WO2018103358A1 - 光电二极管器件及光电二极管探测器 - Google Patents

光电二极管器件及光电二极管探测器 Download PDF

Info

Publication number
WO2018103358A1
WO2018103358A1 PCT/CN2017/096404 CN2017096404W WO2018103358A1 WO 2018103358 A1 WO2018103358 A1 WO 2018103358A1 CN 2017096404 W CN2017096404 W CN 2017096404W WO 2018103358 A1 WO2018103358 A1 WO 2018103358A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode region
photodiode
photodiode device
periphery
electrode
Prior art date
Application number
PCT/CN2017/096404
Other languages
English (en)
French (fr)
Inventor
张岚
胡海帆
曹雪朋
李军
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to US16/467,623 priority Critical patent/US11011656B2/en
Priority to FIEP17879355.0T priority patent/FI3550614T3/fi
Priority to EP17879355.0A priority patent/EP3550614B1/en
Publication of WO2018103358A1 publication Critical patent/WO2018103358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members

Definitions

  • the present disclosure relates to photodetector devices and, in particular, to photodiode devices and photodiode detectors having improved performance.
  • the semiconductor photodiode array ionizes with atoms in the semiconductor by incident light (eg, direct incident light, or visible light rays generated by X-rays in the scintillator), thereby generating unbalanced carriers to detect incident light.
  • incident light eg, direct incident light, or visible light rays generated by X-rays in the scintillator
  • Parameters that measure the performance of a photodiode array include resolution, signal-to-noise ratio, readout speed, optical response, and crosstalk between pixels.
  • a photodiode device includes: a first type of lightly doped semiconductor substrate including first and second surfaces opposite to each other; and a first surface provided on the first surface of the semiconductor substrate a type of heavily doped first electrode region; and a second type of heavily doped second electrode region disposed on the second surface of the semiconductor substrate, wherein the first surface is a light incident surface.
  • a photodiode detector comprising an array of a plurality of the above described photodiode devices.
  • the following improvement can be at least partially achieved: when detecting incident light Improves charge collection time, enhances the photoresponse of the photodiode array, and reduces charge crosstalk between pixels.
  • FIG. 1A is a top plan view showing a photodiode detector in accordance with an embodiment of the present disclosure
  • Figure 1B is a cross-sectional view taken along line AA' shown in Figure 1A;
  • Figure 1C shows a schematic electric field distribution in the photodiode detector shown in Figure 1A;
  • FIG. 2A is a cross-sectional view showing a photodiode detector in accordance with another embodiment of the present disclosure
  • Figure 2B shows a schematic electric field distribution in the photodiode detector shown in Figure 2A;
  • FIG. 2C is a schematic plan view showing a protruding structure that can be employed in the photodiode detector shown in FIG. 2A;
  • FIG. 3A is a cross-sectional view showing a photodiode detector according to another embodiment of the present disclosure.
  • Figure 3B is a schematic plan view showing an overhanging structure that can be employed in the photodiode detector shown in Figure 3A;
  • FIG. 4A is a cross-sectional view showing a photodiode detector in accordance with another embodiment of the present disclosure.
  • FIG. 4B is a schematic plan view showing a protruding structure that can be employed in the photodiode detector shown in FIG. 4A;
  • FIG. 5A is a cross-sectional view showing a photodiode detector according to another embodiment of the present disclosure.
  • Figure 5B is a schematic plan view showing a protruding structure that can be employed in the photodiode detector shown in Figure 5A;
  • 6A, 6B, and 6C are cross-sectional views illustrating a photodiode detector having a trench-type protruding structure in accordance with various embodiments of the present disclosure
  • FIG. 7 is a cross-sectional view showing a photodiode detector having a trench-type protruding structure in accordance with another embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view showing a photodiode detector having a light reflecting structure according to another embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view showing a photodiode detector having an elongated spacer in accordance with another embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view showing a photodiode detector having a spacer at an outer circumference according to another embodiment of the present disclosure.
  • FIG. 11 is a graph schematically showing a comparison between a photodiode detector and a conventional photodiode detector in terms of light collection efficiency and photoresponse according to an embodiment of the present disclosure
  • FIG. 12 is a graph schematically illustrating a comparison of a photodiode detector and a conventional photodiode detector in terms of charge collection speed according to an embodiment of the present disclosure.
  • a layer/element when referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be a central layer between them/ element. In addition, if a layer/element is "on” another layer/element, the layer/element may be "under” the other layer/element when the orientation is reversed.
  • FIG. 1A is a plan view showing a photodiode detector according to an embodiment of the present disclosure
  • FIG. 1B is a cross-sectional view taken along line AA' shown in FIG. 1A.
  • the photodiode detector 100 may include a plurality of photodiode devices Pix formed on a semiconductor substrate 101, each of which may constitute one pixel of the photodiode detector 100.
  • the semiconductor substrate 101 may include various suitable semiconductor materials, such as silicon (Si) wafers, and includes two surfaces opposite to each other: a first surface 101-1S and a second surface 101-2S. These two surfaces can be substantially parallel. Distance between two surfaces The distance a (i.e., the thickness of the semiconductor substrate 101) may be about 50 to 300 ⁇ m.
  • the semiconductor substrate 101 can be doped to a suitable conductivity type, such as a first type (eg, N-type).
  • the photodiode device Pix may include a first electrode region 103 formed on the first surface 101-1S and a second electrode region 105 formed on the second surface 101-2S.
  • the second electrode region 105 may be doped to a conductivity type different from that of the semiconductor substrate 101, for example, a second type (for example, P-type), thereby constituting a PN junction with the semiconductor substrate 101.
  • the first electrode region 103 may be doped to the same conductivity type as the semiconductor substrate, such as the first type (eg, N-type).
  • the first electrode region 103 constitutes the cathode of the photodiode device Pix
  • the second electrode region 105 can constitute the anode of the photodiode device Pix.
  • the first electrode region 103 and the second electrode region 105 may be heavily doped.
  • the semiconductor substrate 101 can be lightly doped, thereby avoiding that the two heavily doped regions are directly adjacent, and thus the tunneling effect can be suppressed.
  • the thickness of the first electrode region 103 may be about 0.3-3 ⁇ m
  • the thickness of the second electrode region 105 may be about 0.3-3 ⁇ m
  • the spacing between the first electrode region 103 and the second electrode region 105 may be about 10- 200 ⁇ m.
  • the incident light may be incident on the photodiode device Pix from the first surface 101-1S.
  • the photodiode device Pix can operate in a reverse bias mode. At this time, a wider space charge region under reverse bias conditions can be formed in the vicinity of the light collecting active region (the region near the incident surface 101-1S) in the pixel.
  • the photodiode device Pix can also operate in a zero bias mode. At this time, a narrow built-in space charge region under zero bias conditions can be formed in the vicinity of the light collecting active region in the pixel. Electrodes may be drawn at the first electrode region 103 and the second electrode region 105, respectively, to apply a bias voltage and/or read a signal.
  • the incident light may collide and ionize with silicon atoms in the semiconductor substrate 101 in the light collecting active region, thereby generating electron-hole pairs.
  • the electrons may drift or diffuse toward the first electrode region 103 by the built-in electric field or an external biasing electric field, and are eventually collected by the first electrode region 103.
  • the holes may drift or diffuse toward the second electrode region 105 by the built-in electric field or an external biasing electric field, and are finally collected by the second electrode region 105.
  • An electrical signal can be read from the second electrode region 105, and information about the incident light (e.g., the intensity of the incident light) can be obtained therefrom.
  • the first electrode region 103 and/or the second electrode region 105 may be a doped region formed on the semiconductor substrate 101, for example, by ion implantation, by epitaxial growth (in situ during epitaxial growth) Epitaxial regions formed by doping), and the like.
  • Those skilled in the art are aware of a variety of means to form certain types of doped regions in/on a defined area of a semiconductor substrate.
  • the first electrode regions 103 of the respective photodiode devices Pix may be connected to each other to be integrated.
  • the second electrode regions 105 of the respective photodiode devices Pix may be separated from each other and arranged in an array, for example, in rows and columns.
  • the semiconductor substrate 101 can maintain a high resistance after the first type of light doping, for example, a resistivity of about 100-8 x 10 3 ⁇ cm.
  • first type eg, N-type
  • second type e.g, P-type
  • a dopant such as boron (B).
  • an inter-pixel isolation portion 107 may also be disposed between the adjacent photodiode devices Pix.
  • the isolation portion 107 may be heavily doped with the first type and may have a thickness substantially the same as the thickness of the second electrode region 105.
  • the isolation portion 107 may be formed to surround the second electrode region 105 of each photodiode device Pix so that the active region space of each pixel may be spaced. This can suppress charge crosstalk between pixels and improve photon position resolution.
  • Figure 1C shows a schematic electric field distribution in the photodiode detector shown in Figure 1A.
  • the internal electric field direction is directed from the N+ layer at the first surface 101-1S to the hole charge collection P+ region.
  • the electric field is also directed to the hole charge collection P+ region by the N+ region between the pixels.
  • the hole carriers generated here need to drift the entire thickness of the semiconductor substrate. Can be collected by the P+ type semiconductor region in the pixel.
  • a protruding structure that is connected to the second electrode region and protrudes from the second electrode region toward the first surface may be disposed.
