WO2018077223A1 - 一种管状聚光光伏电池组件及阵列 - Google Patents

一种管状聚光光伏电池组件及阵列 Download PDF

Info

Publication number
WO2018077223A1
WO2018077223A1 PCT/CN2017/107896 CN2017107896W WO2018077223A1 WO 2018077223 A1 WO2018077223 A1 WO 2018077223A1 CN 2017107896 W CN2017107896 W CN 2017107896W WO 2018077223 A1 WO2018077223 A1 WO 2018077223A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic cell
glass tube
mirror
concentrating photovoltaic
tubular
Prior art date
Application number
PCT/CN2017/107896
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
刘阳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘阳 filed Critical 刘阳
Publication of WO2018077223A1 publication Critical patent/WO2018077223A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention belongs to the technical field of photovoltaic power generation, and in particular relates to a tubular concentrating photovoltaic cell assembly capable of utilizing solar energy and an array of tubular concentrating photovoltaic cell modules composed of tubular concentrating photovoltaic cell modules.
  • CMOS complementary metal-oxide-semiconductor
  • CPV concentrating photovoltaic
  • the concentrating photovoltaic power generation system is composed of a solar receiver, a condensing mirror and a sun tracking mechanism.
  • the structure of the concentrating photovoltaic power generation system is divided into two types according to the optical principle of the condensing mirror: a reflective structure and a refractive structure.
  • the refractive structure mainly uses Fresnel lens, which has the characteristics of light weight and thin thickness, but the refracting structure of the concentrating photovoltaic power generation system has higher battery temperature, but reduces photoelectric conversion efficiency and long-term performance, and
  • the tracking system requires high precision.
  • the reflective structure mainly adopts a specular reflector, and is formed into a strip shape or a disc shape according to the difference in the condensing magnification.
  • the reflective structured concentrating photovoltaic power generation system can make the spectrum of the incident battery surface more uniform, reduce the light loss, and can reduce the distance from the concentrator to the battery.
  • the patent publication CN103456823B discloses a tubular concentrating photovoltaic cell assembly which is a reflective structured concentrating photovoltaic cell assembly.
  • the concentrating photovoltaic cell assembly includes a glass tube, a photovoltaic cell array disposed within the glass tube, and a set of concentrating optical systems.
  • the photovoltaic cell array includes a number of photovoltaic cells.
  • the photovoltaic cell unit comprises at least one photovoltaic cell and a thermal diffusion structure, and the thermal diffusion structure is in thermal contact with the back of the photovoltaic cell and is arranged close to the inner wall of the glass tube.
  • the concentrating photovoltaic cell assembly of the structure has multiple times due to packaging the concentrating optical system and the photovoltaic cell array in a glass tube Concentrating, reliable packaging, long service life and excellent heat dissipation.
  • the concentrating photovoltaic cell module in the above structure, it has been widely used, but since the concentrating photovoltaic cell module is only provided with a group of concentrating optical systems, the utilization rate of the light energy has limitations. How to further improve the light energy utilization rate of the structured concentrating photovoltaic cell module has become one of the concerns in the industry.
  • the object of the present invention is to provide a tubular concentrating photovoltaic cell module which has the characteristics of reliable packaging, long service life and excellent heat dissipation, and can improve the utilization of light energy.
  • a tubular concentrating photovoltaic cell assembly comprising a glass tube having a plurality of sets of collecting optical systems and a photovoltaic cell array disposed corresponding to each set of collecting optical systems:
  • Each group of collecting optical systems includes a reflecting surface and a reflecting layer coated on the reflecting surface; the orientations of the plurality of reflecting surfaces are different;
  • a mirror corresponding thereto is fixedly disposed outside the glass tube; sunlight reflected by the mirror is incident on the reflecting surface through the glass tube wall, and then The reflective surface converges to the photovoltaic cell array.
  • the number of the collecting optical systems is two, each reflecting surface is a concave reflecting surface, and two edges of each concave reflecting surface are in contact with the inner wall of the glass tube or each concave shape. The two edges of the reflecting surface leave a gap with the inner wall of the glass tube;
  • the central angle of the circular arc surface covered by the two edges of each reflecting surface contacting the inner wall of the glass tube is greater than 90° and less than 180°; or the two edges of each reflecting surface are extended to the inner wall of the glass tube
  • the central angle of the circular arc surface is greater than 90° and less than 180°.
  • the number of the collecting optical systems is three, each reflecting surface is a concave reflecting surface, and two edges of each reflecting surface are in contact with the inner wall of the glass tube or each concave reflecting surface The two edges of the glass tube have a gap with the inner wall of the glass tube;
  • the central angle of the circular arc surface of the inner wall of the glass tube covered by the two edges of each concave reflecting surface is less than 120°; or the arcs covered by the two edges of each reflecting surface extending to the inner wall of the glass tube
  • the central angle of the face is less than 120°.
  • the mirror is a plane mirror, a folding mirror or a curved mirror.
  • the mirror is fixed by a bracket
  • the bracket is fixed to the outer wall of the glass tube or to a column other than the glass tube.
  • the photovoltaic cell array comprises a plurality of arrays of photovoltaic cells and a first heat sink, the first heat sink being in thermally conductive contact with the backs of the plurality of photovoltaic cells and arranged in close proximity to the inner wall of the glass tube.
  • the photovoltaic cell array further includes a second heat dissipating device disposed on an outer wall of the glass tube and corresponding to a position of the first heat dissipating device.
  • the mirror is disposed adjacent to the second heat sink and disposed obliquely relative to the second heat sink.
  • the first heat dissipating device is bonded to the inner wall of the glass tube by an adhesive
  • the second heat dissipating device is bonded to the outer wall of the glass tube by an adhesive
  • tubular concentrating photovoltaic cell assembly is rotatable about its central axis or a rotational axis parallel to its central axis.
  • the interior of the glass tube is an enclosed space filled with a vacuum or a gas or transparent liquid that is harmless to the photovoltaic cell.
  • another tubular concentrating photovoltaic cell assembly comprising a glass tube having a plurality of sets of collecting optical systems and photovoltaic cells corresponding to each set of collecting optical systems Array:
  • Each group of collecting optical systems includes a first transmitting mirror, a second transmitting mirror, and a mirror;
  • a first transmitting mirror is disposed in the glass tube and condenses the received sunlight onto the photovoltaic cell array corresponding to the group of collecting optical systems;
  • a second transmissive mirror is disposed in the glass tube and disposed opposite to the first transmissive mirror; the mirror is disposed outside the glass tube and disposed on a side of the second transmissive mirror, reflected by the mirror
  • the sunlight is incident on the second transmission mirror through the glass tube wall and then concentrated by the second transmission mirror onto the photovoltaic cell array corresponding to the group of collecting optical systems.
  • the number of the collecting optical systems is two; the first transmitting mirrors of the two sets of collecting optical systems are oriented in the direction in which the sunlight is incident, and the second transmitting mirrors of the two collecting optical systems are disposed in parallel.
  • the mirror is a plane mirror, a folding mirror or a curved mirror.
  • the photovoltaic cell array comprises a plurality of arrays of photovoltaic cells and a third dispersion
  • the heat device, the third heat sink is in thermal contact with the back of the plurality of photovoltaic cells and is disposed in close contact with the inner wall of the glass tube.
