WO2019024080A1 - 立式太阳能装置 - Google Patents

立式太阳能装置 Download PDF

Info

Publication number
WO2019024080A1
WO2019024080A1 PCT/CN2017/095983 CN2017095983W WO2019024080A1 WO 2019024080 A1 WO2019024080 A1 WO 2019024080A1 CN 2017095983 W CN2017095983 W CN 2017095983W WO 2019024080 A1 WO2019024080 A1 WO 2019024080A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
light
receiving surface
light receiving
solar
Prior art date
Application number
PCT/CN2017/095983
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to EP17919871.8A priority Critical patent/EP3660414A4/en
Priority to US16/632,869 priority patent/US20200186081A1/en
Priority to BR112020001322-6A priority patent/BR112020001322A2/pt
Priority to CA3071924A priority patent/CA3071924A1/en
Priority to RU2020107400A priority patent/RU2020107400A/ru
Priority to AU2017425794A priority patent/AU2017425794A1/en
Priority to CN201780092770.5A priority patent/CN110832259A/zh
Priority to PCT/CN2017/095983 priority patent/WO2019024080A1/zh
Publication of WO2019024080A1 publication Critical patent/WO2019024080A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/422Vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/11Driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular to an upright installed vertical solar device.
  • a vertical solar device comprising a vertical light guiding device and a light energy utilizing device.
  • the vertical light guiding device has a height greater than its thickness, and has a substantially vertical first light receiving surface for receiving sunlight;
  • the light energy utilizing device has a substantially flat second receiving surface for receiving sunlight,
  • the second light receiving surface is disposed on a side surface of the first light receiving surface, and the area is smaller than the first light receiving surface.
  • the vertical light guiding device includes at least one substantially vertically disposed Fresnel lens for deflecting sunlight reaching the first light receiving surface to be at least partially guided to the second light receiving surface.
  • the solar device of the present invention since the vertical structure is adopted, it can be applied to installation in narrow strips, such as road sides, river and lake edges, and the like. And the vertical structure makes it easy to combine with the facades of other buildings (such as fences, fences, building exterior walls, etc.), not only can save the independent brackets required by traditional solar installations, but also help to improve solar installations.
  • the wind resistance also saves an extra floor space, which is very beneficial for cities with extremely high population density.
  • FIG. 1 is a schematic view of a vertical solar device of Embodiment 1;
  • FIG. 2 is a schematic view showing two kinds of lines of a tooth surface of a Fresnel lens in the present invention
  • FIG. 3 is a schematic view of a vertical solar device of Embodiment 2;
  • FIG. 4 is a schematic view of a vertical solar device of Embodiment 3.
  • FIG. 5 is a schematic view of a vertical solar device of Embodiment 4.
  • FIG. 6 is a schematic view of a vertical solar device of Embodiment 5.
  • FIG. 7 is a schematic view of a vertical solar device of Embodiment 6.
  • FIG. 1 An embodiment of a vertical solar device according to the present invention can refer to FIG. 1, including a vertical light guiding device 1
  • the height of the vertical light guiding device 110 is greater than its thickness, which has a substantially vertical number for receiving sunlight.
  • the vertical light guiding means comprises two substantially vertical Fresnel lenses 111 and 112 which are formed as walls opposite to each other. Any one of the walls of the Fresnel lenses 111 and 112 can be regarded as the first light receiving surface, and the rear wall surface of the lens 111 (the wall surface farther from the light source) is shown as an example in Fig. 1 .
  • the thickness of the light guiding means is the distance between the two walls.
  • only one of the two vertical walls of the light guiding device may be a Fresnel lens, and the other wall may be formed of a smooth transparent material or a mirror.
  • the light guiding means comprises only a substantially vertical wall formed by a Fresnel lens, in which case the thickness of the light guiding means is only the thickness of the Fresnel lens.
  • the light energy utilization device 120 has a substantially flat second light receiving surface Fa2 for receiving sunlight.
  • the second light receiving surface is disposed on a side surface of the first light receiving surface, and has an area smaller than the first light receiving surface. After being deflected by the light guiding means 1 10, the sunlight LL is at least partially guided to the second light receiving surface.
  • a light energy utilization device generally refers to various devices that convert light energy into other energy, including a photoelectric conversion device or a thermal energy utilization device or a combination of both. Since the light concentrating device is used to converge light, a higher concentrating ratio can be produced, and thus the thermal energy utilizing device can be included in the light energy utilizing device.
  • the photoelectric conversion device includes a photovoltaic panel of various materials, a photovoltaic film, a quantum dot photovoltaic panel, and the like.
  • the thermal energy utilization device includes a thermal energy storage device (referred to as a container containing a heat storage medium, such as a water heater), a thermoelectric conversion device, a Stirling generator, a thermal power generator, and the like.
  • a photovoltaic panel is used as the light energy utilization device, and the surface thereof is the second light receiving surface.
  • the photoelectric conversion device and the thermal energy utilization device can be cascaded to achieve higher solar energy utilization efficiency.
  • the thermal energy utilization device may be disposed on the back side of the light energy utilization device or transparently enclose the light energy utilization device and thermally connected to the light energy utilization device.
  • a Fresnel lens is mainly used as a light guiding element.
  • the Fresnel lens is a thin lens that has the advantages of being lightweight and easy to mass-produce.
  • the vertical light guiding device with Fresnel lens as the main component can increase the concentration ratio at a relatively low cost and greatly save the occupation of precious land.
  • the tooth surface of the Fresnel lens is obtained by dividing the smooth refractive surface of the ordinary lens, so that the grain of the tooth surface and the corresponding smooth lens surface generally have the same optical symmetry.
  • a "concentrating" (or “astigmatic") Fresnel lens is a Fresnel lens that functionally concentrates (or diffuses out of) the optical center of the lens. Usually derived from the convex lens surface (or concave lens surface).
  • the so-called “linear” Fresnel lens including linear astigmatic Fresnel lens and linear concentrating Fresnel lens, refers to The center of focus of the lens is a line, not concentrated at one point.
  • the tooth flanks of a linear Fresnel lens may originate from a concave (or convex) cylindrical face, or a concave (or convex) polynomial cylinder.
  • the Fresnel lens used in the present invention may be selected from the group consisting of a single-sided Fresnel lens having one tooth surface and the other surface being a smooth surface, and a double-sided Fresnel lens having both surfaces on both sides.
