WO2018105333A1 - 多層セラミック基板及び電子装置 - Google Patents
多層セラミック基板及び電子装置 Download PDFInfo
- Publication number
- WO2018105333A1 WO2018105333A1 PCT/JP2017/040930 JP2017040930W WO2018105333A1 WO 2018105333 A1 WO2018105333 A1 WO 2018105333A1 JP 2017040930 W JP2017040930 W JP 2017040930W WO 2018105333 A1 WO2018105333 A1 WO 2018105333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- less
- multilayer ceramic
- ceramic substrate
- surface layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0051—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
- C04B38/0054—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49822—Multilayer substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4629—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4688—Composite multilayer circuits, i.e. comprising insulating layers having different properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00844—Uses not provided for elsewhere in C04B2111/00 for electronic applications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/58—Forming a gradient in composition or in properties across the laminate or the joined articles
- C04B2237/586—Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different densities
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/62—Forming laminates or joined articles comprising holes, channels or other types of openings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/704—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/068—Thermal details wherein the coefficient of thermal expansion is important
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24917—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
Definitions
- the present invention relates to a multilayer ceramic substrate and an electronic device.
- multilayer ceramic substrates in which wiring conductors are arranged three-dimensionally are widely used for applications such as modules in which a plurality of electronic components such as semiconductor components are arranged.
- Patent Document 1 discloses a multilayer ceramic substrate having a laminated structure including an inner layer portion and a surface layer portion positioned so as to sandwich the inner layer portion in the lamination direction, and the thermal expansion coefficient of the surface layer portion is ⁇ 1 [ppmK ⁇ 1. And when the coefficient of thermal expansion of the inner layer portion is ⁇ 2 [ppmK ⁇ 1 ], 0.3 ⁇ ⁇ 2 ⁇ 1 ⁇ 1.5, and acicular crystals are deposited on the inner layer portion Is disclosed.
- Patent Document 2 discloses a multilayer ceramic substrate having a laminated structure composed of a surface layer portion and an inner layer portion, and the thermal expansion coefficient of the surface layer portion is smaller than the thermal expansion coefficient of the inner layer portion, and the heat of the inner layer portion.
- a multilayer ceramic substrate having a difference from an expansion coefficient of 1.0 ppm K ⁇ 1 or more, and a weight ratio of components common to the material constituting the surface layer portion and the material constituting the inner layer portion being 75 wt% or more. Has been.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a multilayer ceramic substrate in which disconnection of the surface layer electrode is suppressed and insulation of the inner layer portion is ensured. Another object of the present invention is to provide an electronic device including the multilayer ceramic substrate.
- the multilayer ceramic substrate of the present invention is a multilayer ceramic substrate having a laminated structure composed of a surface layer portion located on the surface and an inner layer portion located inside the surface layer portion, and a surface layer electrode provided on the surface of the surface layer portion.
- the surface layer portion includes a first layer adjacent to the inner layer portion, the inner layer portion includes a second layer adjacent to the first layer, and the pore ratio of the first layer is 13% or less,
- the maximum pore diameter is 10 ⁇ m or less, the pore ratio of the second layer is 14% or less, and the maximum pore diameter is 11 ⁇ m or less.
- the first layer and The second layer can be made dense. As a result, disconnection of the surface layer electrode can be suppressed, and insulation of the inner layer portion can be ensured.
- the pore ratio of the first layer is preferably 8% or less, and the maximum pore diameter of the first layer is preferably 7 ⁇ m or less.
- the pore ratio of the second layer is preferably 9% or less, and the maximum pore diameter of the second layer is preferably 9 ⁇ m or less.
- the thermal expansion coefficient of the first layer is smaller than the thermal expansion coefficient of the second layer, and the materials constituting the first layer and the second layer are both 40% by weight.
- 65% by weight or less of MO (wherein MO is at least one selected from the group consisting of CaO, MgO, SrO and BaO), alumina, and a group consisting of CuO and Ag 2 O.
- MO is at least one selected from the group consisting of CaO, MgO, SrO and BaO
- alumina a group consisting of CuO and Ag 2 O.
- At least one metal oxide wherein the content of the alumina with respect to the total weight of the glass and the alumina is 35% by weight or more and 60% by weight or less, and the metal oxidation with respect to the total weight of the glass and the alumina
- the content of the product is preferably 1% by weight or more and 10% by weight or less.
- the material constituting the first layer in the surface layer part and the material constituting the second layer in the inner layer part contain a predetermined amount of at least one metal oxide selected from the group consisting of CuO and Ag 2 O By virtue of this, vitrification in the first layer is promoted, and the first layer can be made dense. As a result, the occurrence of pores in the first layer can be suppressed, so that disconnection of the surface layer electrode can be suppressed.
- the content of the metal oxide in the first layer is preferably larger than the content of the metal oxide in the second layer. If the content of the metal oxide in the second layer is too large, vitrification in the second layer will proceed excessively, so that the organic components cannot be sufficiently decomposed during firing, and the second layer has pores. Is likely to occur. In that case, although the disconnection of the surface layer electrode can be suppressed, the insulation of the inner layer portion may be lowered. Therefore, by making the content of the metal oxide in the first layer higher than the content of the metal oxide in the second layer, it is possible to suppress the disconnection of the surface layer electrode and to improve the insulation of the inner layer portion. Can be secured.
- the thermal expansion coefficient of the first layer is ⁇ 1 [ppmK ⁇ 1 ] and the thermal expansion coefficient of the second layer is ⁇ 2 [ppmK ⁇ 1 ], 0.3 ⁇ ⁇ 2 ⁇ It is preferable that ⁇ 1 ⁇ 1.5.
- the difference ⁇ 2- ⁇ 1 in the thermal expansion coefficient is 0.3 or more, the bending strength of the multilayer ceramic substrate can be increased.
- the difference ⁇ 2- ⁇ 1 of the thermal expansion coefficient is 1.5 or less, an increase in stress at the interface between the first layer and the second layer is suppressed, and the occurrence of peeling at the interface portion is suppressed. Can do.
- An electronic device includes the multilayer ceramic substrate.
- FIG. 1 is a cross-sectional view schematically showing an electronic device including a multilayer ceramic substrate according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing a composite laminate produced during the production of the multilayer ceramic substrate shown in FIG.
- FIG. 3 is a cross-sectional view schematically showing a multilayer ceramic substrate for evaluation.
- the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
- the present invention also includes a combination of two or more desirable configurations of the present invention described below.
- FIG. 1 is a cross-sectional view schematically showing an electronic device including a multilayer ceramic substrate according to an embodiment of the present invention.
- the multilayer ceramic substrate 1 has a laminated structure including an inner layer portion 10 and a first surface layer portion 20 and a second surface layer portion 30 that are positioned so as to sandwich the inner layer portion 10 in the laminating direction.
- Each of the inner layer portion 10, the first surface layer portion 20, and the second surface layer portion 30 is composed of at least one ceramic layer.
- the first surface layer portion 20 includes a first layer 21 adjacent to the inner layer portion 10
- the second surface layer portion 30 includes a first layer 31 adjacent to the inner layer portion 10.
- the inner layer portion 10 includes a second layer 22 adjacent to the first layer 21 in the first surface layer portion 20 and a second layer 32 adjacent to the first layer 31 in the second surface layer portion 30. .
- the multilayer ceramic substrate 1 includes a wiring conductor.
- the wiring conductor is used for forming a passive element such as a capacitor or an inductor, or for performing connection wiring such as an electrical connection between the elements.
- the electrodes 41 and 42, the inner conductor 43, and the via hole conductor 44 are configured. These wiring conductors are preferably composed mainly of Ag, Cu, Au, an Ag—Pd alloy or an Ag—Pt alloy, and more preferably composed mainly of Ag.
- the surface layer electrodes 41 and 42 are formed on one main surface and the other main surface of the multilayer ceramic substrate 1, respectively.
- the internal conductor 43 is formed inside the multilayer ceramic substrate 1 and is provided between the ceramic layers.
- the via-hole conductor 44 is electrically connected to any one of the surface layer electrodes 41 and 42 and the internal conductor 43, and is provided so as to penetrate the ceramic layer in the thickness direction.
- a multilayer ceramic capacitor 45 and a semiconductor component 46 which are chip-shaped electronic components, are mounted while being electrically connected to the surface layer electrode 41.
- an electronic device A including the multilayer ceramic substrate 1 is configured.
- the surface layer electrode 42 formed on the other main surface of the multilayer ceramic substrate 1 is used as an electrical connection means when the electronic device A is mounted on a mother board (not shown).
- the pore ratio of the first layer is 13% or less.
- the pore ratio of the first layer is preferably 8% or less.
- the pore ratio of the first layer is preferably 1% or more.
- the maximum pore diameter of the first layer is 10 ⁇ m or less.
- the maximum pore diameter of the first layer is preferably 7 ⁇ m or less.
- the maximum pore diameter of the first layer is preferably 1 ⁇ m or more.
- the first layer preferably has a pore ratio of 13% or less, a maximum pore diameter of 10 ⁇ m or less, a pore ratio of 8% or less, and a maximum pore diameter of 7 ⁇ m or less.
- the pore ratio of the second layer is 14% or less.
- the pore ratio of the second layer is preferably 9% or less.
- the pore ratio of the second layer is preferably 2% or more.
- the maximum pore diameter of the second layer is 11 ⁇ m or less.
- the maximum pore diameter of the second layer is preferably 9 ⁇ m or less.
- the maximum pore diameter of the second layer is preferably 2 ⁇ m or more.
