WO2014101601A1 - 光电探测器及其制造方法和辐射探测器 - Google Patents

光电探测器及其制造方法和辐射探测器 Download PDF

Info

Publication number
WO2014101601A1
WO2014101601A1 PCT/CN2013/087691 CN2013087691W WO2014101601A1 WO 2014101601 A1 WO2014101601 A1 WO 2014101601A1 CN 2013087691 W CN2013087691 W CN 2013087691W WO 2014101601 A1 WO2014101601 A1 WO 2014101601A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
doped region
contact layer
type contact
intrinsic semiconductor
Prior art date
Application number
PCT/CN2013/087691
Other languages
English (en)
French (fr)
Inventor
张岚
赵自然
吴万龙
俞文涛
张韡
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Publication of WO2014101601A1 publication Critical patent/WO2014101601A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • Photodetector its manufacturing method and radiation detector
  • This invention relates to the field of semiconductor optoelectronics, and more particularly to photodetectors and methods of making same and radiation detectors. Background technique
  • Photovoltaic photodetection can be divided into PN junction photodetector, PIN photodetector, avalanche photodetector and MSM photodetector.
  • the PIN photodetector includes a P-type semiconductor layer, an N-type semiconductor layer, and an intrinsic layer sandwiched between the P-type semiconductor layer and the N-type semiconductor layer. The intrinsic layer effectively increases the absorption length and absorption efficiency.
  • the silicon-based PIN photodetector is a new type of semiconductor detector that has been rapidly developed since the 1960s. It has the advantages of working at room temperature, high energy resolution, short pulse rise time, high detection efficiency, and stable performance. Silicon-based PIN photodetectors play an irreplaceable role in medical CT, baggage screening, container inspection, non-destructive testing of large industrial equipment, petroleum logging, radiological detection, and environmental monitoring.
  • PIN photodetectors There are three main manufacturing processes for PIN photodetectors: diffusion process, ion implantation process, and material growth process.
  • diffusion process ion implantation process
  • material growth process ion implantation.
  • Boron and phosphorus ions are respectively implanted on opposite surfaces of the high-resistance intrinsic semiconductor substrate to form a P-type semiconductor layer and an N-type semiconductor layer, thereby obtaining a PIN junction.
  • the photons In operation, when light is incident on the PIN photodetector, the photons excite electron-hole pairs in the depletion region of the PIN junction.
  • the photogenerated electrons and holes are respectively pulled to the electrode on the side of the P-type semiconductor layer and the electrode on the side of the N-type semiconductor layer by the electric field in the depletion region, thereby generating a photocurrent.
  • the detection of incident light is achieved by measuring the photocurrent.
  • the scintillator absorbs the high-energy ray and converts it into a fluorescent emission of visible light. Therefore, the detection of high-energy rays can be achieved by adding a scintillator to the PIN photodetector.
  • Photoelectric conversion efficiency is an important parameter of photodetectors.
  • the photoelectric conversion efficiency is mainly determined by the efficiency of light entering the inside of the semiconductor device, the efficiency of photon generation of electron-hole pairs, and the collection efficiency of electron-hole pairs. It is desirable to improve the efficiency of photodetectors to increase sensitivity. Summary of the invention
  • a photodetector comprising: an intrinsic semiconductor layer having a top surface and a bottom surface; a P-type lightly doped region on a top surface of the intrinsic semiconductor layer; and an intrinsic semiconductor layer a p-type heavily doped region on the top surface; a P-type contact layer on the top surface of the intrinsic semiconductor layer; and an N-type contact layer on the bottom surface of the intrinsic semiconductor layer, wherein the P-type heavily doped region and the P-type The lightly doped regions are adjacent, and the P-type contact layer is in contact with the P-type heavily doped region and the P-type lightly doped region.
  • the intrinsic semiconductor layer may be composed of one selected from the group consisting of single crystal silicon, polycrystalline silicon, GaAs, GaN, InP, and SiC.
  • the photodetector may further include: a first electrode coupled to the P-type contact layer; and a second electrode coupled to the N-type contact layer.
  • the first electrode and the second electrode may each be composed of one selected from the group consisting of Al, Ag, ITO, Ti, Ni, Au, or any combination thereof.
  • the photodetector may further include an antireflection layer on the P-type heavily doped region and the P-type lightly doped region, wherein light is incident from a side of the top surface of the intrinsic semiconductor layer.
  • the photodetector may further include an antireflection layer on the N-type contact layer, wherein light is incident from a side of the bottom surface of the intrinsic semiconductor layer.
  • the antireflection layer may be composed of one selected from the group consisting of SiO 2 , SiN, MgF 2 , ITO, or any combination thereof.
  • the ⁇ -type heavily doped region may comprise a plurality of spaced apart strips.
  • the number and spacing of the plurality of strips can be adjusted based on the desired effective photosensitive area and substrate doping concentration.
  • a ⁇ -type lightly doped region can be distributed between a plurality of strips.
  • the ⁇ -type contact layer may surround the ⁇ -type heavily doped region and the ⁇ -type lightly doped region.
