1 is a schematic view of a solar power plant of Embodiment 1;
  • FIG. 2 is a schematic view of a solar power plant of Embodiment 2;
  • FIG. 3 is a schematic view of a solar power plant of Embodiment 3;
  • FIG. 4 is a schematic view of a solar power plant of Embodiment 4.
  • FIG. 5 is a schematic view of a solar power plant of Embodiment 5;
  • FIG. 6 is a schematic view of a solar power plant of Embodiment 6.
  • FIG. 1 One embodiment of a solar power plant according to the present invention can refer to FIG. 1, including a first light receiving device 110, a second light receiving device 120, and a first driving mechanism 130.
  • the first light receiving device 110 has a first working surface 111 that is substantially lying flat.
  • the second light receiving device 120 has a set of second working faces 121 that are substantially vertical with respect to the first work surface.
  • the working surface referred to in the present invention may be a working surface that realizes a function of utilizing light energy, a working surface that realizes a function of collecting light energy, or a mixture of the two. Therefore, the first and second light-receiving devices are selectable from the light energy utilizing device and the light guiding device.
  • the working surface can be a single plane or curved surface, or it can be a screen-shaped folding surface, and relative rotation between adjacent folding surfaces can occur.
  • the term "light energy utilization device” generally refers to various devices that convert light energy into other energy, such as photovoltaic panels, photothermal conversion devices, and the like.
  • the so-called photovoltaic panel refers to all photoelectric conversion devices that directly convert light energy into electrical energy, such as various semiconductor photovoltaic panels, photovoltaic thin films, quantum dot photovoltaic panels, and the like.
  • the so-called light guiding device can be selected to be transmissive or reflective according to the needs of the optical path design.
  • the reflective light guiding device includes a mirror, a reflective lens and the like.
  • the transmissive lens and the lens portion of the reflective lens may employ a Fresnel lens.
  • a detailed description of the Fresnel lens can be found in the PCT application entitled "Fresnel Lens System", published on June 2, 2016, International Publication No. WO/2017/082097, the disclosure of which is hereby incorporated herein.
  • the lens (including the lens portion in the reflective lens) in the present invention may be a point focus (or point divergence) lens whose focus falls on one point, or the focus may fall on A line focusing (or line diverging) lens on a straight line, the latter being simply referred to as a "line type" lens.
  • a reflective Fresnel lens particularly an astigmatic reflective Fresnel lens and a reflective linear Fresnel lens, more preferably an astigmatism type, may be preferably used. Reflective linear Fresnel lens.
  • the so-called "astigmatism" mirror refers to a mirror (or reflective lens) with a reflection angle greater than the angle of incidence.
  • the use of an astigmatic reflective Fresnel lens helps to increase the height of the vertical working surface while the size of the lying face is constant, thereby receiving more solar energy.
  • the first working surface is a plane formed by a photovoltaic panel, and is laid flat on the ground (or on a bracket parallel to the ground).
  • the second working surface is a screen-shaped folded surface formed by a mirror. It is placed substantially vertically next to the first work surface. Since the second working surface is a reflecting surface, the sunlight SS (which is used in the subsequent embodiments, which will not be described later) is irradiated onto the first working surface after being reflected by the second working surface. It is easy to understand that in other embodiments, the functions of the first working surface and the second working surface may also be exchanged.
  • the first working surface performs light energy collection and the second working surface performs light energy utilization
  • the sunlight is irradiated onto the second working surface (vertical) after passing through the first working surface (flat).
  • one of the first working surface and the second working surface is a mirror surface
  • the area of the mirror surface only needs to match the area of the other working surface (non-mirror surface) opposite thereto, and it is not necessary. is too big.
  • matching refers to the light reflected by the mirror, just covering the other working surface opposite it. When the area of the two working faces is matched, the best price/performance ratio can be achieved.
  • the first drive mechanism 130 includes a multi-section railcar capable of being along a track surrounding the first light-receiving device 1
  • Each of the mirror faces of the second light-receiving device is fixed to each of the plurality of rail cars, and the tracking of the sun is achieved by orbital motion. Specifically, the proper position of the railcar on the track can be calculated based on the position of the sun to illuminate the most sunlight by means of reflection onto the flat light energy utilization device.
  • the track used by the rail car may be a single track or a double track.
  • the first drive mechanism may also employ a trolley or other device as long as the second work surface can be moved or rotated relative to the first work surface according to the movement of the sun.
  • the trajectory of the first drive mechanism can be rounded around A curved track around the light-receiving device, such as a circular arc or an elliptical or three-dimensional curved shape; or a linear reciprocating trajectory along the extending direction of the first working surface. Since the following movements are concentrated by the first drive mechanism, the solar tracking calculation of the power station according to the present invention is effectively simplified.
  • the position at which the most light energy can be received can be selected, or it can reflect the most sunlight to the position of the lying light-receiving device.
  • the screen mirror surface of the second light-receiving device is directly vertically fixed on the rail car, and moves along the rail along with the rail car.
  • the second light-receiving device can also be fixed to the first drive mechanism via a rotating shaft so that rotation can also occur.
  • the flat light energy utilization device (photovoltaic panel) is used alone.
  • the lying light energy utilizing device can also be used in cascade with other energy utilizing devices.
  • a photovoltaic panel can be cascaded with a thermal energy source to achieve higher solar energy utilization efficiency.
  • the thermal energy consumer can be disposed on the back side of the at least one light energy utilization device and thermally coupled to the light energy utilization device.
  • the so-called thermal energy generator may be a thermoelectric conversion device or a thermal energy absorbing device, and may be further connected to an externally-discharged or closed working fluid circuit to form a seawater desalination system, a light heat with a gas turbine or a thermal energy storage container. Use the system and so on.
  • the photovoltaic panels can be enclosed to form a closed photovoltaic and photothermal utilization system.
  • FIG. 2 Another embodiment of a solar power plant according to the present invention may refer to FIG. 2, including a first light receiving device 210.
  • the second light receiving device 220 and the first driving mechanism 230 are identical to each other.
  • the first light receiving device 210 has a first working surface 211 that is substantially lying down.
  • the second light receiving device 220 has a set of second working faces 221 that are substantially vertical with respect to the first work surface.
  • the two light receiving devices may be one of the mirrors and the other is a photovoltaic panel, or both of them are photovoltaic panels, and the sunlight SS can be reflected from the vertical working surface to the lying working surface. On, vice versa.
  • the first drive mechanism 230 includes a swivel arm 232 disposed substantially parallel to the first work surface 211 and rotatable about a surface of the first work surface 211 about a rotational axis 233 substantially perpendicular to the first work surface.