  • the Fresnel lenses 111 and 112 may each adopt a single-sided Fresnel lens having only one tooth face, and the two tooth faces are disposed opposite to each other. .
  • the macroscopic shapes of the tooth faces are all flat.
  • macroscopic shape refers to the geometry exhibited by the Fresnel lens as a whole after ignoring the undulation of the tooth surface, and can also be understood as the shape of the smooth envelope surface of the Fresnel lens.
  • the macroscopic shape of the flank may also be a curved surface or a folded surface, which may be determined according to the needs of the installation site and the optical design.
  • a tooth surface having a "lateral concentrating” capability may be employed as the tooth surface of the vertical lens.
  • This flank comes from a portion of a “complete flank” such that the optical center of the flank is at its edge (including near the edge).
  • the "complete tooth surface” can be cut along its optical centerline (for a "line” lens, along its optical center plane) to obtain a tooth surface with "lateral concentrating” capability.
  • the term "complete tooth surface” refers to a tooth surface derived from a symmetrical smooth refractive surface whose optical center coincides with the geometric center, for example:
  • FIG. 2 exemplarily shows a schematic diagram of the texture of two laterally concentrated flank surfaces, wherein FIG. 2(a) is a schematic view of approximately half a circumferentially symmetrical tooth surface, and FIG. 2(b) is approximately A schematic view of a half-line tooth surface.
  • the tooth faces of all the vertical lenses may adopt a "laterally concentrated” tooth surface, or a part of the entire tooth surface may be used, and the other portion may adopt a complete tooth surface.
  • the tooth surface of "laterally concentrated” is used.
  • the last vertical flank before the second light receiving surface can be set as the "laterally concentrated" tooth surface
  • the tooth surface for "lateral concentrating” can not only be cut from a part of the concentrating tooth surface.
  • the present invention allows the present invention to unexpectedly utilize a portion of the astigmatic tooth surface to achieve lateral concentrating.
  • the vertical light guiding device 110 in this embodiment is formed as a closed cavity.
  • the closed chamber is further filled with a gas 113 such as a high pressure gas (a gas having a pressure greater than 1 atmosphere) or an optical gas (a gas having a refractive index greater than air under the same physical conditions). Filling the high pressure gas helps to increase the strength of the device against external forces, while filling the optical gas increases the light collecting ability of the light guiding device.
  • the non-optical gas may be pressurized to have a refractive index greater than one.
  • the light energy utilizing device may also be disposed inside the enclosed cavity of the light guiding device, or the second light receiving surface may be formed as part of the inner surface of the closed cavity.
  • a reflecting surface can also be introduced into the light guiding device, for example, a side surface of any one of the vertically arranged Fresnel lenses facing away from the second light receiving surface is formed as a reflecting surface, so that Become a reflective Fresnel lens; or use a fixed or movable reflector to provide a reflective surface.
  • the vertical light guiding device in this embodiment has a cylindrical shape extending in the vertical direction, and has a rectangular cross section, is suitable for being arranged along a narrow strip, or is disposed on a flat building facade.
  • the vertical light guiding device may also adopt different shapes, such as a wedge shape, or a column extending in a horizontal direction, etc., depending on the needs of the application scenario.
  • the shape of the cross section perpendicular to the direction in which the cylinder extends may be selected from the group consisting of: a circle, a square, a rectangle, an ellipse, a hexagon, and an octagon. If the columnar shape extends in the vertical direction, the first light receiving surface is formed on the cylinder surface; if the column shape extends in the horizontal direction, the first light receiving surface is formed on the upright wall surface (or end surface).
  • FIG. 3 Another embodiment of a vertical solar device according to the present invention can be referred to FIG. 3, including a vertical light guiding device 210 and a light energy utilizing device 220.
  • the vertical light guiding device 210 has a wedge shape and includes two substantially vertical Fresnel lenses 211 and 21
  • Both lenses 211 and 212 are single-sided Fresnel lenses with the flank faces facing inwardly opposite each other with a smooth back facing outward.
  • the tooth surface of the lens 212 can be regarded as the first light receiving surface Fal.
  • the lens 212 employs a reflective Fresnel lens whose outwardly facing smooth back surface is a reflective surface.
  • the light energy utilizing device 220 is disposed at the bottom of the wedge shape, which may be integrally formed with the structure of the light guiding device. Thereby providing a low cost and high performance vertical solar device.
  • the light guiding device 210 in this embodiment further includes mirrors 214 and 214' disposed on both sides of the first light receiving surface, and the mirrors can be deflected in a direction parallel to the first light receiving surface. Better converge sunlight onto the second receiving surface.
  • the wedge structure of the device of the embodiment makes the dust not easy to accumulate, and the façade can be well washed by the rainwater.
  • FIG. 4 Another embodiment of a vertical solar device in accordance with the present invention can be seen in reference to FIG. 4, including a vertical light directing device 310 and a light energy utilizing device 320.
  • the vertical light guiding device 310 has a rectangular column shape and includes two substantially vertical Fresnel lenses 311 and 312 which are formed as walls opposite to each other.
  • the lenses 311 and 312 can employ a single-sided or double-sided Fresnel lens, and the outer surface of the lens 311 can be regarded as the first light-receiving surface Fal.
  • the light energy utilization device 320 is a combination of the photovoltaic panel 321 and the thermal energy utilization device 322.
  • the photovoltaic panel 321 is disposed at the bottom of the light guiding device, and the surface thereof is the second light receiving surface Fa2.
  • the thermal energy utilization device 322 is disposed on the back side of the photovoltaic panel, wherein the working fluid 3221 exchanges heat with the photovoltaic panel through a thermally conductive connection.
  • the working fluid 3221 can exchange material or heat with an external system through the inflow pipe 3222 and the outflow pipe 3223.
  • thermal energy utilization device 322 can be used as part of a hot water supply system or a thermal energy generator.
  • the vertical light guiding device 310 further includes a curtain type reflecting device 315 and a Fresnel lens 316 disposed substantially flat.
  • the reflecting device 315 includes a curtain-type reflecting surface 3151 and a driving mechanism.
  • the driving mechanism is composed of a rotating shaft 315 2 and a guiding rod 3153, and is capable of driving the curtain-type reflecting surface 3151 between an unfolded state and a stowed state.
