WO2020154963A1 - 聚光太阳能装置 - Google Patents

聚光太阳能装置 Download PDF

Info

Publication number
WO2020154963A1
WO2020154963A1 PCT/CN2019/073965 CN2019073965W WO2020154963A1 WO 2020154963 A1 WO2020154963 A1 WO 2020154963A1 CN 2019073965 W CN2019073965 W CN 2019073965W WO 2020154963 A1 WO2020154963 A1 WO 2020154963A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrating
groove
solar energy
light
concentrating solar
Prior art date
Application number
PCT/CN2019/073965
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2019/073965 priority Critical patent/WO2020154963A1/zh
Priority to US17/421,015 priority patent/US20220103120A1/en
Priority to CN201980081849.7A priority patent/CN113228500A/zh
Publication of WO2020154963A1 publication Critical patent/WO2020154963A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to the technical field of clean energy, in particular to a reflective concentrating solar energy device.
  • reflective concentrating solar devices generally have low concentrating ratios. Therefore, it is necessary to study reflective concentrating solar devices that can increase the concentrating ratio while maintaining low cost advantages.
  • a concentrating solar energy device which includes two nested concentrating grooves and a double-sided light energy utilization device.
  • the first condensing groove includes a side wall and a bottom wall.
  • the side wall defines a top with a larger opening and a bottom with a smaller opening.
  • the bottom is closed by the bottom wall, and the inner surfaces of the side walls and the bottom wall are at least partially For the reflective surface.
  • the second condensing groove includes a side wall, the side wall of which defines a top with a larger opening and a bottom with a smaller opening, and the inner surface of the side wall is at least partly a reflective surface.
  • the top opening direction of the second concentrating groove is consistent with the top opening direction of the first concentrating groove, and the bottom of the second concentrating groove is located inside the first concentrating groove, and there is a gap between the bottom of the first concentrating groove .
  • the double-sided light energy utilization device is arranged at the bottom of the second concentrating groove, and its front and back sides can receive sunlight, and one side faces the top of the second concentrating groove, and the other side faces the bottom of the first concentrating groove.
  • the concentrating solar device according to the present invention can achieve a higher concentrating ratio through two nested concentrating grooves,
  • the light collected by the first condensing groove and the second condensing groove are respectively received by one side of the double-sided light energy utilization device, which can significantly improve the light energy utilization efficiency.
  • the concentrating solar energy device according to the present invention can be installed horizontally (that is, the opening of the concentrating slot faces upward), or it can be installed upright (that is, the opening of the concentrating slot faces the side, in this case, the concentrating slot
  • the groove wall is preferably asymmetrical) to meet different installation requirements.
  • FIG. 1 is a schematic diagram of the concentrating solar energy device of Embodiment 1;
  • FIG. 2 is a schematic diagram of the concentrating solar energy device of Embodiment 2;
  • FIG. 3 is a schematic diagram of the concentrating solar energy device of Embodiment 3;
  • FIG. 4 is a schematic diagram of the concentrating solar energy device of Example 4.
  • FIG. 1 An embodiment of the concentrating solar energy device according to the present invention may refer to FIG. 1, which includes a first concentrating groove 110, a second concentrating groove 120, and a double-sided light energy utilization device 130.
  • the first concentrating groove 110 includes a side wall 111 and a bottom wall 112.
  • the side wall defines a top with a larger opening and a bottom with a smaller opening.
  • the bottom is closed by the bottom wall 112, and the side walls and the bottom wall At least part of the inner surface is a reflective surface, or all of it is a reflective surface.
  • the second condensing groove 120 includes a side wall 121, the side wall of which defines a top with a larger opening and a bottom with a smaller opening, and the inner surface of the side wall is at least partly reflective, or all reflective.
  • the outer surface of the sidewall of the second concentrating groove may also be a reflective surface, so as to facilitate the reflection of light in cooperation with the first concentrating groove.
  • FIG. 1 shows a cross-sectional view of the device of this embodiment along the incident direction of sunlight.
  • the device can specifically have Different three-dimensional structures.
  • the first condensing groove and the second concentrating groove may be strip-shaped grooves extending in the length direction.
  • the sidewalls thereof are usually served by two opposed planes or curved surfaces, and the strip-shaped grooves extend The two ends can be closed or unclosed.
  • the sidewalls of the first condensing groove and the second concentrating groove may also be formed as enclosed folded surfaces or curved surfaces, for example, formed as conical surfaces or rectangular conical surfaces.
  • the top opening direction of the second condensing groove 120 (that is, the direction for incident sunlight) is consistent with the top opening direction of the first concentrating groove 110, and the bottom of the second concentrating groove is located inside the first concentrating groove , And there is a gap with the bottom of the first concentrating groove.
  • the second condensing groove 120 is only partially contained in the first condensing groove.
  • the second condensing groove may also be completely contained in the first concentrating groove.
  • the top of the second concentrating groove may be flush with the top of the first concentrating groove.