  • the photovoltaic cell array further includes a fourth heat dissipating device disposed on an outer wall of the glass tube and corresponding to a position of the third heat dissipating device.
  • the mirror is disposed adjacent to the fourth heat sink and disposed obliquely relative to the fourth heat sink.
  • an array of tubular concentrating photovoltaic cell modules comprising a plurality of tubular concentrating photovoltaic cell assemblies as described above, a plurality of said tubular concentrating photovoltaic cell modules being wound around a common central axis Arrange; or
  • a plurality of the tubular concentrating photovoltaic cell assemblies are arranged side by side, and the planes of the azimuth angles of the concentrating optical systems of the plurality of tubular concentrating photovoltaic cell modules are the same or parallel.
  • the tubular concentrating photovoltaic cell module array comprises two tubular concentrating photovoltaic cell assemblies, two tubular concentrating photovoltaic cell assemblies are arranged in mirror image with respect to a common rotating axis and two tubular concentrating photovoltaic cell assemblies A set gap is reserved between.
  • the array of tubular concentrating photovoltaic cell modules is disposed on a floating base in water or on a building on the ground.
  • the building is a rotatable base, and a plurality of the tubular concentrating photovoltaic cell assemblies are juxtaposed on the base.
  • the tubular concentrating photovoltaic module of the present application is provided with a plurality of sets of concentrating optical systems and corresponding photovoltaic cell arrays.
  • the present application adds a plurality of concentrating optical systems and corresponding photovoltaic cell arrays, and the concentrating optical system and the photovoltaic cell array are provided with mirrors disposed outside the glass tube. Achieve the injection of sunlight.
  • the tubular concentrating photovoltaic module of the present application has a wider optical window and a higher utilization of light energy than existing tubular concentrating photovoltaic modules.
  • the tubular concentrating photovoltaic module of the present application has the characteristics of multiple concentrating, reliable packaging, long service life and excellent heat dissipation.
  • FIG. 1 is a schematic structural view of a tubular concentrating photovoltaic cell assembly according to a preferred embodiment
  • Figure 2 is a layout view of the tubular concentrating photovoltaic module shown in Figure 1 of the present application;
  • FIG. 3 is a schematic structural view of a tubular concentrating photovoltaic cell assembly according to another preferred embodiment
  • FIG. 4 is a schematic structural view of a tubular concentrating photovoltaic cell assembly according to still another embodiment
  • Figure 5 shows an array arrangement of two tubular concentrating photovoltaic cell assemblies
  • Figure 6 shows another array arrangement of two tubular concentrating photovoltaic cell assemblies
  • Figure 7 shows an array arrangement of more than two tubular concentrating photovoltaic cell assemblies
  • Figure 8 illustrates another array arrangement of more than two tubular concentrating photovoltaic cell assemblies.
  • the tubular concentrating photovoltaic cell assembly includes a glass tube 1 in which two sets of collecting optical systems 2 and two sets of photovoltaic cell arrays 3 corresponding to the two sets of collecting optical systems 2 are disposed.
  • Each group of collecting optical system 2 includes a reflecting surface and a reflective layer coated on the reflecting surface.
  • the orientation of the two reflecting surfaces is different.
  • the reflecting surface preferably adopts a concave reflecting surface, and two edges of each concave reflecting surface are in contact with the inner wall of the glass tube 1.
  • two concave reflecting surfaces are provided. The intersections of the strip edges with the inner wall of the glass tube 1 are A, B, C, and D, respectively, where A and D coincide.
  • the central angle of the arc surface of the inner wall of the glass tube 1 corresponding to the two edges of each concave reflecting surface is greater than 90° and less than 180°, that is, the central angle corresponding to the arc AB is greater than 90° and less than 180°, and the circular arc AC The corresponding central angle is greater than 90° and less than 180°.
  • each concave reflecting surface may also have a gap with the inner wall of the glass tube, and the central angle of the circular arc surface covered by the two edges of each reflecting surface extending to the inner wall of the glass tube is greater than 90° is less than 180°.
  • Two reflecting surfaces of the two groups of collecting optics 2, one reflecting surface facing the sun to receive the light emitted by the sun, and the other reflecting surface facing the reflecting surface facing the sunlight is not completely opposite
  • a mirror 4 corresponding to the reflecting surface is fixed to the outside of the glass tube 1.
  • the mirror is a plane mirror.
  • the sunlight reflected by the mirror 4 is incident on the reflecting surface through the wall of the glass tube 1, and then concentrated by the reflecting surface to the photovoltaic cell array 3.
  • the reflecting surface in the embodiment adopts a combination of a concave reflecting surface and a plane mirror to converge the solar light to the photovoltaic cell array. Only any combination structure capable of concentrating light to the photovoltaic cell array falls into the structure.
  • the scope of protection of the invention such as the mirror in the embodiment, may be a folding mirror or a curved mirror in addition to the plane mirror, and a reflecting surface corresponding to the folding mirror or the curved mirror is disposed in the glass tube.
  • the mirror 4 of the present embodiment can be fixed by means of a bracket.
  • the bracket may be fixed to the outer wall of the glass tube 1 or to a column other than the glass tube 1.
  • the fixing manner of the bracket is not specifically limited in the present application, and any mirror light can be fixed, and the reflecting mirror 4 satisfies the reflected sunlight passing through the wall of the glass tube 1 to the reflecting surface, and then the reflecting surface.
  • the manner of fixing to the photovoltaic cell array 3 falls within the scope of protection of the present invention.
  • the photovoltaic cell array 3 in the present embodiment comprises a plurality of arrays of photovoltaic cells and a first heat sink 5, the first heat sink 5 being in thermal contact with the back of the array of photovoltaic cells arranged in close proximity to the glass
  • the inner wall of the tube 1 is arranged and arranged close to the inner wall of the glass tube 1, and the heat of the photovoltaic cell is diffused to the wall of the large-area glass tube 1, and heat is transferred to the outer environment of the glass tube 1 through the wall of the glass tube 1.
  • the first heat sink 5 is disposed in a portion of the side wall of the glass tube 1 and the bottom tube wall in the direction of the incident light with respect to the concave reflecting surface, maximally increasing the incident width of the solar light of the collecting optical system.
  • the front surface of the first heat sink 5 is combined with the photovoltaic cell unit by adhesive bonding or soldering, and the back surface is bonded to the inner wall surface of the glass tube 1 by an adhesive; the adhesive is preferably a light-sensitive adhesive.
  • the first heat sink 5 is made of aluminum or copper or iron or a combination of three or three
  • the first heat sink 5 generates heat generated by the photovoltaic cell unit with low thermal resistance (or low temperature difference) to spread to a larger area to enhance the heat dissipation effect, reduce the temperature of the photovoltaic cell unit, and prevent the temperature of the photovoltaic cell unit from rising due to light irradiation. Many lead to a significant reduction in the efficiency of photovoltaic cells.
  • Each of the photovoltaic cell arrays 3 is integrally disposed on the inner wall of the glass tube 1 covered by the corresponding reflecting surface, and the surface of the photovoltaic cell unit can directly receive the sunlight rays concentrated by the reflecting surface.
  • the photovoltaic cell array 3 further includes a second heat sink 6 and a second heat sink 6 It is disposed on the outer wall of the glass tube 1 and corresponds to the position of the first heat sink 5.
  • the second heat dissipating device is also bonded to the outer wall of the glass tube 1 by an adhesive, and the adhesive is preferably a photo-sensitive adhesive such as a photo-curing agent, an ultraviolet glue or the like.
