CN110246903B - 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法 - Google Patents

低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法 Download PDF

Info

Publication number
CN110246903B
CN110246903B CN201910582366.7A CN201910582366A CN110246903B CN 110246903 B CN110246903 B CN 110246903B CN 201910582366 A CN201910582366 A CN 201910582366A CN 110246903 B CN110246903 B CN 110246903B
Authority
CN
China
Prior art keywords
region
area
well
injection
single photon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910582366.7A
Other languages
English (en)
Other versions
CN110246903A (zh
Inventor
金湘亮
汪洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201910582366.7A priority Critical patent/CN110246903B/zh
Publication of CN110246903A publication Critical patent/CN110246903A/zh
Application granted granted Critical
Publication of CN110246903B publication Critical patent/CN110246903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种低噪声宽光谱响应的单光子雪崩光电二极管,包括衬底P‑Sub,衬底P‑Sub上设有PBL区,PBL区上设有P‑EPI区,P‑EPI区中设有P‑Well区,P‑Well区中设有P+注入区,P‑EPI区内侧设有DN‑Well区,DN‑Well区中设有N‑Well区,N‑Well区中设有N+注入区;N+注入区、N‑Well区、DN‑Well区、PBL区,构成全耗尽区域。本发明中全耗尽区域的存在能够使得器件的光子检测概率提高,而且耗尽区会使得电场分布峰值远离器件材料的表面区域,大幅度降低材料缺陷引起的能级捕获问题,降低所述器件的暗电流,达到低噪声的目的。