  • the projecting structure can also be heavily doped by the second type to form, together with the second electrode, a collecting means such as hole carriers.
  • FIG. 2A is a cross-sectional view showing a photodiode detector in accordance with another embodiment of the present disclosure.
  • the photodiode detector may include a plurality of photodiode devices formed on the semiconductor substrate 201, each of which may be formed on the first surface 201-1S of the semiconductor substrate 201.
  • the first electrode region 203 and the second electrode region 205 formed on the second surface 201-2S of the semiconductor substrate 201.
  • an inter-pixel isolation portion 207 may be disposed between the second electrode regions 205 of adjacent photodiode devices.
  • each photodiode device can also include an extension structure 209 that is coupled to the second electrode region 205.
  • the protruding structure 209 can be substantially perpendicular to the second electrode region 205.
  • the protruding structure 209 may be a second type of heavily doped region in the semiconductor substrate 201.
  • Such a doping region may be formed, for example, in the semiconductor substrate 201 by ion implantation, or may be formed by forming a trench in the semiconductor substrate 201 and filling the trench with a second type of heavily doped semiconductor material.
  • the groove-type projecting structure will be described in further detail.
  • the protruding structure 209 can be formed along the perimeter of the second electrode region 205 and at least partially surround the perimeter of the second electrode region 205.
  • Figure 2C is a schematic top plan view showing the protruding structure that can be employed in the photodiode detector shown in Figure 2A.
  • the protruding structure 209 may completely surround the periphery of the second electrode region 205 to form a ring-shaped fence structure to form an active area surrounding the corresponding pixel together with the second electrode region 205.
  • the semi-enclosed structure may be formed along the perimeter of the second electrode region 205 and at least partially surround the perimeter of the second electrode region 205.
  • Figure 2C is a schematic top plan view showing the protruding structure that can be employed in the photodiode detector shown in Figure 2A.
  • the protruding structure 209 may completely surround the periphery of the second electrode region 205 to form a ring-shaped fence structure to form an active area surrounding the corresponding pixel together with the second electrode region
  • the protruding structure 209 does not necessarily completely surround the periphery of the second electrode region 205, but may be formed along a portion of the periphery of the second electrode region 205.
  • the protruding structure 209 may include a pair of protruding structures disposed oppositely along the circumference of the second electrode region 205 (particularly when the second electrode region 205 is rectangular) , can be set on a pair of opposite sides of the rectangle).
  • the present disclosure is not limited thereto.
  • the protruding structure 209 may be formed on more peripheral portions or less peripheral portions of the second electrode region 205.
  • the distance c of the end of the protruding structure 209 from the first surface 101-1S is about 5-100 ⁇ m
  • the width d of the protruding structure 209 is about 0.5-10 ⁇ m
  • the pitch e of the protruding structure between the pixels is About 5-50 ⁇ m. Since the X-rays emit light in the visible light range from 400 nm to 600 nm and the absorption depth in the silicon device does not exceed 1 micron, the protruding structure does not reduce the photo-generated carriers. absorb.
  • the end of the P+ collection region is closer to the light incident surface, the distance between the hole carriers in the semiconductor substrate from the P+ collection region is reduced, so that the absorption of hole carriers is accelerated, and the semiconductor is lowered.
  • the substrate defect captures the carrier and improves the photo response output current.
  • Figure 2B shows a schematic electric field distribution in the photodiode detector shown in Figure 2A.
  • the internal electric field direction is still directed to the P+ semiconductor region by the N+ semiconductor region, but since the P+ protruding structure is located at the edge of the active region of the pixel, the electric field line starts to the space surrounded by the P+ protruding structure in the pixel. Divergence and point to the side wall of the P+ protruding structure. It can be seen that the length of most of the electric field lines is reduced, which also means that the path of the holes drifting to the P+ collection area is shortened, that is, the collection time of the hole charges in the P+ collection area is reduced. In addition, the holes diffused into the space surrounded by the P+ protruding structure are not easily collected by the P+ collection area of the adjacent pixels, so that the charge collection efficiency of the target pixel can be improved while the charge crosstalk effect between the pixels can be reduced.
  • one or more additional protruding structures formed inside the periphery of the second electrode region may be included.
  • These additional protruding structures can likewise be connected to the second electrode region and can be heavily doped in the second type.
  • these additional protruding structures may be formed to at least partially surround a portion of the second electrode region, or may be formed in a grid shape together with the protruding structures formed along the periphery.
  • FIG. 3A is a cross-sectional view showing a photodiode detector according to another embodiment of the present disclosure
  • FIG. 3B is a schematic plan view showing a protruding structure that can be employed in the photodiode detector shown in FIG. 3A.
  • the photodiode detector may include a plurality of photodiode devices formed on a semiconductor substrate 301, each of which may be formed on the first surface 301-1S of the semiconductor substrate 301.
  • the first electrode region 303 and the second electrode region 305 formed on the second surface 301-2S of the semiconductor substrate 301.
  • an inter-pixel isolation portion 307 may be disposed between the second electrode regions 305 of adjacent photodiode devices.
  • each of the photodiode devices may further include an overhanging structure connected to the second electrode region 305, including an overhanging structure 309-1 formed along the periphery of the second electrode region 305 and an extension formed on the inner side of the periphery of the second electrode region 305.
  • Structure 309-2 With regard to the projecting structure 309-1, for example, reference can be made to the above description in connection with Figs. 2A, 2B and 2C. In addition, as shown in the top view in FIG.
  • the protruding structure 309-2 The active area of the corresponding pixel (eg, surrounded by the protruding structure 309-1) may be divided into a plurality of regions (by forming a ring shape, as shown in part (a) of FIG. 3B, or forming a grid, as shown in FIG. (b) and (c) in 3B).
  • the width d of the protruding structure is about 0.5-10 ⁇ m
  • the pitch f of the protruding structures in the pixel is about 10-500 ⁇ m.
  • each of the protruding structures 309-1, 309-2 may have substantially the same extension length, that is, depth (a dimension extending from the second surface toward the first surface).
  • the photo-generated carriers drift in the semiconductor substrate, they reach the respective divided regions in the active region of the pixel, which further reduces the distance of the hole carriers from reaching the nearest P+ collection region.
  • the hole carrier absorption in the active region can be distributed substantially evenly to reduce the collection time of the carriers, reduce the probability that the hole carriers are trapped by the semiconductor substrate, and enhance the light response intensity.
  • FIG. 4A is a cross-sectional view showing a photodiode detector according to another embodiment of the present disclosure
  • FIG. 4B is a schematic plan view showing a protruding structure that can be employed in the photodiode detector shown in FIG. 4A.
  • the photodiode detector may include a plurality of photodiode devices formed on a semiconductor substrate 401, each photodiode device may be included on a first surface 401-1S of the semiconductor substrate 401.
  • an inter-pixel isolation portion 407 may be disposed between the second electrode regions 405 of adjacent photodiode devices.
  • each of the photodiode devices may further include an overhanging structure connected to the second electrode region 405, including an overhanging structure 409-1 formed along the periphery of the second electrode region 405 and an extension formed on the inner side of the periphery of the second electrode region 405. Structure 409-2 is exited.
  • an overhanging structure connected to the second electrode region 405, including an overhanging structure 409-1 formed along the periphery of the second electrode region 405 and an extension formed on the inner side of the periphery of the second electrode region 405.
  • Structure 409-2 is exited.
  • the depth of the protruding structure 409-2 formed inside the periphery of the second electrode region 405 may be smaller than the depth of the protruding structure 409-1 formed along the periphery of the second electrode region 405.
  • the depth of each of the protruding structures 409-2 may be substantially equal to each other.
  • the protruding structure is formed in a fence configuration, but the present disclosure is not limited thereto.
  • the protruding structure may be formed as a columnar structure (similar to a dot structure in a plan view). Such a columnar structure may be formed at any position within the range of the second electrode region.
  • FIG. 5A is a cross-sectional view showing a photodiode detector according to another embodiment of the present disclosure
  • FIG. 5B is a schematic plan view showing a protruding structure that can be employed in the photodiode detector shown in FIG. 5A.
  • the photodiode detector may include a plurality of photodiode devices formed on a semiconductor substrate 501, each of which may be formed on the first surface 501-1S of the semiconductor substrate 501.
  • an inter-pixel isolation portion 507 may be disposed between the second electrode regions 505 of adjacent photodiode devices.
  • each photodiode device may further include a columnar protruding structure 509 connected to the second electrode region 505.
  • the distance c from the end of the protruding structure 509 from the first surface 501-1S may be about 5 to 100 ⁇ m.
  • the end of the protruding structure 509 is closer to the light incident surface, the distance of the hole carriers in the semiconductor substrate from the P+ collection region is reduced, so that the absorption of the hole carriers is accelerated, and the defect of the semiconductor substrate is reduced.
  • the capture of the stream enhances the photo response output current.