  • Switching causes the reflective surface 3151 to movably cover the outer surface of the Fresnel lens 312. This not only helps to reduce the thickness of the device, but also enables the device of the embodiment to better meet the needs of different usage scenarios.
  • the horizontal Fresnel lens 316 is disposed on the optical path before the second light receiving surface, and is disposed on the same side of the first light receiving surface as the second light receiving surface, and can be significantly increased by providing the horizontal collecting lens
  • the height of the light guiding device is such that more solar energy is obtained.
  • Example 4 Another embodiment of a vertical solar device according to the present invention may refer to FIG. 5, including a vertical light guiding device 410 and a light energy utilizing device 420.
  • the vertical light guiding device 410 has a rectangular column shape and includes two substantially vertical Fresnel lenses 411 and 412 which are formed as walls opposite to each other.
  • the outer surface of the lens 411 can be regarded as the first light receiving surface Fal.
  • the tooth surface of the lens 411 adopts a preferred structure, that is, is divided into two regions along the height direction, and different regions have different focal lengths.
  • the region A1 having a higher position has a position higher than the position.
  • the lower area A2 has a shorter focal length. This method can effectively increase the height of the device and increase the concentration ratio.
  • the vertical flank can also be divided into more regions having different focal lengths, and the manner in which the sub-regions set the focal length can be applied to all or part of the vertical flank.
  • the light energy utilization device 420 is a combination of the photovoltaic panel 421 and the thermal energy utilization device 422. Unlike the third embodiment, the thermal energy utilization device 422 is integrated at the bottom of the light guiding device 410, so that the light energy utilization device and the light guiding device are used. Formed as a whole.
  • the light guiding device in this embodiment does not include a reflecting surface, so that sunlight from any direction can be deflected toward the bottom thereof via the light guiding means.
  • the solar device of the embodiment further includes a front light collecting device 430 disposed above the vertical light guiding device 410, the lateral dimension of which is greater than the thickness of the vertical light guiding device 410. Used to converge sunlight from above.
  • the front end concentrating device 430 is formed in a sloped roof shape, and is operated by a condensing type Fresnel lens.
  • a front-end concentrating device having a large lateral dimension the device of the embodiment can be better applied to the equator region with strong vertical light, effectively increasing the amount of power generation, and making the device of the embodiment applicable to the first light-receiving device.
  • the mounting of the face in the east-west direction is not limited to the mounting of the first light-receiving surface in the north-south direction.
  • the solar device of the embodiment further includes a piezoelectric vibrator 440 including a piezoelectric vibrating piece 441 and a driving circuit (not shown), the piezoelectric vibrating piece and the light guiding device.
  • the device 410 is mechanically coupled to drive its light-receiving surface to vibrate.
  • dust is not easily deposited on the light-receiving surface, dust can be shaken off by setting a vibrator to achieve self-cleaning of the light-receiving surface.
  • the vibrator can be disposed on the non-primary light receiving surface.
  • the vibrator can be disposed on the side of the light guiding device as long as it can drive the receiving surface to vibrate.
  • FIG. 1 Another embodiment of a vertical solar device according to the present invention may include a vertical light guiding device 510 and a light energy utilizing device 520 with reference to FIG.
  • the vertical light guiding device 510 has a cylindrical shape extending in the horizontal direction, and a cross section perpendicular to the extending direction thereof has a hexagonal shape.
  • the light guiding means 510 comprises two substantially vertically arranged hexagonal Fresnel lenses 511 and 512 and is formed as a closed cavity.
  • the lens 512 is a reflective Fresnel lens whose outwardly facing back surface is a reflecting surface.
  • the outer surface of the lens 511 can be regarded as the first light receiving surface Fal.
  • the cylinders on the side may be transparent or may be reflective.
  • the left and right sides 514 and 514' located in the lower half may be provided as reflective surfaces.
  • the light energy utilization device 520 (for example, a photovoltaic panel) can be enclosed inside the light guiding device, for example, at the bottom of the light guiding device, so that it is not only safe, but also makes the entire solar device shape regular and beautiful.
  • the solar device of the present embodiment can have a small size, and because of its structural characteristics, it can have a large strength, and thus can be used as a solar tile for stacking a vertical wall of a building.
  • the solar tile of the embodiment further includes a plurality of LED lamps 550, and these LEs
  • the D lamp can be powered by the photovoltaic panel 520.
  • Walls can be used to illuminate or beautify the landscape, and can also be used as an outdoor signage.
  • FIG. 6 Another embodiment of a vertical solar device in accordance with the present invention may include vertical light guide 610 and photovoltaic panel 620 with reference to FIG.
  • the vertical light guiding device 610 has only one upright wall and is formed by a Fresnel lens 611.
  • Photovoltaic panel 620 is disposed on one side of the top of the upstanding wall.
  • the lens 611 is a reflective Fresnel lens, and the side of the lens 611 facing the photovoltaic plate can be regarded as the first light receiving surface Fal, and the side facing away from the photovoltaic plate is a reflecting surface.
  • the light guiding device 610 in this embodiment further includes a side mirror 614 disposed substantially at a bottom edge of the lens 611 with the reflecting surface facing the second light receiving surface Fa2.
  • the angle between the mirror 614 and the lens 611 can be slightly less than 90 degrees, so that the light from the lens 611 can be better reflected back and eventually concentrated onto the photovoltaic panel 620.
  • the solar device of the embodiment further includes a rotating shaft 660 disposed substantially vertically, and the entire solar device is mounted on the rotating shaft, so that the first position can be adjusted according to the position of the sun.
  • the rotating shaft 660 can be regarded as a horizontally rotating heliosystem.
  • the solar device of the present embodiment can have better light energy receiving efficiency by being used in conjunction with the following system.
  • a conventional solar system capable of horizontal rotation since the photovoltaic panel is directly placed by tilting to receive sunlight, if a light receiving area needs to be increased in a conventional system, the height and horizontal dimensions need to be increased simultaneously.
  • the device of this embodiment is different, and only needs to increase the height dimension to obtain more solar energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Road Signs Or Road Markings (AREA)