- the pore ratio of the second layer is preferably 14% or less, the maximum pore diameter is 11 ⁇ m or less, the pore ratio is 9% or less, and the maximum pore diameter is 9 ⁇ m or less.
- the pore ratio and the maximum pore diameter can be obtained by observing the cross sections of the first layer and the second layer by SEM, and the pore ratio is an area ratio occupied by the pore in the visual field, and the maximum pore diameter. Is the diameter of the largest pore in the field of view.
- the pore ratio and the maximum pore diameter of the ceramic layer other than the first layer are not particularly limited, but at least the pore ratio of the outermost layer is 13% or less and the maximum pore diameter is 10 ⁇ m.
- the pore ratio of all the ceramic layers constituting the surface layer portion is preferably 13% or less, and the maximum pore diameter is more preferably 10 ⁇ m or less.
- the inner layer portion includes a ceramic layer other than the second layer
- the pore ratio and the maximum pore diameter of the ceramic layer other than the second layer are not particularly limited, but the pore ratio of all ceramic layers constituting the inner layer portion is 14 % Or less, and the maximum pore diameter is preferably 11 ⁇ m or less.
- the thermal expansion coefficient of the first layer is preferably smaller than the thermal expansion coefficient of the second layer.
- the thermal expansion coefficient of the first layer is ⁇ 1 [ppmK ⁇ 1 ] and the thermal expansion coefficient of the second layer is ⁇ 2 [ppmK ⁇ 1 ]
- the more preferable lower limit of the difference ⁇ 2- ⁇ 1 in the thermal expansion coefficient is 0.4, the more preferable lower limit is 0.5, the particularly preferable lower limit is 0.6, the more preferable upper limit is 1.4, and the more preferable upper limit is The value is 1.3.
- a thermal expansion coefficient is obtained as a value measured at a temperature increase rate of 5 ° C./min from room temperature to 500 ° C. by thermomechanical analysis (TMA).
- a preferable lower limit value of the thermal expansion coefficient ⁇ 1 of the first layer is 5.0 ppmK ⁇ 1 , a more preferable lower limit value is 5.3 ppmK ⁇ 1 , a preferable upper limit value is 8.0 ppmK ⁇ 1 , and a more preferable upper limit value is 7.7 ppmK. -1 .
- the preferred lower limit of the thermal expansion coefficient ⁇ 2 of the second layer is 5.5 ppm K ⁇ 1 , the more preferred lower limit is 5.7 ppm K ⁇ 1 , the preferred upper limit is 8.5 ppm K ⁇ 1 , and the more preferred upper limit is 8 0.0 ppm K ⁇ 1 .
- a mixture of glass, alumina, and metal oxide is used as each material of the surface layer ceramic layer constituting the surface layer portion and the inner layer ceramic layer constituting the inner layer portion.
- the materials constituting the first layer and the second layer both contain glass.
- the glass constituting the first layer and the second layer are both 40% by weight to 65% by weight MO (where MO is CaO, MgO, SrO and It is preferable to include at least one selected from the group consisting of BaO.
- Glass constituting the first and second layers are both preferably further includes Al 2 O 3, B 2 O 3 and SiO 2.
- the thermal expansion coefficient of the first layer and the thermal expansion coefficient of the second layer can be adjusted by adjusting the composition of the glass contained in the material constituting the first layer and the second layer and the content of each component. .
- the preferable ratio of the content of the components contained in the glass constituting the first layer is as follows.
- MO preferably CaO
- MO preferably CaO
- Al 2 O 3 0 wt% or more and 10 wt% or less
- 5 wt% or less B 2 O 3 0 wt% or more and 20 wt% or less
- SiO 2 25 wt% or more and 70 wt% or less
- the preferable ratio of the content of the components contained in the glass constituting the second layer is as follows.
- MO preferably CaO
- MO preferably CaO
- Al 2 O 3 0 wt% or more and 10 wt% or less
- 5 wt% or less B 2 O 3 0 wt% or more and 20 wt% or less
- SiO 2 25 wt% or more and 70 wt% or less
- the glass constituting the first layer and the second layer may contain other impurities, and the preferred content when impurities are contained is less than 5% by weight.
- the materials constituting the first layer and the second layer both contain alumina (Al 2 O 3 ) as a ceramic filler.
- the Al 2 O 3 filler contributes to improving the mechanical strength.
- the content of alumina is 35 wt% or more and 60 wt% or less with respect to the total weight of glass and alumina.
- the material constituting the first layer more preferably contains 48 wt% or more and 60 wt% or less of alumina with respect to the total weight of glass and alumina.
- the material constituting the second layer more preferably contains 48 wt% or more and 60 wt% or less of alumina with respect to the total weight of glass and alumina.
- the materials constituting the first layer and the second layer both include at least one metal oxide selected from the group consisting of CuO and Ag 2 O.
- the material constituting the first and second layers are both more preferably contains any one of CuO and Ag 2 O.
- CuO and Ag 2 O have metal elements (Cu and Ag) that are common to the metal elements constituting the wiring conductor, but the materials constituting the first layer and the second layer are the metal elements constituting the wiring conductor. It is not necessary to include a metal oxide having the same metal element.
- the material constituting the first layer and the second layer may contain CuO.
- the content of the metal oxide with respect to the total weight of glass and alumina is preferably 1% by weight or more and 10% by weight or less.
- the content of the metal oxide in the first layer is preferably larger than the content of the metal oxide in the second layer. More preferably, the material constituting the first layer contains 3% by weight or more and 5% by weight or less of metal oxide with respect to the total weight of glass and alumina.
- the material constituting the second layer more preferably contains 1 wt% or more and 2 wt% or less of metal oxide with respect to the total weight of glass and alumina.
- the material constituting the first layer preferably contains 48 wt% to 60 wt% alumina and 3 wt% to 5 wt% metal oxide based on the total weight of glass and alumina.
- the material which comprises a 2nd layer contains 48 to 60 weight% of aluminas with respect to the total weight of glass and an alumina, and contains 1 to 2 weight% of metal oxides.
- the material constituting the first layer and the second layer may include other ceramic fillers such as ZrO 2 in addition to Al 2 O 3 , CuO, and Ag 2 O.
- the ceramic layer other than the first layer may be made of a material different from the first layer, but at least the outermost layer is made of the same material as the first layer. It is preferable that all ceramic layers constituting the surface layer portion are made of the same material as that of the first layer.
- the ceramic layer other than the second layer may be made of a material different from the second layer, but all the ceramic layers constituting the inner layer portion are It is preferable that it is made of the same material as the two layers.
- surface layer electrodes 41 and 42 are provided on the surfaces of both the first surface layer portion 20 and the second surface layer portion 30, respectively, and the first surface layer portion 20 and the second surface layer are provided.
- the portion 30 has the first layers 21 and 31, respectively.
- the surface layer electrode is provided on the surface of at least one surface layer portion, and the surface layer portion provided with the surface layer electrode is the above-described surface layer portion. It is sufficient to have the first layer.
- the multilayer ceramic substrate 1 shown in FIG. 1 is preferably manufactured as follows.
- FIG. 2 is a cross-sectional view schematically showing a composite laminate produced during the production of the multilayer ceramic substrate shown in FIG.
- the composite laminate 100 includes an inner layer ceramic green sheet 110 to be the inner layer portion 10 in the multilayer ceramic substrate 1, and surface layer ceramic green sheets 120 and 130 to be the surface layer portions 20 and 30. Sheets 151 and 152 are provided. Further, the inner layer ceramic green sheet 110 and the surface layer ceramic green sheets 120 and 130 are provided with surface layer electrodes 41 and 42 as wiring conductors provided in the multilayer ceramic substrate 1, an inner conductor 43 and a via hole conductor 44. These wiring conductors are composed of unsintered conductor paste at this stage.
- an inner layer ceramic green sheet 110, a surface layer ceramic green sheet 120 and 130, and a restraining ceramic green sheet 151 and 152 are prepared.
- the inner layer ceramic green sheet to be the second layer so that the pore ratio of the sintered body of the surface layer ceramic green sheets 120 and 130 to be the first layer is 13% or less and the maximum pore diameter is 10 ⁇ m or less.
- Each composition of these ceramic green sheets 110, 120, and 130 is selected so that the pore ratio of the sintered body of 110 is 14% or less and the maximum pore diameter is 11 ⁇ m or less.
- the constraining ceramic green sheets 151 and 152 are mainly composed of an inorganic material (Al 2 O 3 or the like) that is not sintered at a temperature at which the inner layer ceramic green sheets 110 and the surface layer ceramic green sheets 120 and 130 are sintered. With composition.
- surface ceramic green sheets 120 and 130 are arranged so that at least one inner layer ceramic green sheet 110 is sandwiched in the stacking direction, and constraining ceramic green sheets 151 and 152 are arranged on the outer sides thereof, respectively. By doing so, a composite laminate 100 as shown in FIG. 2 is produced.
- the composite laminate 100 is fired at a temperature at which the ceramic ceramic sheets for surface layer 120 and 130 and the ceramic green sheet for inner layer 110 are sintered but the ceramic ceramic sheets for restraint 151 and 152 are not sintered.
- the pore ratio of the first layers 21 and 31 (see FIG. 1) derived from the ceramic ceramic sheets 120 and 130 for the surface layer is 13% or less
- the maximum pore diameter is 10 ⁇ m or less
- the fired composite laminate 100 in which the pore ratio of the second layers 22 and 32 (see FIG. 1) is 14% or less and the maximum pore diameter is 11 ⁇ m or less is obtained.
- the ceramic green sheets for the surface layer and the ceramic green sheets for the inner layer are fired in each main surface direction. Shrinkage can be suppressed. Therefore, it is possible not only to suppress undesired deformation of the multilayer ceramic substrate and increase the dimensional accuracy, but also to prevent peeling between the surface layer portion and the inner layer portion during firing.