  • such a protruding structure 509 may be intermittently disposed along the periphery of the second electrode region 505 as shown in part (a) of FIG. 5B; may be disposed inside the periphery of the second electrode region 505, for example, provided
  • the substantially central position of the second electrode region 505 is as shown in part (b) of Fig. 5B.
  • an array of columnar projecting structures may be provided in rows and columns.
  • a projecting structure at the periphery of the second electrode region 505 and the inner side of the periphery, and the projecting structure may be a fence structure and/or a columnar structure.
  • a columnar projecting structure 509-1 may be disposed substantially at the center of the second electrode region 505, and a plurality of columnar projecting structures may be disposed along the periphery of the second electrode region 505. 509-2.
  • At least a portion of the projecting structure 509-2 may extend a certain extent along the perimeter of the second electrode region 505 such that the projecting structures 509-2 as a whole appear to be a discontinuous fence structure.
  • the protruding structures 509-2 may extend to meet each other to constitute a fence structure around the perimeter of the second electrode region 505, as shown in part (c) of Figure 5B.
  • a fence-like or columnar projecting structure can be suitably provided.
  • a columnar projecting structure may be provided on the outer side and a fence-like projecting structure may be provided on the inner side; or, a columnar projecting structure may be provided in a region where the fence-like projecting structure is divided;
  • the protruding structure can be formed by forming a trench in the semiconductor substrate and filling a second type of heavily doped semiconductor material therein.
  • 6A, 6B, and 6C are cross-sectional views illustrating a photodiode detector having a trench-type protruding structure in accordance with various embodiments of the present disclosure.
  • the photodiode detector may include a plurality of photodiode devices formed on the semiconductor substrate 601, each photodiode device may be included in the first of the semiconductor substrate 601 A first electrode region 603 formed on the surface 601-1S and a second electrode region 605 formed on the second surface 601-2S of the semiconductor substrate 601.
  • Each photodiode device can also include an extension structure 609 that is coupled to the second electrode region 605.
  • an inter-pixel isolation portion 607 may be disposed between the second electrode regions 605 of adjacent photodiode devices.
  • 6A, 6B, and 6C illustrate different layouts of the protruding structure 609. It should be noted that the various extended structure layouts described above can be used.
  • the protruding structure 609 may etch the trench F extending from the second surface 601-2S toward the first surface 601-1S (eg, extending perpendicular to the surface) at the second surface 601-2S of the semiconductor substrate 601. And formed in trench F (eg, by deposition) of a semiconductor material such as polysilicon (in this example, P+ doping). Filling with P+ polysilicon not only enables electrode extraction, but also enhances the overall mechanical strength of the device.
  • a semiconductor material such as polysilicon (in this example, P+ doping).
  • etching the trench F more defects and irregularities are formed at the bottom and sidewalls of the trench F.
  • heavy ion implantation of trench sidewalls may be performed to form a P+ layer region. In this way, the probability of charge recombination at the sidewall or bottom of the trench can be reduced and collected directly by the electrode.
  • the trench may extend to the first electrode region.
  • the semiconductor material embedded in the trench may occupy only a portion of the depth of the trench, and the end of the trench may be filled with a light reflective material.
  • FIG. 7 is a cross-sectional view showing a photodiode detector having a trench-type protruding structure according to another embodiment of the present disclosure.
  • the photodiode detector according to this embodiment may be included in a semiconductor substrate A plurality of photodiode devices formed on 701, each photodiode device may include a first electrode region 703 formed on the first surface 701-1S of the semiconductor substrate 701 and on the second surface 701-2S of the semiconductor substrate 701 A second electrode region 705 is formed. Each photodiode device can also include an extension structure 709 that is coupled to the second electrode region 705. In addition, an inter-pixel isolation portion 707 may be disposed between the second electrode regions 705 of adjacent photodiode devices. Regarding these components, reference can be made to the above description. It should be noted that the various extended structure layouts described above can be used.
  • a reflection structure 713 is formed in the end portion E on the side of the groove near the first surface 701-1S.
  • the reflective structure 713 can include an insulating material capable of reflecting incident light or a second type of heavily doped semiconductor material.
  • the semiconductor material used for the reflective structure 713 may include materials compatible with silicon processes such as Ge, SiGe, SiC, and the like. In this way, it is possible to control the carriers diffused into the interior of the active region to be confined within the trench structure and ultimately collected by the P+ collection region.
  • FIG. 8 is a cross-sectional view showing a photodiode detector having a light reflecting structure according to another embodiment of the present disclosure.
  • the photodiode detector may include a plurality of photodiode devices formed on a semiconductor substrate 801, each of which may be formed on a first surface 801-1S of the semiconductor substrate 801.
  • Each of the photodiode devices may further include an extension structure (not shown) connected to the second electrode region 805.
  • an inter-pixel isolation portion 807 may be disposed between the second electrode regions 805 of adjacent photodiode devices.
  • a light reflecting structure 815 that at least partially surrounds the perimeter of the second electrode region 805 (preferably, completely surrounding the perimeter of the second electrode region 805) may be formed.
  • the reflective structure 815 can include an insulating material capable of reflecting incident light or a second type of heavily doped semiconductor material.
  • the semiconductor material used for the reflective structure 815 can include materials compatible with silicon processes such as Ge, SiGe, SiC, and the like.
  • the light reflecting structure 815 may protrude from the second surface 801-2S toward the first surface 801-1S, and the depth may be greater than the depth of the second electrode region 805 (in the case of forming the protruding structure, the protruding structure may be greater than or equal to depth).
  • Such a light reflecting structure 815 is particularly suitable for use in the case where the protruding structure is not formed or not formed along the periphery of the second electrode region 805 (for example, along the second electrode) In the case where the periphery of the region 805 forms an intermittent protruding structure, the light reflecting structure 815 may fill a gap formed between the protruding structures).
  • the inter-pixel isolation portions 107, 207, 307, 407, 507, 607, 707, 807 are formed not to protrude with respect to the second electrode region (having substantially the same depth as the second electrode region). According to an embodiment of the present disclosure, such an inter-pixel isolation portion may protrude relative to the second electrode region.
  • FIG. 9 is a cross-sectional view showing a photodiode detector having an elongated spacer in accordance with another embodiment of the present disclosure.
  • the photodiode detector may include a plurality of photodiode devices formed on a semiconductor substrate 901, each of which may be formed on a first surface 901-1S of the semiconductor substrate 901.
  • Each photodiode device can also include an extension structure 909 that is coupled to the second electrode region 905.
  • an inter-pixel isolation portion 907 may be disposed between the second electrode regions 905 of adjacent photodiode devices.
  • the inter-pixel isolation portion 907 extends relative to the second electrode region 905, for example, having a depth substantially equal to the protruding structure 909. In this way, the inter-pixel isolation portion 907 can surround the P+ collection region in the active region of each pixel, and sufficiently isolate the active region space of each pixel, thereby reducing charge crosstalk between pixels and improving photon position resolution.
  • the spacers may be provided only on the outer circumference of the array without providing spacers between the pixels in the array, particularly in the case where the protruding structures are formed around the periphery of the pixels.
  • FIG. 10 is a cross-sectional view showing a photodiode detector having a spacer at an outer circumference according to another embodiment of the present disclosure.
  • the photodiode detector may include a plurality of photodiode devices formed on the semiconductor substrate 1001, each of which may be formed on the first surface 1001-1S of the semiconductor substrate 1001.
  • Each photodiode device may also include protruding structures 1009-1 and 1009-2 connected to the second electrode region 1005.
  • protruding structures 1009-1 and 1009-2 connected to the second electrode region 1005.
  • the isolation portion 1007 is disposed on the outer circumference of the array, and the pixels within the array may be directly adjacent to each other.
  • the spacer 1007 may not protrude relative to the second electrode region 1005 or may protrude. In this way, the range of the active areas of the pixels can be enlarged and/or the spacing between the pixels can be reduced.
  • 11 and 12 are graphs comparing photodiode detectors and conventional photodiode detectors in terms of light collection efficiency, photoresponse, and charge collection speed, in accordance with an embodiment of the present disclosure.
  • the structural parameters of the detectors to be compared are the same, but one has the protruding structure according to the present disclosure, and the other has no such protruding structure, and it is assumed that the optical signal stops at 0.1 ns.
  • the photoresponse and quantum efficiency of the electrode with a fence structure in the wavelength range of 400 nm to 600 nm are higher than those of the electrode without the gate structure.
  • the charge collection time with the gate electrode structure is significantly faster than that of the photodiode array without the gate electrode structure. Therefore, the structure according to the present disclosure can effectively improve the charge collection ability and reduce the charge collection time.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Head (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