Abstract

一种立式太阳能装置,包括一立式导光装置(110)和一光能利用装置(120),其中立式导光装置(110)包括至少一个基本竖直设置的菲涅尔透镜(111,112);光能利用装置具有基本平躺的第二受光面(Fa2);该导光装置用于偏转太阳光,使其至少部分的被引导到第二受光面(Fa2)。该太阳能装置能够适用于安装在狭长地带,且立式结构使得其便于与建筑物的立面相结合,节省了额外的占地面积。

Description

立式太阳能装置
技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种直立安装的立式太阳能装置。
背景技术
[0002] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。
[0003] 由于太阳能的输入能量跟受光面的面积成正比, 因此, 现有的太阳能系统大多 采用水平设置的方式。 只有在纬度较高的地区, 例如北极和南极, 光伏板才会 被设置为与地平面有较大的夹角。 而在其他广大的区域, 光伏板与地平面的夹 角通常小于 45度, 以获得较高的光能利用效率。
[0004] 平坦设置的太阳能装置占地面积较大, 而这为在人口密度较高的地区布置太阳 能装置带来了困难。 尤其是在大城市中, 对占地的要求使得太阳能装置难以被 推广和利用。 而如果将太阳能电站建设在边远区域, 又会带来电能传输以及管 理方面的问题。
[0005] 因此, 有必要研究更加节省占地和便于布置的太阳能装置。
技术问题
问题的解决方案
技术解决方案
[0006] 依据本发明提供一种立式太阳能装置, 包括一立式导光装置和一光能利用装置 。 其中, 立式导光装置的高度大于其厚度, 其具有用于接收太阳光的基本竖直 的第一受光面; 光能利用装置具有用于接收太阳光的基本平躺的第二受光面, 第二受光面设置于第一受光面的侧面, 且面积小于第一受光面。 立式导光装置 包括至少一个基本竖直设置的菲涅尔透镜, 该立式导光装置用于偏转到达第一 受光面的太阳光, 使其至少部分地被引导到第二受光面。
[0007] 本文中所称"竖直"和"平躺"是相对的概念。 当受光面的法线与所在位置的重力 方向的夹角大于 60度吋, 可视为 "基本竖直的"。 当受光面的法线与所在位置的重 力方向的夹角小于 30度吋, 可视为 "基本平躺的"。 发明的有益效果
有益效果
[0008] 依据本发明的太阳能装置, 由于采用立式结构, 能够适用于安装在狭长地带, 例如公路两侧、 河湖边缘等。 并且立式结构使得其便于与其他建筑物的立面 ( 例如围墙、 栅栏、 楼房外墙等) 相结合, 不仅能够省去传统的太阳能装置所需 要的独立支架, 还能够有助于提高太阳能装置的抗风能力, 还大大节省了额外 的占地面积, 对于人口密度极高的城市而言, 是非常有利的。
[0009] 以下结合附图, 对依据本发明的具体示例进行详细说明。 本文中所使用的表示 位置的词语, 例如"上"、 "下"、 "顶部"、 "底部 "等, 仅表示相对的位置关系, 不 具有绝对性的含义。 本文中所使用的编号或序号, 例如"第一"、 "第二 "等, 仅起 到标识性作用, 不具有任何限制性含义。
对附图的简要说明
附图说明
[0010] 图 1是实施例 1的立式太阳能装置的示意图;
[0011] 图 2是本发明中的菲涅尔透镜的齿面的两种纹路的示意图;
[0012] 图 3是实施例 2的立式太阳能装置的示意图;
[0013] 图 4是实施例 3的立式太阳能装置的示意图;
[0014] 图 5是实施例 4的立式太阳能装置的示意图;
[0015] 图 6是实施例 5的立式太阳能装置的示意图;
[0016] 图 7是实施例 6的立式太阳能装置的示意图。
本发明的实施方式
[0017] 具体实施方式
[0018] 实施例 1
[0019] 依据本发明的立式太阳能装置的一种实施方式可参考图 1, 包括立式导光装置 1
10和光能利用装置 120。
[0020] 立式导光装置 110的高度大于其厚度, 其具有用于接收太阳光的基本竖直的第 一受光面 Fal。 本实施例中, 立式导光装置包括两个基本竖直设置的菲涅尔透镜 111和 112, 形成为彼此相对的壁。 可以将菲涅尔透镜 111和 112的任意一个壁面 视为第一受光面, 图 1中以透镜 111的后壁面 (离光源较远的壁面) 为例示出。 此吋, 导光装置的厚度为两壁之间的距离。
[0021] 在其他实施方式中, 导光装置的两个竖直壁中也可以只有一个壁采用菲涅尔透 镜, 另一壁采用光滑透明材料形成或采用反射镜。 或者导光装置只包含一个基 本竖直的壁, 由菲涅尔透镜形成, 在这种情况下, 导光装置的厚度仅为该菲涅 尔透镜的厚度。
[0022] 光能利用装置 120具有用于接收太阳光的基本平躺的第二受光面 Fa2。 第二受光 面设置于第一受光面的侧面, 且面积小于第一受光面。 太阳光 LL经过导光装置 1 10偏转后, 至少部分地被引导到第二受光面。
[0023] 光能利用装置泛指各种将光能转换为其他能量的装置, 包括光电转换装置或热 能利用装置或二者的组合。 由于使用导光装置对光线进行会聚, 能够产生较高 的聚光比, 因此光能利用装置中可以包括热能利用装置。 光电转换装置包括各 种材料的光伏板、 光伏薄膜、 量子点光伏板等等。 热能利用装置包括热能存储 器 (指含有储热工质的容器, 例如热水器) 、 热电转换装置、 斯特林发电机、 热能发电机等。 本实施例中, 采用光伏板作为光能利用装置, 其表面即为第二 受光面。 在其他实施方式中, 光电转换装置与热能利用装置可以级联使用, 以 实现更高的太阳能利用效率。 例如, 可以将热能利用装置设置于光能利用装置 的背侧或者透明地包裹住光能利用装置, 并与光能利用装置导热连接。