  • Second light The device is attached to the rotating arm, for example, to the end remote from the rotating shaft 233.
  • the second light-receiving device can also be attached to the rotating arm by a rotating shaft to increase a controllable degree of freedom of rotation, such as a degree of freedom of rotation about a substantially horizontal axis of rotation.
  • the other end of the rotating arm may be provided with a weight 234 such that the center of gravity of the entire rotating mechanism falls on the rotating shaft.
  • the length of the rotating arm 232 may be fixed, or the rotating arm may be telescopic such that the second light receiving device can move around the first light receiving device in a circular or elliptical trajectory.
  • the rotating arm in this embodiment is further provided with a cleaning device 235 on a side adjacent to the first working surface for rotating the rotating arm on the first working surface.
  • the first work surface is cleaned so that the automatic cleaning of the light-receiving surface can be completed at the same time as the day.
  • the cleaning device may be, for example, a brush or a suction duct that faces the surface to be cleaned, and the like, as long as it can remove foreign matter such as dust on the light receiving surface by the rotary motion.
  • a second driving mechanism 240 for driving the entire power station is further disposed, which is specifically a vertical rotating column, and the first light receiving device is fixed thereon, and correspondingly, the rotating arm 232 And the first drive mechanism 230 is also fixed thereto. Therefore, the entire power station can be moved or rotated by the second drive mechanism.
  • the solar power station of the present embodiment is suitable for small and medium-sized applications, for example, as a domestic or commercial solar power station.
  • FIG. 3 Another embodiment of a solar power plant according to the present invention may refer to FIG. 3, including a first light receiving device 310, a second light receiving device 320, and a first driving mechanism 330.
  • the first light receiving device 310 is a combination of a light energy utilizing device and a reflective Fresnel lens.
  • the first working face 311 that is substantially lying down is a hybrid surface.
  • the first working surface 311 is formed by two light energy utilizing devices and a first reflective Fresnel lens 312.
  • the first photovoltaic panel 313 surrounds the entrance of the thermal energy storage 314, and the first reflective Fresnel lens 312 surrounds the periphery of the photovoltaic panel 313.
  • the first light-receiving device 310 further includes a second reflective Fresnel lens 315 disposed to face the first reflective Fresnel lens, which is fixed by the support member 316.
  • the walls of the various containers in the drawings herein are assumed to be transparent and will not be described below.
  • thermal energy storage is located at the center of the light energy focus, and can accommodate any working medium with high heat capacity, such as molten salt, water, paraffin, silicone grease, etc.
  • the inlet of the thermal energy storage can be made of transparent heat insulating material.
  • the structure in which the photovoltaic panel and the thermal energy storage are mixed can be adapted to a sufficiently high energy density and can prevent the photovoltaic panel from being damaged by high temperature. Compared with existing single photovoltaic power plants or photothermal power plants, it maintains high efficiency of light energy utilization and low initial cost.
  • the thermal energy storage can also store energy, which is beneficial to balance the inter-turn difference between the collection and use of light energy.
  • the second light receiving device 320 is a mirror or a reflective Fresnel lens having a substantially vertical second working surface 321 .
  • the sunlight from the sky or the second working surface is reflected and concentrated by the first reflective Fresnel lens 312 to the second reflective Fresnel lens 315, which is then reflected and concentrated by the second reflective Fresnel lens.
  • the first drive mechanism 330 is a trolleyless car for traveling back and forth in accordance with a set sun tracking route.
  • the second light receiving device 320 is vertically fixed to the trolley car.
  • the first light receiving device 310 further includes a second photovoltaic panel 317 disposed on a side of the second reflective Fresnel lens 315 facing the sky for directly receiving sunlight from the sky or the second working surface, Make the use of solar energy more fully.
  • the second reflective Fresnel lens will have a larger area, so it would be beneficial to provide a second photovoltaic panel.
  • a thermal energy generator is further disposed to further utilize thermal energy generated or stored by the light energy utilization device.
  • the first container 351 is wrapped around the thermal energy storage 314, and the working medium AA in the first container is heat-exchanged with the working medium in the thermal energy storage through the heat exchange conduit 3511. Since the temperature of the thermal energy storage is generally high, the first container may be Used as a liquid vaporization tank, the working medium AA may be selected from water, alcohol, diethyl ether, a coolant (such as Freon or its substitute), etc.; the second container 352 is disposed on the back side of the photovoltaic panel 31 3 and is thermally connected to the photovoltaic panel. The second container can be used as a preheating tank for the working medium AA. In other embodiments, other types of thermal energy sources, such as Stirling thermal generators, etc., may also be employed.
  • the working medium AA is preheated by the thermal energy generated by the photovoltaic panel 313 in the second container 352, and then transported by the first compressor 353 into the first container 351, and then exchanged heat with the thermal energy storage 314.
  • the vaporization is carried out, the generated gas is sent to the turbine generator 354 for power generation, and then cooled in the condensation tank 355, and the cooled liquid is sent back to the second container 352 by the second compressor 356, thereby completing a closed cycle. Ring.
  • the working medium AA communicates through the pipelines in each of the node devices passing through the closed circuit, and can be controlled by setting corresponding valves. In Fig. 3, two valves FF for controlling the vaporization process are exemplarily shown, and the remaining pipes can also be set. Valves, no longer repeat them.
  • a closed working fluid circulation system is adopted.
  • a rotary working fluid circulation system can also be adopted, and different functions can be realized based on different types of working fluids, for example, the outside world. Provide hot water or achieve desalination.
  • thermoelectric converter is further disposed on the thermal energy path between the optical energy utilization device and the thermal energy utilization device for utilizing a temperature difference between the optical energy utilization device and the thermal energy utilization device.
  • first thermoelectric converter 357 is wrapped around the heat exchange conduit 3511 on the thermal energy path between the thermal energy storage 314 and the first container 351; the second thermoelectric converter 358 is disposed between the photovoltaic panel 313 and the second container 352. .
  • This embodiment integrates multiple functions of power generation systems (including direct photoelectric conversion, direct thermoelectric conversion, and steam turbine generator) in a simple and economical manner, which is very suitable for building large solar power plants.
  • FIG. 4 Another embodiment of a solar power plant according to the present invention may refer to FIG. 4, including a first light receiving device 410, a second light receiving device 420, and a first driving mechanism 430.
  • the first light receiving device 410 is a combination of a light energy utilizing device and a reflective optical device.
  • the substantially flat first working face 411 is formed by reflective optics, such as a mirrored or reflective Fresnel lens face.