Description

低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
技术领域
本发明涉及二极管领域,特别涉及一种低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法。
背景技术
随着微电子技术与集成电路工艺的不断进步与发展,基于传统硅基CMOS工艺制作的单光子雪崩光电二极管在响应度、量子效率、集成度方面的性能得到了明显的改善。单光子探测技术在当代生活有着各种应用潜力,比如在量子通信、微弱信号检测、高灵敏度传感器等方面。单光子探测器现在主要有光电倍增管、雪崩光电二极管、超导体单光子探测器等等。在使用单光子雪崩光电二极管的单光子探测系统中,光子探测概率、暗计数是衡量器件的关键性因素。因此设计具有高光子探测概率、低噪声、高量子效率的器件结构具有极其重要的意义。
传统的单光子雪崩光电二极管的结构如图1所示,传统器件的雪崩倍增区域主要是由一个重掺杂区域与轻掺杂的阱构成,光子检测概率较低,并且只能对单一波长的光子进行检测,且倍增区域靠近材料表面区域,当传统结构工作在盖革模式,大量的载流子流过单光子雪崩光电二极管,一些载流子被表面材料中的低能级缺陷捕获。当雪崩被淬灭后,这些缺陷中心开始释放载流子。如果此时单光子雪崩光电二极管两端的电压大于雪崩电压,这些载流子会再次触发雪崩,产生与前一次雪崩脉冲无任何区别的后脉冲,在没有光子到达时引起一次暗计数。所以,研究一种具有高光子检测概率、宽光谱响应、低噪声的器件结构尤为重要。
发明内容
为了解决上述技术问题,本发明提供一种结构简单、光子检测效率高的低噪声宽光谱响应的单光子雪崩光电二极管,并提供其制作方法。
本发明解决上述问题的技术方案是:一种低噪声宽光谱响应的单光子雪崩光电二极管,包括衬底P-Sub、PBL区、DN-Well区、P-EPI区、N-Well区、P-Well区、P+注入区、N+注入区;
所述衬底P-Sub上设有PBL区,PBL区上设有环形P-EPI区,P-EPI区中设有环形P-Well区,P-Well区中设有环形P+注入区,所述P-EPI区内侧设有环形DN-Well区,DN-Well区中设有环形N-Well区,N-Well区中设有N+注入区;所述N+注入区、N-Well区、DN-Well区、PBL区构成全耗尽区域;
所述P+注入区引出用作单光子雪崩光电二极管的阴极;所述N+注入区引出用作单光子雪崩光电二极管的阳极。
上述低噪声宽光谱响应的单光子雪崩光电二极管,所述P-Well区中设有环形第一场氧隔离区,第一场氧隔离区的内、外侧分别与P+注入区外侧边缘、P-Well区外侧边缘接触。
上述低噪声宽光谱响应的单光子雪崩光电二极管,所述N-Well区周围设有环形第二场氧隔离区,第二场氧隔离区覆盖N-Well区与P-EPI区的交界处、P-EPI区与P-Well区的交界处,且第二场氧隔离区的内、外侧分别与N+注入区外侧边缘、P+注入区内侧边缘接触;第一场氧隔离区与第二场氧隔离区构成同心圆环。
一种低噪声宽光谱响应的单光子雪崩光电二极管的制作方法,包括以下步骤:
步骤一:第一次光刻,在所述衬底P-Sub的表面制作PBL区;
步骤二:第二次光刻,在PBL区上形成环形P-EPI区和环形DN-Well区,且DN-Well区位于P-EPI区内侧;
步骤三:第三次光刻,在DN-Well区中形成N-Well区;
步骤四:第四次光刻,在P-EPI区中形成环形P-Well区;
步骤五:第五次光刻,在P-Well区中形成环形P+注入区;
步骤六:第六次光刻,在N-Well区中形成N+注入区;
步骤七:在P+注入区外侧边缘与P-Well区外侧边缘之间形成第一场氧隔离区;
步骤八:在N+注入区外侧边缘与P+注入区内侧边缘之间形成第二场氧隔离区;
步骤九:将P+注入区引出用作单光子雪崩光电二极管的阴极;将N+注入区引出用作单光子雪崩光电二极管的阳极。
本发明的有益效果在于:
1、本发明中的N+注入区、N-Well区、DN-Well区、PBL区构成全耗尽区域,全耗尽区域的存在能够使得器件的光子检测概率提高,并且具有较宽的光谱响应范围,宽的耗尽区会使得量子效率提高,从而提高对不同波段光子的检测能力;而且耗尽区会使得电场分布峰值远离器件材料的表面区域,大幅度降低材料缺陷引起的能级捕获问题,降低所述器件的暗电流,达到低噪声的目的。
2、本发明的制作方法,制作过程简单,操作方便,制作出的单光子雪崩光电二极管的版图为圆形同心环,器件既不会违反版图的设计基本规则,也不会用到标准BCD工艺以外的步骤,有效提高了单光子雪崩光电二极管的光子检测概率,降低了噪声。
附图说明
图1为传统单光子雪崩光电二极管的剖面图和寄生结构示意图。
图2为本发明实施例中单光子雪崩光电二极管剖面图和电路连接图。
图3为本发明实施例中单光子雪崩光电二极管的寄生结构示意图与工作原理图。
图4为本发明实施例中单光子雪崩光电二极管的俯视图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图2-图4所示,一种低噪声宽光谱响应的单光子雪崩光电二极管,包括衬底P-Sub101、PBL区102、DN-Well区103、P-EPI区104、N-Well区105、P-Well区106、P+注入区107、N+注入区108。P-Sub为P型衬底区域,PBL为P型埋层区域,DN-Well为深型N阱区域,P-EPI为P型外延层区域。