  • the mirror in this embodiment is disposed adjacent to the second heat sink and disposed obliquely with respect to the second heat sink.
  • the tilting structure is formed between the mirror and the second heat dissipating device, and the tapered structure contributes to the inflow of the wind, so the tilting arrangement of the mirror can increase the second heat dissipating device.
  • the heat dissipation further enhances the heat dissipation effect of the tubular concentrating photovoltaic cell assembly.
  • the surface of the reflective layer on the reflective surface does not increase the protective coating, further reducing manufacturing costs.
  • the glass tube is a high-transmission glass tube; the material is high-transparent ultra-clear glass, and the inner space of the glass tube 1 is sealed, which effectively blocks the intrusion of gas, dust and water vapor harmful to the photovoltaic cell unit, and improves the efficiency and service life of the photovoltaic cell unit; Further, the closed space inside the glass tube is in a vacuum state, thereby maximizing the service life and the use efficiency of the photovoltaic cell; or the closed space is filled with gas or transparent liquid which is harmless to the photovoltaic cell, prolonging the service life of the photovoltaic cell unit and reducing the cost. .
  • the tubular concentrating photovoltaic module of the present embodiment can be rotated integrally around a central axis of rotation parallel to the central axis of the glass tube 1 to achieve tracking of incident solar rays.
  • the tubular concentrating photovoltaic module if the mirror disposed outside the glass tube 1 is directly fixed to the outer wall of the glass tube 1, the mirror rotates with the rotation of the glass tube 1; if the mirror is fixed by other fixtures, the other A rotating device is disposed on the fixture to rotate the mirror against the rotation of the glass tube 1.
  • the tubular concentrating photovoltaic module is axially arranged at a certain inclination angle to the north, south, and north, preferably, the inclination angle is a local latitude angle.
  • 2 is a layout view of the tubular concentrating photovoltaic module shown in FIG. 1 of the present application. The figure shows that the axis of rotation of the tubular concentrating photovoltaic module is at a local latitude angle to the horizontal plane, such as R, in the northern hemisphere, for example, the sunny side of the inclined surface is south.
  • two sets of collecting optical system 2 and two sets of photovoltaic cell arrays 3 are disposed in the tubular concentrating photovoltaic module, wherein one set of collecting optical system 2 directly receives sunlight and reflects sunlight to The photovoltaic cell array 3 corresponding thereto is used to achieve normal power generation of the photovoltaic cell array 3.
  • this embodiment is further provided with a set of collecting optical system 2 and a corresponding photovoltaic cell array 3 as compared with the existing tubular concentrating photovoltaic module.
  • the concentrating optical system 2 and the photovoltaic cell array 3 which are added are irradiated with sunlight by means of a mirror provided outside the glass tube 1.
  • the tubular concentrating photovoltaic module of the present embodiment has a wider optical window than the existing tubular concentrating photovoltaic module. And higher utilization of light energy.
  • the tubular concentrating photovoltaic module in the embodiment has the characteristics of multiple concentrating, reliable packaging, long service life and excellent heat dissipation.
  • three sets of collecting optical systems and three sets of photovoltaic cell arrays 3 corresponding to the three sets of collecting optical systems are disposed in the glass tube of the tubular concentrating photovoltaic cell assembly of the present application.
  • the tubular concentrating photovoltaic cell assembly includes a glass tube 1 in which three sets of concentrating optical systems 2 and three sets of photovoltaic cell arrays 3 corresponding to the three sets of concentrating optical systems are disposed.
  • Each group of collecting optical system 2 includes a reflecting surface and a reflective layer coated on the reflecting surface.
  • the orientation of the three reflecting surfaces is different.
  • the two edges of each reflecting surface are in contact with the inner wall of the glass tube.
  • the reflecting surface preferably adopts a concave reflecting surface, and the central angle of the arc surface of the inner wall of the glass tube 1 corresponding to the two edges of each concave reflecting surface is less than 120°.
  • each concave reflecting surface may not be in contact with the glass tube wall, but may have a gap with the inner wall of the glass tube, but only the two edges of each reflecting surface extend to the inner wall of the glass tube.
  • the central angle of the arc surface covered by the back is less than 120°.
  • Three reflecting surfaces of the three groups of collecting optical systems 2, one of which faces the sun to receive the light emitted by the sun, and correspondingly to the other two reflecting surfaces, one side and the reflecting surface are fixed outside the glass tube 1
  • the sunlight reflected by the mirror 4 is incident on the reflecting surface through the wall of the glass tube 1, and then concentrated by the reflecting surface to the photovoltaic cell array 3.
  • the mirror in this embodiment is preferably a plane mirror corresponding to the concave reflecting surface.
  • the mirror 4 of the present embodiment can also be fixed by means of a bracket.
  • the bracket may be fixed to the outer wall of the glass tube 1 or to a column other than the glass tube 1.
  • the fixing manner of the bracket is not specifically limited in the present application, and any mirror light can be fixed, and the reflecting mirror 4 satisfies the reflected sunlight passing through the wall of the glass tube 1 to the reflecting surface, and then the reflecting surface.
  • the manner of fixing to the photovoltaic cell array 3 falls within the scope of protection of the present invention.
  • the reflecting surface in the embodiment adopts a combination of a concave reflecting surface and a plane mirror to converge the solar light to the photovoltaic cell array. Only any combination structure capable of concentrating light to the photovoltaic cell array falls into the structure.
  • the scope of protection of the invention such as the mirror in the embodiment, may be a folding mirror or a curved mirror in addition to the plane mirror, and a reflecting surface corresponding to the folding mirror or the curved mirror is disposed in the glass tube.
  • the tubular concentrating photovoltaic module of the present embodiment can also be rotated integrally around a central axis of rotation parallel to the central axis of the glass tube 1 to achieve tracking of incident solar rays.
  • Tubular concentrating photovoltaic module disposed in glass If the two mirrors outside the tube 1 are directly fixed on the outer wall of the glass tube 1, the mirror rotates with the rotation of the glass tube; if the two mirrors are fixed by other fixtures, a rotating device is required on the other fixtures. The two mirrors are rotated by the rotation of the glass tube.
  • each group of collecting light optical system and the corresponding photovoltaic cell array in the tubular concentrating photovoltaic module in this embodiment is the same as that of the light collecting optical system and the corresponding photovoltaic cell array in the above embodiment. I won't go into details here.
  • the tubular concentrating photovoltaic module of the present application is provided with a plurality of groups of concentrating optical systems and corresponding photovoltaic cell arrays.
  • the present application adds a plurality of concentrating optical systems and corresponding photovoltaic cell arrays, and the concentrating optical system and the photovoltaic cell array are provided with mirrors disposed outside the glass tube. Achieve the injection of sunlight.
  • the tubular concentrating photovoltaic module of the present application has a wider optical window and a higher utilization of light energy than existing tubular concentrating photovoltaic modules.
  • the tubular concentrating photovoltaic module of the present application has the characteristics of multiple concentrating, reliable packaging, long service life and excellent heat dissipation.
  • a tubular concentrating photovoltaic cell assembly is also provided.
  • 4 is a schematic structural view of a tubular concentrating photovoltaic cell assembly according to still another embodiment.