  • the double-sided light energy utilization device 130 is arranged at the bottom of the second concentrating groove 120, and its front and back sides can receive sunlight, and one side faces the top of the second concentrating groove, and the other side faces the first concentrating groove.
  • the bottom of the groove is arranged at the bottom of the second concentrating groove 120, and its front and back sides can receive sunlight, and one side faces the top of the second concentrating groove, and the other side faces the first concentrating groove.
  • the double-sided light energy utilization device in this embodiment uses a double-sided photosensitive light energy utilization device, such as a double-sided photovoltaic wafer.
  • a photothermal utilization device or a comprehensive photoelectric and photothermal utilization device can also be used, for example, a photothermal conversion device that can be heated on both sides, or a hybrid device with photovoltaic panels on one side and a heat transfer medium on the other side. .
  • the device according to this embodiment adopts a reflective surface to converge light, which can maintain the cost.
  • the nested use of two concentrating grooves and the double-sided light energy utilization device greatly improve the light energy utilization efficiency. Reduce the loss of light reflection.
  • FIG. 2 Another embodiment of the concentrating solar energy device according to the present invention may refer to FIG. 2, which includes a first concentrating groove 210, a second concentrating groove 220, and a double-sided light energy utilization device 230.
  • the bottom wall 212 of the first condensing groove 210 is not flat, but is formed as a convex reflective surface, and the convex direction is toward the top of the first concentrating groove.
  • the bottom wall of the first condenser groove may also be formed as a reflective Fresnel lens (that is, a Fresnel lens with a mirror coating on the back), which includes a reflective linear Fresnel lens.
  • the so-called "linear Fresnel lens” means that the focal center of the lens is not a point but a line.
  • the second light collecting groove 220 is received in the first light collecting groove 210.
  • the device of this embodiment further includes a top cover 240 and a piezoelectric vibrating piece 250.
  • the top cover 240 is at least partially transparent, or may be completely transparent, and it closes the top of the first concentrating groove 210. Obviously, since the second concentrating groove 220 is accommodated in the first concentrating groove 210, the top cover 240 also closes the top of the second concentrating groove 220.
  • the first condensing groove and the top cover together form a closed container, so that the reflective surface inside the device and the double-sided light energy utilization device are protected from dust pollution.
  • a special frame may also be provided to seal the entire concentrating solar energy device.
  • the piezoelectric vibrating piece 250 may be made of piezoelectric ceramics, which is fixedly connected to the top cover 240, and the top cover 240 is cleaned by vibration, such as shaking off dust or foreign objects on the top cover.
  • FIG. 3 shows an integrated structure, that is, multiple units can be integrated together, for example, arranged in an array.
  • Each unit may include a first light collecting groove 310, a second light collecting groove 320, and a double-sided light energy utilization device 330.
  • the top cover 340 and the piezoelectric vibrating piece 350 are shared by the entire integrated device.
  • the bottom wall 312 of the first condensing groove 310 is flat and formed as a reflective Fresnel lens.
  • An additional frame 360 is used to close the entire integrated device, and the piezoelectric vibrating piece 350 is fixed on the frame 360 instead of the top cover 340.
  • the first condenser groove and the second condenser groove may also be formed as part of the frame.
  • the device of this embodiment further includes a heat-conducting support 370, which is arranged between the double-sided light energy utilization device 330 and the bottom wall 312 of the first condensing groove 310 for The light energy is transmitted out by using the heat generated by the device.
  • the heat-conducting support 370 may adopt a hollow structure, the outer surface of which is a reflective surface, the interior is filled with a heat storage medium 371, and a thermal energy utilization device 372 is also provided inside for absorbing and using the double-sided light energy utilization device 330.
  • the thermal energy utilization device can be a pipe for heat exchange with the outside, or a thermoelectric conversion device.
  • FIG. 4 shows a structure for vertical installation, which includes a plurality of integrated units, each unit may include a first condenser groove 410, a second condenser groove 420, a double-sided light energy utilization device 430 and a top cover 440.
  • the piezoelectric vibrating piece 450 is integral Shared by all integrated devices.
  • the sidewalls 411 and 411' of the first concentrating groove 410 are asymmetrical, and the sidewalls 421 and 421' of the second concentrating groove 420 are also asymmetrical.
  • the side walls are asymmetric in the vertical direction.
  • strip grooves this means that the two oppositely arranged planes or curved surfaces formed as side walls are asymmetric.
  • enclosed side walls this means that the enclosed folded surface or curved surface is asymmetric in the vertical direction.
  • the bottom wall 412 of the first condensing groove 410 may also be asymmetrical.
  • At least a part of the top cover 440 is formed as a Fresnel lens 441 to obtain a higher light concentration ratio.
  • the device of this embodiment adopts a vertical installation and is equipped with a piezoelectric vibrating piece, so it has excellent dust-proof, snow-proof and ice-proof effects, and can be used as a solar wall.