所述衬底P-Sub101上设有PBL区102,PBL区102上设有环形P-EPI区104,P-EPI区104中设有环形P-Well区106,P-Well区106中设有环形P+注入区107,所述P-EPI区104内侧设有环形DN-Well区103,DN-Well区103 中设有环形N-Well区105,N-Well区105中设有N+注入区108;所述N+注入区108、N-Well区105、DN-Well区103、PBL区102构成全耗尽区域。该全耗尽区域的存在,使得光电二极管的光子检测概率提高,使得电场分布峰值远离器件材料的表面区域,大幅度降低材料缺陷引起的能级捕获问题,降低所述器件的暗电流,达到低噪声的目的。因此器件能够具有较好的波长选择特性。器件具体的工作示意图和寄生结构图如图3所示。由于器件结构的耗尽区较宽,因此入射光很容易进入材料内部被充分吸收而产生大量电子 - 空穴对,因而大幅度提高了光电转换效率,从而使灵敏度得以提高。器件可以通过调节所述N+注入区108、所述N-Well区105、所述DN-Well区103、所述PBL区102的几何参数,来调节所述器件结构的耗尽区大小,达到改变光子检测概率的目的。并且还可以控制器件阴阳极的偏置电压来实现对不同波段的光子检测。
所述P+注入区107通过接触孔与金属层Ⅰ的第一金属层203相连接,在金属层Ⅱ的第二金属层303上设有金属通孔304,金属层Ⅰ的所述第一金属层203通过所述金属通孔304与金属层Ⅱ的所述第二金属层303相连接,用作单光子雪崩光电二极管的阴极;所述N+注入区108通过接触孔与金属层Ⅰ的第三金属层204相连接,在金属层Ⅱ的第四金属层上设有金属通孔302,金属层Ⅰ的所述第三金属层204通过所述金属通孔302与金属层Ⅱ的所述第四金属层301相连接,用作单光子雪崩光电二极管的阳极。
所述P-Well区106中设有环形第一场氧隔离区201,第一场氧隔离区201的内、外侧分别与P+注入区107外侧边缘、P-Well区106外侧边缘接触。
所述N-Well区105周围设有环形第二场氧隔离区202,第二场氧隔离区202覆盖N-Well区105与P-EPI区104的交界处、P-EPI区104与P-Well区106的交界处,且第二场氧隔离区202的内、外侧分别与N+注入区108外侧边缘、P+注入区107内侧边缘接触;第一场氧隔离区201与第二场氧隔离区202构成同心圆环。
单光子雪崩光电二极管的工作原理为:在光照条件下,单光子雪崩光电二极管工作在盖革模式时,即所述阳极接高电位,所述阴极接地电位,所述N+注入区108、所述N-Well区105、所述DN-Well区103、所述PBL区102构成全耗尽区域,产生较宽的耗尽层,当光子达到耗尽区产生光生载流子,它们在电场的作用下被加速,获得很高的能量,进而与晶格发生碰撞,使晶格中的电子电离,形成新的电子-空穴对。如此反复,使势垒区内载流子的数量和光电流迅速增大,实现对单光子的检测。由于所述器件结构的耗尽区较宽,因此入射光很容易进入材料内部被充分吸收而产生大量电子-空穴对,因而大幅度提高了光电转换效率,从而使灵敏度得以提高。所述N+注入区108与所述PBL区102相比所述N-Well区105和所述DN-Well区103较薄,因而光生电流中漂移分量占支配地位,从而大大提高了响应速度。所述N-Well区105和所述DN-Well区103的存在,明显增大了耗尽层的厚度,这有利于缩短载流子的扩散过程。耗尽层的加宽,也可以明显减少结电容从而使电路常数减小。并且耗尽区加宽还有利于对长波区的吸收。将器件版图设置成圆形同心环,以此增大感光面积。
基于所述N+注入区108、所述N-Well区105、所述DN-Well区103、所述PBL区102构成的单光子雪崩光电二极管结构,在传统的单光子雪崩光电二极管结构的基础上,所述添加PBL区102和所述DN-Well区103和来提高耗尽区的面积,所述P-EPI区104作为器件的保护环结构,用于防止器件耗尽区发生边缘击穿效应,导致所述器件无法继续工作在盖革模式。由于所述器件结构的电场分布峰值位于耗尽区内部,因此大幅度降低材料缺陷引起的能级捕获问题,抑制隧穿电流的产生,降低暗电流引起的后脉冲问题。
一种低噪声宽光谱响应的单光子雪崩光电二极管的制作方法,包括以下步骤:
步骤一:第一次光刻,在所述衬底P-Sub101的表面制作PBL区102;
步骤二:第二次光刻,在PBL区102上形成环形P-EPI区104和环形DN-Well区103,且DN-Well区103位于P-EPI区104内侧;
步骤三:第三次光刻,在DN-Well区103中形成N-Well区105;
步骤四:第四次光刻,在P-EPI区104中形成环形P-Well区106;
步骤五:第五次光刻,在P-Well区106中形成环形P+注入区107;
步骤六:第六次光刻,在N-Well区105中形成N+注入区108;
步骤七:在P+注入区107外侧边缘与P-Well区106外侧边缘之间形成第一场氧隔离区201;
步骤八:在N+注入区108外侧边缘与P+注入区107内侧边缘之间形成第二场氧隔离区202;
步骤九:将P+注入区107引出用作单光子雪崩光电二极管的阴极;将N+注入区108引出用作单光子雪崩光电二极管的阳极。