[0024] 本发明中主要利用菲涅尔 (Fresnel) 透镜作为导光元件。 菲涅尔透镜是一种薄 型透镜, 具有轻巧且便于批量制作的优点。 以菲涅尔透镜作为主要元件的立式 导光装置, 能够以相对低廉的成本提高聚光比, 并大大节省对珍贵的土地的占 用。 菲涅尔透镜的齿面由普通透镜的光滑折射面分割后获得, 因此其齿面的纹 路与所对应的光滑透镜面通常具有一致的光学对称性。 本文中所称"聚光型" (或 "散光型") 菲涅尔透镜是指在功能上将光线向透镜的光学中心汇聚 (或从光学中 心扩散出去) 的菲涅尔透镜, 其齿面通常源自凸透镜面 (或凹透镜面) 。 所称" 线型"菲涅尔透镜, 包括线型散光型菲涅尔透镜和线型聚光型菲涅尔透镜, 是指 透镜的聚焦中心为一条线, 而不是集中在一个点上。 举例而言, 线型菲涅尔透 镜的齿面可源自凹形 (或凸形) 圆柱面、 或凹形 (或凸形) 多项式柱面。
[0025] 本发明中所采用的菲涅尔透镜可选自: 一面为齿面而另一面为光滑面的单面菲 涅尔透镜, 两面均为齿面的双面菲涅尔透镜。 例如, 在本实施例中, 为便于装 置立面的清洁, 菲涅尔透镜 111和 112均可采用只有一个齿面的单面菲涅尔透镜 , 并且这两个齿面彼此相对地朝内设置。 简明起见, 本实施例中, 齿面的宏观 形状均为平面。 所称"宏观形状"是指忽略齿面的纹路起伏后菲涅尔透镜整体所呈 现的几何形状, 也可理解为菲涅尔透镜的光滑包络面的形状。 在其他实施方式 中, 齿面的宏观形状也可以是曲面或折面, 可根据安装场所的需求以及光学设 计来确定。
[0026] 为了有利地将照射到竖直受光面上的光线向侧面会聚, 作为一种优选的实施方 式, 可以采用具有 "侧向聚光"能力的齿面作为竖直透镜的齿面。 这种齿面来自于 一"完整的齿面"的一部分, 使得该部分齿面的光学中心位于其边缘处 (包括位于 边缘附近) 。 换言之, 可以将 "完整的齿面 "沿其光学中心线 (对于"线型"透镜而 言, 则是沿其光学中心面) 切幵, 即可获得具有 "侧向聚光"能力的齿面。 所称" 完整的齿面"指源自对称的光滑折射面的齿面, 其光学中心与几何中心一致, 例 如可以是:
[0027] 圆周对称的具有单一焦点的聚光型齿面或散光型齿面,
[0028] 轴对称的线型聚光型齿面或线型散光型齿面,
[0029] 轴对称的具有两个焦点的椭圆型聚光型齿面或椭圆型散光型齿面。
[0030] 图 2中示例性地示出了两种侧向聚光的齿面的纹路示意图, 其中图 2(a)为大约半 个圆周对称的齿面的示意图, 图 2(b)为大约半个线型齿面的示意图。
[0031] 在导光装置中包含有多个齿面的情况下, 所有竖直透镜的齿面均可采用"侧向 聚光"的齿面, 或者也可一部分采用完整的齿面, 另一部分采用 "侧向聚光"的齿 面。 例如, 可以将第二受光面之前的最后一个竖直齿面设置为"侧向聚光"的齿面
[0032] 值得一提的是, 用于"侧向聚光"的齿面不仅可以是切割自聚光型齿面的一部分
(后续光路沿其聚集光线的偏转方向) , 还可以是切割自散光型齿面的一部分 (后续光路沿其发散光线的偏转方向) , 这使得本发明能够出乎意料地利用散 光型齿面的一部分实现侧向聚光。
[0033] 作为一种优选的实施方式, 本实施例中的立式导光装置 110形成为一封闭腔体
, 一方面便于清洁维护, 另一方面也可提高装置的整体强度。 进一步优选地, 封闭腔体内还填充有气体 113, 例如高压气体 (压强大于 1个大气压的气体) 或 者光学气体 (在相同的物理条件下, 折射率大于空气的气体) 。 填充高压气体 有助于增加装置对抗外力的强度, 而填充光学气体则可增加导光装置的聚光能 力。 此外, 也可将非光学气体加压而使其折射率大于 1。
[0034] 在其他实施方式中, 还可将光能利用装置设置在导光装置的封闭腔体内部, 或 者, 将第二受光面形成为封闭腔体的内表面的一部分。 为实现更丰富和灵活的 光学设计, 还可在导光装置中引入反射面, 例如, 将任意一个竖直设置的菲涅 尔透镜的背向第二受光面的侧面形成为反射面, 使其成为反射式菲涅尔透镜; 或者采用固定的或活动的反射装置来提供反射面。
[0035] 本实施例中的立式导光装置的外形为沿竖直方向延伸的柱形, 其截面形状为长 方形, 适于沿狭长地带布置, 或者设置在平整的建筑物立面上。 在其他实施方 式中, 根据应用场景的需要, 立式导光装置也可采用不同的外形, 例如楔形, 或沿水平方向延伸的柱形等。 垂直于柱形延伸方向的截面的形状可选自: 圆形 , 正方形, 长方形, 椭圆形, 六边形, 八边形。 若柱形沿竖直方向延伸, 第一 受光面形成于柱面; 若柱形沿水平方向延伸, 第一受光面形成于直立的壁面 ( 或称端面) 。
[0036] 实施例 2
[0037] 依据本发明的立式太阳能装置的另一种实施方式可参考图 3, 包括立式导光装 置 210和光能利用装置 220。
[0038] 立式导光装置 210的外形为楔形, 包括两个基本竖直设置的菲涅尔透镜 211和 21
2, 形成为彼此相对的壁。 透镜 211和 212均为单面菲涅尔透镜, 齿面彼此相对地 朝内设置, 光滑的背面朝外。 可将透镜 212的齿面视为第一受光面 Fal。 透镜 212 采用反射式菲涅尔透镜, 其朝外的光滑背面为反射面。
[0039] 光能利用装置 220设置在楔形的底部, 其可以与导光装置的结构形成为一体, 从而提供一种低成本而高性能的立式太阳能装置。
[0040] 优选地, 本实施例中导光装置 210还包括设置在第一受光面两侧的反射镜 214和 214', 这些反射镜可以在太阳沿着与第一受光面平行的方向偏转吋更好地将太阳 光向第二受光面会聚。
[0041] 本实施例装置的楔形结构使得灰尘不易堆积, 且立面可以受到雨水的良好冲刷
, 因此在降雨正常的地区, 几乎不需要清洗受光面。
[0042] 实施例 3
[0043] 依据本发明的立式太阳能装置的另一种实施方式可参考图 4, 包括立式导光装 置 310和光能利用装置 320。
[0044] 立式导光装置 310的外形为长方柱形, 包括两个基本竖直设置的菲涅尔透镜 311 和 312, 形成为彼此相对的壁。 透镜 311和 312可采用单面或双面菲涅尔透镜, 可 将透镜 311的外表面视为第一受光面 Fal。
[0045] 光能利用装置 320为光伏板 321与热能利用装置 322的组合, 光伏板 321设置在导 光装置的底部, 其表面为第二受光面 Fa2。 热能利用装置 322设置于光伏板的背 侧, 其中的工质 3221通过导热连接与光伏板进行热量交换。 工质 3221可通过流 入管道 3222和流出管道 3223与外部系统进行物质或热量交换。 例如, 热能利用 装置 322可作为热水供应系统或者热能发电机的一部分。
