CN102667361A - 用于聚集太阳热能的方法及系统 - Google Patents

用于聚集太阳热能的方法及系统 Download PDF

Info

Publication number
CN102667361A
CN102667361A CN201080053545.9A CN201080053545A CN102667361A CN 102667361 A CN102667361 A CN 102667361A CN 201080053545 A CN201080053545 A CN 201080053545A CN 102667361 A CN102667361 A CN 102667361A
Authority
CN
China
Prior art keywords
rail
speculum
array
thermal energy
solar thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080053545.9A
Other languages
English (en)
Other versions
CN102667361B (zh
Inventor
罗伯特·奥尔塞洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102667361A publication Critical patent/CN102667361A/zh
Application granted granted Critical
Publication of CN102667361B publication Critical patent/CN102667361B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/70Arrangement of stationary mountings or supports for solar heat collector modules with means for adjusting the final position or orientation of supporting elements in relation to each other or to a mounting surface; with means for compensating mounting tolerances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • F24S2030/145Tracks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Prostheses (AREA)
  • Toys (AREA)

Abstract

一种太阳热能聚集系统,它具有:一个接收器;一个轨道系统,该轨道系统具有围绕该接收器环形布置的多个同心轨道;多个可移动的小车,该多个可移动的小车被连接成相互邻近并且横跨该轨道系统的两个同心轨道;一个可移动的小车上的电机装置,该可移动的小车被散布于该多个可移动的小车中;在该多个可移动的小车(其中有具有这些电机装置的这些可移动的小车)上的至少一个定日反射镜,其中在所有这些同心轨道上的该多个可移动的小车限定了一个定日反射镜的阵列,该定日反射镜的阵列具有一个预定的弧形尺寸,而该预定的弧形尺寸被配置成基于一种余弦效率原理使反射镜面积最大化;以及一个控制器,该控制器用于追踪太阳并且控制相对于该接收器的该阵列的位置并保持该阵列与太阳相对。每个定日反射镜和每个具有电机装置的可移动的小车是与该控制器连通的用于相对于该接收器和太阳来移动这些小车和定日反射镜。