  • the tubular concentrating photovoltaic cell assembly includes a glass tube 41.
  • the glass tube 41 is provided with a plurality of groups of collecting optical systems 42 (in this embodiment, two groups are taken as an example) and corresponding to each group of collecting optical systems 42.
  • Photovoltaic cell array 43 is also provided.
  • each group of collecting optical systems 42 in the present embodiment includes a first transmitting mirror 420, a second transmitting mirror 421, and a mirror 422.
  • the first transmission mirror 420 is disposed in the glass tube 41 and condenses the received sunlight onto the photovoltaic cell array 43 corresponding to the group of collecting optical systems 42;
  • the second transmission mirror 421 is disposed in the glass tube 41 and disposed opposite to the first transmission mirror 420.
  • the mirror 422 is disposed outside the glass tube 41 and disposed on the side of the second transmission mirror 421, and the sun reflected by the mirror The light is incident on the second transmission mirror 421 through the wall of the glass tube 41, and then concentrated by the second transmission mirror 421 onto the photovoltaic cell array 43 corresponding to the group of collecting optical systems 42.
  • the first transmission mirrors 420 of the two sets of collecting optics 42 are oriented in the direction in which the sunlight is incident, and the second transmissive mirrors 421 of the two sets of collecting optics 42 are disposed in parallel.
  • the mirror may preferably be a plane mirror, a folding mirror or a curved mirror. It should be noted that, in this embodiment, the mirror is not specifically limited, and any sunlight can be reflected to the second transmission.
  • the structure in which the mirror 421 is condensed by the second transmission mirror 421 onto the photovoltaic cell array 43 corresponding to the group of collecting optical systems 42 falls within the scope of protection of the present application.
  • the photovoltaic cell array 43 includes a plurality of arrays of photovoltaic cells and a third heat sink 44 that is in thermally conductive contact with the back of the plurality of photovoltaic cells and is disposed in close proximity to the inner wall of the glass tube 41.
  • the arrangement and fixing manner of the third heat dissipating device 44 are the same as those of the first heat dissipating device in the above embodiment, and details are not described herein again.
  • the photovoltaic cell array 43 further includes a fourth heat sink 45 disposed on the outer wall of the glass tube 41 and corresponding to the position of the third heat sink 44.
  • the arrangement and fixing manner of the fourth heat dissipating device 45 are the same as those of the second heat dissipating device in the above embodiment, and details are not described herein again.
  • the mirror 422 in this embodiment is disposed adjacent to the fourth heat sink 45 and disposed obliquely with respect to the fourth heat sink 45.
  • the mirror 422 and the fourth heat sink 45 form a tapered structure, and the tapered structure contributes to the inflow of wind, so the mirror 422 can be tilted.
  • the heat dissipation of the fourth heat sink 45 is increased, thereby enhancing the heat dissipation effect of the tubular concentrating photovoltaic cell assembly.
  • an array of tubular concentrating photovoltaic cell modules arranged from a common central axis by a plurality of tubular concentrating photovoltaic cell assemblies of any of the above embodiments. or,
  • a plurality of tubular concentrating photovoltaic cell assemblies are arranged side by side, and the planes of the azimuth angles of the collecting optics 42 of the plurality of tubular concentrating photovoltaic cells are the same or parallel.
  • FIG. 5 shows an array arrangement of two tubular concentrating photovoltaic cell assemblies.
  • two tubular concentrating photovoltaic cell assemblies are mirror-arranged with respect to the intermediate rotating shaft 50; a set gap is reserved between the two tubular concentrating photovoltaic cell modules, and in the two tubular concentrating photovoltaic cell modules
  • One of the photovoltaic cell arrays is respectively disposed on both sides of the reserved gap, and correspondingly, the second heat dissipating devices (or the fourth heat dissipating devices) outside the two photovoltaic cell arrays are oppositely disposed, because of the two tubular concentrating photovoltaic cells
  • the components use glass tubes, so the reserved gap is a tapered structure, and the tapered structure contributes to the inflow of wind, so the two tubular concentrating photovoltaic battery array mirroring arrangement can further increase the two oppositely disposed second heat dissipation.
  • the heat dissipation of the device (or the fourth heat sink) further enhances the heat dissipation
  • Figure 6 shows another array arrangement of two tubular concentrating photovoltaic cell assemblies.
  • the mirrors of the two tubular concentrating photovoltaic cell modules are arranged adjacent to each other. In this arrangement, a set gap can be reserved between the two tubular concentrating photovoltaic cell modules, and the contact arrangement can also be made.
  • the mirrors of the two tubular concentrating photovoltaic cell assemblies are arranged adjacent to each other, and the second heat dissipating device (or the fourth heat dissipating device) of each of the tubular concentrating photovoltaic cell modules can be respectively directed to both sides, and the two heat dissipating devices do not affect each other. Has a good heat dissipation effect.
  • the two mirrors are arranged adjacent to each other, which can make the mounting stability of the two mirrors better, and facilitate the cleaning of the two mirrors.
  • the two mirrors are arranged according to the arrangement shown in Fig. 5, after sweeping a reflection After the mirror, the other mirror needs to be wound around the other side of the rotating shaft, and when the two mirrors are arranged adjacent to each other, the two mirrors can be cleaned without moving the position, so that the cleaning efficiency can be improved.
  • Figure 7 shows an array arrangement of more than two tubular concentrating photovoltaic cell assemblies. As shown in Figure 7, a plurality of tubular concentrating photovoltaic cell assemblies are mirrored about the intermediate axis of rotation 60. A set gap is reserved between the two central tubular concentrating photovoltaic cell modules, and the superior heat dissipation effect is the same as that in the structure of FIG. 5, and details are not described herein again.
  • the working principle of the tubular concentrating photovoltaic cell assembly in other positions is the same as that of the tubular concentrating photovoltaic cell module in the above embodiment, and will not be described herein.
  • tubular concentrating photovoltaic module in the tubular concentrating photovoltaic cell module array may be horizontally arranged on the east-west axis or horizontally arranged on the north-south axis or at an oblique angle of the north-south axis, preferably the north-south axis is inclined, and the inclination angle is arranged at the local latitude angle. It should be specially noted that the tubular concentrating photovoltaic module can also be arranged in other arrays or in combination with the building.
  • Figure 8 illustrates another array arrangement of more than two tubular concentrating photovoltaic cell assemblies.
  • a plurality of tubular concentrating photovoltaic cell assemblies 70 are juxtaposed and disposed on a rotatable base 71.
  • the plane of azimuth of the collecting optics of each row of tubular concentrating photovoltaic cells is the same or parallel.
  • tubular concentrating photovoltaic modules require real-time tracking of the sun by adjusting the plane angle and elevation angle.
  • the plane angle of the tubular concentrating photovoltaic cell assembly does not need to be separately adjusted, and the plane of all the tubular concentrating photovoltaic cell modules can be realized by simply setting the angle by rotating the base. The angle is adjusted.
  • the elevation angle of each tubular concentrating photovoltaic cell assembly is also achieved by rotating a set angle about its own central axis.
  • the array of tubular concentrating photovoltaic cell modules in this embodiment may be disposed on a building on the ground or on a floating pedestal in the water.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种管状聚光光伏电池组件和管状聚光光伏电池组件阵列。管状聚光光伏电池组件包括玻璃管,所述玻璃管内设有多组聚光光学系统和与每组聚光光学系统对应设置的光伏电池阵列。每组聚光光学系统包括反射面和涂覆于反射面上的反射层;多个反射面的朝向各不相同。对于除一个反射面以外的其他反射面,在玻璃管外均固定设置一面与其对应的反光镜;由反光镜反射的太阳光经玻璃管壁射入到反射面后再由反射面会聚至光伏电池阵列。本申请中的管状聚光光伏组件在具备多倍聚光、可靠封装、使用寿命长、散热优特点的基础上,具有更宽的光学窗口、以及更高的光能利用率。