公开了光电二极管器件及光电二极管探测器。根据实施例,一种光电二极管器件可以包括:第一类型轻掺杂的半导体基板(101),包括彼此相对的第一表面(101-1S)和第二表面(101-2S);设于半导体基板(101)的第一表面(101-1S)上的第一类型重掺杂的第一电极区域(103);以及设于半导体基板(101)的第二表面(101-2S)上的第二类型重掺杂的第二电极区域(105),其中,第一表面(101-1S)为光入射面。

Description

光电二极管器件及光电二极管探测器
相关申请的引用
本申请要求于2016年12月7日递交的题为“光电二极管器件及光电二极管探测器”的中国专利申请201611143007.4的优先权,其内容一并于此用作参考。
技术领域
本公开涉及光电探测器件,具体地,涉及具有改进性能的光电二极管器件及光电二极管探测器。
背景技术
半导体光电二极管阵列通过入射光(例如,直接入射的光线,或者X射线在闪烁体中产生的可见光线)与半导体中原子发生电离反应,从而产生非平衡载流子来检测入射光。衡量光电二极管阵列性能的参数包括分辨率、信噪比、读出速度、光响应以及像素间电荷串扰等。
需要提供新的结构来改进光电二极管器件或光电二极管阵列的至少一部分性能。
发明内容
有鉴于此,本公开的目的至少部分地在于提供一种具有改进性能的光电二极管器件及光电二极管探测器。
根据本公开的一个方面,提供了一种光电二极管器件,包括:第一类型轻掺杂的半导体基板,包括彼此相对的第一表面和第二表面;设于半导体基板的第一表面上的第一类型重掺杂的第一电极区域;以及设于半导体基板的第二表面上的第二类型重掺杂的第二电极区域,其中,第一表面为光入射面。
根据本公开的另一方面,提供了一种光电二极管探测器,包括由多个上述光电二极管器件构成的阵列。
根据本公开的实施例,能够至少部分地实现以下改进:在探测入射光时有 效提高电荷收集时间,增强光电二极管阵列的光响应,降低像素间电荷串扰。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1A是示出了根据本公开实施例的光电二极管探测器的俯视图;
图1B是示出了沿图1A所示的AA′线的截面图;
图1C示出了在图1A所示的光电二极管探测器中的示意电场分布;
图2A是示出了根据本公开另一实施例的光电二极管探测器的截面图;
图2B示出了在图2A所示的光电二极管探测器中的示意电场分布;
图2C是示出了在图2A所示的光电二极管探测器中可采用的伸出结构的示意俯视图;
图3A是示出了根据本公开另一实施例的光电二极管探测器的截面图;
图3B是示出了在图3A所示的光电二极管探测器中可采用的伸出结构的示意俯视图;
图4A是示出了根据本公开另一实施例的光电二极管探测器的截面图;
图4B是示出了在图4A所示的光电二极管探测器中可采用的伸出结构的示意俯视图;
图5A是示出了根据本公开另一实施例的光电二极管探测器的截面图;
图5B是示出了在图5A所示的光电二极管探测器中可采用的伸出结构的示意俯视图;
图6A、图6B和图6C是示出了根据本公开不同实施例的具有沟槽型伸出结构的光电二极管探测器的截面图;
图7是示出了根据本公开另一实施例的具有沟槽型伸出结构的光电二极管探测器的截面图;
图8是示出了根据本公开另一实施例的具有光反射结构的光电二极管探测器的截面图;
图9是示出了根据本公开另一实施例的具有伸长隔离部的光电二极管探测器的截面图;
图10是示出了根据本公开另一实施例的在外周具有隔离部的光电二极管探测器的截面图;
图11是示意性示出了根据本公开实施例的光电二极管探测器与常规技术的光电二极管探测器在光收集效率和光响应方面进行比较的曲线图;以及
图12是示意性示出了根据本公开实施例的光电二极管探测器与常规技术的光电二极管探测器在电荷收集速度方面进行比较的曲线图。
贯穿附图,相同或相似的附图标记表示相同或相似的部件。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
图1A是示出了根据本公开实施例的光电二极管探测器的俯视图,且图1B是示出了沿图1A所示的AA′线的截面图。
如图1A和1B所示,根据该实施例的光电二极管探测器100可以包括在半导体基板101上形成的多个光电二极管器件Pix,每个光电二极管器件Pix可以构成光电二极管探测器100的一个像素。半导体基板101可以包括各种合适的半导体材料,例如硅(Si)晶片,并包括彼此相对的两个表面:第一表面101-1S和第二表面101-2S。这两个表面可以基本上平行。两个表面之间的距 离a(即,半导体基板101的厚度)可以为约50-300μm。半导体基板101可以掺杂为合适的导电类型,例如第一类型(例如,N型)。
光电二极管器件Pix可以包括在第一表面101-1S上形成的第一电极区域103以及在第二表面101-2S上形成的第二电极区域105。在此,第二电极区域105可以被掺杂为与半导体基板101不同的导电类型,例如第二类型(例如,P型),从而与半导体基板101构成PN结。相应地,第一电极区域103可以掺杂为与半导体基板相同的导电类型,例如第一类型(例如,N型)。于是,在第一类型为N型且第二类型为P型的情况下,第一电极区域103构成光电二极管器件Pix的阴极,而第二电极区域105可以构成光电二极管器件Pix的阳极。根据本公开的实施例,第一电极区域103和第二电极区域105可以重掺杂。但是,半导体基板101可以轻掺杂,从而避免了两个重掺杂区域直接相邻,并因此可以抑制隧穿效应。
例如,第一电极区域103的厚度可以为约0.3-3μm,第二电极区域105的厚度可以为约0.3-3μm,第一电极区域103与第二电极区域105之间的间距可以为约10-200μm。
入射光可以从第一表面101-1S处入射到光电二极管器件Pix上。光电二极管器件Pix可以工作于反偏模式。此时,在像素中的光收集有源区(入射面101-1S附近的区域)附近可以形成反偏条件下较宽的空间电荷区。备选地,光电二极管器件Pix也可以工作于零偏模式。此时,在像素中的光收集有源区附近可以形成零偏条件下较窄的内建空间电荷区。可以在第一电极区域103和第二电极区域105处分别引出电极,以便施加偏压和/或读出信号。
入射光可以在光收集有源区中与半导体基板101中的硅原子发生碰撞电离,从而产生电子-空穴对。电子可以在内建电场或外加偏置电场作用下,向第一电极区域103漂移或扩散,并最终被第一电极区域103收集。另外,空穴可以在内建电场或外加偏置电场作用下,向第二电极区域105漂移或扩散,并最终被第二电极区域105收集。可以从第二电极区域105读出电信号,并据此得到有关入射光的信息(例如,入射光的强度)。
在此,第一电极区域103和/或第二电极区域105可以是半导体基板101上例如通过离子注入而形成的掺杂区,通过外延生长(在外延生长时可以原位 掺杂)而形成的外延区,等等。本领域技术人员知道多种手段来在半导体基板的限定区域中/上形成一定类型的掺杂区。另外,在光电二极管探测器100中,各光电二极管器件Pix的第一电极区域103可以彼此连接从而形成一体。各光电二极管器件Pix的第二电极区域105可以彼此分离,并例如按行和列排列成阵列形式。
在此,所谓“高掺杂”和“轻掺杂”是相对而言的。例如,“高掺杂”是指掺杂浓度在约1×1017cm-3以上,而“轻掺杂”是指掺杂浓度在约1×1017cm-3以下。另外,半导体基板101在第一类型轻掺杂之后,可以保持高阻,例如电阻率在约100-8×103Ω·cm。为进行第一类型(例如,N型)掺杂,可以使用N型掺杂剂如磷(P)或砷(As);为进行第二类型(例如,P型)掺杂,可以使用P型掺杂剂如硼(B)。
根据本公开的实施例,在相邻的光电二极管器件Pix之间,还可以设置像素间隔离部107。例如,隔离部107可以是第一类型重掺杂的,其厚度可以与第二电极区域105的厚度基本上相同。隔离部107可以形成为围绕每个光电二极管器件Pix的第二电极区域105,从而可以隔开各像素的有源区空间。这可以抑制像素间电荷串扰,并提高光子位置分辨率。
图1C示出了在图1A所示的光电二极管探测器中的示意电场分布。当光电二极管探测器100处于零偏或者反偏状态时,内部电场方向为从第一表面101-1S处的N+层指向空穴电荷收集P+区域。此外,电场也由像素间的N+区域指向空穴电荷收集P+区域。
在图1A至1C所示的实施例中,当入射光从光电二极管探测器100的第一表面101-1S处的N+层入射时,此处产生的空穴载流子需要漂移整个半导体基板厚度,才可被像素中的P+型半导体区域所收集。