Description

用于聚集太阳热能的方法及系统
技术领域
交叉引用
本申请要求于2009年10月7日提交的美国临时申请序列号61/249,280,标题为“太阳热能的大规模收集与聚集的系统及方法”的自申请日权益,其全部披露内容特此通过引用而结合到本披露中。
技术领域
本发明性主题物涉及一种太阳热能聚集系统,并且更加具体地涉及在一个太阳热能聚集系统中围绕一个中央接收器定位的定日镜阵列的一种安排和控制。
背景技术
一种用于大规模收集和聚集太阳能的现有方法是使用多个定日反射镜来将太阳的光线反射到一个中央接收器上。通过利用多个定日反射镜,每一个定日反射镜都反射到一个共用的点上,实现了太阳能的聚集。
在多种已知系统中,多个定日反射镜可以处于包围高塔的一个固定位置中。这些反射镜表面典型地地被控制在两个运动自由度上,以便相对于高塔对反射镜的表面进行定位。每个定日反射镜具有一个控制系统,这个控制系统追踪太阳相对于这个中央定位的接收器的运动。该反射镜是在一个固定的基座上并且反射镜的反射表面是连续运动的以便保持日光从反射镜表面反射到这个接收器上。对这些定日反射镜进行定位的目的是将太阳的光线反射并且引导到一个指定的中央聚集点,已知为一个中央目标接收器或一个发电塔。为了实现这点,该定日反射镜要求一个反射镜的表面积、两个运动轴线、用于每个运动轴线的一个伺服电机、以及用于这两个轴线的位置计算以及运动控制的一个控制系统。
在一些安装中,该定日镜阵列在一个接收器周围环绕成一个完整的360度的区域。这是一种非常昂贵的安装,因为要构成该阵列和包围该接收器需要大量的定日镜。同样,由于太阳的位置在一整天内是改变的,在任何时间点,该阵列的一半以上因它们在阵列中固定的放置而具有非常低的性能。
其他安装已经尝试通过减少反射镜的数量来解决定日镜的成本问题。数量减少的反射镜是作为一个组群来控制的,其中该定日镜阵列是一个单一的可移动单元,它被定位在一条轨道上。该阵列于是在一个水平的运动平面上围绕该接收器同心地转动。在该阵列中的这些反射镜不仅是作为一个单一单元围绕该接收器来控制的,而且是作为一个单一单元围绕一条竖直轴线是可移动的以便相对于该接收器来转动它们的表面位置。这些安装对于具有离该中央塔一个大的半径的安装而言是不实用的。同样,反射镜的大弧形区段将不能以足够的准确度来瞄准该接收器。
此外,已知的同心设计没有始终考虑到对于围绕该中央接收器转动的完整的360°的要求。在全球实施中,尤其对于在北回归线与南回归线之间的纬度(其中包括对于太阳热能应用的大型全球市场领域)上的太阳追踪,已知的同心设计可能无法追踪太阳。对于这种特殊情况,太阳路径并不总是在南或在北的,而二者取决于当年的当天。事实上,太阳路径可以在该中央接收器的北面或南面并且可以在直接在头顶上方的一点处。没有阵列的整圈转动的能力,已知的同心设计在这个赤道带内就不会运行。
在太阳热能聚集系统中的另一个主要因素是这种安装的环境影响。在已知系统中,必要的是大面积的土地的并且土地必须专供太阳热能聚集这个唯一的目的。另外,对于安装的典型的地面准备涉及侵害性的平坡(grading)和平整做法,这些做法完全破坏了该地带的固有栖息地以及生态环境。此外,专用的区域是被该反射镜阵列永久覆盖的,从而限制地面暴露于由日光所提供的自然修复以及光照,这对环境造成负面影响。
对于一种太阳热能聚集系统及方法存在一种需要,这种系统及方法对于安装和维护而言是有成本效益的,完全利用了地球绕太阳轨道运行时的聚集可能性,并且对于环境具有最小的不利影响。
发明内容
一种太阳热能聚集系统,该系统具有一个接收器;一个轨道系统,该轨道系统具有围绕该接收器环形布置的多个同心轨道;一个定日反射镜的阵列,该定日反射镜的阵列被安排在该轨道系统上并且围绕该轨道系统可移动。该阵列被配置成基于一种余弦效率原理使反射镜面积最大化,并且一个控制器追踪太阳并且控制相对于该接收器的该阵列的位置并且保持该阵列与太阳相对。
一种太阳热能聚集系统,该系统具有一个接收器;一个轨道系统,该轨道系统具有围绕该接收器环形布置的多个同心轨道;多个可移动的小车,该多个可移动的小车被连接成相互邻近并且横跨该轨道系统的两个同心轨道;电机装置,该电机装置在散布于该多个可移动的小车中的一个可移动的小车上;在该多个可移动小车中的每一个上的至少一个定日反射镜;其中在这些同心轨道上的该多个可移动的小车限定了一个定日反射镜的阵列,该定日反射镜的阵列具有一个预定的弧形尺寸,该预定的弧形尺寸被配置成基于一种余弦效率原理使反射镜面积最大化。一个控制器追踪太阳并且控制相对于该接收器的该阵列的位置并且保持该阵列与太阳相对。
提出了一种用于收集太阳动力的方法,其中根据一种余弦效率的原理配置一个定日镜的阵列以便使该定日镜的阵列中的每一个定日镜的有效反射面积最大化,并且围绕一个环形的同心轨道系统该定日镜的阵列来移动以便保持该阵列与太阳相对。
附图说明
图1是本发明性主题物的一种太阳热能聚集系统的整体视图;
图2是根据本发明性主题物的一个被支撑抬高的轨道系统的一部分的透视图;
图3是本发明性主题物的一个轨道联结支架的一个实施方案的展开视图;
图4是图3的支架的俯视图;
图5是一个基座的一个实施方案的透视图;
图6是一个基座的另一个实施方案的透视图;
图7是一个桩台基座的一个实施方案的透视图;
图8是一个桩台基座的另一个实施方案的透视图;
图9是本发明性主题物的一个径向间隔件的端视图;
图10是本发明性主题物的一种太阳热能聚集系统的一个单一同心轨道和一个单一反射镜的俯视图;
图11是根据本发明性主题物的一个通路车道的侧视图;
图12是一个圆形图,展示了一个单一反射镜及其围绕一个接收器相对于太阳的顺时针转动;
图13是一个圆形图,展示了在日出时本发明性主题物的顺时针转动;
图14是一个圆形图,展示了在太阳正午时本发明性主题物的顺时针转动;
图15是一个圆形图,展示了在日落时本发明性主题物的顺时针转动;
图16是一个描绘余弦效率的图形;
图17是展示在本发明性主题物的太阳热能聚集系统中的一个阵列的实施方案的图形;
图18是根据本发明性主题物的一列小车的视图;
图19是根据本发明性主题物的一个小车的透视图;
图20是根据本发明性主题物的一个反射镜小车的透视图;
图21是本发明性主题物的一个定日构件的透视图;并且
图22是根据本发明性主题物的一个电机小车的透视图。
附图中的构件以及步骤是出于简化性和清晰性而展示的,并且没有必要根据任何具体的顺序来呈现。例如,在附图中展示了可以并行地或者以不同顺序来执行的多个步骤,以便有助于增进对本发明的实施方案的理解。
具体实施方式
尽管参照一个具体的说明性实施方案对本发明的不同方面进行了说明,但是本发明不受限于这样的实施方案,并且可以实施额外的修改、应用以及实施方案而不偏离本发明性主题物。在这些图中,同样的参考号将被用于展示相同的部件。本领域的技术人员将认识到在此提出的不同部件可以进行更改而不改变本发明性主题物的范围。
图1是根据本发明性主题物的一种太阳热能聚集系统10的完整视图。多个定日反射镜12形成一个阵列14,这个阵列是围绕一个中央定位的接收器16来定位的。阵列14具有多个排18。在定日镜阵列14中的每一排18的定日反射镜12围绕中央定位的接收器16是水平地可移动的。定日镜阵列14被定位在一个轨道系统20上。轨道系统20作为多个同心定位的轨道22被固定到地面上以便形成围绕中央定位的接收器16的一种环形的图案。在图1中所示的系统10中排18的数量以及轨道的22数量仅是出于举例的目的。本领域的技术人员能够确定根据电厂的规格确定对于一种具体的安装所必需的排的数量。