[0046] 作为一种优选的实施方式, 立式导光装置 310还包括窗帘式反射装置 315以及一 基本平躺设置的菲涅尔透镜 316。
[0047] 反射装置 315包括一窗帘式反射面 3151以及一驱动机构, 该驱动机构由转轴 315 2和导杆 3153组成, 能够驱动窗帘式反射面 3151在一展幵状态与一收起状态之间 切换, 使得反射面 3151能够活动地覆盖在菲涅尔透镜 312的外表面上。 这不仅有 助于降低装置的厚度, 还使得本实施例装置能够更好地满足不同使用场景的需 求。
[0048] 水平的菲涅尔透镜 316设置于第二受光面之前的光路上, 并与第二受光面设置 于第一受光面的同侧, 通过设置该水平的聚光透镜, 能够明显地增加导光装置 的高度, 从而获得更多的太阳能。
[0049] 实施例 4 [0050] 依据本发明的立式太阳能装置的另一种实施方式可参考图 5, 包括立式导光装 置 410和光能利用装置 420。
[0051] 立式导光装置 410的外形为长方柱形, 包括两个基本竖直设置的菲涅尔透镜 411 和 412, 形成为彼此相对的壁。 可将透镜 411的外表面视为第一受光面 Fal。 本实 施例中, 透镜 411的齿面采用一种优选的结构, 即沿高度方向被分为两个区域, 不同的区域具有不同的焦距, 本实施例中位置更高的区域 A1具有比位置更低的 区域 A2更短的焦距。 这种方式能够有效增加装置的高度并增加聚光比。 在其他 实施方式中, 竖直齿面也可以被分为更多的具有不同焦距的区域, 这种分区域 设置焦距的方式可应用于全部或部分竖直齿面。
[0052] 光能利用装置 420为光伏板 421与热能利用装置 422的组合, 与实施例 3不同的是 , 热能利用装置 422集成在导光装置 410的底部, 使得光能利用装置与导光装置 形成为一个整体。
[0053] 本实施例中的导光装置不含反射面, 因此无论来自哪个方向的太阳光均可经由 导光装置向其底部偏转。 但是, 由于导光装置的厚度较小, 在低纬度地区, 在 阳光强烈的中午, 对于竖直方向照射的阳光, 导光装置的受光面积会比较小。 因此, 作为一种优选的实施方式, 本实施例太阳能装置还包括一前端聚光装置 4 30, 其设置在立式导光装置 410的上方, 其横向尺寸大于立式导光装置 410的厚 度, 用于会聚从上方照射的太阳光。 本实施例中, 前端聚光装置 430形成为斜坡 屋顶形, 由聚光型菲涅尔透镜充当。 通过设置具有较大横向尺寸的前端聚光装 置, 使得本实施例装置能够更好地适用于竖直光线强烈的赤道地区, 有效提升 发电量, 并且使得本实施例装置也可适用于第一受光面朝向东西方向的安装, 而不必局限于第一受光面朝向南北方向的安装方式。
[0054] 作为一种优选的实施方式, 本实施例太阳能装置还包括一压电振动器 440, 其 包括一压电振动片 441及其驱动电路 (未图示) , 压电振动片与导光装置 410机 械连接以带动其受光面进行振动。 虽然对于立式太阳能装置而言, 通常灰尘不 容易在受光表面上沉积, 但是在沙尘多的地方也可以通过设置振动器来抖落灰 尘, 实现受光面的自清洁。 振动器可设置在非主要的受光面上, 例如本实施例 中设置于导光装置的侧面, 只要能带动受光面振动即可。 [0055] 实施例 5
[0056] 依据本发明的立式太阳能装置的另一种实施方式可参考图 6, 包括立式导光装 置 510和光能利用装置 520。
[0057] 立式导光装置 510的外形为沿水平方向延伸的柱形, 垂直于其延伸方向的截面 的形状为六边形。 导光装置 510包括两个基本竖直设置的六边形菲涅尔透镜 511 和 512, 并形成为封闭腔体。 透镜 512采用反射式菲涅尔透镜, 其朝外的背面为 反射面。 可将透镜 511的外表面视为第一受光面 Fal。 位于侧边的各柱面可以是 透明的, 也可以采用反射面, 例如, 可将位于下半部的左右两个侧面 514和 514' 设置为反射面。
[0058] 光能利用装置 520 (例如光伏板) 可封闭在导光装置内部, 例如设置在导光装 置的底部, 这样不仅安全, 而且使得整个太阳能装置形状规则而美观。
[0059] 本实施例太阳能装置可具有较小的尺寸, 由于其结构特点其能够具有较大的强 度, 因此可以被作为太阳能砖, 用于堆砌成建筑物的立式墙面。
[0060] 作为一种优选的实施方式, 本实施例太阳能砖还包括多个 LED灯 550, 这些 LE
D灯可以由光伏板 520供电。 砌成的墙面可用于照明或美化景观, 还可用于作为 户外信息显示牌。
[0061] 实施例 6
[0062] 依据本发明的立式太阳能装置的另一种实施方式可参考图 7, 包括立式导光装 置 610和光伏板 620。
[0063] 立式导光装置 610只有一个直立壁, 由菲涅尔透镜 611形成。 光伏板 620设置在 该直立壁的顶部的一侧。 透镜 611采用反射式菲涅尔透镜, 可将透镜 611朝向光 伏板的一面视为第一受光面 Fal, 其背向光伏板的一面为反射面。 优选地, 本实 施例中的导光装置 610还包括一侧面反射镜 614, 其基本平躺地设置在透镜 611的 底部边缘处, 反射面朝向第二受光面 Fa2。 反射镜 614与透镜 611之间的夹角可略 小于 90度, 使得能够更好地将来自透镜 611的光线再反射回去, 最终会聚到光伏 板 620上。
[0064] 作为一种优选的实施方式, 本实施例太阳能装置还包括一基本竖直设置的旋转 轴 660, 整个太阳能装置安装在该旋转轴上, 使得能够根据太阳的位置调整第一 受光面的朝向。 旋转轴 660可视为一水平旋转的跟日系统, 本实施例太阳能装置 通过与跟日系统联合使用, 能够具有更好地光能接收效率。 而且, 对于传统的 能够水平旋转的太阳能系统而言, 由于直接靠倾斜放置的光伏板来接受太阳光 , 因此在传统系统中若需要增加受光面积, 高度和水平尺寸需要同吋增加。 而 本实施例装置则与之不同, 只需要增加高度尺寸就可以获得更多的太阳能。
[0065]
[0066] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。