为进一步改善器件性能,根据本公开的实施例,可以设置与第二电极区域相连接且从第二电极区域向第一表面伸出的伸出结构。伸出结构也可以被第二类型重掺杂,从而与第二电极一起构成例如空穴载流子的收集机构。通过这种伸出结构,可以减小空穴载流子与其收集机构之间的距离,从而可以加快空穴载流子的吸收,并可以降低半导体基板缺陷对载流子的捕获,从而提高光响应输出电流。
这种伸出结构可以不同地设置,以下将描述一些示例。
图2A是示出了根据本公开另一实施例的光电二极管探测器的截面图。
如图2A所示,根据该实施例的光电二极管探测器可以包括在半导体基板201上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板201的第一表面201-1S上形成的第一电极区域203以及在在半导体基板201的第二表面201-2S上形成的第二电极区域205。另外,在相邻光电二极管器件的第二电极区域205之间,可以设置有像素间隔离部207。关于这些部件,可以参见以上结合图1A和1B的描述。
另外,各光电二极管器件还可以包括与第二电极区域205相连的伸出结构209。伸出结构209可以基本上垂直于第二电极区域205。在此,伸出结构209可以是半导体基板201中的第二类型重掺杂区。这种掺杂区例如可以通过离子注入而在半导体基板201中形成,或者可以在半导体基板201中形成沟槽,并在沟槽中填充第二类型重掺杂的半导体材料来形成。以下,将进一步详细描述沟槽型的伸出结构。
在该示例中,伸出结构209可以沿第二电极区域205的周边形成,并至少部分地围绕第二电极区域205的周边。图2C是示出了在图2A所示的光电二极管探测器中可采用的伸出结构的示意俯视图。例如,如图2C中的(a)部分所示,伸出结构209可以完全环绕第二电极区域205的周边,形成环状围栏结构,从而与第二电极区域205一起形成围绕相应像素有源区的半包围构造。当然,伸出结构209不一定完全环绕第二电极区域205的周边,而是可以沿第二电极区域205的周边的一部分来形成。例如,如图2C中的(b)部分所示,伸出结构209可以包括沿第二电极区域205的周边对向设置的一对伸出结构(特别是在第二电极区域205为矩形形状时,可以设置在矩形的一对相对边上)。当然,本公开不限于此。例如,可以在第二电极区域205的更多周边部分或更少周边部分上形成伸出结构209。
在一个示例中,伸出结构209的端部距离第一表面101-1S的距离c为约5-100μm,伸出结构209的宽度d为约0.5-10μm,像素间伸出结构的间距e为约5-50μm。由于X射线经过闪烁体发出的可见光波长范围在400nm-600nm,在硅器件内吸收深度不超过1微米,所以这种伸出结构不会降低光生载流子的 吸收。另一方面,由于P+收集区的端部更加接近光入射面,空穴载流子在半导体基板中距离P+收集区的间距减小,所以加快了空穴载流子的吸收,并且降低了半导体基板缺陷对载流子的捕获,提高了光响应输出电流。
图2B示出了在图2A所示的光电二极管探测器中的示意电场分布。
如图2B所示,内部电场方向仍由N+半导体区域指向P+半导体区域,但由于位于像素有源区边缘处的P+伸出结构,所以电场线到像素内P+伸出结构所围绕的空间后开始发散,并指向P+伸出结构的侧壁。可见大部分电场线的长度得到了减小,也意味着空穴漂移到P+收集区的路径缩短,即降低了P+收集区空穴电荷的收集时间。此外,扩散到P+伸出结构所围绕空间内部的空穴,不易被邻近像素的P+收集区所收集,从而可以在提高目标像素电荷收集效率的同时,降低像素间电荷串扰效应。
根据本公开的实施例,除了沿第二电极区域的周边形成的伸出结构之外,还可以包括在第二电极区域的周边内侧形成的一个或多个另外的伸出结构。这些另外的伸出结构同样地可以与第二电极区域相连,并可以是第二类型重掺杂的。类似地,这些另外的伸出结构可以形成为至少部分地围绕第二电极区域的一部分,或者可以与沿周边形成的伸出结构一起形成格栅状。
图3A是示出了根据本公开另一实施例的光电二极管探测器的截面图,图3B是示出了在图3A所示的光电二极管探测器中可采用的伸出结构的示意俯视图。
如图3A所示,根据该实施例的光电二极管探测器可以包括在半导体基板301上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板301的第一表面301-1S上形成的第一电极区域303以及在在半导体基板301的第二表面301-2S上形成的第二电极区域305。另外,在相邻光电二极管器件的第二电极区域305之间,可以设置有像素间隔离部307。关于这些部件,可以参见以上结合图1A和1B的描述。
另外,各光电二极管器件还可以包括与第二电极区域305相连的伸出结构,包括沿第二电极区域305的周边形成的伸出结构309-1以及在二电极区域305的周边内侧形成的伸出结构309-2。关于伸出结构309-1,例如可以参见以上结合图2A、2B和2C的描述。另外,如图3B中的俯视图所示,伸出结构309-2 可以将相应像素的有源区(例如,被伸出结构309-1所围绕)分割为多个区域(通过形成环形,如图3B中的(a)部分所示,或者形成格栅,如图3B中的(b)和(c)部分所示)。在一个示例中,伸出结构的宽度d为约0.5-10μm,像素内伸出结构的间距f为约10-500μm。在该示例中,各伸出结构309-1、309-2可以具有基本上相同的延伸长度即深度(从第二表面向第一表面的方向延伸的尺度)。
当光生载流子在半导体基板中漂移时,会到达像素有源区内各个分割区域,这样进一步降低了空穴载流子到达最近P+收集区的距离。于是,可以将有源区内的空穴载流子吸收大致平均地分配,以降低载流子的收集时间,减小空穴载流子被半导体基板陷阱捕获的概率,增强光响应强度。
图4A是示出了根据本公开另一实施例的光电二极管探测器的截面图,图4B是示出了在图4A所示的光电二极管探测器中可采用的伸出结构的示意俯视图。
如图4A和4B所示,根据该实施例的光电二极管探测器可以包括在半导体基板401上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板401的第一表面401-1S上形成的第一电极区域403以及在在半导体基板401的第二表面401-2S上形成的第二电极区域405。另外,在相邻光电二极管器件的第二电极区域405之间,可以设置有像素间隔离部407。关于这些部件,可以参见以上结合图1A和1B的描述。
另外,各光电二极管器件还可以包括与第二电极区域405相连的伸出结构,包括沿第二电极区域405的周边形成的伸出结构409-1以及在二电极区域405的周边内侧形成的伸出结构409-2。关于伸出结构,可以参见以上结合图3A和3B的描述。
在该实施例中,在第二电极区域405的周边内侧形成的伸出结构409-2的深度可以小于沿第二电极区域405的周边形成的伸出结构409-1的深度。各伸出结构409-2的深度可以彼此基本上相等。
在以上实施例中,伸出结构形成为围栏构造,但是本公开不限于此。根据本公开的其他实施例,伸出结构可以形成为柱状结构(在俯视图中类似于点状结构)。这种柱状结构可以形成于第二电极区域的范围内任意位置处。
图5A是示出了根据本公开另一实施例的光电二极管探测器的截面图,图5B是示出了在图5A所示的光电二极管探测器中可采用的伸出结构的示意俯视图。
如图5A所示,根据该实施例的光电二极管探测器可以包括在半导体基板501上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板501的第一表面501-1S上形成的第一电极区域503以及在在半导体基板501的第二表面501-2S上形成的第二电极区域505。另外,在相邻光电二极管器件的第二电极区域505之间,可以设置有像素间隔离部507。关于这些部件,可以参见以上结合图1A和1B的描述。
另外,各光电二极管器件还可以包括与第二电极区域505相连的柱状伸出结构509。例如,伸出结构509的端部距第一表面501-1S的距离c可以为约5-100μm。
因为伸出结构509的端部更加接近光入射面,空穴载流子在半导体基板中距离P+收集区的间距减小,所以加快了空穴载流子的吸收,降低了半导体基板缺陷对载流子的捕获,提高了光响应输出电流。
例如,这种伸出结构509可以沿着第二电极区域505的周边断续地设置,如图5B中的(a)部分所示;可以设置在第二电极区域505的周边内侧,例如设置的第二电极区域505的大致中心位置处,如图5B中的(b)部分所示。当然,在第二电极区域505的周边内侧,不限于设置单个柱状伸出结构,也可以设置多个柱状伸出结构,例如可以按行和列设置柱状伸出结构的阵列。