图2是本发明性主题物的轨道系统20的部分细节。本发明性主题物的轨道系统20是一个模块化系统,其中这些同心定位的轨道22各自是由被连接到一个基座26上的多个轨道部分24来限定的。在此示出的实例中,轨道部分24的一种V形配置仅是出于示例的目的而详细说明的。应注意的是这些V形的轨道部分24可以用工字梁、C形通道、或者多得在此无法尽述的其他配置来替代。一个轨道联结支架28在基座26处支撑并且连接两个轨道部分24。轨道部分24可以具有固定的长度和弧形尺寸,从而使得这些部分模块化而易于安装。每个轨道部分是一个同心轨道22的一个整体区段。轨道部分24的数量将确定每个同心轨道22的直径。在一个实例性实施方案中,这些轨道部分24具有一个6π(18.8485°)的弧长以及一个18°的径向节距,从而保持一个恒定的尺寸,使得容易地利用任何数量的轨道部分24来组装成多个同心轨道22。
图3是根据本发明性主题物的一个轨道联结支架28的实施方案的展开视图,这个轨道联结支架端对端地连接两个轨道部分,它支撑这些轨道部分24的负荷,并且它容纳这些轨道部分24的热膨胀和收缩。一个通道部分30通过一个安装支架27安装到基座26上并且接收两个轨道部分24。每个轨道部分24具有一个切开区段32。一个轨道联结接头34被定位在各轨道部分24之间的通道部分30内并且与各轨道部分24的切开区段32重叠。轨道联结接头34在与这些轨道部分24的这些切开区段32相对接的每一末端处具有切开区段35。一组衬套36被定位在通道部分30内,在该通道部分30的壁与这些轨道部分24和轨道联结接头34之间。一个连接器,例如联结销钉38,或者其他合适的装置,将通道部分30、衬套36以及轨道联结接头34保持在位。这组衬套36在通道部分30内与这些轨道24和轨道联结接头44摩擦地接合。可以采用多个设定螺钉37以便调整这些衬套36对抗通道部分30的并且与这些轨道部分24的张力。
图4是通过轨道联结支架28连接的这些轨道部分24的俯视图。在轨道联结接头34与这些轨道部分24之间存在多个间隔40以便允许些轨道部分24和联结接头34的有限运动,从而容纳这些轨道部分24和联结接头34的可能的膨胀和收缩。这些衬套36也对将这些轨道部分24和联结接头34对准以便维持对于同心轨道22的一个平的中心线的目的是有用的。
再次参见图2,多个轨道支撑架42可以根据需要被放置在多个基座26之间,以便进一步增加对轨道系统20的支撑。多个支持撑杆44是在这些轨道支撑架42以及基座26处进行连接的。这些轨道支撑架42以及多个撑杆44增加了该轨道系统的稳定性并且提高了有待由轨道系统20支撑的负荷。
轨道系统20可以被直接附接到地面上。然而,在如图2所示的本发明的另一实施方案中,轨道系统20被抬高到地面上方一个预定距离处以便使对土地面积的侵扰最小化。基座26被定位在这些轨道部分24之下,它对这些轨道部分24进行固定并且它被附接到地面上的方式为环境被最低程度地侵蚀。图5示出了用于基座26的一种可能的配置。所示出的是一个填充了一种材料(例如水泥)的、具有一种用于将轨道联结支架28通道部分30附接到基座26上的螺栓图案46的水泥立管或硬纸板管(sturdycardboard tube)。图6是又另一种可能的配置,其中显示了基座26的一个钢网格结构。本领域的技术人员能够以任何可能的配置的方式来修改该基座与轨道的协作,而不偏离本发明性主题物的范围。
在又另一个实施方案中,基座26被驱动进入土壤中使得基座的一个部分延伸在地面之下。在图7和图8所示的实施方案中,示出了多个桩。在图7中,示出了一个工字梁造型的桩48,而在图8中示出了一个圆柱形造型的桩50。所显示的桩的造型仅仅是出于示例的目的。本领域的技术人员在能够替换这种桩的形状,而不偏离本发明性主题物的范围。在每个桩的配置中,这个桩上附接了具有一个用于附接轨道联结支架28的螺栓图案46的一个帽52。
再次参见图2,在任何给出的安装中,这些基座26的数量以及定位将改变,并且本领域的技术人员能够进行这种确定。尽管抬高的轨道系统20的一个优点是环境的最小侵蚀,而其他优点也是可以实现的,例如对于这种轨道系统和/或定日镜阵列的容易的安装、维护以及修理。轨道系统20还可以包括多个径向隔离件54。轨道内的隔离件54维持了轨道系统20的多个同心轨道22的位置以及稳定性。现在参见图9,示出了一个轨道内的径向隔离件54的端视图。一个支架56将一个撑杆部分58附接到每个通道部分30上。可以使用一个单一的撑杆部分58,不过在图9所示的实施方案中,一个转动搭扣60连接了两个撑杆部分58以便提供径向间距,而仍旧容纳轨道系统20中可能发生的任何运动。
返回参见图1,轨道系统20覆盖了包围接收器16的一个区域并且是一个完整的圆圈。图10是示出了在一个完整的360°轨道系统20中的多个同心轨道的俯视图。这个完整的圆圈的轨道系统20可以具有一个通路部分104,其中一条车道106被定位在多个基座26之间,并且多个轨道部分24被插入车道106内。这允许这些定日镜在整个圆圈上移动而仍然为接收器16提供一个通路点。图11是带有多个凹入的轨道部分24的车道106的侧视图。
本发明性主题物提供一种用于追踪太阳的一种两维度模型,在此将参照如图12所示的一个单一的同心轨道22的俯视图对该模型进行说明。一个单一的同心轨道22被示出为具有一个任意的半径r,并且是定中心在点T处的。假定一个单一的反射镜12被安装在轨道22上的点M处。一个角度θ被限定成是[O,T,M],其中O被指定为一个零角,T是该中心点,M是该反射镜的位置,并且顺时针运动为正向的转动。一个箭头66直接指向太阳。一个矢量(S M)指明太阳辐射或光通量的一条光线,并且它是与太阳光通量的所有其他光线平行的。在这种配置中,该反射镜点M可以永久地是定位成沿着该路径(M T)将太阳光通量光线(S M)反射到瞄准点T。当反射镜12围绕该中心点T自由转动时,该反射镜点M沿着轨道22围绕点T以半径r移动。一个控制系统可以被用于将箭头66保持在直接指向太阳的一个位置中。角θ将保持恒定,并且反射镜点M将始终被定位成将该太阳光通量光线(S M)反射到该中间点T。
现在参见图13、图14以及图15,在此示出了当反射镜在一个逆时针方向上转动时,轨道22以及反射镜12的三个位置。在现实中,太阳是通过方位角以及太阳高度进行追踪的。在这个两维度实例中,太阳高度始终是零,而且圆圈64被转动朝向太阳以便使该系统相对于该方位角保持一个恒定的180度。这种转动是在图13至图15中所示的这三个位置中展示的,这些示图追踪了反射镜12的顺时针转动,即它从日出200时(图13)开始,经过太阳正午202时(图14)并且在日落204(图15)时对准太阳的位置。一个单一的追踪轴线是必要的以便使得反射镜12朝向太阳的位置对准。根据本发明性主题物,形成阵列14的多个反射镜12被安装在轨道系统20上,并且它们被定位以便转动这个阵列14,并且它们仿效如图13至图15所示的运动。对于任何数量的反射镜而言,可以要求一个单一的控制电机以便简单地旋动该阵列来追踪太阳的位置。
返回参见图1,阵列14是由多个排18构成的,在每一排中具有多个定日反射镜12。阵列14占据该轨道系统的一个部分,该区段是小于轨道系统20中完整的360度圆圈的。当反射镜位置延伸经过该接收器的多个象限点时,用于将太阳光反射到该接收器上的反射镜倾斜角减小了该反射镜的有效面积,由此降低了其有效性。这种效应被称作余弦效应,并且它是该反射镜相对于太阳、接收器16的位置以及一个太阳高度角的函数。