  • a radiation detector comprising: a scintillator that receives high energy radiation and generates light; and the aforementioned photodetector that receives light and generates a sensing signal.
  • a method of fabricating a photodetector includes: forming a p-type contact layer on a top surface of an intrinsic semiconductor substrate; forming a ytterbium type light doping on a top surface of the intrinsic semiconductor substrate a heavily doped region on the top surface of the intrinsic semiconductor substrate; and in the intrinsic half An N-type contact layer is formed on a bottom surface of the conductor substrate, wherein the P-type heavily doped region is adjacent to the P-type lightly doped region, and the P-type contact layer is in contact with the P-type heavily doped region and the P-type lightly doped region .
  • a P-type contact layer, a P-type lightly doped region, a P-type heavily doped region, and an N-type contact layer are respectively formed by respective ion implantation.
  • the step of forming the N-type contact layer further comprising forming an anti-reflection layer on the P-type lightly doped region and the P-type heavily doped region.
  • the step of forming the N-type contact layer further comprising forming an anti-reflection layer on the N-type contact layer.
  • the step of forming the N-type contact layer further comprising forming the first electrode on the P-type contact layer.
  • the step of forming the N-type contact layer further comprising forming a second electrode on the N-type contact layer.
  • the collection efficiency of carriers can be improved by designing a P-type heavily doped region in the photosensitive surface.
  • Forming a combined structure including a P-type heavily doped region and a P-type lightly doped region on the photosensitive surface can reduce surface recombination and reduce surface leakage current, thereby improving the efficiency of photon generation of electron-hole pairs. Therefore, the photodetector can achieve high photoelectric conversion efficiency, thereby achieving high sensitivity.
  • the first electrode is coupled to the P-type contact layer and the P-type contact layer surrounds the P-type heavily doped region and the P-type lightly doped region. The first electrode does not affect the effective photosensitive area, so that the efficiency of light entering the inside of the semiconductor device can be improved, so that the sensitivity can be further improved.
  • FIG. 1 is a schematic view of a photodetector in accordance with one embodiment of the present invention.
  • FIG. 2 is a vertical sectional view of a semiconductor structure of a plurality of stages of a method of fabricating a photodetector according to an embodiment of the present invention
  • FIG. 1 is a schematic view of a photodetector in accordance with one embodiment of the present invention, wherein a top view of the photodetector is shown in FIG. 1a, and a vertical view of the photodetector taken along line AA in FIG. Cross-sectional view, a horizontal cross-sectional view of the photodetector taken along line BB in Figure lb is shown in Figure lc.
  • the photodetector 100 includes an intrinsic semiconductor layer 101, a P-type contact layer 102, a P-type heavily doped region 103, a P-type lightly doped region 104, and an N-type contact layer 105.
  • the intrinsic semiconductor layer 101 has a top surface and a bottom surface and may be composed of any one selected from the group consisting of single crystal silicon, polycrystalline silicon, GaAs, GaN, InP, and SiC.
  • the P-type contact layer 102, the P-type heavily doped region 103, and the P-type lightly doped region 104 are located on the top surface of the intrinsic semiconductor layer 101.
  • the P-type heavily doped region 103 is adjacent to the P-type lightly doped region 104, and the P-type contact layer 102 is in contact with the P-type heavily doped region 103 and the P-type lightly doped region 104.
  • the P-type heavily doped region 103 has a carrier collection function to improve carrier collection efficiency.
  • the P-type lightly doped region 104 has the function of modulating the surface electric field to improve the efficiency of photon generation of electron-hole pairs.
  • the N-type contact layer 105 is located on the bottom surface of the intrinsic semiconductor layer 101.
  • the concentration of the P-type contact layer 102 needs to meet the requirements for good ohmic contact with the electrode material. Photon detection can be achieved when a reverse bias or a zero bias is applied between the P-type contact layer 102 and the N-type contact layer 105.
  • the P-type heavily doped region 103 is a strip distributed in the P-type lightly doped region 104.
  • the configuration of the P-type heavily doped region 103 is not limited thereto.
  • the P-type heavily doped region 103 can include a plurality of spaced apart strips.
  • the P-type lightly doped region 104 is distributed between the plurality of strips of the P-type heavily doped region 103.
  • the P-type lightly doped regions 104 are distributed throughout the photosensitive surface, and a plurality of strips of the P-type heavily doped regions 103 are embedded in the P-type lightly doped regions 104.
  • the pitch and number of the plurality of stripes of the P-type heavily doped region 103 can be adjusted according to the desired effective photosensitive area and the substrate doping concentration to adjust the electric field formed between the intrinsic semiconductor layer 101.
  • the P-type heavily doped region 103 can improve the collection efficiency of photogenerated carriers.
  • the P-type lightly doped region 104 is advantageous for modulating the electric field, reducing the thickness of the surface dead zone, and reducing the dark current.