Claims (4)

1.一种低噪声宽光谱响应的单光子雪崩光电二极管,其特征在于:包括衬底P-Sub、PBL区、DN-Well区、P-EPI区、N-Well区、P-Well区、P+注入区、N+注入区;
所述衬底P-Sub上设有PBL区,PBL区上设有环形P-EPI区,P-EPI区中设有环形P-Well区,P-Well区中设有环形P+注入区,所述P-EPI区内侧设有环形DN-Well区,DN-Well区 中设有环形N-Well区,N-Well区中设有N+注入区;所述N+注入区、N-Well区、DN-Well区、PBL区,构成全耗尽区域;
所述P+注入区引出用作单光子雪崩光电二极管的阴极;所述N+注入区引出用作单光子雪崩光电二极管的阳极;
通过调节所述N+注入区、所述N-Well区、所述DN-Well区、所述PBL区的几何参数,来调节单光子雪崩光电二极管的全耗尽区域大小,达到改变光子检测概率的目的;通过控制器件阴阳极的偏置电压来实现对不同波段的光子检测。
2.根据权利要求1所述的低噪声宽光谱响应的单光子雪崩光电二极管,其特征在于:所述P-Well区中设有环形第一场氧隔离区,第一场氧隔离区的内、外侧分别与P+注入区外侧边缘、P-Well区外侧边缘接触。
3.根据权利要求2所述的低噪声宽光谱响应的单光子雪崩光电二极管,其特征在于:所述N-Well区周围设有环形第二场氧隔离区,第二场氧隔离区覆盖N-Well区与P-EPI区的交界处、P-EPI区与P-Well区的交界处,且第二场氧隔离区的内、外侧分别与N+注入区外侧边缘、P+注入区内侧边缘接触;第一场氧隔离区与第二场氧隔离区构成同心圆环。
4.一种根据权利要求1-3中任一项所述的低噪声宽光谱响应的单光子雪崩光电二极管的制作方法,包括以下步骤:
步骤一:第一次光刻,在所述衬底P-Sub的表面制作PBL区;
步骤二:第二次光刻,在PBL区上形成环形P-EPI区和环形DN-Well区,且DN-Well区位于P-EPI区内侧;
步骤三:第三次光刻,在DN-Well区中形成N-Well区;
步骤四:第四次光刻,在P-EPI区中形成环形P-Well区;
步骤五:第五次光刻,在P-Well区中形成环形P+注入区;
步骤六:第六次光刻,在N-Well区中形成N+注入区;
步骤七:在P+注入区外侧边缘与P-Well区外侧边缘之间形成第一场氧隔离区;
步骤八:在N+注入区外侧边缘与P+注入区内侧边缘之间形成第二场氧隔离区;
步骤九:将P+注入区引出用作单光子雪崩光电二极管的阴极;将N+注入区引出用作单光子雪崩光电二极管的阳极。
CN201910582366.7A 2019-06-28 2019-06-28 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法 Active CN110246903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910582366.7A CN110246903B (zh) 2019-06-28 2019-06-28 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910582366.7A CN110246903B (zh) 2019-06-28 2019-06-28 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法