在一个优选的实施方案中,阵列14的尺寸可以是通过应用余弦效率的概念来确定。在对必要的反射镜的数量进行确定过程中所要回答的问题是成本对增加收集的问题。在太阳正午期间,即便是定位在接收器16南侧的反射镜也因太阳的仰角而具有足够的性能。但是,当太阳不在一个最佳的位置(不幸的是在一天当中大多是这样的)时性能水平急剧下降。图16是一个图形,示出了基于相对于接收器16和太阳的一个反射镜12的位置的余弦效率的位置梯度。用于收集太阳光通量光线的最佳地点是位于包围中央接收器16的、与太阳相对的一个半圆中或者一个边界线68中。边界线68,基于余弦效率优选的是百分之75。阴影区域代表阵列14的形状。
根据本发明性主题物,阵列14围绕接收器16同心地运动,这样使得它始终是与太阳70相对的。本发明的系统提供了超出固定位置的定日镜的一个显著优点在于它在一整天中都使得整个阵列14的余弦效率最大化。图17是根据本发明性主题物的一个实施方案的一个阵列形状的描述,其中阵列14是圆圈的一个扇形弧段,该扇形弧段围绕接收器16大约160度。在这个实施方案中,整个阵列14的余弦效率被最大化而处在大约百分之75。
阵列14围绕接收器16在轨道系统20上移动,以便总是与太阳相对。通过使用这种追踪模型,可以实施一种更加简化的定日镜控制系统。根据这种追踪,在整个太阳日中每个定日镜12相对于太阳的方位以及接收器16保持一个固定的位置。在这种环境下,该定日反射镜只是必须对太阳的高度角进行补偿。至少一个定日反射镜12可以被定位在一个可移动的小车72上。现在参见图18,可以将多个可移动的小车72定位在轨道系统20中的每个轨道22上。应该注意的是图18中所示的这些小车的数量以及位置仅是出于举例的目的。虽然,出于效率和成本的考虑,小于360度的阵列配备有反射镜和小车,但有可能的是实现本发明性主题物的一种使用轨道系统20的整个圆周的简化的定日镜设计。每一排的小车72的数量可以是使用余弦效率的概念通过离开该中央接收器地点的这一排的位置以及该阵列的所希望的尺寸来确定的。在每一排中的这些小车72是连接在一起的,类似于火车车厢,而且在任一端处具有一个机动的驱动小车94,或者在每一排中散布着一个或更多的机动小车94。这些机动小车94将受到控制以便沿着轨道22前后移动这些小车72。每一排的小车72与一个控制器(未示出)连通以便控制它们的运动并且追踪太阳;这排小车72是可移动到以下多个位置中,在这些位置中这排小车72的取向保持在相对于太阳的方位固定的配置中。
图19是在一个轨道20上的一个小车72的透视图。小车72被安装在该轨道上,并且该小车与其他附接的小车72协作而如对于阵列进行14进行定位以便基于使得余弦效率最大化的目标来追踪太阳所需要地沿着轨道移动。如图19中所示,小车72可以横跨两个同心轨道22。一个小车框架76在每个轨道22上方具有安装表面78。在小车框架76上提供了多个车轮80并且它们与轨道22相接触。出于稳定性,一个或多个支持撑杆82可以被附接到框架76上。图19中所示的支持撑杆82的配置仅仅是出于举例的目的。本领域的技术人员能够重新配置这些支持撑杆的位置以及附接,而不偏离本发明性主题物的范围。
如图20所示,小车框架76可以支撑一个或多个定日反射镜12并且它包括一个反射镜小车74。小车框架76在这些安装表面78之间在框架76的两侧上具有多个连接器,即内连接器84和外连接器86。这些连接器允许沿着该同心轨道连接任何数量的小车。定日镜12可以是具有两个调整轴线的常规定日镜。在该替代方案中,并且因为根据本发明性主题物的定日镜阵列的这种配置及转动,该定日镜可以具有一个控制单一轴线转动的伺服电机。
参见图21,示出的是本发明性主题物的一个定日镜12。该定日镜具有一个反射构件88。该反射构件被安装到该小车框架(未示出)上的一个安装基座90处。反射构件88具有一个转动轴线91以及三种固定的调整Δ,E和Ω。这三种固定的调整各自是在每一个阵列排中的反射镜小车74的位置的函数。反射构件88的小方位E、该轴线的倾斜Ω,以及角偏移Δ是使用计算机模型进行计算的,并且是在安装时相对于转动轴线91进行调整的。这三种固定调整是该中央接收器的高度以及该小车位置的一个因素。一个控制伺服电机92被附接到反射构件88的单一可移动轴线91上并且它使得该反射构件转动以便追踪太阳并且将反射构件的反射瞄准到该接收器上。
一个机动小车94可以被发现在一排反射镜小车中的任何一点处。这个机动小车显示在图22中。一个电机单元96被安装在小车框架76上。一个车轮驱动系统98被连接在电机单元96与小车框架76上的每个车轮或一组车轮之间。小车72,94横跨两个同心轨道。在具有一个较小直径的轨道22上的小车端处的车轮80的每分钟转数将比在具有一个较大直径的轨道22上的小车端处的车轮80的每分钟转数稍低些。因此,电机单元96具有两个电机以及两个齿轮箱,这样使得小车框架76的每一端是独立于另一端进行驱动的。机动小车94可以配备有一个或更多的电池供电100以便给电机单元96充电。为了在该阵列的一排中移动一排小车,可以将一个机动小车94放置在这一排的任一端处,或者将一个或多个机动小车散布在这排小车之内。
基于余弦效率概念的这种可移动的定日反射镜阵列在每单位反射器面积上聚集了更多的太阳热能。因为该阵列追踪太阳,在整个太阳日中都以其最大效率来收集太阳热能。因为本发明性主题物的这些定日镜只要求一个单一的转动轴线,所以在这种简化设计中实现了显著的成本节约。这种成本节约不仅在该定日镜的硬件方面可以实现,而且在降低控制该系统的以及维护该系统的复杂性方面也可以实现。通过在相对于太阳以及该中央接收器的一个最佳的位置运行该阵列实现了一种较高的热能聚集率。将实现的是较高的工作温度,从而由此转化为在该接收器处的较高的效率。
本发明的轨道部分的这种模块化设计通过减少施工时间以及减少在安装中所涉及的人工量而简化了安装。这些模块化的轨道部分允许预先制作许多部件并且易于安装。这些定日反射镜小车在该轨道系统上通过这些机动小车而被安置在位,从而由此迅速和容易地对多个定日镜单元进行定位。本发明性主题物还减低了运行和维护该系统的维修成本。每一排小车可以是从该阵列中独立地转动出来以便允许与维修相关的接触。备用的定日镜和/或小车可以作为需要维修的小车或反射镜的替换件来提供。在现场的可工作的替换件允许了该系统在受损的反射镜和/或小车在车间进行维修之时继续起作用。停机时间被显著减少。
这种抬高的轨道设计允许在坡上安装,由此使得环境的影响最小化并且使得对地面的侵扰最小化。根据本发明性主题物,受影响的地面小于百分之二。此外,通过在整个太阳日中使得该反射镜阵列移动,太阳可以在这一天当中的一些时间点照射到地面所有的区域。同样,对土地的最小侵蚀消除了使得土地被指定用于太阳的光线这个唯一目的的需要,这允许混合使用土地面积。根据本发明性主题物,现场的其他地面可以被开发成休闲娱乐用区域,例如野餐区。
对于在北回归线以北的安装而言,本发明性主题物的完整的360°同心轨道允许该阵列围绕该中央接收器在一个顺时针方向上运动,而对于南回归线以南的安装而言,允许围绕该中央接收器在一个逆时针方向上运动,并且对于在北回归线与南回归线之间的赤道带内的纬度而言,允许任意转动方向的一种组合。
在前面的说明书中,已经参照具体的示例性实施方案对本发明进行了说明。可以做出不同的修改和改变,而不偏离在权利要求中所提出的本发明的范围。本说明书以及这些附图是说明性的,而不是限制性的,并且旨在本发明的范围内包括多种修改。因此,本发明的范围应是由权利要求书及其法定等效物来确定的而不是仅仅由所说明的这些实例来确定的。