  • a set of tapered light guiding means 4131 is disposed above the first working surface, the inner wall of which is a mirror surface, and the larger end of the opening faces the first working surface.
  • Photovoltaic panels 413 are respectively disposed at the bottom of each tapered light guiding device (ie, the smaller end of the cornice), and may be in the shape of a flat plate or a cone (not shown), and the tapered tip faces the cone.
  • the light guiding device 4131 has a larger end.
  • the structure formed by a plurality of integrated tapered light guiding devices and photovoltaic panels is hereinafter referred to as a "conical light energy utilizing device”.
  • the second light receiving device 420 is a mirror or a reflective Fresnel lens having a substantially vertical second working surface 421.
  • the sunlight from the sky or the second working surface is reflected (or "reflected and concentrated") by the first working surface 411 to the larger end of the tapered light guiding device, and is concentrated by the tapered light guiding device to reach the photovoltaic panel. .
  • the first driving mechanism 430 is a rail car for following along the track 431 surrounding the first light receiving device. Driving on a daily basis.
  • the second light receiving device 420 is vertically fixed to the rail car.
  • the tapered light energy is wrapped and immersed in the container 451 serving as a thermal energy utilization device by means of a device.
  • the working fluid in the container 451 can be selected from any working medium having a high heat capacity. Through the heat exchange between the photovoltaic panel 413 and the working medium in the container 451, the temperature of the photovoltaic panel can be lowered, and the thermal energy can be further utilized.
  • the container 451 can also be connected to an external device (not shown) through a pipe 4511 to form a split or closed working fluid circulation system.
  • the container 451 can function as a water heater, so that the present embodiment is suitable for construction in a hotel, a hospital, a gym, a gym, a laundry, and the like where a large amount of hot water is required.
  • the first light-receiving device 410 further includes a second photovoltaic panel 417 disposed at the top of the container 451 (the side facing the sky) to take full advantage of the surface that may receive sunlight.
  • the second light-receiving device 420 may also preferably employ a photovoltaic panel.
  • FIG. 5 Another embodiment of a solar power plant according to the present invention may refer to FIG. 5, including a first light receiving device 510, a second light receiving device 520, and a first driving mechanism 530.
  • the first light receiving device 510 is a combination of a light energy utilizing device and a transmissive lens.
  • the substantially flat first working surface 511 is formed by a transmissive lens, which may preferably be a Fresnel lens, fixed by a support member 516; two light energy utilizing devices, a photovoltaic panel 513 and a thermal energy storage 514, are provided Below the first working surface, a photovoltaic panel 513 surrounds the inlet of the thermal energy store 514.
  • a gas lens 518 is also provided at the top of the solar power station.
  • a gas lens refers to a balloon having a collecting or astigmatizing function, and the surface thereof may be a transparent smooth surface, or at least partially a mirror or Fresnel lens surface, or the inside of the balloon may be filled with a gas having a refractive index greater than 1. Achieve its optical function.
  • the gas lens can be suspended in the air by charging a gas that is less dense than air.
  • a concentrating gas lens is used.
  • the sunlight from the sky is concentrated by the gas lens and irradiated onto the first working surface (or the first and second working surfaces), and the sunlight from the gas lens or the second working surface is concentrated by the lens forming the first working surface 511. Thereafter, it is irradiated onto the photovoltaic panel 513 or into the thermal energy storage 514.
  • a thermal energy generator is further disposed. What is different from Embodiment 3 is the thermal energy in this embodiment.
  • the utility device is formed together with the external node device as a dry working fluid circulation system.
  • the circulation system includes a first vessel 551 serving as a liquid vaporization tank, a second vessel 552 serving as a preheating tank, a first compressor 553, a turbine generator 554, and a condensation tank 555.
  • Each node device is similar to the description in Embodiment 3, and will not be described again.
  • the difference is that the liquid obtained after the condensation tank is cooled can be discharged instead of being transported back into the second container, and accordingly, the working medium in the second container It can be replenished from the outside through the pipe 5521, thereby forming a working-type circulating system.
  • the working fluid in the first container 551 is seawater
  • fresh water can be obtained from the condensing tank, so that the same device of the present embodiment can also be used for seawater desalination.
  • the first container 551 generates a large amount of salt remaining after desalination of the sea during operation, and therefore, a movable door 5511 for cleaning the salt can be provided at the bottom of the first container 551.
  • thermoelectric converter 557 and the second thermoelectric converter 558 are further provided in this embodiment, and details are not described herein again.
  • This embodiment is also applicable to the construction of a large-scale solar power plant capable of desalination of seawater at the same time of high-efficiency power generation. And because the gas lens suspended in the air is used, the concentration ratio of the system can be effectively increased at a low cost.
  • FIG. 6 Another embodiment of the solar power plant according to the present invention can refer to FIG. 6, including a first light receiving device 610, a second light receiving device 620, and a first driving mechanism 630.
  • the first light receiving device 610 is a substantially flat photovoltaic panel that is substantially strip-shaped.
  • the second light receiving device 620 is a planar double-sided mirror that is disposed substantially vertically.
  • the first drive mechanism 630 includes a rail car whose rails 631 are located on both sides of the first light-receiving member 610 in the direction in which the rail vehicle can reciprocate.
  • the second light receiving device is secured to the railcar by a substantially horizontal axis of rotation 636.
  • the second light-receiving device has two degrees of freedom of movement, that is, a degree of translational freedom along the direction in which the photovoltaic panel is elongated, and a degree of freedom of rotation with respect to the surface of the photovoltaic panel.
  • the translational freedom can be used to adjust the second light-receiving device to a position facing the sunlight, enabling reflection of sunlight onto a flat photovoltaic panel.
  • Rotational degrees of freedom can be used to adjust the angle between the second light-receiving device and the sunlight, so that the flat photovoltaic panel can obtain the most reflected light energy.
  • the second light receiving device may be a concentrating reflective Fresnel lens, or further Preferably, it is a condensed reflective line type Fresnel lens. In these cases, the area of the second light receiving device may be much larger than the area of the photovoltaic panel disposed flat, thereby achieving a high concentration ratio. In another embodiment, the second light-receiving device may also preferably employ an astigmatic reflective line Fresnel lens.
  • the vertical light-receiving device moves in a simple linear trajectory, and the design of the Japanese is very simple, and a large-scale solar power station with high output power can be constructed at a low cost, which is very suitable for use only in An area where the sun is tracked in one direction, such as near the equator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种太阳能电站,包括具有一基本平躺的第一工作面(111)的第一受光器件(110),具有一相对于第一工作面基本竖直的第二工作面(121)的第二受光器件(120)和第一驱动机构(130);其中,第一和第二工作面被配置为使得太阳光(SS)经过第二工作面后照射到第一工作面上,或者,经过第一工作面后照射到第二工作面上;第二受光器件固定在第一驱动机构上,第一驱动机构用于根据太阳的移动驱动第二工作面相对于第一工作面发生移动或转动。由于集中对基本竖直的受光器件配置用于跟日的第一驱动机构,使得太阳能电站的整体结构和配置更为简单,相应地也有利于降低太阳能电站的成本和对地表面积的需求。