  • the doping concentration of the P-type lightly doped region 104 should be between the intrinsic concentration of the intrinsic semiconductor layer 101 and the P-type heavily doped region 103, and can be adjusted according to the actual electric field and the surface passivation effect.
  • a first electrode 108 on the P-type contact layer 102 and a second electrode 107 on the N-type contact layer 105 are also shown for the P-type contact layer 102 and the N-type contact layer.
  • a bias voltage is applied and/or the sense signal is read.
  • the first electrode 108 and the second electrode 107 may each be composed of one selected from the group consisting of Al, Ag, ITO, Ti, Ni, Au, and the like, or any combination thereof.
  • the first electrode 108 and the second electrode 107 may be a single layer of Al, Ag, ITO, or the like, or a laminate of Ti/Ni/Au or the like.
  • the first electrode 108 includes a first portion 108a surrounding the P-type heavily doped region 103 and the P-type lightly doped region 104 and a second portion 108b coupled to the first portion 108a and serving as a terminal.
  • An anti-reflection layer 106 is also formed over the P-type heavily doped region 103 and the P-type lightly doped region 104 such that the first electrode 108 does not block the photosurface of the photodetector 100 to increase the efficiency of light entering the interior of the semiconductor device.
  • the configuration of the first electrode 108 and the anti-reflection layer 106 is not limited thereto.
  • the second electrode 107 may be formed to surround the photosensitive surface, and the antireflection layer 106 may be formed on the N-type contact layer 105.
  • Anti-reflection layer 106 may be Si0 2, one kind of SiN, M g F 2, ITO and the like or any combination thereof selected from the group consisting of.
  • photodetector 100 can include a guard ring disposed along the perimeter for isolating crosstalk between devices, increasing reverse breakdown voltage, and reducing reverse dark current effects.
  • the guard ring can be spaced from the active area of the device by a certain distance.
  • the guard ring may be one of a P-type heavily doped region, an N-type heavily doped region, an STI (shallow trench isolation), or the like.
  • the photodetector 100 can be used as a single device alone or as an array.
  • a radiation detector can be formed in which the scintillator receives high energy radiation and produces light, and the photodetector receives light and produces a sensing signal.
  • Fig. 2 is a vertical sectional view showing a plurality of stages of a semiconductor structure in a method of fabricating a photodetector according to an embodiment of the present invention.
  • P-type dopants eg, boron
  • a semiconductor substrate eg, single crystal silicon
  • P-type heavily doped region 103 P-type lightly doped region 104
  • Figure 2a The P-type heavily doped region 103 is adjacent to the P-type lightly doped region 104, and the P-type contact layer 102 is in contact with the P-type heavily doped region 103 and the P-type lightly doped region 104.
  • N-type dopant e.g., phosphorus
  • the semiconductor substrate e.g., single crystal silicon
  • the undoped portion of the semiconductor substrate forms the intrinsic semiconductor layer 101.
  • the type contact layer 105 forms a PIN structure.
  • a light-transmitting material for example, ITO is grown on the top surface of the semiconductor structure by a process such as oxidation, MBE, CVD growth or the like.
  • the portion of the light-transmitting material outside the photosensitive surface is removed by photolithography and etching to form an anti-reflection layer 106, as shown in Fig. 2c.
  • a conductive material e.g., Ag is grown on the bottom surface of the semiconductor structure by a process such as sputtering or evaporation to form a second electrode 107, as shown in Fig. 2d.
  • a conductive material for example, Ag is grown on the top surface of the semiconductor structure by a process such as sputtering or evaporation. A portion of the conductive material above the light transmissive material is removed by photolithography and etching to form a first electrode 108, as shown in Figure 2e.
  • Photodetector 100 is obtained after packaging.
  • the detection of the optical signal is obtained by applying a reverse bias voltage or a bias voltage to the P-type contact layer 102 and the N-type contact layer 105 through the first electrode 108 and the second electrode 107.
  • Figure 3 is a theoretical calculation of photodetector 100 in accordance with one embodiment of the present invention.
  • the carrier collection efficiency can be improved by designing a P-type heavily doped region in the photosensitive surface.
  • the first electrode is coupled to the P-type contact layer and the P-type contact layer surrounds the P-type heavily doped region and the P-type lightly doped region. The first electrode does not affect the effective photosensitive area, so that the efficiency of light entering the inside of the semiconductor device can be improved, so that the sensitivity can be further improved.
  • the photosensitive surface includes a combined structure of a P-type heavily doped region and a P-type lightly doped region, surface recombination can be reduced, surface leakage current can be reduced, and the efficiency of photon generation of electron-hole pairs can be improved. According to theoretical calculations, the internal quantum efficiency of the photodetector 100 can reach over 91%. As shown in Fig. 3a, the dark current can be reduced to below ⁇ , as shown in Fig. 3b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