例如,在任何方法或过程权利要求中所陈述的这些步骤是可以用任何顺序来执行的,并且不受限于权利要求书中所提出的具体的顺序。在任何装置权利要求中陈述的部件和/或构件可以是组装的或者以其他方式以各种排列来运行性地配置的,并且因此不受限于权利要求书中所陈述的具体配置。
以上已经关于具体实施方案说明了其他优点以及问题的解决方案;但是可以导致任何具体益处、优点或者解决方案出现或者变得更加显著的任何益处、优点、问题的解决方案或者任何构件将不被解释为任何或所有权利要求的重要的、必须的或者实质的特征或组成部分。
术语“包括”、“包括了”、“包括的”、“具有”、“包含的”“包含”或者它们的任何变形旨在是指一种非排他性包括,这样使得包括一个要素列表的一种过程、方法、物品、组合或装置不是仅仅包括所陈述的那些要素,而是还可以包括任何其他未明确列出的那些要素或者继承到此类过程、方法、物品、组合或装置的其他要素。除了那些未明确陈述的之外,在本发明的实践中使用的上述结构、安排、应用、比率、构件、材料或部件的其他组合和/或修改可以改变或者以其他方式具体地适配特定环境、制造规格、设计参数或者其他运行要求,而不偏离它们的这些一般原理。
权利要求书(按照条约第19条的修改)
1.一种太阳热能聚集系统,包括:
一个接收器;
一个轨道系统,该轨道系统具有多个围绕该接收器环形布置的同心轨道;
一个定日反射镜的阵列,该定日反射镜的阵列被安排在所述轨道系统上并且在该轨道系统上可移动,并且该阵列被配置成基于一种余弦效率原理使反射镜面积最大化;以及
一个控制器,该控制器用于追踪太阳该控制器用于控制沿着所述轨道系统的一段长度的相对于该接收器的该阵列的位置以便保持该阵列与太阳相对,并且该控制器用于控制所述定日反射镜中的每一个定日反射镜围绕它的一个对应的单一转动轴线的、相对于所述定日反射镜中的每一个其他的定日反射镜的、并且根据太阳的一个太阳高度角的转动运动。
2.如权利要求1所述的太阳热能聚集系统,其中,该定日反射镜的阵列进一步包括至少一个可移动的小车,该可移动的小车由该多个同心轨道中的至少一个轨道支撑,该至少一个可移动的小车支撑该定日反射镜的阵列中的至少一个定日反射镜。
3.如权利要求2所述的太阳热能聚集系统,进一步包括:
多个可移动的小车,该多个可移动的小车被连接成相互邻近并且限定了一列可移动的小车;以及
电机装置,该电机装置在被散布于该列小车中的一个可移动的小车上并且与该控制器连通用于相对于该接收器和太阳来移动该列小车。
4.如权利要求1所述的太阳热能聚集系统,其中,该反射镜的阵列中的每一排在该多个同心轨道中的每个轨道上具有一个预定的弧形区段。
5.如权利要求4所述的太阳热能聚集系统,其中,该预定的弧形区段被设计成将余弦效率保持在大于百分之75。
6.如权利要求2所述的太阳热能聚集系统,其中,该至少一个可移动的小车横跨该多个同心轨道中的两个同心轨道。
7.如权利要求6所述的太阳热能聚集系统,其中,该至少一个可移动的小车横跨两个同心轨道并且支撑至少两个定日反射镜,其中一个定日反射镜被定位在一个同心轨道之上。
8.如权利要求1所述的太阳热能聚集系统,其中,该定日反射镜的阵列中的每个定日反射镜具有一个单一的伺服电机,该伺服电机被连接到该控制器上用于对围绕该定日反射镜的单一的转动轴线的转动进行控制。
9.如权利要求1所述的太阳热能聚集系统,其中,该轨道系统进一步包括多个轨道部分,每个轨道部分具有一个预定的弧形尺寸,其中每个同心轨道具有限定该同心轨道的圆周的一个预定数量的轨道部分。
10.如权利要求9所述的太阳热能聚集系统,其中,该轨道系统进一步包括用于连接两个轨道部分的一个轨道联结接头。
11.如权利要求10所述的太阳热能聚集系统,其中,该轨道联结接头进一步包括用于容纳这些轨道部分的膨胀和收缩的装置。
12.如权利要求1所述的太阳热能聚集系统,其中,该轨道系统进一步包括多个围绕每个同心轨道定位的基座装置以便支撑并且将这些同心轨道中的每一个保持在一个预定的圆周处。
13.如权利要求11所述的太阳热能聚集系统,其中,该多个基座装置进一步包括一个基座高度,该基座高度使每个同心轨道在地面上方保持一个预定的距离。
14.如权利要求12所述的太阳热能聚集系统,其中,该基座装置是一个桩,该桩在地面上方延伸一段预定的距离的一部分的桩,由此限定该基座高度。
15.如权利要求12所述的太阳热能聚集系统,其中,该基座装置进一步包括一个支撑件,该支撑件用于一个用于连接两个轨道部分的轨道联结接头。
16.如权利要求15所述的太阳热能聚集系统,其中,该轨道联结接头进一步包括用于容纳这些轨道部分的膨胀和收缩的装置。
17.一种太阳热能聚集系统,包括:
一个接收器;
一个轨道系统,该轨道系统具有围绕该接收器环形布置的多个同心轨道;
多个可移动的小车,该多个可移动的小车被连接成相互邻近并且横跨该轨道系统的两个同心轨道;
在至少一个可移动的小车上的电机装置,该至少一个可移动的小车被散布于该多个可移动的小车中;
在包括该具有电机装置的至少一个可移动的小车的该多个可移动的小车中的每一个上的至少一个定日反射镜,其中在这些同心轨道上的该多个可移动的小车限定了一个定日反射镜的阵列,该定日反射镜的阵列具有一个预定的弧形尺寸,该预定的弧形尺寸被配置成基于一种余弦效率原理使反射镜面积最大化,并且其中在该阵列已经被配置成使所述反射镜面积最大化之后,所述定日反射镜中的每一个定日反射镜被约束为围绕它的一个对应的单一转动轴线的转动运动,由此允许所述定日反射镜中的每一个定日反射镜的一个取向相对于所述定日反射镜中的每一个其他的定日反射镜是根据太阳的一个太阳高度角来调整的;以及
一个控制器,该控制器用于追踪太阳,该控制器用于控制沿着所述轨道的一段长度的相对于该接收器的该阵列的位置[[并且]]以便保持该阵列与太阳相对,并且该控制器用于控制所述定日反射镜中的每一个定日反射镜围绕它的一个对应的单一转动轴线的根据太阳的一个太阳高度角的所述转动运动;
其中,每个定日反射镜和每个具有电机装置的可移动的小车是与该控制器连通的用于相对于该接收器和太阳来移动这些小车和定日反射镜。
18.如权利要求17所述的太阳热能聚集系统,其中,在该反射镜的阵列中的每一排定日反射镜在该多个同心轨道中的每个轨道上具有一个预定的弧形区段。
19.如权利要求18所述的太阳热能聚集系统,其中,该预定的弧形区段被设计成将余弦效率保持在大于百分之75。
20.一种用于收集太阳能的方法,该方法包括以下步骤:
根据一种余弦效率原理配置一个定日镜的阵列以便使该定日镜的阵列中的每个定日镜的有效反射面积最大化,其中在该阵列已经被配置成使所述定日镜中的每一个定日镜的有效反射器面积最大化之后,所述定日镜中的每一个定日镜被约束为围绕它的一个对应的单一转动轴线的转动运动,由此允许所述定日镜中的每一个定日镜的一个取向相对于所述定日镜中的每一个其他的定日镜是根据太阳的一个太阳高度角来调整的;[[并且]]
在该阵列已经被配置成使所述定日镜的每一个定日镜的有效反射器面积最大化之后,将所述定日镜中的每一个定日镜的转动运动约束为围绕它的一个对应的单一转动轴线;
围绕多个同心轨道的一个环形系统来移动该定日镜的阵列以便保持该阵列与太阳相对;并且
在该阵列已经被配置成使所述定日镜中的每一个定日镜的有效反射器面积最大化之后,使所述定日反射镜中的每一个定日反射镜根据太阳的该太阳高度角围绕它的该对应的单一转动轴线转动。