Description

一种管状聚光光伏电池组件及阵列
本申请要求于2016年10月28日提交中国专利局、申请号为201610958279.3、申请名称为“一种管状聚光光伏电池组件及阵列”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于光伏发电技术领域,尤其涉及一种可利用太阳能的管状聚光光伏电池组件及由管状聚光光伏电池组件组成的管状聚光光伏电池组件阵列。
背景技术
使用晶硅电池和薄膜电池进行光电转换,为第一、第二代太阳能利用技术,现均已得到了广泛应用。利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,即聚光光伏(CPV),被认为是太阳能发电发展趋势的第三代技术。
聚光光伏发电系统由太阳能接收器、聚光镜、太阳跟踪机构组成。聚光光伏发电系统的结构根据聚光镜的光学原理分为反射式结构和折射式结构两大类。折射式结构主要使用菲涅耳透镜,这种透镜具有质量轻、厚度薄的特点,但折射式结构的聚光光伏发电系统的电池温度较高,反而降低光电转换效率和长期性能,且对日跟踪系统精度要求较高。而反射式结构主要采用镜面反光板,根据聚光倍数的不同制作成长条状或圆盘状。反射式结构的聚光光伏发电系统能够使射入电池表面光谱更均匀、减少光损失、且能够缩减聚光器到电池的距离。
公告号为CN103456823B的专利公开了一种管状聚光光伏电池组件,其为反射式结构聚光光伏电池组件。该聚光光伏电池组件包括玻璃管、设置在玻璃管内的光伏电池阵列和一组聚光光学系统。光伏电池阵列包括若干光伏电池单元。光伏电池单元包括至少1片光伏电池和热扩散结构,热扩散结构与光伏电池背部导热接触,且紧贴玻璃管内壁布置。该结构的聚光光伏电池组件由于将聚光光学系统和光伏电池阵列封装于玻璃管内,因此其具有多倍 聚光、可靠封装、使用寿命长、散热优的特点。
鉴于上述结构中聚光光伏电池组件所具有的特点,其已得到较为广泛的应用,但由于该聚光光伏电池组件只设置有一组聚光光学系统,其光能的利用率还具有局限性,如何进一步提高该结构聚光光伏电池组件的光能利用率,成为业内关注的问题之一。
发明内容
本发明的目的在于提供一种既具有可靠封装、使用寿命长、散热优的特点,又能够提高光能利用率的管状聚光光伏电池组件。
根据本发明的一个方面,提供了一种管状聚光光伏电池组件,包括玻璃管,所述玻璃管内设有多组聚光光学系统和与每组聚光光学系统对应设置的光伏电池阵列:
每组聚光光学系统包括反射面和涂覆于所述反射面上的反射层;多个所述反射面的朝向各不相同;
对于除一个反射面以外的其他反射面,在所述玻璃管外均固定设置与其对应的反光镜;由所述反光镜反射的太阳光经玻璃管壁射入到所述反射面后再由所述反射面会聚至所述光伏电池阵列。
作为优选方案之一,所述聚光光学系统的数量为2组,每个反射面为凹形反射面,每个凹形反射面的两条边沿与所述玻璃管内壁接触或者每个凹形反射面的两条边沿与所述玻璃管内壁留有间隙;
每个反射面的两条边沿与所述玻璃管内壁接触所覆盖的圆弧面的圆心角大于90°小于180°;或每个反射面的两条边沿延伸至所述玻璃管内壁后所覆盖的圆弧面的圆心角大于90°小于180°。
作为另一优选方案,所述聚光光学系统的数量为3组,每个反射面为凹形反射面,每个反射面的两条边沿与所述玻璃管内壁接触或者每个凹形反射面的两条边沿与所述玻璃管内壁留有间隙;
每个凹形反射面的两条边沿所覆盖的所述玻璃管内壁圆弧面的圆心角小于120°;或每个反射面的两条边沿延伸至所述玻璃管内壁后所覆盖的圆弧面的圆心角小于120°。
其中,所述反光镜为平面镜、折镜或曲面镜。
优选地,所述反光镜通过支架固定;
所述支架固定于所述玻璃管的外壁上或者独立于所述玻璃管之外的立柱上。
优选地,所述光伏电池阵列包括若干阵列布置的光伏电池单元和第一散热装置,第一散热装置与若干所述光伏电池单元的背部导热接触且紧贴玻璃管内壁布置。
进一步优选地,所述光伏电池阵列还包括第二散热装置,所述第二散热装置设置于所述玻璃管的外壁并与第一散热装置的位置对应。
作为优选实施方案,所述反射镜靠近第二散热装置设置且相对于第二散热装置倾斜设置。
优选地,第一散热装置通过粘结剂粘接于玻璃管内壁上,第二散热装置通过粘结剂粘接于玻璃管外壁上。
其中,所述管状聚光光伏电池组件可绕其中心轴或与其中心轴平行的旋转轴旋转。
优选地,所述玻璃管内部为封闭空间,所述封闭空间内填充真空或对光伏电池无害的气体或透明液体。
根据本发明的另一方面,还提供了另一种管状聚光光伏电池组件,包括玻璃管,所述玻璃管内设有多组聚光光学系统和与每组聚光光学系统对应设置的光伏电池阵列:
每组聚光光学系统包括第一透射镜、第二透射镜和反射镜;
第一透射镜设置于所述玻璃管内,并将接收到的太阳光会聚至与该组聚光光学系统对应的光伏电池阵列上;
第二透射镜设置于所述玻璃管内,并与第一透射镜相对设置;所述反射镜设置于所述玻璃管外并设置于第二透射镜的那一侧,由所述反光镜反射的太阳光经玻璃管壁射入到所述第二透射镜后再由第二透射镜会聚至与该组聚光光学系统对应的光伏电池阵列上。
其中,所述聚光光学系统的数量为2组;两组聚光光学系统的第一透射镜均朝向太阳光入射的方向,两组聚光光学系统的第二透射镜相对平行设置。
优选地,所述反光镜为平面镜、折镜或曲面镜。
优选地,所述光伏电池阵列包括若干阵列布置的光伏电池单元和第三散 热装置,第三散热装置与若干所述光伏电池单元的背部导热接触且紧贴玻璃管内壁布置。
进一步优选地,所述光伏电池阵列还包括第四散热装置,第四散热装置设置于所述玻璃管的外壁并与第三散热装置的位置对应。
作为优选实施方案,所述反射镜靠近第四散热装置设置且相对于第四散热装置倾斜设置。
根据本发明的再一方面,还提供了一种管状聚光光伏电池组件阵列,包括多个如上所述的管状聚光光伏电池组件,多个所述管状聚光光伏电池组件绕共同的中心轴布置;或
多个所述管状聚光光伏电池组件并排布置,且多个管状聚光光伏电池组件中聚光光学系统的方位角所在的平面相同或平行。
作为其中一种优选方案,所述管状聚光光伏电池组件阵列包括两个管状聚光光伏电池组件,两个管状聚光光伏电池组件关于共同的旋转轴镜像布置且两个管状聚光光伏电池组件之间预留设定间隙。
优选地,所述管状聚光光伏电池组件阵列设置于水中的漂浮基座上或者设置于地面的建筑物上。
优选地,所述建筑物为可转动的底座,多个所述管状聚光光伏电池组件并列布置于所述底座上。
由以上技术方案可知,本申请中的管状聚光光伏组件设置多组聚光光学系统和与其对应的光伏电池阵列。相较于现有管状聚光光伏组件,本申请加设了多组聚光光学系统和与其对应的光伏电池阵列,加设的聚光光学系统和光伏电池阵列利用设置于玻璃管外的反射镜实现太阳光的射入。因此,相较于现有管状聚光光伏组件,本申请中的管状聚光光伏组件具有更宽的光学窗口、以及更高的光能利用率。同时,本申请中的管状聚光光伏组件还具有多倍聚光、可靠封装、使用寿命长、散热优的特点。
附图说明
通过结合以下附图所作的详细描述,本发明的上述和/或其他方面和优点将变得更清楚和更容易理解,这些附图只是示意性的,并不限制本发明,其中:
图1为根据一优选实施例示出的管状聚光光伏电池组件的结构示意图;
图2是本申请中图1所示的管状聚光光伏组件的布置图;
图3为根据另一优选实施例示出的管状聚光光伏电池组件的结构示意图;
图4为根据再一实施例示出的管状聚光光伏电池组件的结构示意图;