- the glass component contained in the surface ceramic green sheet is usually easily absorbed by the constraining ceramic green sheet.
- the surface layer ceramic green sheet to be the first layer and the inner layer ceramic green sheet to be the second layer are at least one metal oxide selected from the group consisting of CuO and Ag 2 O Is contained in a predetermined amount, vitrification in the first layer is promoted, and the first layer can be made dense. As a result, the occurrence of pores in the first layer can be suppressed, so that disconnection of the surface layer electrode can be suppressed.
- a laminated body without the constraining ceramic green sheets may be fired. Also in this case, disconnection of the surface electrode can be suppressed.
- SiO 2 —CaO—B 2 O 3 —Al 2 O 3 glass powder having the composition shown in Table 1 was prepared.
- the ceramic green sheet for surface layers and the ceramic green sheet for inner layers were each produced so that each sample shown in Table 2 might be obtained.
- a mixed powder containing glass powder, alumina (Al 2 O 3 ) powder, and metal oxide powder of CuO or Ag 2 O was mixed with a solvent, a dispersant, a binder, and plastic.
- a slurry was obtained by blending and mixing the agent. The obtained slurry was applied on a PET film to prepare a surface layer ceramic green sheet and an inner layer ceramic green sheet.
- Table 2 shows the type and content of glass powder, the content of Al 2 O 3 powder, and the content of metal oxide powder contained in the ceramic green sheet for surface layer and the ceramic green sheet for inner layer.
- the symbols “G1” to “G3” described in the types of glass correspond to the “glass symbols” in Table 1.
- the weight ratio of the glass powder to the Al 2 O 3 powder was adjusted to 46:54 to 60:40.
- adjust the thickness of the ceramic green sheet for the surface layer and the ceramic green sheet for the inner layer so that the thickness of the first layer (surface layer) and the thickness of the second layer (inner layer) shown in Table 2 can be obtained after firing, respectively. did.
- a solvent, a dispersant, a binder, and a plasticizer were blended into Al 2 O 3 powder and mixed to obtain a slurry.
- the obtained slurry was applied onto a PET film to produce a constraining ceramic green sheet having a thickness of 50 ⁇ m.
- Ag powder, a solvent, and an organic binder were mixed at a predetermined ratio, and this mixture was subjected to a dispersion treatment by a three-roll mill to obtain an Ag paste.
- the surface ceramic green sheet for the surface layer and the ceramic green sheet for the inner layer were subjected to via hole processing using a laser puncher, and then filled with Ag paste to form a paste body serving as a via hole conductor.
- the paste pattern used as a surface layer electrode and an internal conductor was formed by printing Ag paste by screen printing on the specific ceramic green sheet for surface layers, and the ceramic green sheet for inner layers.
- a plurality of these ceramic green sheets for the surface layer and ceramic green sheets for the inner layer were laminated, and the constraining ceramic green sheets were arranged on the upper and lower sides thereof, followed by pressure bonding to produce a composite laminate.
- the produced composite laminate was fired at a temperature at which the ceramic green sheet for the surface layer, the ceramic green sheet for the inner layer, and the Ag paste were sintered, but the ceramic green sheet for restraint was not sintered. After firing, the unsintered portion derived from the constraining ceramic green sheet was removed to produce a multilayer ceramic substrate for evaluation.
- FIG. 3 is a cross-sectional view schematically showing a multilayer ceramic substrate for evaluation.
- the multilayer ceramic substrate 2 for evaluation includes the first layer 21 of the surface layer portion 20 on the second layer 22 located on the surface of the inner layer portion 10 and the second layer 32 located on the back surface of the inner layer portion 10. It has a laminated structure in which one layer 31 is bonded to each other. Two via-hole conductors 44a and 44b are formed in the substrate.
- the via hole conductor 44a is connected to the surface layer electrode 41 formed on the first layer 21 on the front side of the substrate and the internal conductor 43a formed between the layers constituting the inner layer portion 10, and the via hole conductor 44b is connected to the back side of the substrate.
- the surface layer electrode 42 formed on the first layer 31 and the internal conductor 43 b formed between the layers constituting the inner layer portion 10 are connected.
- the internal conductor 43a connected to the via-hole conductor 44a and the internal conductor 43b connected to the via-hole conductor 44b are separated by an interval corresponding to the thickness of one ceramic layer constituting the inner layer portion 10.
- the “difference in thermal expansion coefficient” was determined from the thermal expansion coefficient ⁇ 1 of the first layer and the thermal expansion coefficient ⁇ 2 of the second layer of the multilayer ceramic substrate for evaluation.
- the thermal expansion coefficient was measured by thermomechanical analysis (TMA) at a temperature increase rate of 5 ° C./min from room temperature to 500 ° C. under the following conditions. Measurement atmosphere: Nitrogen (300 mL / min) Measurement load: 10 gf
- the “pore ratio” and “maximum pore diameter” were determined by SEM observation of the cross section of the multilayer ceramic substrate. Specifically, the fired multilayer ceramic substrate is cut into a predetermined size, embedded in an epoxy resin mixed with a curing agent, solidified, and then polished to obtain a cross section, and the first layer and the second layer The cross section of was observed at a magnification of 500 times.
- “Insulation of the inner layer part” was an insulation test using the front and back surface electrodes of the multilayer ceramic substrate for evaluation as terminals. A DC voltage of 50 V was applied in the pressure cooker test, and the insulation resistance after 200 hours was confirmed. The test condition is 121 ° C.-85% RH. Leakage current after applying a DC voltage of 50V to the sample after the pressure cooker test for 60 seconds was measured. A sample showing LogIR ⁇ 10 was marked as ⁇ (good), and a sample showing LogIR ⁇ 10 was marked as x (bad). evaluated. In addition, as shown in Table 2, the thickness of the ceramic layer sandwiched between the inner conductors for measuring the insulation resistance is 11 ⁇ m after firing in the absence of the inner conductor.
- connection of surface electrode was evaluated by checking the presence or absence of conduction at both ends of the surface layer electrode of the multilayer ceramic substrate for evaluation using a tester. The case where it was not conductive was evaluated as x (defect).
- “Bending strength” was determined by measuring the bending strength of a multilayer ceramic substrate for evaluation by a three-point bending method. Separately, a sample consisting only of the surface layer part and a sample consisting only of the inner layer part were prepared, and the bending strength of each sample was measured by a three-point bending method. As described above, the bending strength was measured for each of the surface layer portion, the inner layer portion, and the substrate (the entire sintered body). When the bending strength of the substrate is the same as the bending strength of the inner layer part or higher than the bending strength of the inner layer part (good), when the bending strength of the substrate is lower than the bending strength of the inner layer part Was evaluated as x (defect).
- “Delamination” evaluated whether there was delamination in the cross section of the multilayer ceramic substrate for evaluation by observation using a 200 ⁇ metal microscope. For each of the 100 samples, the case where no delamination was observed was evaluated as ⁇ (good), and the case where even one delamination was confirmed was evaluated as x (bad).
- the pore ratio of the first layer is 13% or less
- the maximum pore diameter is 10 ⁇ m or less
- the pore ratio of the second layer is 14% or less
- the maximum pore diameter is 11 ⁇ m or less.
- the content of CuO in the first layer is greater than or equal to the content of CuO in the second layer, and the first layer and the second layer Since the difference in thermal expansion coefficient is 0.3 ⁇ ⁇ 2 ⁇ 1 ⁇ 1.5, the insulating property of the inner layer portion can be secured, the bending strength of the substrate is higher than the bending strength of the inner layer portion, and delamination Neither has occurred.
- Example 9 where the difference ⁇ 2- ⁇ 1 between the thermal expansion coefficients of the first layer and the second layer is 0.1, the surface layer electrode does not break, but the substrate has a bending strength of the inner layer. It is lower than the strength.
- Example 10 in which the difference ⁇ 2- ⁇ 1 between the thermal expansion coefficients of the first layer and the second layer is 1.8, the surface layer electrode is not disconnected, but delamination occurs.
- the pore ratio of the first layer and the second layer is high, and the maximum pore diameter is Therefore, the surface layer electrode is disconnected, and the insulation of the inner layer portion is also lowered.
- Comparative Example 4 in which the content of CuO in the first layer is 11% by weight, the pore ratio of the first layer is high and the maximum pore diameter is large, so that the surface layer electrode is disconnected.
- Example 16 to 18 in which the pore ratio of the first layer is 13% or less and the maximum pore diameter is 10 ⁇ m or less, the pore ratio of the second layer is 14% or less, and the maximum pore diameter is 11 ⁇ m or less.
- the electrode is not broken. From the results of Examples 16 to 18, it can be seen that, even when Ag 2 O is used as the metal oxide, the effect of suppressing the disconnection of the surface electrode can be obtained as in the case of using CuO.
- the content of Ag 2 O in the first layer is more than the content of Ag 2 O in the second layer, and the thermal expansion coefficient of the first and second layers Since the difference is 0.3 ⁇ ⁇ 2 ⁇ 1 ⁇ 1.5, the insulating property of the inner layer portion can be secured, the bending strength of the substrate is higher than the bending strength of the inner layer portion, and delamination occurs. Absent.
- the material constituting the first layer contains Ag 2 O which is a metal oxide but the material constituting the second layer does not contain a metal oxide
- vitrification is sufficiently promoted.
- the pore ratio of the first layer and the second layer is high and the maximum pore diameter is also increased.
- the surface layer electrode is disconnected, and the insulation of the inner layer portion is also lowered.