也可以在第二电极区域505的周边和周边内侧同时设置伸出结构,这种伸出结构可以是围栏结构和/或柱状结构。例如,如图5B中的(d)部分所示,可以在第二电极区域505的大致中心处设置柱状伸出结构509-1,且沿第二电极区域505的周边设置多个柱状伸出结构509-2。伸出结构509-2中的至少一部分可以沿着第二电极区域505的周边延伸一定的范围,从而这些伸出结构509-2整体上看起来像是不连续的围栏结构。根据另一示例,伸出结构509-2可以延伸为彼此相接,从而构成绕第二电极区域505的周边的围栏结构,如图5B中的(c)部分所示。
当然,本公开不限于此。可以合适地设置围栏状或柱状的伸出结构。例如, 可以在外侧设置柱状伸出结构,并在内侧设置围栏状伸出结构;或者,可以在围栏状伸出结构所分割的区域中,设置柱状伸出结构;等等。
如上所述,伸出结构可以通过在半导体基板中形成沟槽,并在其中填充第二类型重掺杂的半导体材料来形成。
图6A、图6B和图6C是示出了根据本公开不同实施例的具有沟槽型伸出结构的光电二极管探测器的截面图。
如图6A、图6B和图6C所示,根据该实施例的光电二极管探测器可以包括在半导体基板601上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板601的第一表面601-1S上形成的第一电极区域603以及在在半导体基板601的第二表面601-2S上形成的第二电极区域605。各光电二极管器件还可以包括与第二电极区域605相连的伸出结构609。另外,在相邻光电二极管器件的第二电极区域605之间,可以设置有像素间隔离部607。关于这些部件,可以参见以上描述。图6A、图6B和图6C示出了伸出结构609的不同布局。需要指出的是,以上描述的各种伸出结构布局均可使用。
在此,伸出结构609可以通过在半导体基板601的第二表面601-2S处刻蚀从第二表面601-2S向第一表面601-1S延伸(例如,垂直于表面延伸)的沟槽F并在沟槽F中填充(例如,通过淀积)半导体材料如多晶硅(在该示例中,P+掺杂)来形成。用P+多晶硅填充,不仅可以实现电极引出,还可以增强器件的整体机械强度。
另外,在刻蚀沟槽F之后,会在沟槽F的底部及侧壁形成较多的缺陷和不平整。根据本公开的实施例,经过初步的牺牲氧去除后,可以进行沟槽侧壁的重离子注入,形成P+层区域。这样,可以降低电荷在沟槽侧壁或底部复合的概率,而直接被电极收集。
另外,根据本公开的实施例,沟槽可以延伸至第一电极区域处。这种情况下,嵌入于该沟槽中的半导体材料可以只占据该沟槽的一部分深度,而在沟槽的端部可以填充有光反射材料。
图7是示出了根据本公开另一实施例的具有沟槽型伸出结构的光电二极管探测器的截面图。
如图7所示,根据该实施例的光电二极管探测器可以包括在半导体基板 701上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板701的第一表面701-1S上形成的第一电极区域703以及在在半导体基板701的第二表面701-2S上形成的第二电极区域705。各光电二极管器件还可以包括与第二电极区域705相连的伸出结构709。另外,在相邻光电二极管器件的第二电极区域705之间,可以设置有像素间隔离部707。关于这些部件,可以参见以上描述。需要指出的是,以上描述的各种伸出结构布局均可使用。
在该示例中,在沟槽靠近第一表面701-1S一侧的端部E中,形成了反射结构713。反射结构713可以包括能够反射入射光的绝缘材料或者第二类型重掺杂的半导体材料。例如,用于反射结构713的半导体材料可以包括Ge、SiGe、SiC等与硅工艺相兼容的材料。这样,可以控制扩散到有源区内部的载流子限制在沟槽结构内,最终被P+收集区所收集。
图8是示出了根据本公开另一实施例的具有光反射结构的光电二极管探测器的截面图。
如图8所示,根据该实施例的光电二极管探测器可以包括在半导体基板801上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板801的第一表面801-1S上形成的第一电极区域803以及在在半导体基板801的第二表面801-2S上形成的第二电极区域805。各光电二极管器件还可以包括与第二电极区域805相连的伸出结构(图中未示出)。另外,在相邻光电二极管器件的第二电极区域805之间,可以设置有像素间隔离部807。关于这些部件,可以参见以上描述。
另外,沿着第二电极区域805的周边,可以形成至少部分地围绕第二电极区域805的周边(优选地,完全围绕第二电极区域805的周边)的光反射结构815。反射结构815可以包括能够反射入射光的绝缘材料或者第二类型重掺杂的半导体材料。例如,用于反射结构815的半导体材料可以包括Ge、SiGe、SiC等与硅工艺相兼容的材料。
光反射结构815可以从第二表面801-2S向着第一表面看801-1S伸出,其深度可以大于第二电极区域805的深度(在形成伸出结构的情况下,可以大于等于伸出结构的深度)。这种光反射结构815特别适用于沿着第二电极区域805的周边未形成或者未全部形成伸出结构的情况(例如,在沿着第二电极 区域805的周边形成断续的伸出结构的情况下,光反射结构815可以填充伸出结构之间的间隙形成)。
与以上实施例中类似,通过这种光反射结构,可以控制扩散到有源区内部的载流子限制在沟槽结构内,最终被P+收集区所收集。
在以上实施例中,像素间隔离部107、207、307、407、507、607、707、807形成为并未相对于第二电极区域伸出(与第二电极区域具有大致相同的深度)。根据本公开的实施例,这种像素间隔离部可以相对于第二电极区域伸出。
图9是示出了根据本公开另一实施例的具有伸长隔离部的光电二极管探测器的截面图。
如图9所示,根据该实施例的光电二极管探测器可以包括在半导体基板901上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板901的第一表面901-1S上形成的第一电极区域903以及在在半导体基板901的第二表面901-2S上形成的第二电极区域905。各光电二极管器件还可以包括与第二电极区域905相连的伸出结构909。另外,在相邻光电二极管器件的第二电极区域905之间,可以设置有像素间隔离部907。关于这些部件,可以参见以上描述。需要指出的是,以上描述的各种伸出结构布局均可使用。
在该示例中,像素间隔离部907相对于第二电极区域905伸出,例如具有与伸出结构909大致相等的深度。这样,像素间隔离部907可以包围每个像素内有源区中的P+收集区,充分隔离开各个像素的有源区空间,从而可以降低像素间电荷串扰,提高光子位置分辨率。
另外,根据本公开的其他实施例,可以只在阵列的外周设置隔离部,而不在阵列内的像素之间设置隔离部,特别是在绕像素周边形成伸出结构的情况下。
图10是示出了根据本公开另一实施例的在外周具有隔离部的光电二极管探测器的截面图。
如图10所示,根据该实施例的光电二极管探测器可以包括在半导体基板1001上形成的多个光电二极管器件,每个光电二极管器件可以包括在半导体基板1001的第一表面1001-1S上形成的第一电极区域1003以及在在半导体基板1001的第二表面1001-2S上形成的第二电极区域1005。各光电二极管器件还可以包括与第二电极区域1005相连的伸出结构1009-1和1009-2。关于这些 部件,可以参见以上描述。需要指出的是,以上描述的各种伸出结构布局均可使用。
在该示例中,在阵列的外周设置隔离部1007,而在阵列内各像素可以彼此直接相邻。隔离部1007可以相对于第二电极区域1005不伸出,或者可以伸出。这样,可以扩大像素有源区的范围和/或缩小像素间间距。
图11和12示出了根据本公开实施例的光电二极管探测器与常规技术的光电二极管探测器在光收集效率、光响应和电荷收集速度方面进行比较的曲线图。其中,进行比较的探测器的结构参数相同,但是一个具有根据本公开的伸出结构,另一个则无这种伸出结构,并假设光信号在0.1ns时刻停止。
如图11和12所示,在400nm-600nm波长范围内带围栅结构电极的光响应和量子效率要高于无围栅结构电极的结构。此外,带有围栅电极结构的电荷收集时间明显快于无围栅电极结构的光电二极管阵列。因此,根据本公开的结构可以有效提高电荷收集能力,降低电荷收集时间。
在以上的描述中,分别说明了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (25)