Description

说明书 发明名称:太阳能电站
技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种太阳能电站。
[0002] 背景技术
[0003] 为了提高利用太阳能的效率, 减少对接收或采集太阳能的装置的面积的需求, 通常会使用太阳跟踪系统 (又称跟日系统) 。 跟日系统主要用于随着太阳方位 的变化调整系统中的受光面的方位和姿态, 以使得在覆盖面积有限的情况下, 尽可能多地接收到太阳光。
[0004] 无论是分布式的光伏电站还是集中式的光热电站, 目前所采用的跟日系统通常 都是分布式的, 即系统中的每块相对独立的受光面均配置独立的跟日系统, 每 个跟日系统通常包括旋转轴以及支撑平台等。
[0005] 分布式的跟日系统使得系统中的受光面均可进行跟日运动, 但是也导致安装、 调试、 运行、 维护成本的大幅增加。 且多个跟日系统之间需要保留一定的活动 空间, 使得实际上难以减少对于地表面积的需求。
[0006] 发明内容
[0007] 依据本发明提供一种太阳能电站, 包括具有一基本平躺的第一工作面的第一受 光器件, 具有一相对于第一工作面基本竖直的第二工作面的第二受光器件和第 一驱动机构; 其中, 第一和第二工作面被配置为使得太阳光经过第二工作面后 照射到第一工作面上, 或者, 经过第一工作面后照射到第二工作面上; 第二受 光器件固定在第一驱动机构上, 第一驱动机构用于根据太阳的移动驱动第二工 作面相对于第一工作面发生移动或转动。
[0008] 依据本发明的太阳能电站将受光器件分为基本平躺和基本竖直两类, 而集中对 基本竖直的受光器件配置用于跟日的第一驱动机构, 使得太阳能电站的整体结 构和配置更为简单, 相应地有利于降低太阳能电站的成本, 并大幅减少对于地 表面积的需求。
[0009] 以下结合附图, 对依据本发明的具体示例进行详细说明。 [0010] 附图说明
[0011] 图 1是实施例 1的太阳能电站的示意图;
[0012] 图 2是实施例 2的太阳能电站的示意图;
[0013] 图 3是实施例 3的太阳能电站的示意图;
[0014] 图 4是实施例 4的太阳能电站的示意图;
[0015] 图 5是实施例 5的太阳能电站的示意图;
[0016] 图 6是实施例 6的太阳能电站的示意图。
[0017] 具体实施方式
[0018] 实施例 1
[0019] 依据本发明的太阳能电站的一种实施方式可参考图 1, 包括第一受光器件 110, 第二受光器件 120和第一驱动机构 130。
[0020] 第一受光器件 110具有一基本平躺的第一工作面 111。
[0021] 第二受光器件 120具有一组相对于第一工作面基本竖直的第二工作面 121。
[0022] 本发明中所称 "平躺 "和"竖直"是相对的概念。 当工作面的法线与所在位置的重 力方向的夹角小于 30度吋, 可视为 "基本平躺的"。 当工作面的法线与所在位置的 重力方向的夹角大于 60度吋, 可视为 "基本竖直的"。
[0023] 本发明中所称的工作面既可以是实现光能利用功能的工作面, 也可以是实现光 能采集功能的工作面, 也可以是二者的混合。 因此, 第一和第二受光器件可选 自光能利用装置和导光器件。 工作面可以是单个的平面或曲面, 也可以是屏风 式的折面, 相邻折面之间可发生相对转动。
[0024] 所称光能利用装置泛指各种将光能转换为其他能量的器件, 例如光伏板、 光热 转换器件等。 所称光伏板泛指所有直接将光能转换为电能的光电转换器件, 例 如各种半导体光伏板、 光伏薄膜、 量子点光伏板等等。
[0025] 所称导光器件可以根据光路设计的需要选择为透射式的或反射式的。 其中反射 式的导光器件包括反射镜以及反射式透镜等。 优选地, 透射式透镜以及反射式 透镜中的透镜部分可采用菲涅尔透镜。 关于菲涅尔透镜的详细介绍可参见名称 为"菲涅尔透镜系统", 公布日为 2016年 6月 2日, 国际公布号为 WO/2016/082097 的 PCT申请, 在此不再赘述。 [0026] 值得一提的是, 本发明中所称透镜 (包括反射式透镜中的透镜部分) 既可以是 焦点落在一个点上的点聚焦 (或点发散) 透镜, 也可以是焦点落在一条直线上 的线聚焦 (或线发散) 透镜, 以下将后者简称为"线型"透镜。 当竖直的第二受光 器件选择为导光器件吋, 可优选采用反射式菲涅尔透镜, 尤其是散光型反射式 菲涅尔透镜以及反射式线型菲涅尔透镜, 更优选为散光型反射式线型菲涅尔透 镜。 所称"散光型"反射镜 (或反射式透镜) 指反射角大于入射角的反射镜 (或反 射式透镜) 。 采用散光型反射式菲涅尔透镜有助于在平躺的工作面大小不变的 情况下, 增加竖直的工作面的高度, 从而接收更多的太阳能。
[0027] 本实施例中, 第一工作面为由光伏板形成的平面, 平躺设置在地面上 (或平行 于地面的支架上) 。 第二工作面为由反射镜形成的屏风式折面。 基本竖直地设 置在第一工作面旁边。 由于第二工作面为反射面, 使得太阳光 SS (后续实施例中 均采用此标记, 不再赘述) 经过第二工作面的反射后照射到第一工作面上。 容 易理解的是, 在其他实施方式中, 也可以交换第一工作面和第二工作面的功能 , 例如, 由第一工作面进行光能采集而由第二工作面进行光能利用, 则可以通 过相应地调整第一工作面、 第二工作面以及太阳之间的相对位置, 使得太阳光 经过第一工作面 (平躺的) 后照射到第二工作面 (竖直的) 上。 值得一提的是 , 当第一工作面与第二工作面之一为镜面吋, 该镜面的面积只需和与之相对的 另一工作面 (非镜面) 的面积相匹配即可, 没有必要过大。 所称"相匹配"是指镜 面所反射的光, 刚好能覆盖与之相对的另一工作面。 当两个工作面的面积相匹 配吋, 能取得最好的性价比。
[0028] 第一驱动机构 130包括一多节轨道车, 能够沿围绕在第一受光器件周围的轨道 1
31移动。 第二受光器件的每一个镜面分别固定在多节轨道车的每一节上, 通过 沿轨道运动来实现对太阳的跟踪。 具体地, 可根据太阳的位置, 计算轨道车在 轨道上的合适位置, 以将最多的太阳光通过反射的方式照射到平躺的光能利用 装置上。
[0029] 轨道车所使用的轨道可以是单轨也可以是双轨。 在其他实施方式中第一驱动机 构也可采用无轨车或其他装置, 只要能够根据太阳的移动驱动第二工作面相对 于第一工作面发生移动或转动即可。 第一驱动机构的运动轨迹可以是围绕在平 躺的受光器件周围的曲线形轨迹, 例如圆弧形或椭圆形或三维曲线形; 也可以 是沿第一工作面的伸长方向的直线形往复运动轨迹。 由于跟日运动集中由第一 驱动机构来实现, 因此依据本发明的电站的太阳跟踪计算被有效简化。 例如, 可根据太阳的位置, 在竖直的受光器件的可能的运行轨迹上, 选择其能接收到 最多的光能的位置, 或者其能将最多的太阳光反射到平躺的受光器件的位置。
[0030] 本实施例中, 第二受光器件的屏风式镜面直接竖直地固定在轨道车上, 随同轨 道车沿轨道移动。 在其他实施方式中, 第二受光器件也可通过一旋转轴固定在 第一驱动机构上, 从而还能够发生转动。