提供一种光电探测器(100)及其制造方法和辐射探测器。该光电探测器(100)包括:本征半导体层(101),具有顶部表面和底部表面;位于本征半导体层(101)的顶部表面的P型轻掺杂区(104);位于本征半导体层(101)的顶部表面的P型重掺杂区(103);位于本征半导体层(101)的顶部表面的P型接触层(102);以及位于本征半导体层(101)的底部表面的N型接触层(105),其中,P型重掺杂区(103)与P型轻掺杂区(104)邻接,并且P型接触层(102)与P型重掺杂区(103)和P型轻掺杂区(104)相接触。该光电探测器可以实现高光电转换效率,进而实现高灵敏度。

Description

光电探测器及其制造方法和辐射探测器 技术领域
本发明涉及半导体光电子技术领域, 更具体地, 涉及光电探测器及其制造 方法和辐射探测器。 背景技术
光伏型光电探测可以分为 PN结型光电探测器、 PIN光电探测器、 雪崩光 电探测器及 MSM型光电探测器。 PIN光电探测器包括 P型半导体层、 N型半 导体层、 以及夹在 P型半导体层和 N型半导体层之间的本征层。 本征层有效 地增加了吸收长度及吸收效率。 硅基 PIN光电探测器是二十世纪六十年代以 来得到迅速发展的一种新型半导体探测器,具有在室温下工作、能量分辨率高、 脉冲上升时间短、 探测效率高、 性能稳定等优点。 硅基 PIN光电探测器在医 疗用 CT、 行李安检、 集装箱检查、 大型工业设备无损探伤、 石油测井、 放射 性探测、 环境监测等领域都发挥着不可替代的作用。
PIN光电探测器的制造工艺主要有三种: 扩散工艺、 离子注入工艺及材料 生长工艺。 目前, 应用最广泛的是离子注入方法。 在高阻的本征半导体衬底的 相对两个表面分别注入硼和磷离子, 以形成 P型半导体层和 N型半导体层, 从而获得 PIN结。
在工作中, 当光照射在 PIN光电探测器上, 光子在 PIN结的耗尽区内激 发出电子空穴对。光生电子和空穴在耗尽区电场的作用下分别拉至 P型半导体 层一侧的电极和 N型半导体层一侧的电极, 从而产生光电流。 通过测量光电 流, 实现对入射光的探测。 当高能射线照射在闪烁体上时, 闪烁体吸收高能射 线并转化成可见光的荧光发射。 因此, 通过在 PIN光电探测器上加装闪烁体, 可以实现对高能射线的探测。
光电转换效率是光电探测器的重要参数。光电转换效率主要决定于光进入 到半导体器件内部的效率、光子产生电子空穴对的效率、 电子空穴对的收集效 率。 期望改善光电探测器的效率以提高灵敏度。 发明内容
本发明的目的是提供一种高灵敏度的光电探测器及包含该光电探测器的 辐射探测器。
根据本发明的一方面, 提供一种光电探测器, 包括: 本征半导体层, 具有 顶部表面和底部表面; 位于本征半导体层的顶部表面的 P型轻掺杂区;位于本 征半导体层的顶部表面的 p 型重掺杂区; 位于本征半导体层的顶部表面的 P 型接触层; 以及位于本征半导体层的底部表面的 N型接触层, 其中, P型重掺 杂区与 P型轻掺杂区邻接, 并且 P型接触层与 P型重掺杂区和 P型轻掺杂区 相接触。
根据实施例,本征半导体层可以由选自单晶硅、多晶硅、 GaAs、 GaN、 InP、 SiC中的一种组成。
根据实施例, 光电探测器还可以包括: 第一电极, 与 P型接触层耦合; 以 及第二电极, 与 N型接触层耦合。
根据实施例, 第一电极和第二电极可以分别由选自 Al、 Ag、 ITO、 Ti、 Ni、 Au中的一种或其任意组合组成。
根据实施例, 光电探测器还可以包括位于 P型重掺杂区和 P型轻掺杂区 上的增透层, 其中光从本征半导体层的顶部表面一侧入射。
根据实施例, 光电探测器还可以包括位于 N型接触层上的增透层, 其中 光从本征半导体层的底部表面一侧入射。例如,增透层可以由选自 Si02、 SiN、 MgF2、 ITO中的一种或其任意组合组成。
根据实施例, Ρ型重掺杂区可以包括分隔开的多个条带。 例如, 可以根据 期望的有效光敏面积及衬底掺杂浓度调节多个条带的数量和间距。 例如, Ρ型 轻掺杂区可以分布在多个条带之间。
根据实施例, Ρ型接触层可以围绕 Ρ型重掺杂区和 Ρ型轻掺杂区。
根据本发明的另一方面, 提供一种辐射探测器, 包括: 闪烁体, 接收高能 辐射并产生光; 以及前述的光电探测器, 接收光并产生感测信号。