Claims

权利要求书
一种立式太阳能装置, 其特征在于, 包括
一立式导光装置, 其高度大于其厚度, 其具有用于接收太阳光的基本 竖直的第一受光面,
一光能利用装置, 其具有用于接收太阳光的基本平躺的第二受光面, 第二受光面设置于第一受光面的侧面, 且面积小于第一受光面; 所述立式导光装置包括至少一个基本竖直设置的菲涅尔透镜, 所述立 式导光装置用于偏转到达第一受光面的太阳光, 使其至少部分地被引 导到第二受光面。
如权利要求 1所述的太阳能装置, 其特征在于,
所述菲涅尔透镜选自: 一面为齿面而另一面为光滑面的单面菲涅尔透 镜, 两面均为齿面的双面菲涅尔透镜,
其中, 至少一个齿面来自于一完整的齿面的一部分, 使得该部分齿面 的光学中心位于其边缘处, 所述完整的齿面指源自对称的光滑折射面 的齿面, 其光学中心与几何中心一致。
如权利要求 2所述的太阳能装置, 其特征在于,
所述完整的齿面为聚光型齿面或散光型齿面, 所述完整的齿面选自: 圆周对称的齿面, 线型齿面, 椭圆型齿面;
所述齿面的宏观形状选自: 平面, 曲面, 折面。
如权利要求 2所述的太阳能装置, 其特征在于,
至少一个齿面沿高度方向被分为至少两个区域, 位置更高的区域具有 更短的焦距。
如权利要求 1至 4中任意一项所述的太阳能装置, 其特征在于, 所述至少一个基本竖直设置的菲涅尔透镜中的一个为反射式菲涅尔透 镜, 其任意一面还形成为反射面; 或者,
所述立式导光装置还包括第一反射装置, 其反射面固定地或活动地覆 盖在一个基本竖直设置的菲涅尔透镜的一个面上; 或者,
所述立式导光装置还包括第二反射装置, 其反射面与第二受光面设置 于第一受光面的同侧。
[权利要求 6] 如权利要求 5所述的太阳能装置, 其特征在于,
第一反射装置包括一窗帘式反射面以及一驱动机构, 所述驱动机构能 够驱动所述窗帘式反射面在一展幵状态与一收起状态之间切换。
[权利要求 7] 如权利要求 1至 6中任意一项所述的太阳能装置, 其特征在于,
所述立式导光装置形成为一封闭腔体, 具有两个彼此相对的壁, 其中 一个壁的一面形成为第一受光面, 两个壁中的一者为菲涅尔透镜或者 二者均为菲涅尔透镜。
[权利要求 8] 如权利要求 7所述的太阳能装置, 其特征在于,
所述光能利用装置位于所述封闭腔体内部, 或者, 第二受光面形成为 所述封闭腔体的内表面的一部分。
[权利要求 9] 如权利要求 7或 8所述的太阳能装置, 其特征在于,
所述封闭腔体内填充有压强大于 1个大气压的气体, 或者填充有折射 率大于 1的气体。
[权利要求 10] 如权利要求 1至 9中任意一项所述的太阳能装置, 其特征在于,
所述立式导光装置还包括一基本平躺设置的菲涅尔透镜, 设置于第二 受光面之前的光路上, 并与第二受光面设置于第一受光面的同侧。
[权利要求 11] 如权利要求 1至 10中任意一项所述的太阳能装置, 其特征在于, 还包 括
一前端聚光装置, 设置在所述立式导光装置的上方, 其横向尺寸大于 所述立式导光装置的厚度, 用于会聚从上方照射的太阳光。
[权利要求 12] 如权利要求 1至 11中任意一项所述的太阳能装置, 其特征在于, 还包 括
一基本竖直设置的旋转轴, 所述太阳能装置安装在所述旋转轴上, 用 于根据太阳的位置调整第一受光面的朝向。
[权利要求 13] 如权利要求 1至 12中任意一项所述的太阳能装置, 其特征在于,
所述光能利用装置选自光电转换装置或热能利用装置或二者的组合, 当光电转换装置与热能利用装置组合使用吋, 所述热能利用装置设置 于所述光能利用装置的背侧或者包裹所述光能利用装置, 并与所述光 能利用装置导热连接。
[权利要求 14] 如权利要求 1至 13中任意一项所述的太阳能装置, 其特征在于, 所述立式导光装置的外形选自: 楔形, 沿竖直方向延伸的柱形, 沿水 平方向延伸的柱形,
所述柱形垂直于延伸方向的截面的形状选自: 圆形, 正方形, 长方形 , 椭圆形, 六边形, 八边形,
若所述柱形沿竖直方向延伸, 第一受光面形成于柱面; 若所述柱形沿 水平方向延伸, 第一受光面形成于竖直的壁面。
[权利要求 15] 如权利要求 1至 14中任意一项所述的太阳能装置, 其特征在于, 还包 括以下至少一种:
一压电振动器, 其包括一压电振动片及其驱动电路, 所述压电振动片 与所述立式导光装置机械连接以带动其受光面进行振动;
至少一个 LED灯, 所述光能利用装置包括光电转换装置, 所述 LED灯 由所述光电转换装置供电。
PCT/CN2017/095983 2017-08-04 2017-08-04 立式太阳能装置 WO2019024080A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17919871.8A EP3660414A4 (en) 2017-08-04 2017-08-04 VERTICAL SOLAR APPLIANCE
US16/632,869 US20200186081A1 (en) 2017-08-04 2017-08-04 Vertical solar apparatus
BR112020001322-6A BR112020001322A2 (pt) 2017-08-04 2017-08-04 aparelho solar vertical
CA3071924A CA3071924A1 (en) 2017-08-04 2017-08-04 Vertical solar apparatus
RU2020107400A RU2020107400A (ru) 2017-08-04 2017-08-04 Вертикальное солнечное устройство
AU2017425794A AU2017425794A1 (en) 2017-08-04 2017-08-04 Vertical solar apparatus
CN201780092770.5A CN110832259A (zh) 2017-08-04 2017-08-04 立式太阳能装置
PCT/CN2017/095983 WO2019024080A1 (zh) 2017-08-04 2017-08-04 立式太阳能装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095983 WO2019024080A1 (zh) 2017-08-04 2017-08-04 立式太阳能装置

Publications (1)

Publication Number Publication Date
WO2019024080A1 true WO2019024080A1 (zh) 2019-02-07

Family

ID=65233328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095983 WO2019024080A1 (zh) 2017-08-04 2017-08-04 立式太阳能装置

Country Status (8)

Country Link
US (1) US20200186081A1 (zh)
EP (1) EP3660414A4 (zh)
CN (1) CN110832259A (zh)
AU (1) AU2017425794A1 (zh)
BR (1) BR112020001322A2 (zh)
CA (1) CA3071924A1 (zh)
RU (1) RU2020107400A (zh)
WO (1) WO2019024080A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2788093Y (zh) * 2005-03-20 2006-06-14 吴启华 立式太阳能集热器
CN201429729Y (zh) * 2009-01-19 2010-03-24 王晓岚 镜面加透镜复合式槽式聚光设备
CN202419963U (zh) * 2011-12-07 2012-09-05 苏州同济材料科技有限公司 壁挂式太阳能热水器
CN202613795U (zh) * 2012-04-01 2012-12-19 苏州科林天际新能源科技有限公司 高效收集太阳能量的装置
CN202630451U (zh) * 2012-04-25 2012-12-26 王士壮 新型太阳能集热器
CN104482673A (zh) * 2014-12-24 2015-04-01 娲石水泥集团武汉万世科技有限公司 一种多功能窗式太阳能热水器
CN205883136U (zh) * 2016-08-08 2017-01-11 湖北海宏康光电科技有限公司 多角度的倾角可调的太阳能板
CN106972821A (zh) * 2017-04-28 2017-07-21 唐文义 一种可旋转双倾角的光伏组件安装塔架