- Comparative Example 6 in which the content of Ag 2 O in the second layer is 4% by weight, the pore ratio of the second layer is high and the maximum pore diameter is also large, so that the insulation of the inner layer portion is lowered.
- Comparative Example 7 in which the content of Ag 2 O in the first layer is 11% by weight, the pore ratio of the first layer is high and the maximum pore diameter is large, so that the surface layer electrode is disconnected.
- a Electronic device 1 2 Multilayer ceramic substrate 10 Inner layer portion 20, 30 Surface layer portion 21, 31 First layer 22, 32 Second layer 41, 42 Surface layer electrode 43, 43a, 43b Inner conductor 44, 44a, 44b Via hole conductor 100 Composite Laminate 110 Ceramic Green Sheet for Inner Layer 120, 130 Ceramic Green Sheet for Surface Layer 151, 152 Ceramic Green Sheet for Restraint
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
本発明の多層セラミック基板は、表面に位置する表層部と上記表層部より内側に位置する内層部とからなる積層構造を有し、上記表層部の表面に表層電極が設けられた多層セラミック基板であって、上記表層部は、上記内層部に隣接する第1層を含み、上記内層部は、上記第1層に隣接する第2層を含み、上記第1層のポア率が13%以下、最大ポア径が10μm以下であり、上記第2層のポア率が14%以下、最大ポア径が11μm以下であることを特徴とする。
Description
本発明は、多層セラミック基板及び電子装置に関する。
近年、半導体部品等の電子部品を複数配設したモジュール等の用途に、配線導体を3次元的に配置した多層セラミック基板が広く用いられている。
特許文献1には、内層部と、その内層部を積層方向に挟むように位置する表層部とからなる積層構造を有する多層セラミック基板であって、表層部の熱膨張係数をα1[ppmK-1]とし、内層部の熱膨張係数をα2[ppmK-1]としたとき、0.3≦α2-α1≦1.5であり、かつ、内層部に針状結晶が析出している多層セラミック基板が開示されている。
また、特許文献2には、表層部と内層部とからなる積層構造を有する多層セラミック基板であって、表層部の熱膨張係数は、内層部の熱膨張係数より小さく、かつ、内層部の熱膨張係数との差が1.0ppmK-1以上であり、表層部を構成する材料と内層部を構成する材料との間で共通する成分の重量比率が75重量%以上である多層セラミック基板が開示されている。
特許文献1及び2に記載の多層セラミック基板によれば、表層部の熱膨張係数を内層部の熱膨張係数よりも小さくすることにより、焼成後の冷却過程において、表裏の最外層に圧縮応力が生じるため、多層セラミック基板の抗折強度を向上させることができるとされている。
近年、電子装置の小型化により、多層セラミック基板の薄型化、及び、配線の細線化が進められている。特許文献1及び2に記載の多層セラミック基板では、内層部よりも熱膨張係数の小さい層を表層部に設けることによって、抗折強度が向上し、多層セラミック基板の薄型化が可能となっている。しかし、特許文献1及び2に記載の多層セラミック基板では、表層部及び内層部にポア(空隙)が発生し、表層部の表面に設けられた表層電極に断線が生じる場合があることが判明した。今後、多層セラミック基板の薄型化、及び、配線の細線化を進めていくためには、このような表層電極の断線を抑制する必要がある。
本発明は上記の問題を解決するためになされたものであり、表層電極の断線が抑制されるとともに、内層部の絶縁性が確保された多層セラミック基板を提供することを目的とする。本発明はまた、該多層セラミック基板を備える電子装置を提供することを目的とする。
本発明の多層セラミック基板は、表面に位置する表層部と上記表層部より内側に位置する内層部とからなる積層構造を有し、上記表層部の表面に表層電極が設けられた多層セラミック基板であって、上記表層部は、上記内層部に隣接する第1層を含み、上記内層部は、上記第1層に隣接する第2層を含み、上記第1層のポア率が13%以下、最大ポア径が10μm以下であり、上記第2層のポア率が14%以下、最大ポア径が11μm以下であることを特徴とする。
本発明の多層セラミック基板においては、表層部中の第1層のポア率及び最大ポア径、並びに、内層部中の第2層のポア率及び最大ポア径を小さくすることにより、第1層及び第2層を緻密にすることができる。その結果、表層電極の断線を抑制することができることができるとともに、内層部の絶縁性を確保することができる。
本発明の多層セラミック基板では、上記第1層のポア率が8%以下であることが好ましく、上記第1層の最大ポア径が7μm以下であることが好ましい。また、上記第2層のポア率が9%以下であることが好ましく、上記第2層の最大ポア径が9μm以下であることが好ましい。
本発明の多層セラミック基板では、上記第1層の熱膨張係数は、上記第2層の熱膨張係数より小さく、上記第1層及び上記第2層を構成する材料は、いずれも、40重量%以上65重量%以下のMO(ただし、MOは、CaO、MgO、SrO及びBaOからなる群より選択される少なくとも1種)を含むガラスと、アルミナと、CuO及びAg2Oからなる群から選択される少なくとも1種の金属酸化物とを含み、上記ガラス及び上記アルミナの合計重量に対する上記アルミナの含有量が35重量%以上60重量%以下であり、上記ガラス及び上記アルミナの合計重量に対する上記金属酸化物の含有量が1重量%以上10重量%以下であることが好ましい。
表層部中の第1層を構成する材料、及び、内層部中の第2層を構成する材料に、CuO及びAg2Oからなる群から選択される少なくとも1種の金属酸化物を所定量含有させることにより、第1層でのガラス化が促進され、第1層を緻密にすることができる。その結果、第1層でのポアの発生を抑えることができるため、表層電極の断線を抑制することができる。
表層部中の第1層を構成する材料、及び、内層部中の第2層を構成する材料に、CuO及びAg2Oからなる群から選択される少なくとも1種の金属酸化物を所定量含有させることにより、第1層でのガラス化が促進され、第1層を緻密にすることができる。その結果、第1層でのポアの発生を抑えることができるため、表層電極の断線を抑制することができる。
本発明の多層セラミック基板では、上記第1層中の上記金属酸化物の上記含有量は、上記第2層中の上記金属酸化物の上記含有量よりも多いことが好ましい。
第2層中の金属酸化物の含有量が多すぎると、第2層でのガラス化が過度に進んでしまうため、焼成時に有機成分を充分に分解することができず、第2層にポアが発生しやすくなる。その場合、表層電極の断線を抑制することはできるものの、内層部の絶縁性が低下するおそれがある。そのため、第1層中の金属酸化物の含有量を第2層中の金属酸化物の含有量よりも多くすることにより、表層電極の断線を抑制することができるとともに、内層部の絶縁性を確保することができる。
第2層中の金属酸化物の含有量が多すぎると、第2層でのガラス化が過度に進んでしまうため、焼成時に有機成分を充分に分解することができず、第2層にポアが発生しやすくなる。その場合、表層電極の断線を抑制することはできるものの、内層部の絶縁性が低下するおそれがある。そのため、第1層中の金属酸化物の含有量を第2層中の金属酸化物の含有量よりも多くすることにより、表層電極の断線を抑制することができるとともに、内層部の絶縁性を確保することができる。
本発明の多層セラミック基板では、上記第1層の熱膨張係数をα1[ppmK-1]とし、上記第2層の熱膨張係数をα2[ppmK-1]としたとき、0.3≦α2-α1≦1.5であることが好ましい。
熱膨張係数の差α2-α1を0.3以上とすることにより、多層セラミック基板の抗折強度を高くすることができる。また、熱膨張係数の差α2-α1を1.5以下とすることにより、第1層と第2層との界面での応力の増加が抑制され、界面部分での剥離の発生を抑制することができる。
熱膨張係数の差α2-α1を0.3以上とすることにより、多層セラミック基板の抗折強度を高くすることができる。また、熱膨張係数の差α2-α1を1.5以下とすることにより、第1層と第2層との界面での応力の増加が抑制され、界面部分での剥離の発生を抑制することができる。
本発明の電子装置は、上記多層セラミック基板を備えることを特徴とする。
本発明によれば、表層電極の断線が抑制されるとともに、内層部の絶縁性が確保された多層セラミック基板を提供することができる。
以下、本発明の多層セラミック基板及び電子装置について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
図1は、本発明の一実施形態に係る多層セラミック基板を備える電子装置を模式的に示す断面図である。
多層セラミック基板1は、内層部10と、内層部10を積層方向に挟むように位置する第1の表層部20及び第2の表層部30とからなる積層構造を有している。
内層部10、第1の表層部20及び第2の表層部30は、それぞれ少なくとも1層のセラミック層から構成されている。第1の表層部20は、内層部10に隣接する第1層21を含み、第2の表層部30は、内層部10に隣接する第1層31を含む。また、内層部10は、第1の表層部20中の第1層21に隣接する第2層22と、第2の表層部30中の第1層31に隣接する第2層32とを含む。
内層部10、第1の表層部20及び第2の表層部30は、それぞれ少なくとも1層のセラミック層から構成されている。第1の表層部20は、内層部10に隣接する第1層21を含み、第2の表層部30は、内層部10に隣接する第1層31を含む。また、内層部10は、第1の表層部20中の第1層21に隣接する第2層22と、第2の表層部30中の第1層31に隣接する第2層32とを含む。