[0031] 本实施例中, 平躺的光能利用装置 (光伏板) 是单独使用的。 在其他实施方式 中, 平躺的光能利用装置也可以与其他能量利用装置级联使用。 例如可以将光 伏板与热能利用器级联, 以实现更高的太阳能利用效率。 热能利用器可设置于 至少一个光能利用装置的背侧并与光能利用装置导热连接。 所称热能利用器可 以是热电转换器件或热能吸收器件, 并可进一步与外部幵放式的或封闭式的工 质回路连接, 以形成海水淡化系统、 带有气轮机或热能存储容器的光热利用系 统等。
[0032] 此外, 在第一工作面和第二工作面之间的光路上, 还可以进一步设置其他导光 器件, 例如透射式的聚光菲涅尔透镜或锥形镜面导光筒等, 以提高聚光比和光 能利用效率。 或者, 光伏板也可以被封闭起来形成封闭式的光电和光热利用系 统等。
[0033] 实施例 2
[0034] 依据本发明的太阳能电站的另一种实施方式可参考图 2, 包括第一受光器件 210
, 第二受光器件 220和第一驱动机构 230。
[0035] 第一受光器件 210具有一基本平躺的第一工作面 211。
[0036] 第二受光器件 220具有一组相对于第一工作面基本竖直的第二工作面 221。
[0037] 本实施例中, 两个受光器件可以一者为反射镜而另一为光伏板, 或者二者均为 光伏板, 太阳光 SS可以从竖直的工作面反射到平躺的工作面上, 反之亦可。
[0038] 第一驱动机构 230包括一旋转臂 232, 其基本平行于第一工作面 211设置, 并能 够绕基本垂直于第一工作面的旋转轴 233在第一工作面 211表面转动。 第二受光 器件固定在旋转臂上, 例如, 固定在远离旋转轴 233的一端。 在其他实施方式中 , 第二受光器件也可通过一旋转轴固定在旋转臂上, 以增加一个可供控制的旋 转自由度, 例如绕基本水平的旋转轴线转动的自由度。 为提高系统的稳定性并 降低对驱动力的要求, 旋转臂的另一端可设置配重块 234, 以使得整个旋转机构 的重心落在旋转轴上。
[0039] 旋转臂 232的长度可以是固定的, 或者旋转臂是可伸缩的, 使得第二受光器件 能够围绕在第一受光器件周围按照圆弧轨迹或者椭圆形轨迹进行运动。
[0040] 作为一种优选的实施方式, 本实施例中的旋转臂在与第一工作面相邻的一侧还 设置有清洁装置 235, 用于当旋转臂在第一工作面上旋转吋, 对第一工作面进行 清洁, 从而可以在实现跟日的同吋完成对受光面的自动清洁。 清洁装置例如可 以是刷子或幵口朝向被清洁表面的吸尘管道等, 只要能够在旋转运动的作用下 清除受光面上的灰尘等异物即可。
[0041] 可选地, 本实施例中还进一步设置有驱动整个电站运动的第二驱动机构 240, 其具体为一竖直旋转柱, 第一受光器件固定于其上, 相应地, 旋转臂 232和第一 驱动机构 230也固定于其上。 因此, 通过第二驱动机构可以对电站整体进行移动 或转动。
[0042] 本实施例太阳能电站适用于中小型应用, 例如作为家用或商用太阳能电站。
[0043] 实施例 3
[0044] 依据本发明的太阳能电站的另一种实施方式可参考图 3, 包括第一受光器件 310 , 第二受光器件 320和第一驱动机构 330。
[0045] 第一受光器件 310为光能利用装置与反射式菲涅尔透镜的组合。 基本平躺的第 一工作面 311是一个混合型表面。 第一工作面 311由两个光能利用装置与第一反 射式菲涅尔透镜 312形成。 其中, 第一光伏板 313环绕在热能存储器 314的入口周 围, 第一反射式菲涅尔透镜 312环绕在光伏板 313的外围。 第一受光器件 310还包 括与第一反射式菲涅尔透镜面对面设置的第二反射式菲涅尔透镜 315, 其通过支 撑件 316进行固定。 为便于图示, 本文所附图中的各种容器的器壁假设为透明的 , 以下不再赘述。
[0046] 本实施例中, 同吋采用了两种不同类型的光能利用装置: 光伏板和热能存储器 , 以同吋实现光电和光热利用。 热能存储器位于光能聚焦的中心位置, 其中可 以容纳任何具有高热容量的工质, 例如熔盐、 水、 石蜡、 硅胶油脂等, 热能存 储器的入口可采用透明的隔热材料制成。 这种光伏板与热能存储器混合设置的 结构, 既能够适应于足够高的能量密度, 又可避免光伏板被高温损坏。 与现有 单一的光伏电站或光热电站相比, 既保持了较高的光能利用效率, 又具有较低 的初始成本。 此外, 热能存储器还能实现能量的储存, 有利于平衡光能的采集 和使用之间的吋间差。
[0047] 第二受光器件 320为反射镜或反射式菲涅尔透镜, 其具有基本竖直的第二工作 面 321。 来自天空或第二工作面的太阳光, 被第一反射式菲涅尔透镜 312反射和 会聚到第二反射式菲涅尔透镜 315, 再由第二反射式菲涅尔透镜反射和会聚到光 伏板 313上, 或进入到热能存储器 314中。
[0048] 第一驱动机构 330为无轨车, 用于按照设定的太阳跟踪路线往返行驶。 第二受 光器件 320竖直固定在该无轨车上。
[0049] 优选地, 第一受光器件 310还包括第二光伏板 317, 设置在第二反射式菲涅尔透 镜 315朝向天空的一面, 用于直接接收来自天空或第二工作面的太阳光, 使得对 太阳能的利用更加充分。 对于大型装置而言, 第二反射式菲涅尔透镜会具有较 大的面积, 因此设置第二光伏板将是有益的。
[0050] 优选地, 本实施例中还设置有热能利用器, 以对光能利用装置所产生或储存的 热能进行进一步利用。 其中, 第一容器 351包裹在热能存储器 314周围, 第一容 器中的工质 AA通过热交换管道 3511与热能存储器中的工质进行热交换, 由于热 能存储器的温度通常较高, 第一容器可用作液体汽化罐, 其工质 AA可选自水、 酒精、 乙醚、 冷却剂 (如氟利昂或其替代品) 等; 第二容器 352设置在光伏板 31 3的背侧并与光伏板导热连接, 第二容器可用作工质 AA的预热罐。 在其他实施方 式中, 也可采用其他类型的热能利用器, 例如斯特林热能发电机等。
[0051] 工作吋, 工质 AA在第二容器 352中由光伏板 313产生的热能进行预热, 然后由 第一压缩机 353输送到第一容器 351中, 再通过与热能存储器 314的热交换进行汽 化, 产生的气体被输送到汽轮发电机 354进行发电, 再在冷凝罐 355中被冷却, 冷却后的液体由第二压缩机 356输送回第二容器 352中, 从而完成一个封闭的循 环。 工质 AA在闭路循环中经过的各个节点设备通过管道进行连通, 并可设置相 应的阀门进行控制, 图 3中示例性地示出了控制汽化过程的两个阀门 FF, 其余管 道上也可设置阀门, 不再赘述。
[0052] 本实施例中采用了封闭式的工质循环系统, 在其他实施方式中, 也可采用幵放 式的工质循环系统, 基于工质的不同种类可以实现不同的功能, 例如为外界提 供热水, 或者实现海水淡化等功能。