Abstract

一种聚光太阳能装置,包括两个嵌套的反射式聚光槽(110,120)和一双面光能利用装置(130)。其中,第一聚光槽(110)包括侧壁(111)和底壁(112)。第二聚光槽(120)包括侧壁(121)。第二聚光槽(120)的顶部开口方向与第一聚光槽(110)的顶部开口方向一致,且第二聚光槽(120)的底部位于第一聚光槽(110)内部。双面光能利用装置(130)设置在第二聚光槽(120)的底部,其正反两面均能接收太阳光,且一面朝向第二聚光槽(120)的顶部,而另一面朝向第一聚光槽(110)的底部。上述结构能够实现更高的聚光效率。

Description

聚光太阳能装置 技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种反射式聚光太阳能装置。
背景技术
[0002] 随着对清洁能源的需求日益增加, 太阳能系统得到了越来越广泛的应用。 其中 , 采用反射面进行聚光的反射式聚光太阳能装置, 由于具有较低的成本而越来 越受到重视。
[0003] 然而, 反射式聚光太阳能装置通常聚光比不高, 因此有必要研究保持低成本优 势而能够提高聚光比的反射式聚光太阳能装置。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 依据本发明提供一种聚光太阳能装置, 包括两个嵌套的聚光槽和一双面光能利 用装置。 其中, 第一聚光槽包括侧壁和底壁, 其侧壁限定出开口较大的顶部和 开口较小的底部, 其底部由底壁封闭, 且其侧壁和底壁的内表面至少部分为反 光面。 第二聚光槽包括侧壁, 其侧壁限定出开口较大的顶部和开口较小的底部 , 其侧壁的内表面至少部分为反光面。 第二聚光槽的顶部开口方向与第一聚光 槽的顶部开口方向一致, 且第二聚光槽的底部位于第一聚光槽内部, 且与第一 聚光槽的底部之间具有间隔。 双面光能利用装置设置在第二聚光槽的底部, 其 正反两面均能接收太阳光, 且一面朝向第二聚光槽的顶部, 而另一面朝向第一 聚光槽的底部。
发明的有益效果
有益效果
[0005] 依据本发明的聚光太阳能装置通过两个嵌套的聚光槽能够实现更高的聚光比, 被第一聚光槽和第二聚光槽汇聚的光线分别被双面光能利用装置的一个面所接 收, 能够显著提高光能利用效率。
[0006] 依据本发明的聚光太阳能装置既可以横向安装 (即聚光槽的开口朝上) , 也可 以直立地安装 (即聚光槽的开口方向朝侧面, 这种情况下, 聚光槽的槽壁优选 为非对称的) , 以适应不同的安装需求。
[0007] 以下结合附图, 对依据本发明的具体示例进行详细说明。 本文中所使用的编号 或序号, 例如“第一”、 “第二”等, 仅起到标识性作用, 不具有任何限制性含义。 本文中所使用的表示位置的词语, 例如“上”、 “下”、 “前”、 “后”、 “正”、 “反”、 “ 侧面”、 “顶部”、 “底部”等, 仅表示相对的位置关系, 不具有绝对性的含义。 对附图的简要说明
附图说明
[0008] 图 1是实施例 1的聚光太阳能装置的示意图;
[0009] 图 2是实施例 2的聚光太阳能装置的示意图;
[0010] 图 3是实施例 3的聚光太阳能装置的示意图;
[0011] 图 4是实施例 4的聚光太阳能装置的示意图。
发明实施例
具体实施方式
[0012] 实施例 1