多層セラミック基板1は、配線導体を備えている。配線導体は、例えばコンデンサ又はインダクタのような受動素子を構成したり、あるいは素子間の電気的接続のような接続配線を行なったりするためのもので、典型的には、図示したように、表層電極41及び42、内部導体43、並びに、ビアホール導体44から構成される。これらの配線導体は、Ag、Cu、Au、Ag-Pd合金又はAg-Pt合金を主成分とすることが好ましく、Agを主成分とすることがより好ましい。
表層電極41及び42は、それぞれ、多層セラミック基板1の一方主面上及び他方主面上に形成される。内部導体43は、多層セラミック基板1の内部に形成され、セラミック層の間に設けられる。ビアホール導体44は、表層電極41及び42並びに内部導体43のいずれかと電気的に接続され、かつセラミック層を厚み方向に貫通するように設けられる。
多層セラミック基板1の一方主面上には、表層電極41に電気的に接続された状態で、チップ状の電子部品である積層セラミックキャパシタ45及び半導体部品46が搭載される。これによって、多層セラミック基板1を備える電子装置Aが構成される。多層セラミック基板1の他方主面上に形成された表層電極42は、当該電子装置Aを図示しないマザーボード上に実装する際の電気的接続手段として用いられる。
本発明の多層セラミック基板においては、第1層のポア率が13%以下である。第1層のポア率は、好ましくは8%以下である。また、第1層のポア率は、好ましくは1%以上である。
本発明の多層セラミック基板においては、第1層の最大ポア径が10μm以下である。第1層の最大ポア径は、好ましくは7μm以下である。また、第1層の最大ポア径は、好ましくは1μm以上である。
本発明の多層セラミック基板においては、第1層のポア率が13%以下、最大ポア径が10μm以下であり、ポア率が8%以下、最大ポア径が7μm以下であることが好ましい。
本発明の多層セラミック基板においては、第2層のポア率が14%以下である。第2層のポア率は、好ましくは9%以下である。また、第2層のポア率は、好ましくは2%以上である。
本発明の多層セラミック基板においては、第2層の最大ポア径が11μm以下である。第2層の最大ポア径は、好ましくは9μm以下である。また、第2層の最大ポア径は、好ましくは2μm以上である。
本発明の多層セラミック基板においては、第2層のポア率が14%以下、最大ポア径が11μm以下であり、ポア率が9%以下、最大ポア径が9μm以下であることが好ましい。
なお、上記ポア率及び最大ポア径は、第1層及び第2層の断面をSEM観察することによって求めることができ、ポア率とは、視野内においてポアの占める面積比率であり、最大ポア径とは、視野内において最も大きなポアの直径である。
表層部が第1層以外のセラミック層を含む場合、第1層以外のセラミック層のポア率及び最大ポア径は特に限定されないが、少なくとも最表層のポア率が13%以下、最大ポア径が10μm以下であることが好ましく、表層部を構成する全てのセラミック層のポア率が13%以下、最大ポア径が10μm以下であることがより好ましい。また、内層部が第2層以外のセラミック層を含む場合、第2層以外のセラミック層のポア率及び最大ポア径は特に限定されないが、内層部を構成する全てのセラミック層のポア率が14%以下、最大ポア径が11μm以下であることが好ましい。
本発明の多層セラミック基板において、第1層の熱膨張係数は、第2層の熱膨張係数より小さいことが好ましい。第1層の熱膨張係数をα1[ppmK-1]とし、第2層の熱膨張係数をα2[ppmK-1]としたとき、0.3≦α2-α1≦1.5であることが好ましい。熱膨張係数の差α2-α1のより好ましい下限値は0.4、さらに好ましい下限値は0.5、特に好ましい下限値は0.6であり、より好ましい上限値は1.4、さらに好ましい上限値は1.3である。
なお、熱膨張係数は、熱機械分析(TMA)により、室温から500℃まで5℃/minの昇温速度で測定した値として得られる。
なお、熱膨張係数は、熱機械分析(TMA)により、室温から500℃まで5℃/minの昇温速度で測定した値として得られる。
第1層の熱膨張係数α1の好ましい下限値は5.0ppmK-1、より好ましい下限値は5.3ppmK-1であり、好ましい上限値は8.0ppmK-1、より好ましい上限値は7.7ppmK-1である。また、第2層の熱膨張係数α2の好ましい下限値は5.5ppmK-1、より好ましい下限値は5.7ppmK-1であり、好ましい上限値は8.5ppmK-1、より好ましい上限値は8.0ppmK-1である。
後述するように、表層部を構成する表層部セラミック層、及び、内層部を構成する内層部セラミック層の各材料として、ガラスとアルミナと金属酸化物との混合物が用いられる。ガラスとアルミナと金属酸化物との比率、あるいはガラスの種類及び/又は金属酸化物の種類を変更することによって、第1層の熱膨張係数及び第2層の熱膨張係数をそれぞれ調整することができる。
第1層及び第2層を構成する材料は、いずれもガラスを含む。具体的には、第1層及び第2層を構成するガラスは、いずれも、ガラス全体の重量に対して40重量%以上65重量%以下のMO(ただし、MOは、CaO、MgO、SrO及びBaOからなる群より選択される少なくとも1種)を含むことが好ましい。
第1層及び第2層を構成するガラスは、いずれも、Al2O3、B2O3及びSiO2をさらに含むことが好ましい。
第1層及び第2層を構成する材料に含まれるガラスの組成及び各成分の含有量を調整することによって、第1層の熱膨張係数及び第2層の熱膨張係数を調整することができる。
第1層及び第2層を構成するガラスは、いずれも、Al2O3、B2O3及びSiO2をさらに含むことが好ましい。
第1層及び第2層を構成する材料に含まれるガラスの組成及び各成分の含有量を調整することによって、第1層の熱膨張係数及び第2層の熱膨張係数を調整することができる。
第1層を構成するガラスに含まれる成分の含有量の好ましい割合は以下のようになる。
MO(好ましくはCaO):40重量%以上55重量%以下、より好ましくは41重量%以上50重量%以下
Al2O3:0重量%以上10重量%以下、より好ましくは3重量%以上8.5重量%以下
B2O3:0重量%以上20重量%以下、より好ましくは3重量%以上15重量%以下
SiO2:25重量%以上70重量%以下、より好ましくは30重量%以上60重量%以下
MO(好ましくはCaO):40重量%以上55重量%以下、より好ましくは41重量%以上50重量%以下
Al2O3:0重量%以上10重量%以下、より好ましくは3重量%以上8.5重量%以下
B2O3:0重量%以上20重量%以下、より好ましくは3重量%以上15重量%以下
SiO2:25重量%以上70重量%以下、より好ましくは30重量%以上60重量%以下
第2層を構成するガラスに含まれる成分の含有量の好ましい割合は以下のようになる。
MO(好ましくはCaO):40重量%以上55重量%以下、より好ましくは41重量%以上50重量%以下
Al2O3:0重量%以上10重量%以下、より好ましくは3重量%以上8.5重量%以下
B2O3:0重量%以上20重量%以下、より好ましくは3重量%以上15重量%以下
SiO2:25重量%以上70重量%以下、より好ましくは30重量%以上60重量%以下
MO(好ましくはCaO):40重量%以上55重量%以下、より好ましくは41重量%以上50重量%以下
Al2O3:0重量%以上10重量%以下、より好ましくは3重量%以上8.5重量%以下
B2O3:0重量%以上20重量%以下、より好ましくは3重量%以上15重量%以下
SiO2:25重量%以上70重量%以下、より好ましくは30重量%以上60重量%以下
第1層及び第2層を構成するガラスには、その他の不純物が含まれていてもよく、不純物が含まれる場合の好ましい含有量は5重量%未満である。
第1層及び第2層を構成する材料は、いずれも、セラミックフィラーとしてアルミナ(Al2O3)を含むことが好ましい。Al2O3フィラーは、機械的強度を向上させるのに寄与する。
第1層及び第2層を構成する材料においては、いずれも、ガラス及びアルミナの合計重量に対するアルミナの含有量が35重量%以上60重量%以下であることが好ましい。
第1層を構成する材料は、ガラス及びアルミナの合計重量に対してアルミナを48重量%以上60重量%以下含むことがより好ましい。また、第2層を構成する材料は、ガラス及びアルミナの合計重量に対してアルミナを48重量%以上60重量%以下含むことがより好ましい。
第1層を構成する材料は、ガラス及びアルミナの合計重量に対してアルミナを48重量%以上60重量%以下含むことがより好ましい。また、第2層を構成する材料は、ガラス及びアルミナの合計重量に対してアルミナを48重量%以上60重量%以下含むことがより好ましい。
さらに、第1層及び第2層を構成する材料は、いずれも、CuO及びAg2Oからなる群から選択される少なくとも1種の金属酸化物を含むことが好ましい。第1層及び第2層を構成する材料は、いずれも、CuO及びAg2Oのいずれか一方を含むことがより好ましい。この場合、第1層及び第2層を構成する材料のうち、一方はCuOを、他方はAg2Oを含んでもよいが、どちらも同じ金属酸化物を含むことが好ましい。また、CuO及びAg2Oは、配線導体を構成する金属元素と共通する金属元素(Cu及びAg)を有するが、第1層及び第2層を構成する材料は、配線導体を構成する金属元素と同じ金属元素を有する金属酸化物を含んでいなくてもよい。例えば、配線導体がAgを主成分とする場合、第1層及び第2層を構成する材料はCuOを含んでもよい。
第1層及び第2層を構成する材料においては、いずれも、ガラス及びアルミナの合計重量に対する金属酸化物の含有量が1重量%以上10重量%以下であることが好ましい。第1層中の金属酸化物の上記含有量は、第2層中の金属酸化物の上記含有量よりも多いことが好ましい。
第1層を構成する材料は、ガラス及びアルミナの合計重量に対して金属酸化物を3重量%以上5重量%以下含むことがより好ましい。また、第2層を構成する材料は、ガラス及びアルミナの合計重量に対して金属酸化物を1重量%以上2重量%以下含むことがより好ましい。
第1層を構成する材料は、ガラス及びアルミナの合計重量に対して金属酸化物を3重量%以上5重量%以下含むことがより好ましい。また、第2層を構成する材料は、ガラス及びアルミナの合計重量に対して金属酸化物を1重量%以上2重量%以下含むことがより好ましい。
特に、第1層を構成する材料は、ガラス及びアルミナの合計重量に対してアルミナを48重量%以上60重量%以下含み、金属酸化物を3重量%以上5重量%以下含むことが好ましい。また、第2層を構成する材料は、ガラス及びアルミナの合計重量に対してアルミナを48重量%以上60重量%以下含み、金属酸化物を1重量%以上2重量%以下含むことが好ましい。
第1層及び第2層を構成する材料には、Al2O3、CuO及びAg2O以外に、例えばZrO2等の他のセラミックフィラーが含まれていてもよい。