Claims (20)

1.一种太阳热能聚集系统,包括:
一个接收器;
一个轨道系统,该轨道系统具有围绕该接收器环形布置的多个同心轨道;
一个定日反射镜的阵列,该定日反射镜的阵列被安排在所述轨道系统上并且在该轨道系统上可移动,并且该阵列被配置成基于一种余弦效率原理使反射镜面积最大化;以及
一个控制器,该控制器用于追踪太阳并且控制相对于该接收器的该阵列的位置并且保持该阵列与太阳相对。
2.如权利要求1所述的太阳热能聚集系统,其中,该定日反射镜的阵列进一步包括至少一个可移动的小车,该可移动的小车由该多个同心轨道中的至少一个轨道支撑,该至少一个可移动的小车支撑该定日反射镜的阵列中的至少一个定日反射镜。
3.如权利要求2所述的太阳热能聚集系统,进一步包括:
多个可移动的小车,该多个可移动的小车被连接成相互邻近并且限定了一列可移动的小车;以及
电机装置,该电机装置在被散布于该列小车中的一个可移动的小车上并且与该控制器连通用于相对于该接收器和太阳来移动该列小车。
4.如权利要求1所述的太阳热能聚集系统,其中,该反射镜的阵列中的每一排在该多个同心轨道中的每个轨道上具有一个预定的弧形区段。
5.如权利要求4所述的太阳热能聚集系统,其中,该预定的弧形区段被设计成将余弦效率保持在大于百分之75。
6.如权利要求2所述的太阳热能聚集系统,其中,该至少一个可移动的小车横跨该多个同心轨道中的两个同心轨道。
7.如权利要求6所述的太阳热能聚集系统,其中,该至少一个可移动的小车横跨两个同心轨道并且支撑至少两个定日反射镜,其中一个定日反射镜被定位在一个同心轨道之上。
8.如权利要求1所述的太阳热能聚集系统,其中,该定日反射镜的阵列中的每个定日反射镜具有一个单一的伺服电机,该伺服电机被连接到该控制器上用于对该定日反射镜的三个运动轴线进行控制。
9.如权利要求1所述的太阳热能聚集系统,其中,该轨道系统进一步包括多个轨道部分,每个轨道部分具有一个预定的弧形尺寸,其中每个同心轨道具有限定该同心轨道的圆周的一个预定数量的轨道部分。
10.如权利要求9所述的太阳热能聚集系统,其中,该轨道系统进一步包括用于连接两个轨道部分的一个轨道联结接头。
11.如权利要求10所述的太阳热能聚集系统,其中,该轨道联结接头进一步包括用于容纳这些轨道部分的膨胀和收缩的装置。
12.如权利要求1所述的太阳热能聚集系统,其中,该轨道系统进一步包括多个围绕每个同心轨道定位的基座装置以便支撑并且将这些同心轨道中的每一个保持在一个预定的圆周处。
13.如权利要求11所述的太阳热能聚集系统,其中,该多个基座装置进一步包括一个基座高度,该基座高度使每个同心轨道在地面上方保持一个预定的距离。
14.如权利要求12所述的太阳热能聚集系统,其中,该基座装置是一个桩,该桩在地面上方延伸一段预定的距离的一部分的桩,由此限定该基座高度。
15.如权利要求12所述的太阳热能聚集系统,其中,该基座装置进一步包括一个支撑件,该支撑件用于一个用于连接两个轨道部分的轨道联结接头。
16.如权利要求15所述的太阳热能聚集系统,其中,该轨道联结接头进一步包括用于容纳这些轨道部分的膨胀和收缩的装置。
17.一种太阳热能聚集系统,包括:
一个接收器;
一个轨道系统,该轨道系统具有围绕该接收器环形布置的多个同心轨道;
多个可移动的小车,该多个可移动的小车被连接成相互邻近并且横跨该轨道系统的两个同心轨道;
在至少一个可移动的小车上的电机装置,该至少一个可移动的小车被散布于该多个可移动的小车中;
在包括该具有电机装置的至少一个可移动的小车的该多个可移动的小车中的每一个上的至少一个定日反射镜,其中在这些同心轨道上的该多个可移动的小车限定了一个定日反射镜的阵列,该定日反射镜的阵列具有一个预定的弧形尺寸,该预定的弧形尺寸被配置成基于一种余弦效率原理使反射镜面积最大化;以及
一个控制器,该控制器用于追踪太阳并且控制相对于该接收器的该阵列的位置并且保持该阵列与太阳相对;
其中,每个定日反射镜和每个具有电机装置的可移动的小车是与该控制器连通的用于相对于该接收器和太阳来移动这些小车和定日反射镜。
18.如权利要求17所述的太阳热能聚集系统,其中,在该反射镜的阵列中的每一排定日反射镜在该多个同心轨道中的每个轨道上具有一个预定的弧形区段。
19.如权利要求18所述的太阳热能聚集系统,其中,该预定的弧形区段被设计成将余弦效率保持在大于百分之75。
20.一种用于收集太阳能的方法,该方法包括以下步骤:
根据一种余弦效率原理配置一个定日镜的阵列以便使该定日镜的阵列中的每个定日镜的有效反射面积最大化;并且
围绕多个同心轨道的一个环形系统来移动该定日镜的阵列以便保持该阵列与太阳相对。
CN201080053545.9A 2009-10-07 2010-10-07 用于聚集太阳热能的方法及系统 Expired - Fee Related CN102667361B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24928009P 2009-10-07 2009-10-07
US61/249,280 2009-10-07
PCT/US2010/051815 WO2011044356A1 (en) 2009-10-07 2010-10-07 Method and system for concentration of solar thermal energy