根据本发明的又一方面, 提供一种制造光电探测器的方法, 包括: 在本征 半导体衬底的顶部表面形成 ρ型接触层;在本征半导体衬底的顶部表面形成 Ρ 型轻掺杂区; 在本征半导体衬底的顶部表面形成 Ρ型重掺杂区; 以及在本征半 导体衬底的底部表面形成 N型接触层,其中, P型重掺杂区与 P型轻掺杂区邻 接, 并且 P型接触层与 P型重掺杂区和 P型轻掺杂区相接触。
根据实施例, 通过各自的离子注入分别形成 P型接触层、 P型轻掺杂区、 P型重掺杂区和 N型接触层。
根据实施例,在形成 N型接触层的步骤之后,还包括在 P型轻掺杂区和 P 型重掺杂区上形成增透层。
根据实施例, 在形成 N型接触层的步骤之后, 还包括在 N型接触层上形 成增透层。
根据实施例, 在形成 N型接触层的步骤之后, 还包括在 P型接触层上形 成第一电极。
根据实施例, 在形成 N型接触层的步骤之后, 还包括在 N型接触层上形 成第二电极。
根据本发明的光电探测器,通过在光敏面内设计 P型重掺杂区,可以提高 载流子的收集效率。 在光敏面形成包括 P型重掺杂区和 P型轻掺杂区的组合 结构, 可以降低表面复合, 减小表面漏电流, 从而可以提高光子产生电子空穴 对的效率。 因此,该光电探测器可以实现高光电转换效率,进而实现高灵敏度。 在优选的实施例中, 第一电极与 P型接触层耦合, 而 P型接触层围绕 P型重 掺杂区和 P型轻掺杂区。第一电极不影响有效光敏面积,从而可以提高光进入 到半导体器件内部的效率, 从而可以进一步提高灵敏度。 附图说明
通过以下参照附图对本公开实施例的描述, 本公开的上述以及其他目的、 特征和优点将更为清楚, 在附图中:
图 1是根据本发明一个实施例的光电探测器的示意图;
图 2 是根据本发明一个实施例的光电探测器的制造方法的多个阶段的半 导体结构的垂直截面图; 以及
图 3是根据本发明一个实施例的光电探测器的理论计算结果。 具体实施方式 下文结合附图对本发明的实施例进行详细描述,本领域技术人员将会更加 明了本发明的上述以及其他目的、 优点和特征。 在各个附图中, 相同的元件釆 用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
图 1是根据本发明一个实施例的光电探测器的示意图, 其中在图 la中示 出了光电探测器的俯视图, 在图 lb中示出了光电探测器沿图 la中的线 A-A 截取的垂直截面图, 在图 lc中示出了光电探测器沿图 lb中的线 B-B截取的 水平截面图。 该光电探测器 100 包括本征半导体层 101、 P型接触层 102、 P 型重掺杂区 103、 P型轻掺杂区 104和 N型接触层 105。 本征半导体层 101具 有顶部表面和底部表面, 可以由选自单晶硅、 多晶硅、 GaAs、 GaN、 InP、 SiC 中的任一种组成。 P型接触层 102、 P型重掺杂区 103和 P型轻掺杂区 104位 于本征半导体层 101的顶部表面。 P型重掺杂区 103与 P型轻掺杂区 104邻接, 并且 P型接触层 102与 P型重掺杂区 103和 P型轻掺杂区 104相接触。 P型重 掺杂区 103具有载流子收集作用 ,以提高载流子的收集效率。 P型轻掺杂区 104 具有调制表面电场的作用, 以提高光子产生电子空穴对的效率。 N型接触层 105位于本征半导体层 101的底部表面。 P型接触层 102的浓度需满足与电极 材料形成良好欧姆接触的要求。 当在 P型接触层 102和 N型接触层 105之间 加反向偏压或 0偏压时, 即可实现光子探测。
在图 1的示例中, P型重掺杂区 103是分布在 P型轻掺杂区 104中的一个 条带。 然而, P型重掺杂区 103的配置不限于此。 P型重掺杂区 103可以包括 分隔开的多个条带。 P型轻掺杂区 104分布在 P型重掺杂区 103的多个条带之 间。 在替代的实例中, P型轻掺杂区 104分布在整个光敏面上, 并且 P型重掺 杂区 103的多个条带嵌入 P型轻掺杂区 104中。 P型重掺杂区 103的多个条带 的间距及数量可根据期望的有效光敏面积及衬底掺杂浓度调节 ,以调节与本征 半导体层 101之间形成的电场。 P型重掺杂区 103可以提高光生载流子的收集 效率。 P型轻掺杂区 104有利于调制电场, 降低表面死区厚度, 降低暗电流。 P型轻掺杂区 104的掺杂浓度应介于本征半导体层 101及 P型重掺区 103的掺 杂浓度之间, 可根据实际电场及表面钝化效果调整。