[0013] 依据本发明的聚光太阳能装置的一种实施方式可参考图 1, 包括第一聚光槽 110 、 第二聚光槽 120和双面光能利用装置 130。
[0014] 第一聚光槽 110包括侧壁 111和底壁 112, 其侧壁限定出开口较大的顶部和开口 较小的底部, 其底部由底壁 112封闭, 且其侧壁和底壁的内表面至少部分为反光 面, 也可以全部为反光面。
[0015] 第二聚光槽 120包括侧壁 121, 其侧壁限定出开口较大的顶部和开口较小的底部 , 其侧壁的内表面至少部分为反光面, 也可以全部为反光面。 在其他实施方式 中, 第二聚光槽的侧壁的外表面也可以是反光面, 以便于与第一聚光槽配合进 行光线的反射。
[0016] 图 1示出了本实施例装置沿太阳光入射方向的一个剖面图。 该装置具体可以有 不同的立体结构。 例如, 第一聚光槽和第二聚光槽可以是在长度方向上延伸的 条形槽, 这种情况下, 其侧壁通常由两个相对设置的平面或曲面来充当, 条型 槽延伸的两端可以封闭或不封闭。 或者, 第一聚光槽和第二聚光槽的侧壁也可 以形成为围合的折面或曲面, 例如形成为圆锥面或矩形锥面。
[0017] 第二聚光槽 120的顶部开口方向 (即供太阳光入射的方向) 与第一聚光槽 110的 顶部开口方向一致, 且第二聚光槽的底部位于第一聚光槽内部, 且与第一聚光 槽的底部之间具有间隔。 本实施例中, 第二聚光槽 120仅部分地容纳于第一聚光 槽中, 在其他实施方式中, 第二聚光槽也可以全部容纳于第一聚光槽中, 具体 地, 第二聚光槽的顶部可以与第一聚光槽的顶部平齐。
[0018] 双面光能利用装置 130设置在第二聚光槽 120的底部, 其正反两面均能接收太阳 光, 且一面朝向第二聚光槽的顶部, 而另一面朝向第一聚光槽的底部。
[0019] 本实施例中的双面光能利用装置采用一双面感光的光能利用器件, 例如双面光 伏晶片。 在其他实施方式中, 也可以采用光热利用装置或者综合型光电和光热 利用装置, 例如, 可以被双面加热的光热转换装置, 或者一面为光伏板而另一 面为热传导介质的混合装置。
[0020] 依据本实施例的装置采用反射面来汇聚光线, 能保持彳氐成本, 而两个聚光槽的 嵌套使用, 配合双面光能利用装置使得光能利用效率大为提高, 也减少了光反 射的损失。
[0021] 实施例 2
[0022] 依据本发明的聚光太阳能装置的另一种实施方式可参考图 2, 包括第一聚光槽 2 10、 第二聚光槽 220和双面光能利用装置 230。
[0023] 本实施例与实施例 1的区别在于:
[0024] 第一聚光槽 210的底壁 212不是平坦的, 而是形成为凸型反射面, 且凸起的方向 朝向第一聚光槽的顶部。 在其他实施方式中, 第一聚光槽的底壁也可以形成为 反射式菲涅尔透镜 (即在背面具有镜面镀膜的菲涅尔透镜) , 其中包括反射式 线型菲涅尔透镜。 所称“线型菲涅尔透镜”是指透镜的聚焦中心不是一个点而是 一条线。
[0025] 第二聚光槽 220容纳在第一聚光槽 210内。 [0026] 此外, 作为优选的实施方式, 本实施例装置还包括顶盖 240和压电振动片 250。
[0027] 顶盖 240其至少部分是透明的, 也可以全部是透明的, 其封闭第一聚光槽 210的 顶部。 显然, 由于第二聚光槽 220容纳在第一聚光槽 210内, 因此, 顶盖 240也封 闭第二聚光槽 220的顶部。 第一聚光槽和顶盖一起形成为一个封闭的容器, 使得 装置内部的反光面以及双面光能利用装置免受灰尘的污染。 在其他实施方式中 , 也可以设置专门的框体, 将整个聚光太阳能装置封闭起来。