  1. 一种光电二极管器件,包括:
    第一类型轻掺杂的半导体基板,包括彼此相对的第一表面和第二表面;
    设于半导体基板的第一表面上的第一类型重掺杂的第一电极区域;以及
    设于半导体基板的第二表面上的第二类型重掺杂的第二电极区域,
    其中,第一表面为光入射面。
  2. 根据权利要求1所述的光电二极管器件,还包括:与第二电极区域相连接且从第二电极区域向第一表面伸出的伸出结构,其中,所述伸出结构被第二类型重掺杂。
  3. 根据权利要求2所述的光电二极管器件,其中,所述伸出结构包括:嵌入于在第二表面处形成且从第二表面向第一表面延伸的沟槽中的半导体材料。
  4. 根据权利要求3所述的光电二极管器件,其中,所述沟槽的侧壁包括第二类型重掺杂的离子注入区。
  5. 根据权利要求3所述的光电二极管器件,其中,所述沟槽延伸至第一电极区域处,嵌入于该沟槽中的半导体材料占据该沟槽的一部分深度,且该沟槽在第一表面一侧的端部还填充有光反射材料。
  6. 根据权利要求2-5中任一项所述的光电二极管器件,其中,所述伸出结构基本上垂直于第二电极区域。
  7. 根据权利要求2-6中任一项所述的光电二极管器件,其中,所述伸出结构至少部分地围绕第二电极区域的周边形成。
  8. 根据权利要求7中任一项所述的光电二极管器件,其中,所述伸出结构包括沿第二电极区域的周边形成的环状围栏结构,或者包括沿第二电极区域的周边对向设置的一对伸出结构。
  9. 根据权利要求7或8所述的光电二极管器件,还包括:在第二电极区域的周边内侧形成的一个或多个另外的伸出结构。
  10. 根据权利要求9所述的光电二极管器件,其中,所述另外的伸出结构形成为至少部分地围绕第二电极区域的一部分。
  11. 根据权利要求9所述的光电二极管器件,其中,所述伸出结构与所述另外的伸出结构一起形成格栅状。
  12. 根据权利要求9-11中任一项所述的光电二极管器件,其中,所述伸出结构与所述另外的伸出结构具有基本上相同的延伸长度。
  13. 根据权利要求9-11中任一项所述的光电二极管器件,其中,所述伸出结构的延伸长度大于所述另外的伸出结构的延伸长度。
  14. 根据权利要求2-6中任一项所述的光电二极管器件,其中,所述伸出结构包括在第二电极区域处形成的柱状结构。
  15. 根据权利要求14所述的光电二极管器件,其中,所述柱状结构设于第二电极区域的大致中心位置处。
  16. 根据权利要求14或15所述的光电二极管器件,其中,沿第二电极区域的周边设置有多个所述柱状结构。
  17. 根据权利要求16所述的光电二极管器件,其中,沿第二电极区域的周边设置的所述多个柱状结构中的至少一部分柱状结构沿着第二电极区域的周边延伸一定的范围。
  18. 根据权利要求17所述的光电二极管器件,其中,沿第二电极区域的周边设置的所述多个柱状结构彼此连接,从而构成绕第二电极区域的周边的围栏结构。
  19. 根据权利要求1-18中任一项所述的光电二极管器件,还包括:至少部分地环绕第二电极区域的周边形成且从第二电极区域向着第一表面伸出的光反射结构。
  20. 一种光电二极管探测器,包括:
    阵列,包括多个根据权利要求1-19中任一项所述的光电二极管器件。
  21. 根据权利要求20所述的光电二极管探测器,其中,各光电二极管器件的第一电极区域彼此连接在一起,而各光电二极管器件的第二电极区域彼此分离。
  22. 根据权利要求20或21所述的光电二极管探测器,还包括:设置于相邻光电二极管器件的第二电极区域之间的像素间隔离部,所述隔离部是第一类型重掺杂的。
  23. 根据权利要求20或21所述的光电二极管探测器,还包括:设置于阵列外周的隔离部,所述隔离部是第一类型重掺杂的。
  24. 根据权利要求22或23所述的光电二极管探测器,其中,隔离部与第二电极区域基本上等深,或者相对于第二电极区域向第一表面伸出。
  25. 根据权利要求24所述的光电二极管探测器,其中,隔离部与伸出结构基本上等深。
PCT/CN2017/096404 2016-12-07 2017-08-08 光电二极管器件及光电二极管探测器 WO2018103358A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/467,623 US11011656B2 (en) 2016-12-07 2017-08-08 Photodiode device and photodiode detector
FIEP17879355.0T FI3550614T3 (fi) 2016-12-07 2017-08-08 Fotodiodilaite ja fotodiodidetektori
EP17879355.0A EP3550614B1 (en) 2016-12-07 2017-08-08 Photodiode device and photodiode detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611143007.4 2016-12-07
CN201611143007.4A CN106847958B (zh) 2016-12-07 2016-12-07 光电二极管器件及光电二极管探测器