在图 1的示例中,还示出了位于 P型接触层 102上的第一电极 108和位于 N型接触层 105上的第二电极 107, 用于向 P型接触层 102和 N型接触层 105 施加偏压和 /或读出感测信号。 第一电极 108和第二电极 107可以分别由选自 Al、 Ag、 ITO、 Ti、 Ni、 Au等中的一种或其任意组合组成。 例如, 第一电极 108和第二电极 107可以为 Al、 Ag、 ITO等的单层, 或者 Ti/Ni/Au等的叠层。
在图 1的示例中, 光从本征半导体层 101的顶部表面一侧入射。 第一电极 108包括围绕 P型重掺杂区 103和 P型轻掺杂区 104的第一部分 108a以及与 第一部分 108a连接在一起并用作端子的第二部分 108b。 在 P型重掺杂区 103 和 P型轻掺杂区 104上方还形成了增透层 106,使得第一电极 108未遮挡光电 探测器 100的光敏面, 以提高光进入到半导体器件内部的效率。 然而, 第一电 极 108和增透层 106的配置不限于此。 例如,如果光从本征半导体层 101的底 部表面一侧入射, 可以将第二电极 107形成为围绕光敏面, 并且将增透层 106 形成在 N型接触层 105上。 增透层 106可以由选自 Si02、 SiN、 MgF2、 ITO等 中的一种或其任意组合组成。
尽管未在图中示出, 光电探测器 100可以包括沿着周边设置的保护环, 用 于隔离器件间串扰、 提高反向击穿电压、 降低反向暗电流作用。 保护环与器件 的有源区之间可以隔开一定距离。保护环可以是 P型重掺杂区、 N型重掺杂区、 STI (浅沟槽隔离 )等的一种。
另外, 光电探测器 100既作为单个器件单独使用, 也可以形成阵列使用。 将光电探测器和闪烁体相结合, 可以形成辐射探测器, 其中闪烁体接收高能辐 射并产生光, 而光电探测器接收光并产生感测信号。
图 2 是根据本发明一个实施例的光电探测器的制造方法的多个阶段的半 导体结构的垂直截面图。
通过使用不同掩模的单次或多次离子注入或扩散, 在半导体衬底(例如, 单晶硅)的顶部表面注入 P型掺杂剂 (例如, 硼), 分别形成 P型接触层 102、 P型重掺杂区 103、 P型轻掺杂区 104, 如图 2a所示。 P型重掺杂区 103与 P 型轻掺杂区 104邻接, 并且 P型接触层 102与 P型重掺杂区 103和 P型轻掺 杂区 104相接触。
通过离子注入或扩散, 在半导体衬底(例如, 单晶硅)的底部表面注入 N 型掺杂剂 (例如, 磷), 以形成 N型接触层 105, 如图 2b所示。 半导体衬底未 掺杂的部分形成本征半导体层 101。 P型接触层 102、 本征半导体层 101和 N 型接触层 105形成 PIN结构。
釆用氧化、 MBE、 CVD生长等工艺, 在半导体结构的顶部表面生长透光 材料(例如, ITO )。 通过光刻和蚀刻, 去除透光材料位于光敏面外部的部分, 以形成增透层 106, 如图 2c所示。
釆用溅射或者蒸发等工艺,在半导体结构的底部表面生长导电材料(例如, Ag ), 以形成第二电极 107, 如图 2d所示。
釆用溅射或者蒸发等工艺,在半导体结构的顶部表面生长导电材料(例如, Ag )。 通过光刻和蚀刻, 去除导电材料位于透光材料上方的部分, 以形成第一 电极 108, 如图 2e所示。
在封装之后获得光电探测器 100。 在光照情况下, 通过第一电极 108和第 二电极 107,在 P型接触层 102和 N型接触层 105施加反偏电压或 0偏压获得 光信号的探测。
图 3是根据本发明一个实施例的光电探测器 100的理论计算结果。通过在 光敏面内设计 P型重掺杂区, 可以提高载流子的收集效率。 在实施例中, 第一 电极与 P型接触层耦合, 而 P型接触层围绕 P型重掺杂区和 P型轻掺杂区。 第一电极不影响有效光敏面积, 从而可以提高光进入到半导体器件内部的效 率, 从而可以进一步提高灵敏度。 由于光敏面包括 P型重掺杂区和 P型轻掺 杂区的组合结构, 可以降低表面复合, 减小表面漏电流, 从而可以提高光子产 生电子空穴对的效率。根据理论计算,光电探测器 100的内量子效率可达 91% 以上, 如图 3a所示, 暗电流可降至 ΙΟρΑ以下, 如图 3b所示。
最后, 本领域技术人员应认识到, 虽然本文已详尽地示出和描述了示例性 的实施例, 但是, 在不脱离本发明精神和范围的情况下, 仍可根据本申请公开 的内容直接确定或推导出符合本发明原理的许多其他变型或修改。 因此, 本发 明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims

权 利 要 求 书
1、 一种光电探测器, 包括:
本征半导体层, 具有顶部表面和底部表面;
位于本征半导体层的顶部表面的 p型轻掺杂区;
位于本征半导体层的顶部表面的 p型重掺杂区;
位于本征半导体层的顶部表面的 p型接触层; 以及
位于本征半导体层的底部表面的 N型接触层,
其中, P型重掺杂区与 P型轻掺杂区邻接, 并且 P型接触层与 P型重掺杂 区和 P型轻掺杂区相接触。
2、 根据权利要求 1的光电探测器, 其中本征半导体层由选自单晶硅、 多 晶硅、 GaAs、 GaN、 InP、 SiC中的一种组成。
3、 根据权利要求 1所述的光电探测器, 还包括:
第一电极, 与 P型接触层耦合; 以及
第二电极, 与 N型接触层耦合。
4、 根据权利要求 3的光电探测器, 其中第一电极和第二电极分别由选自 Al、 Ag、 ITO、 Ti、 Ni、 Au中的一种或其任意组合组成。
5、 根据权利要求 1所述的光电探测器, 还包括位于 P型重掺杂区和 P型 轻掺杂区上的增透层, 其中光从本征半导体层的顶部表面一侧入射。
6、 根据权利要求 1所述的光电探测器, 还包括位于 N型接触层上的增透 层, 其中光从本征半导体层的底部表面一侧入射。
7、 根据权利要求 5或 6的光电探测器, 其中增透层由选自 Si02、 SiN、 MgF2、 ITO中的一种或其任意组合组成。
8、 根据权利要求 1所述的光电探测器, 其中 Ρ型重掺杂区包括分隔开的 多个条带。
9、 根据权利要求 8所述的光电探测器, 其中根据期望的有效光敏面积及 衬底掺杂浓度调节多个条带的数量和间距。
10、根据权利要求 8所述的光电探测器,其中 Ρ型轻掺杂区分布在多个条 带之间。
11、根据权利要求 8所述的光电探测器,其中 P型轻掺杂区分布在整个光 敏面上, 并且多个条带嵌入 P型轻掺杂区中。
12、 根据权利要求 1所述的光电探测器, 其中 P型接触层围绕 P型重掺 杂区和 P型轻掺杂区。
13、 一种辐射探测器, 包括:
闪烁体, 接收高能辐射并产生光; 以及
根据权利要求 1至 11中任一项所述的光电探测器, 接收光并产生感测信 号。
14、 一种制造光电探测器的方法, 包括:
在本征半导体衬底的顶部表面形成 P型接触层;
在本征半导体衬底的顶部表面形成 P型轻掺杂区;
在本征半导体衬底的顶部表面形成 P型重掺杂区; 以及
在本征半导体衬底的底部表面形成 N型接触层,
其中, P型重掺杂区与 P型轻掺杂区邻接, 并且 P型接触层与 P型重掺杂 区和 P型轻掺杂区相接触。
15、 根据权利要求 14所述的方法, 其中通过各自的单次或多次离子注入 分别形成 P型接触层、 P型轻掺杂区、 P型重掺杂区和 N型接触层, 可同时注 入形成, 也可分开以不同浓度注入。
16、 根据权利要求 14所述的方法, 在形成 N型接触层的步骤之后, 还包 括针对正面入射在 P型轻掺杂区和 P型重掺杂区上形成增透层。
17、 根据权利要求 14所述的方法, 在形成 N型接触层的步骤之后, 还包 括针对背面入射在 N型接触层上形成增透层。
18、 根据权利要求 14所述的方法, 在形成 N型接触层的步骤之后, 还包 括在 P型接触层上形成第一电极。
19、 根据权利要求 14所述的方法, 在形成 N型接触层的步骤之后, 还包 括在 N型接触层上形成第二电极。
PCT/CN2013/087691 2012-12-27 2013-11-22 光电探测器及其制造方法和辐射探测器 WO2014101601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210581557.X 2012-12-27
CN201210581557.XA CN103904152B (zh) 2012-12-27 2012-12-27 光电探测器及其制造方法和辐射探测器