[0053] 进一步优选地, 本实施例中还设置有热电转换器, 设置在光能利用装置与热能 利用器之间的热能通路上, 用于利用光能利用装置与热能利用器之间的温差来 发电, 以进一步提高太阳能的利用效率。 其中, 第一热电转换器 357包裹在热交 换管道 3511外围, 处于热能存储器 314与第一容器 351之间的热能通路上; 第二 热电转换器 358设置在光伏板 313与第二容器 352之间。
[0054] 本实施例将多种功能的发电系统 (包括直接光电转换、 直接热电转换, 汽轮发 电机发电) 以简单经济的方式集成在一起, 非常适合用于建造大型太阳能电站
[0055] 实施例 4
[0056] 依据本发明的太阳能电站的另一种实施方式可参考图 4, 包括第一受光器件 410 , 第二受光器件 420和第一驱动机构 430。
[0057] 第一受光器件 410为光能利用装置与反射式光学器件的组合。 基本平躺的第一 工作面 411由反射式光学器件形成, 例如为镜面或反射式菲涅尔透镜面。 一组锥 形导光器件 4131设置在第一工作面上方, 其内壁为镜面, 其幵口较大的一端朝 向第一工作面。 光伏板 413分别设置在每个锥形导光器件底部 (即幵口较小的一 端) , 其形状可以是平板形的, 也可以是锥形的 (未图示) , 且锥形顶端朝向 锥形导光器件 4131幵口较大的一端。 简明起见, 以下将多个集成在一起的锥形 导光器件与光伏板所形成的结构称为"锥形光能利用装置"。
[0058] 第二受光器件 420为反射镜或反射式菲涅尔透镜, 其具有基本竖直的第二工作 面 421。 来自天空或第二工作面的太阳光, 被第一工作面 411反射 (或"反射和会 聚") 到锥形导光器件幵口较大的一端, 通过锥形导光器件会聚后到达光伏板。
[0059] 第一驱动机构 430为轨道车, 用于沿围绕在第一受光器件周围的轨道 431进行跟 日行驶。 第二受光器件 420竖直固定在该轨道车上。
[0060] 本实施例中, 锥形光能利用装置包裹和浸泡在用作热能利用器的容器 451中。
容器 451中的工质可选择任何具有高热容量的工质。 通过光伏板 413与容器 451中 的工质的热交换, 既可以降低光伏板的温度, 还能够对热能进行进一步利用。
[0061] 与实施例 3中类似, 容器 451也可以通过管道 4511与外部设备 (未图示) 连接以 形成幵放式或封闭式的工质循环系统。 例如, 容器 451可充当为热水器, 从而使 得本实施例适用于建造在酒店、 医院、 健身房、 体育馆、 洗衣店等需要大量热 水的场所。
[0062] 优选地, 第一受光器件 410还包括第二光伏板 417, 设置在容器 451的顶部 (朝 向天空的一面) , 以充分利用可能接收太阳光的表面。 在其他实施方式中, 第 二受光器件 420也可优选地采用光伏板。
[0063] 实施例 5
[0064] 依据本发明的太阳能电站的另一种实施方式可参考图 5, 包括第一受光器件 510 , 第二受光器件 520和第一驱动机构 530。
[0065] 第一受光器件 510为光能利用装置与透射式透镜的组合。 其中, 基本平躺的第 一工作面 511由透射式透镜形成, 该透镜可优选为菲涅尔透镜, 通过支撑件 516 进行固定; 两个光能利用装置, 光伏板 513和热能存储器 514, 设置在第一工作 面下方, 光伏板 513环绕在热能存储器 514的入口周围。
[0066] 光伏板 513、 热能存储器 514、 第二受光器件 520以及第一驱动机构 530与实施例 3中的描述类似, 不再赘述。 本实施例与实施例 3的区别之一在于, 在太阳能电 站的顶部还设置有一气体镜头 518。 气体镜头指具有聚光或散光功能的气囊, 其 表面可以是透明的光滑表面, 也可以至少部分地采用镜面或菲涅尔透镜面, 或 者, 气囊内部可充有折射率大于 1的气体, 以实现其光学功能。 通过充入密度小 于空气的气体, 气体镜头可以悬浮于空气中。 本实施例中采用聚光型气体镜头 。 来自天空的太阳光经由气体镜头会聚后照射到第一工作面 (或第一和第二工 作面) 上, 来自气体镜头或第二工作面的太阳光再由形成第一工作面 511的透镜 会聚后照射到光伏板 513上, 或进入到热能存储器 514中。
[0067] 本实施例中还设置有热能利用器, 与实施例 3中不同的是, 本实施例中的热能 利用器与外部节点设备一起形成为幵放式的工质循环系统。 该循环系统中包括 用作液体汽化罐的第一容器 551、 用作预热罐的第二容器 552、 第一压缩机 553、 汽轮发电机 554和冷凝罐 555。 各节点设备与实施例 3中的描述类似, 不再赘述, 区别之处在于, 冷凝罐冷却后获得的液体可以被排出而不是输送回第二容器中 , 相应地, 第二容器中的工质可通过管道 5521从外部得到补充, 从而形成为幵 放式的工质循环系统。
[0068] 若第一容器 551中的工质采用海水, 则可从冷凝罐中获得淡水, 从而使得本实 施例装置在发电的同吋还可用于海水淡化。 在这种情况下, 第一容器 551在工作 中会产生大量海水淡化后剩余的盐澄, 因此, 可以在第一容器 551底部设置用于 清理盐澄的活动门 5511。
[0069] 与实施例 3中类似地, 本实施例中还设置有第一热电转换器 557和第二热电转换 器 558, 不再赘述。
[0070] 本实施例同样适用于建造大型太阳能电站, 能够在高效率发电的同吋进行海水 淡化。 并且由于使用了悬浮在空气中的气体镜头, 能够以低廉的成本有效提高 系统的聚光比。
[0071] 实施例 6
[0072] 依据本发明的太阳能电站的另一种实施方式可参考图 6, 包括第一受光器件 610 , 第二受光器件 620和第一驱动机构 630。
[0073] 第一受光器件 610为基本平躺设置的光伏板, 其大致呈条形。 第二受光器件 620 为基本竖直设置的平面形双面反射镜。 第一驱动机构 630包括一轨道车, 其轨道 631沿第一受光器件 610的伸长方向位于其两侧, 该轨道车能够在该直线轨道上 作往复运动。 第二受光器件通过一基本水平的旋转轴 636固定在该轨道车上。
[0074] 本实施例中, 第二受光器件具有两个运动自由度, 即沿光伏板伸长方向的平移 自由度, 以及相对于光伏板表面的旋转自由度。 平移自由度可用于将第二受光 器件调整到面对太阳光的位置, 使得能够将太阳光反射到平躺的光伏板上。 旋 转自由度则可用于调整第二受光器件与太阳光的夹角, 使得平躺的光伏板能获 得最多的反射光能。
[0075] 在其他实施方式中, 第二受光器件可以是聚光型反射式菲涅尔透镜, 或进一步 优选为聚光型反射式线型菲涅尔透镜, 在这些情况下, 第二受光器件的面积可 以远大于平躺设置的光伏板的面积, 从而实现高聚光比。 在另一实施方式中, 第二受光器件还可优选地采用散光型反射式线型菲涅尔透镜。
[0076] 本实施例中, 竖直的受光器件以简单的直线轨迹进行移动, 跟日设计十分简单 , 能够以很低的成本建造具有高输出功率的大型太阳能电站, 非常适合用于只 需要在一个方向上进行太阳跟踪的地区, 例如赤道附近。
[0077]
[0078] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种太阳能电站, 其特征在于, 包括,