表層部が第1層以外のセラミック層を含む場合、第1層以外のセラミック層は、第1層と異なる材料から構成されてもよいが、少なくとも最表層が第1層と同じ材料から構成されていることが好ましく、表層部を構成する全てのセラミック層が第1層と同じ材料から構成されていることがより好ましい。また、内層部が第2層以外のセラミック層を含む場合、第2層以外のセラミック層は、第2層と異なる材料から構成されてもよいが、内層部を構成する全てのセラミック層が第2層と同じ材料から構成されていることが好ましい。
図1に示した多層セラミック基板1では、第1の表層部20及び第2の表層部30の両方の表面にそれぞれ表層電極41及び42が設けられ、第1の表層部20及び第2の表層部30がそれぞれ第1層21及び31を有しているが、本発明の多層セラミック基板においては、少なくとも一方の表層部の表面に表層電極が設けられ、表層電極が設けられた表層部が上述の第1層を有していればよい。
図1に示した多層セラミック基板1は、好ましくは、以下のように製造される。
図2は、図1に示した多層セラミック基板の製造途中で作製される複合積層体を模式的に示す断面図である。
複合積層体100は、多層セラミック基板1における内層部10となるべき内層用セラミックグリーンシート110と、表層部20及び30となるべき表層用セラミックグリーンシート120及び130とを備えるとともに、拘束用セラミックグリーンシート151及び152を備えている。また、内層用セラミックグリーンシート110並びに表層用セラミックグリーンシート120及び130には、多層セラミック基板1に備える配線導体としての表層電極41及び42、内部導体43並びにビアホール導体44が設けられている。これらの配線導体は、この段階では、未焼結の導体ペーストから構成されている。
複合積層体100は、多層セラミック基板1における内層部10となるべき内層用セラミックグリーンシート110と、表層部20及び30となるべき表層用セラミックグリーンシート120及び130とを備えるとともに、拘束用セラミックグリーンシート151及び152を備えている。また、内層用セラミックグリーンシート110並びに表層用セラミックグリーンシート120及び130には、多層セラミック基板1に備える配線導体としての表層電極41及び42、内部導体43並びにビアホール導体44が設けられている。これらの配線導体は、この段階では、未焼結の導体ペーストから構成されている。
このような複合積層体100を作製するため、まず、内層用セラミックグリーンシート110、表層用セラミックグリーンシート120及び130、並びに、拘束用セラミックグリーンシート151及び152がそれぞれ用意される。
第1層となるべき表層用セラミックグリーンシート120及び130の焼結体のポア率が13%以下、最大ポア径が10μm以下となるように、さらに、第2層となるべき内層用セラミックグリーンシート110の焼結体のポア率が14%以下、最大ポア径が11μm以下となるように、これらのセラミックグリーンシート110、120及び130の各組成が選ばれる。
拘束用セラミックグリーンシート151及び152は、内層用セラミックグリーンシート110、並びに、表層用セラミックグリーンシート120及び130が焼結する温度では焼結しない無機材料(Al2O3等)を主成分とする組成とされる。
次に、少なくとも1つの内層用セラミックグリーンシート110を積層方向に挟むように、それぞれ、表層用セラミックグリーンシート120及び130を配置し、さらに、その外側に拘束用セラミックグリーンシート151及び152をそれぞれ配置することによって、図2に示すような複合積層体100が作製される。
続いて、複合積層体100は、表層用セラミックグリーンシート120及び130並びに内層用セラミックグリーンシート110が焼結するが、拘束用セラミックグリーンシート151及び152が焼結しない温度で焼成される。その結果、表層用セラミックグリーンシート120及び130に由来する第1層21及び31(図1参照)のポア率が13%以下、最大ポア径が10μm以下であり、内層用セラミックグリーンシート110に由来する第2層22及び32(図1参照)のポア率が14%以下、最大ポア径が11μm以下である、焼成後の複合積層体100が得られる。
その後、焼成後の複合積層体100において、拘束用セラミックグリーンシート151及び152に由来する部分が除去される。これによって、多層セラミック基板1が得られる。
上述の製造方法によれば、拘束用セラミックグリーンシートを両主面上に配置した複合積層体を焼成するので、表層用セラミックグリーンシート及び内層用セラミックグリーンシートの焼成時における各主面方向での収縮を抑制することができる。そのため、多層セラミック基板の不所望な変形を抑制し、寸法精度を高めることができるばかりでなく、焼成時における表層部と内層部との間での剥離を生じにくくすることができる。
その一方で、拘束用セラミックグリーンシートを両主面上に配置した複合積層体を焼成する場合には、通常、表層用セラミックグリーンシートに含まれるガラス成分が拘束用セラミックグリーンシートに吸収されやすいため、表層部にポアが発生するおそれがある。これに対し、第1層となるべき表層用セラミックグリーンシート、及び、第2層となるべき内層用セラミックグリーンシートに、CuO及びAg2Oからなる群から選択される少なくとも1種の金属酸化物が所定量含まれていると、第1層でのガラス化が促進され、第1層を緻密にすることができる。その結果、第1層でのポアの発生を抑えることができるため、表層電極の断線を抑制することができる。
なお、多層セラミック基板1を製造するにあたり、上述のような拘束用セラミックグリーンシート151及び152を用いるのではなく、拘束用セラミックグリーンシートが無い状態の積層体を焼成してもよい。この場合も、表層電極の断線を抑制することができる。
以下、本発明の多層セラミック基板をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
(多層セラミック基板の作製)
まず、表1に示す組成を有するSiO2-CaO―B2O3-Al2O3系ガラス粉末を用意した。
まず、表1に示す組成を有するSiO2-CaO―B2O3-Al2O3系ガラス粉末を用意した。
次に、表2に示す各試料が得られるように、表層用セラミックグリーンシート及び内層用セラミックグリーンシートをそれぞれ作製した。
表2に示した各試料を得るため、ガラス粉末と、アルミナ(Al2O3)粉末と、CuO又はAg2Oの金属酸化物粉末とを含む混合粉末に、溶剤、分散剤、バインダ及び可塑剤を配合し、混合することによりスラリーを得た。得られたスラリーをPETフィルム上に塗布することにより、表層用セラミックグリーンシート及び内層用セラミックグリーンシートを作製した。
表2に示した各試料を得るため、ガラス粉末と、アルミナ(Al2O3)粉末と、CuO又はAg2Oの金属酸化物粉末とを含む混合粉末に、溶剤、分散剤、バインダ及び可塑剤を配合し、混合することによりスラリーを得た。得られたスラリーをPETフィルム上に塗布することにより、表層用セラミックグリーンシート及び内層用セラミックグリーンシートを作製した。
表2に、表層用セラミックグリーンシート及び内層用セラミックグリーンシートに含まれるガラス粉末の種類及び含有量、Al2O3粉末の含有量、並びに、金属酸化物粉末の含有量を示している。表2において、ガラスの種類に記載された「G1」~「G3」の記号は、表1の「ガラス記号」に対応している。表2に示すように、ガラス粉末とAl2O3粉末の重量比は、46:54~60:40に調整した。また、表2に示した第1層(表層)の厚み及び第2層(内層)の厚みが焼成後においてそれぞれ得られるように、表層用セラミックグリーンシート及び内層用セラミックグリーンシートの各厚みを調整した。
別途、Al2O3粉末に溶剤、分散剤、バインダ及び可塑剤を配合し、混合することによりスラリーを得た。得られたスラリーをPETフィルム上に塗布することにより、厚み50μmの拘束用セラミックグリーンシートを作製した。
他方、Ag粉末、溶剤及び有機バインダを所定の割合で混合し、この混合物を3本ロールミルによって分散処理することにより、Agペーストを得た。
次に、特定の表層用セラミックグリーンシート及び内層用セラミックグリーンシートにレーザーパンチャーを用いてビアホール加工を施した後、Agペーストを充填することにより、ビアホール導体となるペースト体を形成した。また、特定の表層用セラミックグリーンシート及び内層用セラミックグリーンシートに、スクリーン印刷によりAgペーストを印刷することにより、表層電極及び内部導体となるペーストパターンを形成した。これらの表層用セラミックグリーンシート及び内層用セラミックグリーンシートを複数枚積層し、その上下に拘束用セラミックグリーンシートを配置した後、圧着し、複合積層体を作製した。
作製した複合積層体を、表層用セラミックグリーンシート、内層用セラミックグリーンシート及びAgペーストは焼結するが、拘束用セラミックグリーンシートは焼結しない温度で焼成した。焼成後、拘束用セラミックグリーンシートに由来する未焼結部分を除去し、評価用の多層セラミック基板を作製した。
図3は、評価用の多層セラミック基板を模式的に示す断面図である。
評価用の多層セラミック基板2は、内層部10の表面に位置する第2層22に表層部20の第1層21を、内層部10の裏面に位置する第2層32に表層部30の第1層31をそれぞれ貼り合わせた積層構造となっている。基板内には2つのビアホール導体44a及び44bが形成されている。ビアホール導体44aは、基板表側の第1層21に形成された表層電極41、及び、内層部10を構成する層間に形成された内部導体43aと接続されており、ビアホール導体44bは、基板裏側の第1層31に形成された表層電極42、及び、内層部10を構成する層間に形成された内部導体43bと接続されている。ビアホール導体44aと接続した内部導体43aからビアホール導体44bと接続した内部導体43bまでは、内層部10を構成するセラミック層1層の厚み分の間隔で離れている。
評価用の多層セラミック基板2は、内層部10の表面に位置する第2層22に表層部20の第1層21を、内層部10の裏面に位置する第2層32に表層部30の第1層31をそれぞれ貼り合わせた積層構造となっている。基板内には2つのビアホール導体44a及び44bが形成されている。ビアホール導体44aは、基板表側の第1層21に形成された表層電極41、及び、内層部10を構成する層間に形成された内部導体43aと接続されており、ビアホール導体44bは、基板裏側の第1層31に形成された表層電極42、及び、内層部10を構成する層間に形成された内部導体43bと接続されている。ビアホール導体44aと接続した内部導体43aからビアホール導体44bと接続した内部導体43bまでは、内層部10を構成するセラミック層1層の厚み分の間隔で離れている。
(多層セラミック基板の評価)
評価用の多層セラミック基板について、「熱膨張係数の差」、「ポア率」、「最大ポア径」、「内層部の絶縁性」、「表層電極の断線」、「抗折強度」及び「デラミネーション」の各項目について評価した。各評価結果を表3に示す。