图5示出了两个管状聚光光伏电池组件的一种阵列布置形式;
图6示出了两个管状聚光光伏电池组件的另一种阵列布置形式;
图7示出了多于两个的管状聚光光伏电池组件的一种阵列布置形式;
图8示出了多于两个的管状聚光光伏电池组件的另一种阵列布置形式。
具体实施方式
下面结合附图和实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为根据一优选实施例示出的管状聚光光伏电池组件的结构示意图。如图1所示,管状聚光光伏电池组件包括玻璃管1,在玻璃管1内设有两组聚光光学系统2和与两组聚光光学系统2对应设置的两组光伏电池阵列3。
每组聚光光学系统2包括反射面和涂覆于反射面上的反射层。两个反射面的朝向不相同。在本实施例中,反射面优选采用凹形反射面,每个凹形反射面的两条边沿与玻璃管1内壁接触,在图1所示的截面图中,每个凹形反射面的两条边沿与玻璃管1内壁接触的交点分别为A、B、C、D,其中A与D重合。每个凹形反射面的两条边沿所对应的玻璃管1内壁圆弧面的圆心角大于90°小于180°,即圆弧AB所对应的圆心角大于90°小于180°,圆弧AC所对应的圆心角大于90°小于180°。
作为另一优选方式,每个凹形反射面的两条边沿还可与玻璃管内壁留有间隙,每个反射面的两条边沿延伸至玻璃管内壁后所覆盖的圆弧面的圆心角大于90°小于180°。
两组聚光光学系统2中的两个反射面,其中一个反射面朝向太阳以接收太阳发射出的光线,另一反射面与朝向太阳光的那一反射面的朝向不完全相 反,为使太阳光能够入射至另一反射面,在玻璃管1外固定设置一面与该反射面对应的反光镜4。该反光镜为平面镜。由反光镜4反射的太阳光经玻璃管1壁射入到反射面后再由反射面会聚至光伏电池阵列3。
需要说明的是,本实施例中的反射面采用凹形反射面和平面镜组合将太阳光线会聚至光伏电池阵列只是示例性的,凡是能够将光线会聚至光伏电池阵列的任一组合结构均落入发明的保护范围,如本实施例中的反光镜除平面镜外还可以采用折镜或曲面镜,玻璃管内设置与折镜或曲面镜对应的反射面。
本实施中的反光镜4,其固定方式可通过支架固定。作为优选实施方案,支架可固定于玻璃管1的外壁上或者独立于玻璃管1之外的立柱上。需要说明的是,支架的固定方式本申请不做具体限定,凡是能够将反光镜4固定,并使反光镜4满足其反射的太阳光经玻璃管1壁射入到反射面后再由反射面会聚至光伏电池阵列3的固定方式均落入本发明的保护范围。
作为优选实施方案,本实施例中的光伏电池阵列3包括若干阵列布置的光伏电池单元和第一散热装置5,第一散热装置5与阵列布置的若干光伏电池单元的背部导热接触且紧贴玻璃管1内壁布置,且紧贴玻璃管1内壁布置,将光伏电池单元的热量扩散至大面积的玻璃管1壁上,通过玻璃管1壁将热量传递至玻璃管1的外环境中。第一散热装置5布置于相对凹形反射面入射光方向的玻璃管1侧壁和底部管壁的部分区域,最大限度地增加聚光光学系统太阳光线的入射宽度。优选地,第一散热装置5的正面与光伏电池单元通过粘结剂粘结或焊接方式组合,背面采用粘结剂粘结于玻璃管1的内壁面上;粘结剂优选为光感粘结剂,例如光固化剂、紫外胶等,以方便组装及阳光环境下具有良好的抗老化等优点;第一散热装置5的材质为铝质或铜质或铁质或其中或三种的组合材质;第一散热装置5光伏电池单元产生的热量低热阻(或低温度差)地扩散至更大面积,以增强散热效果,降低光伏电池单元温度,避免光伏电池单元由于光线照射而温度升高过多而导致光伏电池单元效率的明显降低。
多个光伏电池单元之间可串联、并联或串并联电连接。每个光伏电池阵列3整体布置于对应反射面所覆盖的玻璃管1的内壁上,光伏电池单元表面可直接接收反射面汇聚的太阳光线。
进一步优选地,光伏电池阵列3还包括第二散热装置6,第二散热装置6 设置于玻璃管1的外壁并与第一散热装置5的位置对应。优选地,第二散热装置也通过粘结剂粘接于玻璃管1外壁上,粘结剂优选为光感粘结剂,例如光固化剂、紫外胶等。
作为进一步的优选方案,本实施例中的反射镜靠近第二散热装置设置且相对于第二散热装置倾斜设置。将反射镜相对于第二散热装置倾斜设置,则反射镜与第二散热装置之间构成渐缩式结构,渐缩式结构有助于风的流入,因此反射镜倾斜布置能够增加第二散热装置的散热,进而增强管状聚光光伏电池组件的散热效果。
优选地,反射面上的反射层表面不增加防护涂层,进一步降低制造成本。玻璃管为高透过玻璃管;材质为高透过超白玻璃,玻璃管1内部空间密封,有效阻隔对光伏电池单元有害的气体、尘埃和水汽侵入,提高光伏电池单元的效率和使用寿命;进一步地,玻璃管内部封闭空间为真空状态,最大限度地提高光伏电池的使用寿命和使用效率;或者封闭空间填充对光伏电池无害的气体或透明液体,延长光伏电池单元的使用寿命,降低成本。
本实施中的管状聚光光伏组件可整体绕玻璃管1中心轴平行的旋转中心轴旋转,实现对入射太阳光线的跟踪。管状聚光光伏组件中设置于玻璃管1外的反射镜若是直接固定于玻璃管1外壁上,则反射镜随玻璃管1体的旋转而旋转;若反射镜通过其他固定物固定的话,则其他固定物上需设置旋转装置,以使反射镜对玻璃管1体的旋转而旋转。
管状聚光光伏组件以一定的倾斜角向阳南北轴向布置,优选地,倾斜角度为当地的纬度角度。图2是本申请中图1所示的管状聚光光伏组件的布置图。图中显示管状聚光光伏组件的旋转轴与水平面成当地纬度角度,例如R,以北半球为例,该倾斜面的向阳面为南面。
由以上实施例中的技术方案可知,在管状聚光光伏组件设置两组聚光光学系统2和两组光伏电池阵列3,其中一组聚光光学系统2直接接收太阳光并将太阳光反射至与其对应的光伏电池阵列3,以实现光伏电池阵列3的正常发电。同时,该实施例相较于现有管状聚光光伏组件还加设了一组聚光光学系统2和与其对应的光伏电池阵列3。加设的聚光光学系统2和光伏电池阵列3利用设置于玻璃管1外的反射镜实现太阳光的射入。因此,相较于现有管状聚光光伏组件,本实施例中的管状聚光光伏组件具有更宽的光学窗口、 以及更高的光能利用率。同时,本实施例中的管状聚光光伏组件还具有多倍聚光、可靠封装、使用寿命长、散热优的特点。
作为另一优选实施方式,本申请中管状聚光光伏电池组件的玻璃管内设置三组聚光光学系统和与三组聚光光学系统对应设置的三组光伏电池阵列3。
图3为根据另一优选实施例示出的管状聚光光伏电池组件的结构示意图。如图3所示,管状聚光光伏电池组件包括玻璃管1,在玻璃管1内设有三组聚光光学系统2和与三组聚光光学系统对应设置的三组光伏电池阵列3。
每组聚光光学系统2包括反射面和涂覆于反射面上的反射层。三个反射面的朝向不相同。每个反射面的两条边沿与玻璃管内壁接触。在本实施例中,反射面优选采用凹形反射面,每个凹形反射面的两条边沿所对应的玻璃管1内壁圆弧面的圆心角小于120°。
作为另一优选实施方案,每个凹形反射面的两条边沿可以不与玻璃管管壁接触,而是与玻璃管内壁留有间隙,只是每个反射面的两条边沿延伸至玻璃管内壁后所覆盖的圆弧面的圆心角小于120°。
三组聚光光学系统2中的三个反射面,其中一个反射面朝向太阳以接收太阳发射出的光线,与另两个反射面对应地,在玻璃管1外各固定设置一面与反射面对应的反光镜4。由反光镜4反射的太阳光经玻璃管1壁射入到反射面后再由反射面会聚至光伏电池阵列3。与凹形反射面对应地,本实施例中的反光镜优选平面镜。