第一受光器件, 其具有一基本平躺的第一工作面, 第二受光器件, 其具有一相对于第一工作面基本竖直的第二工作面, 第一和第二工作面被配置为使得太阳光经过第二工作面后照射到第一 工作面上, 或者, 经过第一工作面后照射到第二工作面上; 以及 第一驱动机构, 第二受光器件固定于其上, 其用于根据太阳的移动驱 动第二工作面相对于第一工作面发生移动或转动。
[权利要求 2] 如权利要求 1所述的太阳能电站, 其特征在于,
第一和第二受光器件选自: 光能利用装置、 反射镜、 透射式透镜、 反 射式菲涅尔透镜以及前述至少两种的组合。
[权利要求 3] 如权利要求 2所述的太阳能电站, 其特征在于, 包括如下特征中的至 少一个: 第一受光器件的形状为平面、 曲面或屏风式的折面, 相邻折面之间能 够相对转动;
第二受光器件选自: 散光型反射式菲涅尔透镜, 反射式线型菲涅尔透 镜、 光伏板;
当第一工作面与第二工作面之一为镜面吋, 该镜面的面积和与之相对 的另一工作面的面积相匹配。
[权利要求 4] 如权利要求 2所述的太阳能电站, 其特征在于,
第一驱动机构包括轨道车或无轨车, 其围绕在第一受光器件周围移动
, 或者沿第一工作面的伸长方向作直线形往复运动;
第二受光器件直接或通过一旋转轴固定在所述轨道车或无轨车上。
[权利要求 5] 如权利要求 2所述的太阳能电站, 其特征在于,
第一驱动机构包括一旋转臂, 其基本平行于第一工作面设置, 并能够 绕基本垂直于第一工作面的一旋转轴在第一工作面表面转动, 第二受光器件直接或通过另一旋转轴固定在所述旋转臂上, 所述旋转臂的长度固定或者能够伸缩, 使得第二受光器件能够围绕在 第一受光器件周围按照圆弧轨迹或者椭圆形轨迹进行运动。
如权利要求 5所述的太阳能电站, 其特征在于,
所述旋转臂与第一工作面相邻的一侧还设置有清洁装置, 用于当所述 旋转臂在第一工作面上旋转吋, 对第一工作面进行清洁,
所述清洁装置选自: 刷子, 吸尘管道。
如权利要求 5所述的太阳能电站, 其特征在于,
还包括第二驱动机构, 第一受光器件固定于其上, 其用于驱动整个电 站发生移动或转动。
如权利要求 2至 4中任意一项所述的太阳能电站, 其特征在于, 第一受光器件包括至少一个光能利用装置、 第一反射式菲涅尔透镜和 第二反射式菲涅尔透镜,
第一工作面为由所述至少一个光能利用装置与第一反射式菲涅尔透镜 形成的混合型表面, 第一反射式菲涅尔透镜环绕在光能利用装置的外 围,
第二反射式菲涅尔透镜与第一反射式菲涅尔透镜面对面设置, 来自天空或第二工作面的太阳光, 被第一反射式菲涅尔透镜反射和会 聚到第二反射式菲涅尔透镜, 再由第二反射式菲涅尔透镜反射和会聚 到所述至少一个光能利用装置。
如权利要求 2至 4中任意一项所述的太阳能电站, 其特征在于, 第一受光器件包括至少一个光能利用装置和一个反射式光学器件, 第一工作面由所述反射式光学器件形成,
所述至少一个光能利用装置的受光面朝向所述反射式光学器件。 如权利要求 2-4、 8、 9中任意一项所述的太阳能电站, 其特征在于, 还包括
一热能利用器, 设置于所述光能利用装置的背侧或者包裹所述光能利 用装置, 并与所述光能利用装置导热连接, 所述热能利用器选自: 用 于加热工质的容器, 斯特林热能发电机。
如权利要求 10所述的太阳能电站, 其特征在于, 所述用于加热工质的容器通过管道与外部的节点设备幵路或闭路连接 , 从而形成为幵放式或封闭式的工质循环系统, 所述节点设备选自: 汽轮发电机、 压缩机、 冷凝罐。
[权利要求 12] 如权利要求 11所述的太阳能电站, 其特征在于,
所述工质循环系统为幵放式的, 其中采用的工质为海水, 所述工质循 环系统还用于海水淡化。
[权利要求 13] 如权利要求 10至 12中任意一项所述的太阳能电站, 其特征在于, 还包 括
一热电转换器, 设置在所述光能利用装置与热能利用器之间的热能通 路上, 用于利用所述光能利用装置与热能利用器之间的温差来发电。
[权利要求 14] 如权利要求 1至 13中任意一项所述的太阳能电站, 其特征在于, 还包 括
一气体镜头, 设置在所述太阳能电站的顶部, 来自天空的太阳光经由 所述气体镜头后照射到第一工作面上, 或者照射到第一和第二工作面 上。
PCT/CN2016/108341 2016-12-02 2016-12-02 太阳能电站 WO2018098800A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
NZ754724A NZ754724A (en) 2016-12-02 2016-12-02 Solar power station
AU2016431377A AU2016431377B2 (en) 2016-12-02 2016-12-02 Solar power station
CA3045540A CA3045540C (en) 2016-12-02 2016-12-02 Solar power station
MYPI2019003146A MY195470A (en) 2016-12-02 2016-12-02 Solar Power Station
BR112019011148-4A BR112019011148B1 (pt) 2016-12-02 2016-12-02 Estação de energia solar
US16/465,148 US20190393829A1 (en) 2016-12-02 2016-12-02 Solar power station
RU2019119389A RU2730188C1 (ru) 2016-12-02 2016-12-02 Солнечная электростанция
CN201680091181.0A CN109997002B (zh) 2016-12-02 2016-12-02 太阳能电站
PCT/CN2016/108341 WO2018098800A1 (zh) 2016-12-02 2016-12-02 太阳能电站
EP16923127.1A EP3550221B1 (en) 2016-12-02 2016-12-02 Solar power station
JP2019528897A JP6905060B2 (ja) 2016-12-02 2016-12-02 太陽光発電ステーション
MX2019006166A MX2019006166A (es) 2016-12-02 2016-12-02 Estacion de energia solar.
ES16923127T ES2950333T3 (es) 2016-12-02 2016-12-02 Central solar
PL16923127.1T PL3550221T3 (pl) 2016-12-02 2016-12-02 Elektrownia słoneczna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108341 WO2018098800A1 (zh) 2016-12-02 2016-12-02 太阳能电站