[0028] 压电振动片 250可以采用压电陶瓷来充当, 其固定连接在顶盖 240上, 通过振动 来清洁顶盖 240, 例如抖落顶盖上的灰尘或异物。
[0029] 实施例 3
[0030] 依据本发明的聚光太阳能装置的另一种实施方式可参考图 3。 图 3展示了一种集 成的结构, 即多个单元可以集成在一起, 例如以阵列的方式进行排布。 每个单 元可包括第一聚光槽 310、 第二聚光槽 320和双面光能利用装置 330。 此外, 顶盖 340和压电振动片 350为整个集成装置所共用。
[0031] 除了集成化以外, 本实施例与实施例 2的区别在于:
[0032] 第一聚光槽 310的底壁 312是平坦的, 且形成为反射式菲涅尔透镜。
[0033] 采用额外的框体 360来封闭整个集成的装置, 且压电振动片 350固定在框体 360 上而不是顶盖 340上。 在其他实施方式中, 第一聚光槽和第二聚光槽也可以形成 为框体的一部分。
[0034] 此外, 作为优选的实施方式, 本实施例装置还包括导热支撑件 370, 设置在双 面光能利用装置 330与第一聚光槽 310的底壁 312之间, 用于将双面光能利用装置 产生的热能传导出去。 例如, 导热支撑件 370可采用中空结构, 其外表面为反射 面, 内部填充有储热介质 371, 并且内部还设置有热能利用装置 372, 用于吸收 和利用双面光能利用装置 330上产生的热能。 该热能利用装置可以是与外界进行 热交换的管道, 也可以是热电转换装置。
[0035] 实施例 4
[0036] 依据本发明的聚光太阳能装置的另一种实施方式可参考图 4。 图 4展示了一种用 于直立安装的结构, 其包括多个集成的单元, 每个单元可包括第一聚光槽 410、 第二聚光槽 420、 双面光能利用装置 430和顶盖 440。 此外, 压电振动片 450为整 个集成装置所共用。
[0037] 除了集成化以外, 本实施例与实施例 2的区别在于:
[0038] 整个装置采用立式安装, 因此太阳光只会沿着一个方向偏转, 这也导致了下述 第 2项描述的结构性区别。
[0039] 第一聚光槽 410的侧壁 411和 411'是非对称的, 第二聚光槽 420的侧壁 421和 421' 也是非对称的。 对于直立的安装方式而言, 是指侧壁在竖直方向上是非对称的 。 对于条形槽而言, 这意味着形成为侧壁的两个相对设置的平面或曲面是非对 称的。 对于围合的侧壁而言, 这意味着围合的折面或曲面在竖直方向上是非对 称的。 此外, 除了侧壁是非对称的, 第一聚光槽 410的底壁 412也可以是非对称 的。
[0040] 顶盖 440至少有部分区域形成为菲涅尔透镜 441, 以获得较高的聚光比。
[0041] 本实施例装置采用立式安装, 并设置了压电振动片, 因而具有优秀的防尘、 防 雪、 防冰的效果, 可用作太阳能墙。
[0042] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上 实施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领 域的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。