Publications (1)

Publication Number Publication Date
WO2018103358A1 true WO2018103358A1 (zh) 2018-06-14

Family

ID=59139925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096404 WO2018103358A1 (zh) 2016-12-07 2017-08-08 光电二极管器件及光电二极管探测器

Country Status (5)

Country Link
US (1) US11011656B2 (zh)
EP (1) EP3550614B1 (zh)
CN (1) CN106847958B (zh)
FI (1) FI3550614T3 (zh)
WO (1) WO2018103358A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847958B (zh) * 2016-12-07 2018-09-11 同方威视技术股份有限公司 光电二极管器件及光电二极管探测器
CN110943145B (zh) 2019-12-13 2022-03-25 京东方科技集团股份有限公司 光电二极管及制备方法、显示基板、显示装置
US11133864B1 (en) * 2020-04-24 2021-09-28 Ciena Corporation Measurement of crosstalk

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438217A (en) * 1994-04-29 1995-08-01 General Electric Company Planar avalanche photodiode array with sidewall segment
CN1508885A (zh) * 2002-12-18 2004-06-30 国际商业机器公司 具有慢光载流子的阻挡层的高速光电二极管及其形成方法
CN101794798A (zh) * 2009-01-05 2010-08-04 索尼公司 固态成像装置和照相机
CN106847958A (zh) * 2016-12-07 2017-06-13 同方威视技术股份有限公司 光电二极管器件及光电二极管探测器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639756A (en) 1986-05-05 1987-01-27 Santa Barbara Research Center Graded gap inversion layer photodiode array
GB2299204A (en) * 1995-03-20 1996-09-25 Secr Defence Electroluminescent device
US6204087B1 (en) * 1997-02-07 2001-03-20 University Of Hawai'i Fabrication of three-dimensional architecture for solid state radiation detectors
CN1324714C (zh) * 2000-04-04 2007-07-04 浜松光子学株式会社 半导体能束探测元件
US7276749B2 (en) * 2002-02-05 2007-10-02 E-Phocus, Inc. Image sensor with microcrystalline germanium photodiode layer
US8067813B2 (en) * 2004-07-01 2011-11-29 Varian Medical Systems Technologies, Inc. Integrated MIS photosensitive device using continuous films
US20060289777A1 (en) * 2005-06-29 2006-12-28 Wen Li Detector with electrically isolated pixels
US8759935B2 (en) * 2011-06-03 2014-06-24 Infineon Technologies Austria Ag Power semiconductor device with high blocking voltage capacity
US8921931B2 (en) * 2012-06-04 2014-12-30 Infineon Technologies Austria Ag Semiconductor device with trench structures including a recombination structure and a fill structure
US9018698B2 (en) * 2012-11-16 2015-04-28 Vishay General Semiconductor Llc Trench-based device with improved trench protection
WO2015060010A1 (ja) * 2013-10-24 2015-04-30 ソニー株式会社 調光装置、撮像素子及び撮像装置、並びに、調光装置の光透過率制御方法
FR3027452B1 (fr) 2014-10-21 2016-12-09 Commissariat Energie Atomique Procede de fabrication d'une photodiode a faible bruit
WO2017159025A1 (ja) * 2016-03-15 2017-09-21 ソニー株式会社 光電変換素子および固体撮像装置
CN206412371U (zh) * 2016-12-07 2017-08-15 同方威视技术股份有限公司 光电二极管器件及光电二极管探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438217A (en) * 1994-04-29 1995-08-01 General Electric Company Planar avalanche photodiode array with sidewall segment
CN1508885A (zh) * 2002-12-18 2004-06-30 国际商业机器公司 具有慢光载流子的阻挡层的高速光电二极管及其形成方法
CN101794798A (zh) * 2009-01-05 2010-08-04 索尼公司 固态成像装置和照相机
CN106847958A (zh) * 2016-12-07 2017-06-13 同方威视技术股份有限公司 光电二极管器件及光电二极管探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550614A4 *

Also Published As

Publication number Publication date
CN106847958A (zh) 2017-06-13
FI3550614T3 (fi) 2023-03-17
EP3550614A4 (en) 2020-09-23
EP3550614B1 (en) 2022-11-30
US11011656B2 (en) 2021-05-18
EP3550614A1 (en) 2019-10-09
CN106847958B (zh) 2018-09-11
US20190326458A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
CN109690792B (zh) Spad光电二极管
JP6090060B2 (ja) シングルフォトンアバランシェダイオード
JP6577601B2 (ja) 同一面電極のフォトダイオードアレイ及びその製造方法
US11189741B2 (en) Photodiode device, photodiode detector and methods of fabricating the same
WO2019098035A1 (ja) 光検出素子およびその製造方法
WO2018103358A1 (zh) 光电二极管器件及光电二极管探测器
TWI731811B (zh) 半導體光檢測元件
CN114093962B (zh) 单光子雪崩二极管和光电探测器阵列
EP3544064B1 (en) Photodetector and light detection and ranging
EP3809472B1 (en) A single-photon avalanche diode and a sensor array
WO2022011701A1 (zh) 一种单光子雪崩二极管及其制造方法、光检测器件及系统
WO2014101601A1 (zh) 光电探测器及其制造方法和辐射探测器
CN114141886A (zh) 一种雪崩光电二极管阵列探测器
JP7319743B2 (ja) 単一光子アバランシェダイオード装置
CN206412371U (zh) 光电二极管器件及光电二极管探测器
KR20230032568A (ko) Spad 구조
KR20230001795A (ko) Spad 픽셀 구조 및 제조방법
JP5503380B2 (ja) 赤外線センサ
CN205319156U (zh) 同面电极光电二极管阵列
US20200287071A1 (en) Time of Flight Sensor Device and Time of Flight Sensor Arrangement
US20230215964A1 (en) Single-photon detection pixel and single-photon detection pixel array including the same
WO2022077456A1 (zh) 单光子雪崩二极管、图像传感器及电子设备
KR20220114879A (ko) 이미지 센싱 장치
CN116978975A (zh) 光电半导体结构
KR20150063882A (ko) 실리콘 광증배관 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017879355

Country of ref document: EP

Effective date: 20190705