Publications (1)

Publication Number Publication Date
WO2018098800A1 true WO2018098800A1 (zh) 2018-06-07

Family

ID=62241074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108341 WO2018098800A1 (zh) 2016-12-02 2016-12-02 太阳能电站

Country Status (14)

Country Link
US (1) US20190393829A1 (zh)
EP (1) EP3550221B1 (zh)
JP (1) JP6905060B2 (zh)
CN (1) CN109997002B (zh)
AU (1) AU2016431377B2 (zh)
BR (1) BR112019011148B1 (zh)
CA (1) CA3045540C (zh)
ES (1) ES2950333T3 (zh)
MX (1) MX2019006166A (zh)
MY (1) MY195470A (zh)
NZ (1) NZ754724A (zh)
PL (1) PL3550221T3 (zh)
RU (1) RU2730188C1 (zh)
WO (1) WO2018098800A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117963093B (zh) * 2024-03-29 2024-06-11 上海海事大学 一种海上漂浮式光伏发电检测平台及监测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044463A (ko) * 2001-02-22 2001-06-05 김배훈 간이 태양열 단일 수평구동 추종 집열방법
KR100749504B1 (ko) * 2006-04-15 2007-08-14 이상각 태양열 발전시스템에 적용되는 태양광 반사장치
CN101551164A (zh) * 2008-03-31 2009-10-07 曹宏海 阳光跟踪与聚光方法和跟踪式太阳能聚光设备
CN102466329A (zh) * 2010-11-08 2012-05-23 黄卫东 太阳能收集装置
CN102667361A (zh) * 2009-10-07 2012-09-12 罗伯特·奥尔塞洛 用于聚集太阳热能的方法及系统
WO2016082097A1 (zh) 2014-11-25 2016-06-02 博立多媒体控股有限公司 菲涅尔透镜系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074704A (en) * 1976-05-28 1978-02-21 Gellert Donald P Process of and apparatus for solar heating and the like
US4266530A (en) * 1979-09-27 1981-05-12 Steadman Robert W Sun ray tracker
US4434787A (en) * 1979-10-23 1984-03-06 Young Ii Ronald R Solar powered reactor
RU2135909C1 (ru) * 1998-07-13 1999-08-27 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный фотоэлектрический модуль с концентратором
US20050045174A1 (en) * 2003-09-02 2005-03-03 Ghausi Nemat U. Solar cooker and heater
RU47497U1 (ru) * 2005-02-22 2005-08-27 Алферов Жорес Иванович Солнечная фотоэлектрическая установка
ES1064549U (es) * 2006-10-09 2007-04-01 Juan Pablo Cabanillas Saldaña Seguidor solar a dos ejes.
RU2377472C1 (ru) * 2008-11-14 2009-12-27 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Солнечная энергетическая установка
RU2406043C1 (ru) * 2009-03-12 2010-12-10 Александр Ильич Худыш Солнечная энергетическая установка с концентратором солнечной энергии из плоских отражающих пластин
WO2011147317A1 (zh) * 2010-05-27 2011-12-01 Xia Juntie 跟踪太阳光照的装置
CN202171350U (zh) * 2011-05-25 2012-03-21 冯宇 使用多个反射式集热器的太阳能热水器
US8844515B2 (en) * 2011-08-22 2014-09-30 Palo Alto Research Center Incorporated Carousel heliostat having louvered horizontal mirrors for solar tower systems
JP2014052171A (ja) * 2012-08-09 2014-03-20 Ricoh Co Ltd 集光装置、太陽熱発電装置及び太陽光発電装置
JP2014119134A (ja) * 2012-12-13 2014-06-30 Mitsubishi Heavy Ind Ltd 集光装置、及びこれを備えている集熱設備
CN203177496U (zh) * 2013-03-06 2013-09-04 苏州科林天际新能源科技有限公司 一种反射阳光的装置
JP2016115687A (ja) * 2013-04-01 2016-06-23 株式会社クリスタルシステム 集光式トラフ型太陽光発電装置
CN107003432A (zh) * 2014-12-10 2017-08-01 博立多媒体控股有限公司 电磁辐射感应系统
AU2015385320B2 (en) * 2015-03-04 2018-08-23 Bolymedia Holdings Co.Ltd. Surface solar system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044463A (ko) * 2001-02-22 2001-06-05 김배훈 간이 태양열 단일 수평구동 추종 집열방법
KR100749504B1 (ko) * 2006-04-15 2007-08-14 이상각 태양열 발전시스템에 적용되는 태양광 반사장치
CN101551164A (zh) * 2008-03-31 2009-10-07 曹宏海 阳光跟踪与聚光方法和跟踪式太阳能聚光设备
CN102667361A (zh) * 2009-10-07 2012-09-12 罗伯特·奥尔塞洛 用于聚集太阳热能的方法及系统
CN102466329A (zh) * 2010-11-08 2012-05-23 黄卫东 太阳能收集装置
WO2016082097A1 (zh) 2014-11-25 2016-06-02 博立多媒体控股有限公司 菲涅尔透镜系统

Also Published As

Publication number Publication date
CA3045540A1 (en) 2018-06-07
CA3045540C (en) 2021-06-01
EP3550221A1 (en) 2019-10-09
NZ754724A (en) 2020-05-29
BR112019011148B1 (pt) 2024-01-02
EP3550221A4 (en) 2020-06-17
MX2019006166A (es) 2019-10-14
ES2950333T3 (es) 2023-10-09
AU2016431377A1 (en) 2019-07-04
BR112019011148A2 (pt) 2019-10-01
PL3550221T3 (pl) 2023-09-11
EP3550221B1 (en) 2023-05-10
CN109997002B (zh) 2021-10-26
JP2020519216A (ja) 2020-06-25
JP6905060B2 (ja) 2021-07-21
CN109997002A (zh) 2019-07-09
MY195470A (en) 2023-01-26
RU2730188C1 (ru) 2020-08-19
AU2016431377B2 (en) 2020-05-14
US20190393829A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP4420902B2 (ja) 太陽エネルギー集積利用装置
JP5797737B2 (ja) 太陽熱集熱システム
CN100391012C (zh) 同时生产电能热能和冷却能的三用聚光型太阳能系统
KR101172578B1 (ko) 집광형 태양열 집열장치
WO1996011364A1 (fr) Dispositif de rechauffement et de production de courant electrique fonctionnant par separation de longueurs d'ondes et par condensation de lumiere
US20110265783A1 (en) solar energy collecting system
CN108800605A (zh) 一种太阳能集热管及温差发电系统
CN102400868B (zh) 单塔多碟式太阳能发电系统
CN201916137U (zh) 单塔多碟式太阳能聚光发电装置
CN107367077A (zh) 基于多次反射的槽式太阳能集热系统
CN109997002B (zh) 太阳能电站
CN102466329A (zh) 太阳能收集装置
CN105577032B (zh) 单元式太阳能全光谱利用的光电‑热电‑热水复合系统
CN208688009U (zh) 一种太阳能集热管及太阳能温差发电系统
KR101407079B1 (ko) 원추형 반사체를 이용한 태양광 집열시스템
CN106549632A (zh) 一种镜面可折叠的光伏光热切换式聚光装置及其发热发电方法
JP2013148332A (ja) 太陽集光システム及び太陽熱発電システム
CN108981190A (zh) 一种全方位跟踪抛物面镜热能吸收系统
TWI831716B (zh) 太陽能儲能系統
TWI834069B (zh) 太陽能儲能系統
CN210485260U (zh) 一种lng太阳能聚热式水浴气化装置
CN107514825A (zh) 一种可调镜面聚光式太阳能锅炉
US20240146230A1 (en) Photovoltaic Photothermal full conversion automatic tracking all-weather integrated wind light energy intelligent power generation system
CN104796067A (zh) 一种紧凑式聚光光伏光热一体化模块
WO2012061943A1 (en) Solar power-generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528897

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3045540

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011148

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016431377

Country of ref document: AU

Date of ref document: 20161202

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016923127

Country of ref document: EP

Effective date: 20190701

ENP Entry into the national phase

Ref document number: 112019011148

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190530