評価用の多層セラミック基板について、「熱膨張係数の差」、「ポア率」、「最大ポア径」、「内層部の絶縁性」、「表層電極の断線」、「抗折強度」及び「デラミネーション」の各項目について評価した。各評価結果を表3に示す。
「熱膨張係数の差」は、評価用の多層セラミック基板の第1層の熱膨張係数α1及び第2層の熱膨張係数α2から求めた。
熱膨張係数は、熱機械分析(TMA)により、以下の条件で、室温から500℃まで5℃/minの昇温速度で測定した。
測定雰囲気:窒素(300mL/min)
測定荷重:10gf
熱膨張係数は、熱機械分析(TMA)により、以下の条件で、室温から500℃まで5℃/minの昇温速度で測定した。
測定雰囲気:窒素(300mL/min)
測定荷重:10gf
「ポア率」及び「最大ポア径」については、多層セラミック基板の断面をSEM観察することによって求めた。
具体的には、焼成後の多層セラミック基板を所定の大きさにカットし、硬化剤を混ぜたエポキシ樹脂中に埋めて固めた後、研磨することにより断面を出し、第1層及び第2層の断面を倍率500倍で観察した。
具体的には、焼成後の多層セラミック基板を所定の大きさにカットし、硬化剤を混ぜたエポキシ樹脂中に埋めて固めた後、研磨することにより断面を出し、第1層及び第2層の断面を倍率500倍で観察した。
「内層部の絶縁性」は、評価用の多層セラミック基板の表裏の表層電極を端子として、絶縁性試験を行った。プレッシャークッカー試験で50Vの直流電圧を印加し、200時間後の絶縁抵抗を確認した。試験条件は121℃-85%RHである。プレッシャークッカー試験後のサンプルに50Vの直流電圧を60秒間印加した後の漏れ電流を測定し、LogIR≧10を示したサンプルを○(良)、LogIR<10を示したサンプルを×(不良)と評価した。なお、絶縁抵抗を測定する内部導体で挟まれたセラミック層の厚みは、表2に示すように、内部導体がない場合に焼成後の厚みで11μmである。
「表層電極の断線」は、テスターを用いて、評価用の多層セラミック基板の表側の表層電極の両端の導通の有無を確認することによって評価したもので、導通している場合を○(良)、導通していない場合を×(不良)と評価した。
「抗折強度」は、3点曲げ法によって、評価用の多層セラミック基板の抗折強度を測定した。別途、表層部のみからなる試料、及び、内層部のみからなる試料を作製し、3点曲げ法によって、各試料の抗折強度を測定した。以上により、表層部、内層部及び基板(焼結体全体)の各々について抗折強度を測定した。基板の抗折強度が内層部の抗折強度と同じであるか、内層部の抗折強度よりも高い場合を○(良)、基板の抗折強度が内層部の抗折強度よりも低い場合を×(不良)と評価した。
「デラミネーション」は、200倍の金属顕微鏡を用いた観察によって、評価用の多層セラミック基板の断面にて層間剥離があるかを評価した。各100個の試料について、デラミネーションが認められなかった場合を○(良)、1個でもデラミネーションが確認された場合を×(不良)と評価した。
表2及び表3に示すように、第1層のポア率が13%以下、最大ポア径が10μm以下であるとともに、第2層のポア率が14%以下、最大ポア径が11μm以下である実施例1~15では、表層電極の断線が生じていない。実施例1~15の結果から、ガラスの組成比、アルミナ又は金属酸化物の含有量を変更しても、表層電極の断線を抑制することができる効果が得られることが分かる。
特に、実施例1~8及び11~15では、第1層中のCuOの含有量が第2層中のCuOの含有量よりも多いか同じであり、かつ、第1層及び第2層の熱膨張係数の差が0.3≦α2-α1≦1.5であるため、内層部の絶縁性が確保できており、基板の抗折強度が内層部の抗折強度よりも高く、デラミネーションも発生していない。
なお、第1層及び第2層の熱膨張係数の差α2-α1が0.1である実施例9では、表層電極の断線は生じていないものの、基板の抗折強度が内層部の抗折強度よりも低くなっている。
また、第1層及び第2層の熱膨張係数の差α2-α1が1.8である実施例10では、表層電極の断線は生じていないものの、デラミネーションが発生している。
これに対し、第1層及び第2層を構成する材料が金属酸化物であるCuO及びAg2Oを含まない比較例1では、第1層及び第2層のポア率が高く、最大ポア径も大きくなるため、表層電極の断線が生じ、内層部の絶縁性も低下している。
第1層を構成する材料が金属酸化物であるCuOを含むものの、第2層を構成する材料が金属酸化物を含まない比較例2では、ガラス化が充分に促進されていないため、第1層及び第2層のポア率が高く、最大ポア径も大きくなる結果、表層電極の断線が生じ、内層部の絶縁性も低下している。
第1層中のCuOの含有量が第2層中のCuOの含有量よりも少ない比較例3では、第2層の最大ポア径が大きくなるため、表層電極の断線は生じていないものの、内層部の絶縁性が低下している。
第1層中のCuOの含有量が11重量%である比較例4では、第1層のポア率が高く、最大ポア径も大きくなるため、表層電極の断線が生じている。
また、第1層のポア率が13%以下、最大ポア径が10μm以下であるとともに、第2層のポア率が14%以下、最大ポア径が11μm以下である実施例16~18では、表層電極の断線が生じていない。実施例16~18の結果から、金属酸化物としてAg2Oを使用した場合も、CuOを使用した場合と同様に、表層電極の断線を抑制することができる効果が得られることが分かる。
特に、実施例16~18では、第1層中のAg2Oの含有量が第2層中のAg2Oの含有量よりも多く、かつ、第1層及び第2層の熱膨張係数の差が0.3≦α2-α1≦1.5であるため、内層部の絶縁性が確保できており、基板の抗折強度が内層部の抗折強度よりも高く、デラミネーションも発生していない。
これに対し、第1層を構成する材料が金属酸化物であるAg2Oを含むものの、第2層を構成する材料が金属酸化物を含まない比較例5では、ガラス化が充分に促進されていないため、第1層及び第2層のポア率が高く、最大ポア径も大きくなる結果、表層電極の断線が生じ、内層部の絶縁性も低下している。
第2層中のAg2Oの含有量が4重量%である比較例6では、第2層のポア率が高く、最大ポア径も大きくなるため、内層部の絶縁性が低下している。
第1層中のAg2Oの含有量が11重量%である比較例7では、第1層のポア率が高く、最大ポア径も大きくなるため、表層電極の断線が生じている。
A 電子装置
1,2 多層セラミック基板
10 内層部
20,30 表層部
21,31 第1層
22,32 第2層
41,42 表層電極
43,43a,43b 内部導体
44,44a,44b ビアホール導体
100 複合積層体
110 内層用セラミックグリーンシート
120,130 表層用セラミックグリーンシート
151,152 拘束用セラミックグリーンシート
1,2 多層セラミック基板
10 内層部
20,30 表層部
21,31 第1層
22,32 第2層
41,42 表層電極
43,43a,43b 内部導体
44,44a,44b ビアホール導体
100 複合積層体
110 内層用セラミックグリーンシート
120,130 表層用セラミックグリーンシート
151,152 拘束用セラミックグリーンシート
Claims (9)
- 表面に位置する表層部と前記表層部より内側に位置する内層部とからなる積層構造を有し、前記表層部の表面に表層電極が設けられた多層セラミック基板であって、
前記表層部は、前記内層部に隣接する第1層を含み、前記内層部は、前記第1層に隣接する第2層を含み、
前記第1層のポア率が13%以下、最大ポア径が10μm以下であり、
前記第2層のポア率が14%以下、最大ポア径が11μm以下であることを特徴とする多層セラミック基板。 - 前記第1層のポア率が8%以下である請求項1に記載の多層セラミック基板。
- 前記第1層の最大ポア径が7μm以下である請求項1又は2に記載の多層セラミック基板。
- 前記第2層のポア率が9%以下である請求項1~3のいずれか1項に記載の多層セラミック基板。
- 前記第2層の最大ポア径が9μm以下である請求項1~4のいずれか1項に記載の多層セラミック基板。
- 前記第1層の熱膨張係数は、前記第2層の熱膨張係数より小さく、
前記第1層及び前記第2層を構成する材料は、いずれも、40重量%以上65重量%以下のMO(ただし、MOは、CaO、MgO、SrO及びBaOからなる群より選択される少なくとも1種)を含むガラスと、アルミナと、CuO及びAg2Oからなる群から選択される少なくとも1種の金属酸化物とを含み、
前記ガラス及び前記アルミナの合計重量に対する前記アルミナの含有量が35重量%以上60重量%以下であり、
前記ガラス及び前記アルミナの合計重量に対する前記金属酸化物の含有量が1重量%以上10重量%以下である請求項1~5のいずれか1項に記載の多層セラミック基板。 - 前記第1層中の前記金属酸化物の前記含有量は、前記第2層中の前記金属酸化物の前記含有量よりも多い請求項6に記載の多層セラミック基板。
- 前記第1層の熱膨張係数をα1[ppmK-1]とし、前記第2層の熱膨張係数をα2[ppmK-1]としたとき、0.3≦α2-α1≦1.5である請求項6又は7に記載の多層セラミック基板。
- 請求項1~8のいずれか1項に記載の多層セラミック基板を備えることを特徴とする電子装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018554887A JP6777164B2 (ja) | 2016-12-08 | 2017-11-14 | 多層セラミック基板及び電子装置 |
CN201780073556.5A CN110024498B (zh) | 2016-12-08 | 2017-11-14 | 多层陶瓷基板以及电子装置 |
US16/429,140 US11011441B2 (en) | 2016-12-08 | 2019-06-03 | Multilayer ceramic substrate and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016238525 | 2016-12-08 | ||
JP2016-238525 | 2016-12-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/429,140 Continuation US11011441B2 (en) | 2016-12-08 | 2019-06-03 | Multilayer ceramic substrate and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105333A1 true WO2018105333A1 (ja) | 2018-06-14 |
Family