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074704A (en) * 1976-05-28 1978-02-21 Gellert Donald P Process of and apparatus for solar heating and the like
DE2801714A1 (de) * 1978-01-16 1979-07-19 Koester Helmut Anlage zur sonnenenergiegewinnung mit hilfe einer reflektierenden lamellenartigen vorhangwand als konzentrationssystem
US4389085A (en) * 1978-02-22 1983-06-21 Kei Mori Lighting system utilizing the sunlight
JPS56113957A (en) * 1980-02-15 1981-09-08 Hajime Kubo Solar-heat collecting device
JPS5944001A (ja) * 1982-09-06 1984-03-12 Chikatsu Okagawa プリズム型太陽光集光装置
JPH10221528A (ja) * 1996-12-05 1998-08-21 Toyota Motor Corp 太陽電池装置
US6469241B1 (en) * 2001-06-21 2002-10-22 The Aerospace Corporation High concentration spectrum splitting solar collector
DE10132901A1 (de) * 2001-07-06 2003-01-16 Nikolaus Laing Solarwasserheizer für polnahen Einsatz
US20090301469A1 (en) * 2006-07-28 2009-12-10 Angus Muir Edington Scrimgeour Solar collectors
US20080257400A1 (en) * 2007-04-17 2008-10-23 Mignon George V Holographically enhanced photovoltaic (hepv) solar module
US20090255568A1 (en) * 2007-05-01 2009-10-15 Morgan Solar Inc. Solar panel window
KR101455892B1 (ko) * 2007-09-10 2014-11-04 반얀 에너지, 인크 광 에너지의 집광, 집결 및 조명을 위한 소형 광소자
CN101635314B (zh) * 2008-07-25 2015-06-24 晶元光电股份有限公司 太阳能电池的聚光装置
JP5430367B2 (ja) * 2009-11-26 2014-02-26 キヤノン株式会社 塵埃除去装置および塵埃除去方法
WO2012014539A1 (ja) * 2010-07-26 2012-02-02 シャープ株式会社 太陽電池モジュールおよび太陽光発電装置
FR2981438B1 (fr) * 2011-10-18 2016-10-28 Wysips Capteur solaire rigide ou souple avec une image visualisee en surface, et ses procedes de fabrication
CN102544175A (zh) * 2012-01-22 2012-07-04 华北电力大学(保定) 太阳能电池板的补光装置
DE102012213136A1 (de) * 2012-07-26 2014-01-30 Siemens Aktiengesellschaft Photovoltaikmodul und Verfahren zum Reinigen des Photovoltaikmoduls
CN203536455U (zh) * 2013-11-13 2014-04-09 群赞科技(深圳)有限公司 太阳能电池板
CN104716215B (zh) * 2013-12-11 2017-04-19 上海空间电源研究所 一种二次聚光器
CN108323214A (zh) * 2015-12-01 2018-07-24 博立多媒体控股有限公司 聚光式太阳能系统
CN205335269U (zh) * 2016-02-13 2016-06-22 宁夏意洋节能科技有限公司 散热型聚光太阳能电池
CN205582955U (zh) * 2016-04-05 2016-09-14 江苏奔亚科技发展有限公司 一种高效集光太阳能电池组件
CN205897587U (zh) * 2016-07-08 2017-01-18 倪屹 具备阳光自动跟踪的阳光导入装置
CN106482360B (zh) * 2016-09-30 2020-09-29 杭州凌萤科技有限公司 一种太阳能收集、传输装置及其原理
CN106972825A (zh) * 2017-05-03 2017-07-21 杭州凌萤科技有限公司 曲面反射聚光太阳能光伏发电装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2788093Y (zh) * 2005-03-20 2006-06-14 吴启华 立式太阳能集热器
CN201429729Y (zh) * 2009-01-19 2010-03-24 王晓岚 镜面加透镜复合式槽式聚光设备
CN202419963U (zh) * 2011-12-07 2012-09-05 苏州同济材料科技有限公司 壁挂式太阳能热水器
CN202613795U (zh) * 2012-04-01 2012-12-19 苏州科林天际新能源科技有限公司 高效收集太阳能量的装置
CN202630451U (zh) * 2012-04-25 2012-12-26 王士壮 新型太阳能集热器
CN104482673A (zh) * 2014-12-24 2015-04-01 娲石水泥集团武汉万世科技有限公司 一种多功能窗式太阳能热水器
CN205883136U (zh) * 2016-08-08 2017-01-11 湖北海宏康光电科技有限公司 多角度的倾角可调的太阳能板
CN106972821A (zh) * 2017-04-28 2017-07-21 唐文义 一种可旋转双倾角的光伏组件安装塔架

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660414A4 *

Also Published As

Publication number Publication date
RU2020107400A (ru) 2021-09-06
AU2017425794A1 (en) 2020-03-19
RU2020107400A3 (zh) 2021-09-06
CA3071924A1 (en) 2019-02-07
EP3660414A1 (en) 2020-06-03
BR112020001322A2 (pt) 2020-08-11
EP3660414A4 (en) 2021-01-20
CN110832259A (zh) 2020-02-21
US20200186081A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
CN106482360B (zh) 一种太阳能收集、传输装置及其原理
RU2676214C1 (ru) Система концентрированной солнечной энергии
CN103199743A (zh) 一种可控双状态反光聚光太阳能集热发电装置
US10554168B2 (en) Light-concentrating solar system
CN201498523U (zh) 波形瓦聚光电池组件
WO2015018132A1 (zh) 一种管状跟踪聚光光伏组件
WO2019024080A1 (zh) 立式太阳能装置
CN112005489A (zh) 双面聚光太阳能装置和系统
KR20190096732A (ko) 3차원입체곡면의 볼록거울로 된 확산반사 판이 구비되는 태양광발전장치
JP4313841B1 (ja) 太陽レンズと太陽光利用装置
CN209982428U (zh) 一种多面折射的新型太阳能光伏板
US20210050815A1 (en) Side concentrating solar apparatus
CN216252600U (zh) 用于仿古建筑的太阳能发电板
CN115523461B (zh) 基于双凹透镜与双凸透镜组合的自然光匀化照明装置
CN211959154U (zh) 一种聚光镜和聚光光伏组件
CN106351408A (zh) 一种太阳能收集、传输屋面板
US10199527B2 (en) Solar concentrator and illumination apparatus
WO2017206140A1 (zh) 跟日太阳能系统
CN201846274U (zh) 抛物柱面采光太阳能发电装置
CN102191836A (zh) 波形瓦聚光电池组件
JP3084125U (ja) 太陽電池パネル構造
CN101592407A (zh) 太阳能集光装置
CN115468137A (zh) 基于平凹透镜与半凸透镜组合的自然光匀化照明装置
WO2021212422A1 (zh) 立式太阳能装置
WO2018053822A1 (zh) 光能接收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919871

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001322

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3071924

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919871

Country of ref document: EP

Effective date: 20200226

ENP Entry into the national phase

Ref document number: 2017425794

Country of ref document: AU

Date of ref document: 20170804

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020001322

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200121