Publications (1)

Publication Number Publication Date
WO2014101601A1 true WO2014101601A1 (zh) 2014-07-03

Family

ID=50995391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087691 WO2014101601A1 (zh) 2012-12-27 2013-11-22 光电探测器及其制造方法和辐射探测器

Country Status (2)

Country Link
CN (1) CN103904152B (zh)
WO (1) WO2014101601A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107003417B (zh) * 2014-10-20 2019-06-21 模拟技术公司 用于辐射成像模态装置的探测器阵列的探测器单元
CN106486502A (zh) * 2015-08-27 2017-03-08 中国科学院微电子研究所 一种x射线传感器及其制造方法
US9806112B1 (en) * 2016-05-02 2017-10-31 Huawei Technologies Co., Ltd. Electrostatic discharge guard structure
CN106653788A (zh) * 2016-12-26 2017-05-10 格科微电子(上海)有限公司 背照式图像传感器及提高背照式图像传感器灵敏度的方法
CN112599621B (zh) * 2020-12-11 2023-05-09 京东方科技集团股份有限公司 一种光电转换结构及其制备方法、显示装置
CN114335206B (zh) * 2021-12-29 2024-05-03 华进半导体封装先导技术研发中心有限公司 一种位置探测器及其制备方法
CN115295647B (zh) * 2022-10-08 2022-12-16 北京邮电大学 局域电场诱导的硅光电探测器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141766A (en) * 1979-04-23 1980-11-05 Agency Of Ind Science & Technol Manufacturing of semiconductor light position detector
CN1607671A (zh) * 2003-10-14 2005-04-20 中国科学院半导体研究所 与cmos工艺兼容的硅光电探测器及制作方法
CN1632957A (zh) * 2005-01-07 2005-06-29 中国科学院上海微系统与信息技术研究所 采用砷化镓基含磷材料的紫外增强光电探测器及制作方法
CN1787220A (zh) * 2004-12-08 2006-06-14 三星电机株式会社 一种光检测器及其制造方法
CN102176470A (zh) * 2011-03-26 2011-09-07 电子科技大学 一种以黑硅材料为光敏层的背照式Si-PIN光电探测器及其制备方法
CN102290481A (zh) * 2011-09-01 2011-12-21 中国科学院半导体研究所 具有宽光谱响应的硅探测器结构及其制作方法
CN203218303U (zh) * 2012-12-27 2013-09-25 同方威视技术股份有限公司 光电探测器和辐射探测器
CN103400872A (zh) * 2013-06-30 2013-11-20 北京工业大学 表面电场增强的pin光电探测器的结构及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100541828C (zh) * 2003-12-24 2009-09-16 厦门三优光机电科技开发有限公司 用于650nm光纤通信的光电探测器及其制造方法
CN101090138A (zh) * 2007-07-02 2007-12-19 重庆大学 P+pin硅光电探测器
CN101976708A (zh) * 2010-09-22 2011-02-16 中国科学院宁波材料技术与工程研究所 一种提高晶体硅太阳能电池光电转换效率的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141766A (en) * 1979-04-23 1980-11-05 Agency Of Ind Science & Technol Manufacturing of semiconductor light position detector
CN1607671A (zh) * 2003-10-14 2005-04-20 中国科学院半导体研究所 与cmos工艺兼容的硅光电探测器及制作方法
CN1787220A (zh) * 2004-12-08 2006-06-14 三星电机株式会社 一种光检测器及其制造方法
CN1632957A (zh) * 2005-01-07 2005-06-29 中国科学院上海微系统与信息技术研究所 采用砷化镓基含磷材料的紫外增强光电探测器及制作方法
CN102176470A (zh) * 2011-03-26 2011-09-07 电子科技大学 一种以黑硅材料为光敏层的背照式Si-PIN光电探测器及其制备方法
CN102290481A (zh) * 2011-09-01 2011-12-21 中国科学院半导体研究所 具有宽光谱响应的硅探测器结构及其制作方法
CN203218303U (zh) * 2012-12-27 2013-09-25 同方威视技术股份有限公司 光电探测器和辐射探测器
CN103400872A (zh) * 2013-06-30 2013-11-20 北京工业大学 表面电场增强的pin光电探测器的结构及其制备方法

Also Published As

Publication number Publication date
CN103904152A (zh) 2014-07-02
CN103904152B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
CN105185796B (zh) 一种高探测效率的单光子雪崩二极管探测器阵列单元
WO2014101601A1 (zh) 光电探测器及其制造方法和辐射探测器
CN108231947B (zh) 一种单光子雪崩二极管探测器结构及其制造方法
US20130193546A1 (en) Single photon avalanche diode for cmos circuits
CN108231946B (zh) 一种单光子雪崩二极管探测器结构及其制造方法
US8729654B2 (en) Back-side readout semiconductor photomultiplier
US8946617B2 (en) Photodiode having a p-n junction with varying expansion of the space charge zone due to application of a variable voltage
CN110246903B (zh) 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
CN203218303U (zh) 光电探测器和辐射探测器
EP3399552A1 (en) Coplanar electrode photodiode array and manufacturing method therefor
CN114914325B (zh) 一种多结的近红外单光子雪崩二极管及制备方法
CN114203852A (zh) 单光子雪崩二极管和光电探测器阵列
CN113270508A (zh) 一种雪崩光电二极管和光电倍增管探测器
CN106960852B (zh) 具有漂移沟道的紫外雪崩光电二极管探测器及其探测方法
Mazzillo et al. Quantum detection efficiency in Geiger mode avalanche photodiodes
CN110265489A (zh) 具有环栅保护环的单光子雪崩光电二极管及其制作方法
CN116598369B (zh) 低噪声单光子探测器及其制备方法
CN207572377U (zh) 一种多漂移环结构的紫外雪崩漂移探测器
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
CN113964238B (zh) 一种雪崩光电探测器的制备方法
CN206574724U (zh) 一种紫外雪崩光电二极管探测器
US20060213551A1 (en) Semiconductor photodetector and method for manufacturing same
RU2240631C1 (ru) Фотодетектор
CN117239000B (zh) 一种雪崩光电二极管及其制作方法、单光子探测器
CN110767767A (zh) 一种双保护环结构的新型spad探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867445

Country of ref document: EP

Kind code of ref document: A1