ID=62491153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040930 WO2018105333A1 (ja) | 2016-12-08 | 2017-11-14 | 多層セラミック基板及び電子装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11011441B2 (ja) |
JP (2) | JP6777164B2 (ja) |
CN (1) | CN110024498B (ja) |
WO (1) | WO2018105333A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111096090B (zh) * | 2017-09-20 | 2023-04-21 | 株式会社村田制作所 | 陶瓷基板的制造方法、陶瓷基板以及模块 |
EP4228894A1 (en) * | 2020-10-15 | 2023-08-23 | Heraeus Conamic North America LLC | Multilayer sintered ceramic body and method of making |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003201170A (ja) * | 2001-10-22 | 2003-07-15 | Murata Mfg Co Ltd | 多層回路基板用ガラスセラミック材料および多層回路基板 |
JP2007073728A (ja) * | 2005-09-07 | 2007-03-22 | Murata Mfg Co Ltd | 多層セラミック基板およびその製造方法ならびに電子部品 |
WO2013146789A1 (ja) * | 2012-03-26 | 2013-10-03 | 日立金属株式会社 | 窒化珪素焼結体基板及びその製造方法 |
JP2016171191A (ja) * | 2015-03-12 | 2016-09-23 | 京セラ株式会社 | 配線基板 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650701B2 (ja) * | 1989-05-18 | 1994-06-29 | 松下電器産業株式会社 | 積層コンデンサ素子とその製造方法 |
JP2501492B2 (ja) * | 1991-03-08 | 1996-05-29 | 日本碍子株式会社 | セラミックス基板およびその製造方法 |
JPH07321431A (ja) * | 1994-05-24 | 1995-12-08 | Shinko Electric Ind Co Ltd | セラミック回路基板及びその製造方法並びに導体ペースト |
JP2002324876A (ja) * | 1995-02-09 | 2002-11-08 | Kyocera Corp | 配線基板およびその実装構造 |
JP3678260B2 (ja) * | 1997-07-28 | 2005-08-03 | 日本電気硝子株式会社 | ガラスセラミックス組成物 |
JP2003040670A (ja) * | 2001-07-27 | 2003-02-13 | Kyocera Corp | 高熱膨張磁器組成物、高熱膨張磁器およびその製造方法、並びに多層配線基板およびその実装構造 |
JP4748435B2 (ja) * | 2001-08-21 | 2011-08-17 | 日本電気硝子株式会社 | 積層ガラスセラミック材料及び積層ガラスセラミック焼結体 |
JP4280657B2 (ja) | 2004-03-01 | 2009-06-17 | 富士通株式会社 | アレーアンテナのビーム形成方法及びその装置 |
JP2006269829A (ja) | 2005-03-24 | 2006-10-05 | Kyocera Corp | セラミック電子部品 |
KR101073873B1 (ko) | 2006-06-02 | 2011-10-14 | 가부시키가이샤 무라타 세이사쿠쇼 | 다층 세라믹 기판과 그 제조 방법, 및 전자 부품 |
TW200903527A (en) * | 2007-03-19 | 2009-01-16 | Murata Manufacturing Co | Laminated positive temperature coefficient thermistor |
CN101113073B (zh) * | 2007-06-29 | 2011-06-08 | 东华大学 | 一种与金属或合金封接用无铅低熔点玻璃粉及其制备方法 |
JP2010034176A (ja) * | 2008-07-28 | 2010-02-12 | Kyocera Corp | 多層配線基板およびその製造方法 |
JP2010278117A (ja) | 2009-05-27 | 2010-12-09 | Kyocera Corp | 配線基板の製造方法 |
WO2011021484A1 (ja) | 2009-08-18 | 2011-02-24 | 株式会社村田製作所 | ガラスセラミック組成物、セラミックグリーンシートおよび多層セラミック基板 |
JP2012167008A (ja) | 2012-04-06 | 2012-09-06 | Kyocera Corp | ガラスセラミック組成物、ガラスセラミック焼結体並びにそれを用いた配線基板とその実装構造 |
WO2014196348A1 (ja) | 2013-06-05 | 2014-12-11 | 株式会社村田製作所 | セラミック基板用組成物およびセラミック回路部品 |
-
2017
- 2017-11-14 CN CN201780073556.5A patent/CN110024498B/zh active Active
- 2017-11-14 JP JP2018554887A patent/JP6777164B2/ja active Active
- 2017-11-14 WO PCT/JP2017/040930 patent/WO2018105333A1/ja active Application Filing
-
2019
- 2019-06-03 US US16/429,140 patent/US11011441B2/en active Active
-
2020
- 2020-07-20 JP JP2020123719A patent/JP7309666B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003201170A (ja) * | 2001-10-22 | 2003-07-15 | Murata Mfg Co Ltd | 多層回路基板用ガラスセラミック材料および多層回路基板 |
JP2007073728A (ja) * | 2005-09-07 | 2007-03-22 | Murata Mfg Co Ltd | 多層セラミック基板およびその製造方法ならびに電子部品 |
WO2013146789A1 (ja) * | 2012-03-26 | 2013-10-03 | 日立金属株式会社 | 窒化珪素焼結体基板及びその製造方法 |
JP2016171191A (ja) * | 2015-03-12 | 2016-09-23 | 京セラ株式会社 | 配線基板 |
Also Published As
Publication number | Publication date |
---|---|
CN110024498B (zh) | 2021-12-31 |
JPWO2018105333A1 (ja) | 2019-10-24 |
JP7309666B2 (ja) | 2023-07-18 |
JP6777164B2 (ja) | 2020-10-28 |
US11011441B2 (en) | 2021-05-18 |
CN110024498A (zh) | 2019-07-16 |
US20190295911A1 (en) | 2019-09-26 |
JP2020174210A (ja) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8501299B2 (en) | Conductive paste, multilayer ceramic substrate and its production method | |
WO2016121745A1 (ja) | コンデンサおよびモジュール | |
JP6079899B2 (ja) | 積層セラミック電子部品 | |
US20100038120A1 (en) | Layered ceramic electronic component and manufacturing method therefor | |
CN107637185B (zh) | 多层陶瓷基板以及多层陶瓷基板的制造方法 | |
US20110036622A1 (en) | Laminated ceramic electronic component and method for manufacturing the same | |
WO2017122381A1 (ja) | 積層体及び電子部品 | |
JP7309666B2 (ja) | 多層セラミック基板及び電子装置 | |
US10638603B2 (en) | Multilayer ceramic substrate | |
JP5229323B2 (ja) | 積層コイル部品およびその製造方法 | |
WO2018100863A1 (ja) | 複合電子部品、及び該複合電子部品の製造方法 | |
JP6493560B2 (ja) | 多層セラミック基板及び電子部品 | |
JP6455633B2 (ja) | 多層セラミック基板及び電子装置 | |
JP5110420B2 (ja) | Ag粉末、導体ペースト及び多層セラミック基板とその製造方法 | |
JP4645962B2 (ja) | 多層セラミック基板 | |
JP2007284297A (ja) | グリーンシート、これを用いた多層基板およびその製造方法 | |
JP5209563B2 (ja) | 多層セラミック基板の製造方法 | |
JP5533120B2 (ja) | 多層セラミック基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17878498 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018554887 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17878498 Country of ref document: EP Kind code of ref document: A1 |