本实施中的反光镜4,其固定方式也可通过支架固定。作为优选实施方案,支架可固定于玻璃管1的外壁上或者独立于玻璃管1之外的立柱上。需要说明的是,支架的固定方式本申请不做具体限定,凡是能够将反光镜4固定,并使反光镜4满足其反射的太阳光经玻璃管1壁射入到反射面后再由反射面会聚至光伏电池阵列3的固定方式均落入本发明的保护范围。
需要说明的是,本实施例中的反射面采用凹形反射面和平面镜组合将太阳光线会聚至光伏电池阵列只是示例性的,凡是能够将光线会聚至光伏电池阵列的任一组合结构均落入发明的保护范围,如本实施例中的反光镜除平面镜外还可以采用折镜或曲面镜,玻璃管内设置与折镜或曲面镜对应的反射面。
本实施中的管状聚光光伏组件亦可整体绕玻璃管1中心轴平行的旋转中心轴旋转,以实现对入射太阳光线的跟踪。管状聚光光伏组件中设置于玻璃 管1外的两反射镜若是直接固定于玻璃管1外壁上,则反射镜随玻璃管体的旋转而旋转;若两反射镜通过其他固定物固定的话,则其他固定物上需设置旋转装置,以使两反射镜对玻璃管体的旋转而旋转。
本实施例中管状聚光光伏组件中每组聚光光学系统和与其对应的光伏电池阵列的工作原理与上述实施例中每组聚光光学系统和与其对应的光伏电池阵列的工作原理相同,此处不再赘述。
由以上实施例中的技术方案可知,本申请中的管状聚光光伏组件设置多组聚光光学系统和与其对应的光伏电池阵列。相较于现有管状聚光光伏组件,本申请加设了多组聚光光学系统和与其对应的光伏电池阵列,加设的聚光光学系统和光伏电池阵列利用设置于玻璃管外的反射镜实现太阳光的射入。因此,相较于现有管状聚光光伏组件,本申请中的管状聚光光伏组件具有更宽的光学窗口、以及更高的光能利用率。同时,本申请中的管状聚光光伏组件还具有多倍聚光、可靠封装、使用寿命长、散热优的特点。
根据本发明的另一方面,还提供了一种管状聚光光伏电池组件。图4为根据再一实施例示出的管状聚光光伏电池组件的结构示意图。如图4所示,管状聚光光伏电池组件包括玻璃管41,玻璃管41内设有多组聚光光学系统42(本实施例以2组为例)与每组聚光光学系统42对应设置的光伏电池阵列43。
与上述实施例不同的是,本实施例中的每组聚光光学系统42包括第一透射镜420、第二透射镜421和反射镜422。第一透射镜420设置于玻璃管41内,并将接收到的太阳光会聚至与该组聚光光学系统42对应的光伏电池阵列43上;
第二透射镜421设置于玻璃管41内,并与第一透射镜420相对设置;反射镜422设置于玻璃管41外并设置于第二透射镜421的那一侧,由反光镜反射的太阳光经玻璃管41壁射入到第二透射镜421后再由第二透射镜421会聚至与该组聚光光学系统42对应的光伏电池阵列43上。
作为优选实施方式,两组聚光光学系统42的第一透射镜420均朝向太阳光入射的方向,两组聚光光学系统42的第二透射镜421相对平行设置。
在本实施例中,反光镜可优选选用平面镜、折镜或曲面镜。需要说明的是,本实施例中对反光镜不做具体限定,凡是能够将太阳光反射至第二透射 镜421并通过第二透射镜421会聚至与该组聚光光学系统42对应的光伏电池阵列43上的结构均落入本申请的保护范围。
作为优选实施方案,光伏电池阵列43包括若干阵列布置的光伏电池单元和第三散热装置44,第三散热装置44与若干光伏电池单元的背部导热接触且紧贴玻璃管41内壁布置。第三散热装置44的布置与固定方式与上述实施例中第一散热装置的布置与固定方式相同,此处不再赘述。
进一步优选地,光伏电池阵列43还包括第四散热装置45,第四散热装置45设置于玻璃管41的外壁并与第三散热装置44的位置对应。第四散热装置45的布置与固定方式与上述实施例中第二散热装置的布置与固定方式相同,此处不再赘述。
作为进一步的优选方案,本实施例中的反射镜422靠近第四散热装置45设置且相对于第四散热装置45倾斜设置。将反射镜422相对于第四散热装置45倾斜设置,则反射镜422与第四散热装置45之间构成渐缩式结构,渐缩式结构有助于风的流入,因此反射镜422倾斜布置能够增加第四散热装置45的散热,进而增强管状聚光光伏电池组件的散热效果。
根据本发明的再一方面,还提供了一种管状聚光光伏电池组件阵列,其由多个上述任一实施例中的管状聚光光伏电池组件绕共同的中心轴布置。或者,
多个管状聚光光伏电池组件并排布置,且多个管状聚光光伏电池组件中聚光光学系统42的方位角所在的平面相同或平行。
图5示出了两个管状聚光光伏电池组件的一种阵列布置形式。如图5所示,两个管状聚光光伏电池组件关于中间的旋转轴50镜像布置;两个管状聚光光伏电池组件之间预留设定间隙,且两个管状聚光光伏电池组件中的其中一个光伏电池阵列分别设置于预留间隙的两侧,与此相对应地,两个光伏电池阵列外侧的第二散热装置(或第四散热装置)相对设置,由于两个管状聚光光伏电池组件均使用玻璃管,因此预留间隙处为渐缩式结构,渐缩式结构有助于风的流入,因此两个管状聚光光伏电池组镜像布置能够进一步增加两个相对设置的第二散热装置(或第四散热装置)的散热,进一步增强管状聚光光伏电池组件阵列的散热效果。
图6示出了两个管状聚光光伏电池组件的另一种阵列布置形式。如图6 所示,两个管状聚光光伏电池组件的反射镜相邻布置。此种布置方式中,两个管状聚光光伏电池组件之间可预留设定间隙,也可接触布置。两个管状聚光光伏电池组件的反射镜相邻布置,每个管状聚光光伏电池组件中第二散热装置(或第四散热装置)能够分别朝向两侧,两个散热装置不会相互影响,具有良好的散热效果。同时两个反射镜相邻布置,能够使两个反射镜的安装稳定性更好,且利于两块反射镜的清扫,两块反射镜按图5所示布置方式布置时,在清扫完一块反射镜后需要绕到旋转轴的另一侧对另一块反射镜进行清扫,而将两块反射镜相邻布置时,不用挪动位置就可对两块反射镜进行清扫,故能够提高清扫效率。
图7示出了多于两个的管状聚光光伏电池组件的一种阵列布置形式。如图7所示,多个管状聚光光伏电池组件关于中间的旋转轴60镜像布置。最中心的两个管状聚光光伏电池组件之间预留设定间隙,其具有的较为优异的散热效果与图5结构中相同,此处不再赘述。其他位置的管状聚光光伏电池组件的工作原理与上述实施例中的管状聚光光伏电池组件的工作原理相同,此处不再赘述。
需要说明的是,管状聚光光伏电池组件阵列中的管状聚光光伏组件可以东西轴水平布置或南北轴水平布置或南北轴倾斜角度布置,优选为南北轴倾斜,倾斜角按当地纬度角度布置。需要特殊说明的是,管状聚光光伏组件还可以采用其他阵列方式或与建筑相结合的布置方式。
图8示出了多于两个的管状聚光光伏电池组件的另一种阵列布置形式。如图8所示,多个管状聚光光伏电池组件70并列布置,并设置于可转动的底座71上。每排管状聚光光伏电池组件的聚光光学系统的方位角所在的平面相同或平行。为了实时跟踪太阳,管状聚光光伏电池组件需通过调节平面角和高度角实现对太阳的实时跟踪。按该布置形式布置的管状聚光光伏电池组件阵列,管状聚光光伏电池组件的平面角不需单独调节,只需通过转动底座设定角度,即可实现对所有管状聚光光伏电池组件的平面角进行调节。每个管状聚光光伏电池组件的高度角还需通过绕其自身中心轴旋转设定角度即可实现。
本实施例中的管状聚光光伏电池组件阵列,可设置在地面的建筑物上,也可设置于水中的漂浮基座上。
最后需要说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施方式记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施方式技术方案的精神和范围。