Claims

权利要求书
[权利要求 1] 一种聚光太阳能装置, 其特征在于, 包括
第一聚光槽, 包括侧壁和底壁, 其侧壁限定出开口较大的顶部和开口 较小的底部, 其底部由底壁封闭, 且其侧壁和底壁的内表面至少部分 为反光面;
第二聚光槽, 包括侧壁, 其侧壁限定出开口较大的顶部和开口较小的 底部, 其侧壁的内表面至少部分为反光面; 第二聚光槽的顶部开口方 向与第一聚光槽的顶部开口方向一致, 且第二聚光槽的底部位于第一 聚光槽内部, 且与第一聚光槽的底部之间具有间隔;
一双面光能利用装置, 设置在第二聚光槽的底部, 其正反两面均能接 收太阳光, 且一面朝向第二聚光槽的顶部, 而另一面朝向第一聚光槽 的底部。
[权利要求 2] 如权利要求 1所述的聚光太阳能装置, 其特征在于,
还包括顶盖, 其至少部分是透明的;
第二聚光槽容纳在第一聚光槽内, 所述顶盖封闭第一聚光槽的顶部。
[权利要求 3] 如权利要求 2所述的聚光太阳能装置, 其特征在于,
所述顶盖至少部分形成为菲涅尔透镜。
[权利要求 4] 如权利要求 1所述的聚光太阳能装置, 其特征在于,
第一聚光槽或第二聚光槽的侧壁包括两个相对设置的平面或曲面。
[权利要求 5] 如权利要求 4所述的聚光太阳能装置, 其特征在于,
所述两个相对设置的平面或曲面是非对称的。
[权利要求 6] 如权利要求 1所述的聚光太阳能装置, 其特征在于,
第一聚光槽或第二聚光槽的侧壁形成为围合的折面或曲面。
[权利要求 7] 如权利要求 6所述的聚光太阳能装置, 其特征在于,
所述围合的折面或曲面是非对称的。
[权利要求 8] 如权利要求 1至 7任一项所述的聚光太阳能装置, 其特征在于,
第一聚光槽的底壁形成为反射式菲涅尔透镜, 或者形成为凸型反射面 , 且凸起的方向朝向第一聚光槽的顶部。
[权利要求 9] 如权利要求 1至 7任一项所述的聚光太阳能装置, 其特征在于,
还包括导热支撑件, 设置在所述双面光能利用装置与第一聚光槽的底 壁之间, 用于将所述双面光能利用装置产生的热能传导出去。
[权利要求 10] 如权利要求 1至 7任一项所述的聚光太阳能装置, 其特征在于,
所述双面光能利用装置为双面光伏晶片或者光热利用装置或者综合型 光电和光热利用装置。
[权利要求 11] 如权利要求 2至 7任一项所述的聚光太阳能装置, 其特征在于,
还包括封闭的框体, 第一聚光槽和第二聚光槽被封闭在所述框体内部 或形成为所述框体的一部分。
[权利要求 12] 如权利要求 11所述的聚光太阳能装置, 其特征在于,
还包括压电振动片, 固定连接于所述顶盖或者所述框体。
PCT/CN2019/073965 2019-01-30 2019-01-30 聚光太阳能装置 WO2020154963A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/073965 WO2020154963A1 (zh) 2019-01-30 2019-01-30 聚光太阳能装置
US17/421,015 US20220103120A1 (en) 2019-01-30 2019-01-30 Light-concentrating solar device
CN201980081849.7A CN113228500A (zh) 2019-01-30 2019-01-30 聚光太阳能装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073965 WO2020154963A1 (zh) 2019-01-30 2019-01-30 聚光太阳能装置

Publications (1)

Publication Number Publication Date
WO2020154963A1 true WO2020154963A1 (zh) 2020-08-06

Family

ID=71840743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073965 WO2020154963A1 (zh) 2019-01-30 2019-01-30 聚光太阳能装置

Country Status (3)

Country Link
US (1) US20220103120A1 (zh)
CN (1) CN113228500A (zh)
WO (1) WO2020154963A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022094777A1 (zh) * 2020-11-04 2022-05-12 博立多媒体控股有限公司 太阳能利用装置
WO2022251992A1 (zh) * 2021-05-31 2022-12-08 博立多媒体控股有限公司 太阳能利用单元及其组合结构
WO2023193168A1 (zh) * 2022-04-07 2023-10-12 博立码杰通讯(深圳)有限公司 太阳能利用单元