Publications (2)

Publication Number Publication Date
CN102667361A true CN102667361A (zh) 2012-09-12
CN102667361B CN102667361B (zh) 2014-07-16

Family

ID=43857140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080053545.9A Expired - Fee Related CN102667361B (zh) 2009-10-07 2010-10-07 用于聚集太阳热能的方法及系统

Country Status (4)

Country Link
US (1) US9029747B2 (zh)
CN (1) CN102667361B (zh)
AU (1) AU2010303403A1 (zh)
WO (1) WO2011044356A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422153A (zh) * 2013-09-06 2015-03-18 中广核太阳能开发有限公司 塔式太阳能聚光系统及聚光方法
CN105414075A (zh) * 2015-11-19 2016-03-23 东莞市风火轮热能科技有限公司 工业用清洗机热水系统
CN106556160A (zh) * 2015-09-25 2017-04-05 北京兆阳光热技术有限公司 一种塔式电站中的反射镜布置结构及塔式太阳能利用装置
WO2017133516A1 (zh) * 2016-02-04 2017-08-10 北京兆阳光热技术有限公司 一种塔式聚光系统的聚光反射镜的布置结构及其跟踪方法
WO2018098800A1 (zh) * 2016-12-02 2018-06-07 博立多媒体控股有限公司 太阳能电站
CN108266906A (zh) * 2018-03-17 2018-07-10 郭其秀 一种水上塔式太阳能聚光平台

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667361B (zh) * 2009-10-07 2014-07-16 罗伯特·奥尔塞洛 用于聚集太阳热能的方法及系统
EP2610489A1 (en) 2011-12-30 2013-07-03 Alstom Technology Ltd Steam power plant with integrated solar receiver
US10965241B2 (en) * 2012-02-05 2021-03-30 Tien Solar LLC Solar plant support structure
US10151512B1 (en) * 2017-10-17 2018-12-11 King Saud University Solar heating apparatus
US10734699B2 (en) 2017-10-25 2020-08-04 Winegard Company Antenna mount with multi-directional foot assembly
DE102020125045B4 (de) 2020-09-25 2022-04-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heliostat für Solarkraftwerke oder Solarkonzentratoren, sowie Solaranlage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613600A (en) * 1969-03-03 1971-10-19 Projects General Of America Rail expansion joint
US4365618A (en) * 1980-12-05 1982-12-28 Dedger Jones Heliostatic solar energy conversion system
CN1854639A (zh) * 2005-04-29 2006-11-01 孙迎光 一种控制定日镜阵列同步跟踪的方法
US7380549B1 (en) * 2006-08-21 2008-06-03 Ratliff George D Solar energy concentrator for power plants
CN101261045A (zh) * 2008-04-15 2008-09-10 孙暖 大型太阳能巡日集能系统
US20090038608A1 (en) * 2007-08-07 2009-02-12 Caldwell Douglas W Multi-receiver heliostat system architecture
WO2009052910A1 (de) * 2007-10-25 2009-04-30 Robert Bosch Gmbh Solarkraftwerk