Claims (21)

  1. 一种管状聚光光伏电池组件,包括玻璃管,其特征在于,所述玻璃管内设有多组聚光光学系统和与每组聚光光学系统对应设置的光伏电池阵列:
    每组聚光光学系统包括反射面和涂覆于所述反射面上的反射层;多个所述反射面的朝向各不相同;
    对于除一个反射面以外的其他反射面,在所述玻璃管外均固定设置与其对应的反光镜;由所述反光镜反射的太阳光经玻璃管壁射入到所述反射面后再由所述反射面会聚至所述光伏电池阵列。
  2. 根据权利要求1所述的管状聚光光伏电池组件,其特征在于,所述聚光光学系统的数量为2组,每个反射面为凹形反射面,每个凹形反射面的两条边沿与所述玻璃管内壁接触或者每个凹形反射面的两条边沿与所述玻璃管内壁留有间隙;
    每个反射面的两条边沿与所述玻璃管内壁接触所覆盖的圆弧面的圆心角大于90°小于180°;或每个反射面的两条边沿延伸至所述玻璃管内壁后所覆盖的圆弧面的圆心角大于90°小于180°。
  3. 根据权利要求2所述的管状聚光光伏电池组件,其特征在于,所述聚光光学系统的数量为3组,每个反射面为凹形反射面,每个反射面的两条边沿与所述玻璃管内壁接触或者每个凹形反射面的两条边沿与所述玻璃管内壁留有间隙;
    每个凹形反射面的两条边沿所覆盖的所述玻璃管内壁圆弧面的圆心角小于120°;或每个反射面的两条边沿延伸至所述玻璃管内壁后所覆盖的圆弧面的圆心角小于120°。
  4. 根据权利要求1所述的管状聚光光伏电池组件,其特征在于,所述反光镜为平面镜、折镜或曲面镜。
  5. 根据权利要求1至4中任一所述的管状聚光光伏电池组件,其特征在于,所述反光镜通过支架固定;
    所述支架固定于所述玻璃管的外壁上或者独立于所述玻璃管之外的立柱上。
  6. 根据权利要求5所述的管状聚光光伏电池组件,其特征在于,所述光伏电池阵列包括若干阵列布置的光伏电池单元和第一散热装置,第一散热装 置与若干所述光伏电池单元的背部导热接触且紧贴玻璃管内壁布置。
  7. 根据权利要求6所述的管状聚光光伏电池组件,其特征在于,所述光伏电池阵列还包括第二散热装置,所述第二散热装置设置于所述玻璃管的外壁并与第一散热装置的位置对应。
  8. 根据权利要求7所述的管状聚光光伏电池组件,其特征在于,所述反射镜靠近第二散热装置设置且相对于第二散热装置倾斜设置。
  9. 根据权利要求7所述的管状聚光光伏电池组件,其特征在于,第一散热装置通过粘结剂粘接于玻璃管内壁上,第二散热装置通过粘结剂粘接于玻璃管外壁上。
  10. 根据权利要求5所述的管状聚光光伏电池组件,其特征在于,所述管状聚光光伏电池组件可绕其中心轴或与其中心轴平行的旋转轴旋转。
  11. 根据权利要求5所述的管状聚光光伏电池组件,其特征在于,所述玻璃管内部为封闭空间,所述封闭空间内填充真空或对光伏电池无害的气体或透明液体。
  12. 一种管状聚光光伏电池组件,包括玻璃管,其特征在于,所述玻璃管内设有多组聚光光学系统和与每组聚光光学系统对应设置的光伏电池阵列:
    每组聚光光学系统包括第一透射镜、第二透射镜和反射镜;
    第一透射镜设置于所述玻璃管内,并将接收到的太阳光会聚至与该组聚光光学系统对应的光伏电池阵列上;
    第二透射镜设置于所述玻璃管内,并与第一透射镜相对设置;所述反射镜设置于所述玻璃管外并设置于第二透射镜的那一侧,由所述反光镜反射的太阳光经玻璃管壁射入到所述第二透射镜后再由第二透射镜会聚至与该组聚光光学系统对应的光伏电池阵列上。
  13. 根据权利要求12所述的管状聚光光伏电池组件,其特征在于,所述聚光光学系统的数量为2组;两组聚光光学系统的第一透射镜均朝向太阳光入射的方向,两组聚光光学系统的第二透射镜相对平行设置。
  14. 根据权利要求12所述的管状聚光光伏电池组件,其特征在于,所述反光镜为平面镜、折镜或曲面镜。
  15. 根据权利要求12至14任一所述的管状聚光光伏电池组件,其特征 在于,所述光伏电池阵列包括若干阵列布置的光伏电池单元和第三散热装置,第三散热装置与若干所述光伏电池单元的背部导热接触且紧贴玻璃管内壁布置。
  16. 根据权利要求15所述的管状聚光光伏电池组件,其特征在于,所述光伏电池阵列还包括第四散热装置,第四散热装置设置于所述玻璃管的外壁并与第三散热装置的位置对应。
  17. 根据权利要求16所述的管状聚光光伏电池组件,其特征在于,所述反射镜靠近第四散热装置设置且相对于第四散热装置倾斜设置。
  18. 一种管状聚光光伏电池组件阵列,其特征在于,包括多个如权利要求1~17中任一所述的管状聚光光伏电池组件,多个所述管状聚光光伏电池组件绕共同的中心轴布置;或
    多个所述管状聚光光伏电池组件并排布置,且多个管状聚光光伏电池组件中聚光光学系统的方位角所在的平面相同或平行。
  19. 根据权利要求18所述的管状聚光光伏电池组件阵列,其特征在于,所述管状聚光光伏电池组件阵列包括两个管状聚光光伏电池组件,两个管状聚光光伏电池组件关于共同的旋转轴镜像布置且两个管状聚光光伏电池组件之间预留设定间隙。
  20. 根据权利要求18或19所述的管状聚光光伏电池组件阵列,其特征在于,所述管状聚光光伏电池组件阵列设置于水中的漂浮基座上或者设置于地面的建筑物上。
  21. 根据权利要求20所述的管状聚光光伏电池组件阵列,其特征在于,所述建筑物为可转动的底座,多个所述管状聚光光伏电池组件并列布置于所述底座上。
PCT/CN2017/107896 2016-10-28 2017-10-26 一种管状聚光光伏电池组件及阵列 WO2018077223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610958279.3 2016-10-28
CN201610958279.3A CN108011580A (zh) 2016-10-28 2016-10-28 一种管状聚光光伏电池组件及阵列

Publications (1)

Publication Number Publication Date
WO2018077223A1 true WO2018077223A1 (zh) 2018-05-03

Family

ID=62024402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107896 WO2018077223A1 (zh) 2016-10-28 2017-10-26 一种管状聚光光伏电池组件及阵列

Country Status (2)

Country Link
CN (1) CN108011580A (zh)
WO (1) WO2018077223A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3100949B1 (fr) * 2019-09-13 2021-09-17 Commissariat Energie Atomique Structure photovoltaïque flottante

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794824A (zh) * 2010-01-29 2010-08-04 天津大学 液体浸没太阳电池的散热装置
CN102589159A (zh) * 2012-03-08 2012-07-18 中国科学技术大学 真空管光伏光热复合抛物面聚光器
CN103456823A (zh) * 2013-04-28 2013-12-18 刘庆云 一种管状聚光光伏电池组件
CN103456824A (zh) * 2013-08-08 2013-12-18 刘庆云 一种管状跟踪聚光光伏组件
CN206237360U (zh) * 2016-10-28 2017-06-09 刘阳 一种管状聚光光伏电池组件及阵列

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873084A (zh) * 2009-04-25 2010-10-27 鸿富锦精密工业(深圳)有限公司 太阳能集能装置
CN101789460B (zh) * 2010-01-26 2012-01-25 天津大学 带有二次反射板的聚光光伏接收器
US20130104962A1 (en) * 2011-05-03 2013-05-02 Karl S. Weibezahn Photonic energy concentrators with structural foam
KR20130081775A (ko) * 2012-01-10 2013-07-18 (주)램피스 태양광 발전장치
CN102623541A (zh) * 2012-03-31 2012-08-01 庞俊 太阳能转换装置
DE102014006126B3 (de) * 2014-04-24 2015-06-11 Friedrich Grimm Röhrenkollektor mit einem konzentratorelement und einem empfängerelement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794824A (zh) * 2010-01-29 2010-08-04 天津大学 液体浸没太阳电池的散热装置
CN102589159A (zh) * 2012-03-08 2012-07-18 中国科学技术大学 真空管光伏光热复合抛物面聚光器
CN103456823A (zh) * 2013-04-28 2013-12-18 刘庆云 一种管状聚光光伏电池组件
CN103456824A (zh) * 2013-08-08 2013-12-18 刘庆云 一种管状跟踪聚光光伏组件
CN206237360U (zh) * 2016-10-28 2017-06-09 刘阳 一种管状聚光光伏电池组件及阵列

Also Published As

Publication number Publication date
CN108011580A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
JP3174549B2 (ja) 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法
AU2003259804C1 (en) Concentrating solar energy receiver
JP5281154B2 (ja) 放物面太陽光反射器とともに使用するための球面結像レンズを伴う光起電性発電機
CN1773190B (zh) 一种太阳能热电联供系统
CA2783457C (en) Concentrated photovoltaic and thermal system
US20070199563A1 (en) Apparatus for concentration and conversion of solar energy
JP2008546195A (ja) 太陽光線集中装置
WO2006041943A2 (en) Asymetric, three-dimensional, non-imaging, light concentrator
US20110120539A1 (en) On-window solar-cell heat-spreader
WO2009008996A2 (en) Design and fabrication of a local concentrator system
US9905718B2 (en) Low-cost thin-film concentrator solar cells
JP2008218582A (ja) 太陽追尾モジュール装置
WO2014085436A1 (en) Solar generator with large reflector dishes and concentrator photovoltaic cells in flat arrays
WO2018077223A1 (zh) 一种管状聚光光伏电池组件及阵列
WO2015018132A1 (zh) 一种管状跟踪聚光光伏组件
RU2206837C2 (ru) Солнечный модуль с концентратором (варианты)
WO2014176881A1 (zh) 一种管状聚光光伏电池组件
WO2010041249A1 (en) High concentration "reverse bulb" solar photovoltaic module
Bar-Lev et al. Analysis of a combined thermal-photovoltaic solar system based on the spherical reflector/tracking absorber concentrator
CN206237360U (zh) 一种管状聚光光伏电池组件及阵列
RU2135909C1 (ru) Солнечный фотоэлектрический модуль с концентратором
WO2017206140A1 (zh) 跟日太阳能系统
CN113865114B (zh) 一种聚光集热和发电的太阳能综合利用装置
JP2011129847A (ja) 反射集光型太陽発電モジュール
US10199527B2 (en) Solar concentrator and illumination apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863313

Country of ref document: EP

Kind code of ref document: A1