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348412A (zh) * 2013-08-05 2015-02-11 上海久能能源科技发展有限公司 一种双功能的太阳能发电装置
US20160079461A1 (en) * 2014-02-27 2016-03-17 The Arizona Board Of Regents On Behalf Of The University Of Arizona Solar generator with focusing optics including toroidal arc lenses
CN205901676U (zh) * 2016-08-04 2017-01-18 朱小涛 新型高效光伏发电聚光装置
CN106602993A (zh) * 2017-01-04 2017-04-26 河北荣森新能源科技有限公司 改变太阳光传播方向提升太阳能电池板发电量的发电系统
CN107166755A (zh) * 2017-05-18 2017-09-15 常州大学 二次聚光面增强菲涅尔反射镜线聚焦太阳能收集装置
CN207095062U (zh) * 2017-08-28 2018-03-13 博立码杰通讯(深圳)有限公司 聚光式太阳能瓦
CN208353262U (zh) * 2018-07-16 2019-01-08 浙江电腾云光伏科技有限公司 太阳能电池板组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061181A (en) * 1997-06-09 2000-05-09 Fereidooni; Fred Nontracking light converger
WO2010005503A2 (en) * 2008-06-30 2010-01-14 James Rosa Non-imaging radiant energy concentrator
US20130233299A1 (en) * 2012-03-09 2013-09-12 Virgil Dewitt Perryman Non-tracking solar radiation collector
JP7092479B2 (ja) * 2017-09-21 2022-06-28 株式会社ディスコ 太陽電池パネルの設置方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104348412A (zh) * 2013-08-05 2015-02-11 上海久能能源科技发展有限公司 一种双功能的太阳能发电装置
US20160079461A1 (en) * 2014-02-27 2016-03-17 The Arizona Board Of Regents On Behalf Of The University Of Arizona Solar generator with focusing optics including toroidal arc lenses
CN205901676U (zh) * 2016-08-04 2017-01-18 朱小涛 新型高效光伏发电聚光装置
CN106602993A (zh) * 2017-01-04 2017-04-26 河北荣森新能源科技有限公司 改变太阳光传播方向提升太阳能电池板发电量的发电系统
CN107166755A (zh) * 2017-05-18 2017-09-15 常州大学 二次聚光面增强菲涅尔反射镜线聚焦太阳能收集装置
CN207095062U (zh) * 2017-08-28 2018-03-13 博立码杰通讯(深圳)有限公司 聚光式太阳能瓦
CN208353262U (zh) * 2018-07-16 2019-01-08 浙江电腾云光伏科技有限公司 太阳能电池板组件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022094777A1 (zh) * 2020-11-04 2022-05-12 博立多媒体控股有限公司 太阳能利用装置
WO2022251992A1 (zh) * 2021-05-31 2022-12-08 博立多媒体控股有限公司 太阳能利用单元及其组合结构
WO2023193168A1 (zh) * 2022-04-07 2023-10-12 博立码杰通讯(深圳)有限公司 太阳能利用单元

Also Published As

Publication number Publication date
US20220103120A1 (en) 2022-03-31
CN113228500A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2020154963A1 (zh) 聚光太阳能装置
WO2019084707A1 (zh) 聚光式太阳能系统
TWM561365U (zh) 聚光式光能接收裝置
AU2016434337B2 (en) Concentrating solar apparatus
WO2019213834A1 (zh) 双面聚光太阳能装置和系统
WO2019200503A1 (zh) 聚光太阳能装置
US20210050815A1 (en) Side concentrating solar apparatus
WO2022094777A1 (zh) 太阳能利用装置
WO2020029170A1 (zh) 水面太阳能装置
WO2022148000A1 (zh) 太阳能利用装置
WO2022251992A1 (zh) 太阳能利用单元及其组合结构
WO2022178826A1 (zh) 太阳能利用装置
WO2023028735A1 (zh) 太阳能利用单元及其组合结构
WO2022109943A1 (zh) 太阳能利用装置
WO2023193168A1 (zh) 太阳能利用单元
WO2021212422A1 (zh) 立式太阳能装置
WO2019024080A1 (zh) 立式太阳能装置
WO2022205375A1 (zh) 太阳能利用装置
WO2018053822A1 (zh) 光能接收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912742

Country of ref document: EP

Kind code of ref document: A1