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US608755A (en) * 1898-08-09 District of co
US260657A (en) * 1882-07-04 Calvee
US2381446A (en) * 1943-03-19 1945-08-07 New Jersey Shipbuilding Corp Equipment for shipbuilding
US4509501A (en) * 1982-01-13 1985-04-09 Hunter Larry D Solar energy collecting system using a primary reflector based on a pyramid structure
US5058675A (en) * 1990-10-29 1991-10-22 Travis Elmer E Method and apparatus for the destructive distillation of kerogen in situ
CH684124A5 (de) * 1991-11-21 1994-07-15 Gautschi Electro Fours Sa Transporteinrichtung für Stoss- oder Durchlauföfen.
US5787878A (en) * 1996-09-23 1998-08-04 Ratliff, Jr.; George D. Solar concentrator
US6959993B2 (en) * 2003-07-10 2005-11-01 Energy Innovations, Inc. Solar concentrator array with individually adjustable elements
US7536861B2 (en) * 2005-09-21 2009-05-26 Solartrec Inc. Solar heat engine system
US7677466B2 (en) * 2006-05-24 2010-03-16 Vae Nortrak North America Inc. Insulated rail joint assembly
JPWO2010004954A1 (ja) * 2008-07-07 2012-01-05 コニカミノルタオプト株式会社 ミラー構造体
WO2010068801A1 (en) * 2008-12-11 2010-06-17 Keith Allen Langenbeck Integrated train rail system with ties and thermal expansion joints
US8162495B2 (en) * 2009-02-03 2012-04-24 Steven Russell Green System and method of focusing electromagnetic radiation
WO2011044358A1 (en) * 2009-10-07 2011-04-14 Robert Orsello System and method for heat rejection in a solar power collection system
CN102667361B (zh) * 2009-10-07 2014-07-16 罗伯特·奥尔塞洛 用于聚集太阳热能的方法及系统
CN103119380B (zh) * 2010-07-15 2015-07-15 克博蒂克斯公司 机器人定日镜系统和操作方法
US20120192857A1 (en) * 2011-01-31 2012-08-02 Google Inc. Heliostat Assignment in a Multi-Tower Field
US8806948B2 (en) * 2011-02-28 2014-08-19 Herzog Services, Inc. Apparatus and method of detecting defects in a rail joint bar
WO2012140281A1 (es) * 2011-04-13 2012-10-18 Centro Tecnológico Avanzado De Energías Renovables De Andalucía (Ctaer) Sistema de captación de energía termosolar de geometría variable
US20120325314A1 (en) * 2011-06-22 2012-12-27 Palo Alto Research Center Incorporated Solar Power Collection Using High-Focus-Accuracy Mirror Array

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613600A (en) * 1969-03-03 1971-10-19 Projects General Of America Rail expansion joint
US4365618A (en) * 1980-12-05 1982-12-28 Dedger Jones Heliostatic solar energy conversion system
CN1854639A (zh) * 2005-04-29 2006-11-01 孙迎光 一种控制定日镜阵列同步跟踪的方法
US7380549B1 (en) * 2006-08-21 2008-06-03 Ratliff George D Solar energy concentrator for power plants
US20090038608A1 (en) * 2007-08-07 2009-02-12 Caldwell Douglas W Multi-receiver heliostat system architecture
WO2009052910A1 (de) * 2007-10-25 2009-04-30 Robert Bosch Gmbh Solarkraftwerk
CN101261045A (zh) * 2008-04-15 2008-09-10 孙暖 大型太阳能巡日集能系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422153A (zh) * 2013-09-06 2015-03-18 中广核太阳能开发有限公司 塔式太阳能聚光系统及聚光方法
CN106556160A (zh) * 2015-09-25 2017-04-05 北京兆阳光热技术有限公司 一种塔式电站中的反射镜布置结构及塔式太阳能利用装置
CN106556160B (zh) * 2015-09-25 2018-09-28 北京兆阳光热技术有限公司 一种塔式电站中的反射镜布置结构及塔式太阳能利用装置
CN105414075A (zh) * 2015-11-19 2016-03-23 东莞市风火轮热能科技有限公司 工业用清洗机热水系统
CN105414075B (zh) * 2015-11-19 2017-08-25 东莞市风火轮热能科技有限公司 工业用清洗机热水系统
WO2017133516A1 (zh) * 2016-02-04 2017-08-10 北京兆阳光热技术有限公司 一种塔式聚光系统的聚光反射镜的布置结构及其跟踪方法
CN107037830A (zh) * 2016-02-04 2017-08-11 北京兆阳光热技术有限公司 一种塔式聚光系统的聚光反射镜的布置结构及其跟踪方法
WO2018098800A1 (zh) * 2016-12-02 2018-06-07 博立多媒体控股有限公司 太阳能电站
CN108266906A (zh) * 2018-03-17 2018-07-10 郭其秀 一种水上塔式太阳能聚光平台
CN108266906B (zh) * 2018-03-17 2023-11-28 绿华能源(福建)有限公司 一种水上塔式太阳能聚光平台

Also Published As

Publication number Publication date
CN102667361B (zh) 2014-07-16
US20120187276A1 (en) 2012-07-26
AU2010303403A1 (en) 2012-05-03
US9029747B2 (en) 2015-05-12
WO2011044356A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
CN102667361B (zh) 用于聚集太阳热能的方法及系统
KR101421467B1 (ko) 태양광 자동 추적 장치
US9568215B2 (en) Solar central receiver system employing common positioning mechanism for heliostats
TWI424136B (zh) 用於太陽能板之雙軸式太陽追蹤器系統與裝置
US9921289B2 (en) Tracking device comprising a receiving structure which can be adjusted about at least one axis, for mounting at least one element that is sensitive to electromagnetic waves and has a preferential radiation direction
JP5230025B2 (ja) ソーラーコレクタアセンブリ用チルトアセンブリ
CN102027298B (zh) 太阳跟踪设备
US10008977B2 (en) Heliostat apparatus and solar heat collecting apparatus and concentrating photovoltaic apparatus
CN102667363A (zh) 在太阳动力收集系统中排斥热量的系统及方法
WO2011134004A1 (en) Solar tracking system
CN102667656A (zh) 一种使用定日镜用的普通定位装置的太阳能中央接收系统
CN103257654A (zh) 用于使用在用于利用太阳能的系统中的装置
CN103760910A (zh) 回旋式太阳能单轴跟踪系统
JP6342632B2 (ja) 太陽光集光発電装置
KR101182832B1 (ko) 태양광 발전장치
EP0681747A1 (en) Dish antenna structures and hydraulic control of the orientation thereof
CN108462437A (zh) 一种分布式光伏电站光伏组件固定系统
CN1122791C (zh) 具有改进稳定性的大口径太阳能收集器
US20120291766A1 (en) Solar energy collection apparatus
JP5634369B2 (ja) 太陽追尾型太陽光発電システム
US9239172B2 (en) Solar concentrator with support system and solar tracking
CN203552066U (zh) 一种太阳能回旋式单轴跟踪结构
CN110737286B (zh) 一种光伏组件南北方向倾角可调的平单轴跟踪支架
JP2013172145A (ja) 追尾型太陽光発電装置
CN102400868A (zh) 单塔多碟式太阳能发电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140716

Termination date: 20181007