Publications (2)

Publication Number Publication Date
CN110246903A CN110246903A (zh) 2019-09-17
CN110246903B true CN110246903B (zh) 2021-05-28

Family

ID=67890494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910582366.7A Active CN110246903B (zh) 2019-06-28 2019-06-28 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法

Country Status (1)

Country Link
CN (1) CN110246903B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628034B (zh) * 2020-05-28 2023-09-15 湖北京邦科技有限公司 光电探测装置的制造方法
EP3940798A1 (en) * 2020-07-13 2022-01-19 Imec VZW Avalanche photodiode device with a curved absorption region
US11522097B2 (en) * 2020-10-14 2022-12-06 Globalfoundries Singapore Pte. Ltd. Diode devices and methods of forming diode devices
CN114242826B (zh) * 2021-12-02 2023-12-22 武汉新芯集成电路制造有限公司 单光子雪崩二极管及其形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719504A (zh) * 2009-12-03 2010-06-02 厦门大学 用于光电单片集成的硅基光电探测器及其制备方法
CN103299437A (zh) * 2010-09-08 2013-09-11 爱丁堡大学评议会 用于cmos电路的单光子雪崩二极管
CN103872168A (zh) * 2014-03-06 2014-06-18 中国电子科技集团公司第三十八研究所 用于硅基光电集成电路芯片中的光电探测器及制备方法
CN108511467A (zh) * 2018-03-06 2018-09-07 南京邮电大学 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2144303B1 (en) * 2008-07-10 2013-02-06 STMicroelectronics (Research & Development) Limited Improvements in Single Photon Avalanche Diodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719504A (zh) * 2009-12-03 2010-06-02 厦门大学 用于光电单片集成的硅基光电探测器及其制备方法
CN103299437A (zh) * 2010-09-08 2013-09-11 爱丁堡大学评议会 用于cmos电路的单光子雪崩二极管
CN103872168A (zh) * 2014-03-06 2014-06-18 中国电子科技集团公司第三十八研究所 用于硅基光电集成电路芯片中的光电探测器及制备方法
CN108511467A (zh) * 2018-03-06 2018-09-07 南京邮电大学 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法

Also Published As

Publication number Publication date
CN110246903A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN110246903B (zh) 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
CN106449770B (zh) 防止边缘击穿的环形栅单光子雪崩二极管及其制备方法
RU2290721C2 (ru) Кремниевый фотоэлектронный умножитель (варианты) и ячейка для кремниевого фотоэлектронного умножителя
US8093624B1 (en) High fill-factor avalanche photodiode
US9178100B2 (en) Single photon avalanche diode for CMOS circuits
CN108231947B (zh) 一种单光子雪崩二极管探测器结构及其制造方法
CN110416335A (zh) 硅基近红外单光子雪崩二极管探测器及其制作方法
US20100327387A1 (en) Avalanche Photodiode
CN108231946B (zh) 一种单光子雪崩二极管探测器结构及其制造方法
CN108511467B (zh) 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法
JP2015041746A (ja) シングルフォトンアバランシェダイオード
CN108550592B (zh) 一种低暗计数率cmos spad光电器件
CN114914325B (zh) 一种多结的近红外单光子雪崩二极管及制备方法
WO2014101601A1 (zh) 光电探测器及其制造方法和辐射探测器
US8212327B2 (en) High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme
CN108538865B (zh) 一种硅基三光电探测器
EP3884522B1 (en) Multi-junction pico-avalanche detector
US20190165010A1 (en) Near Ultraviolet Photocell
CN106960852B (zh) 具有漂移沟道的紫外雪崩光电二极管探测器及其探测方法
CN110265489A (zh) 具有环栅保护环的单光子雪崩光电二极管及其制作方法
CN106252456B (zh) 一种高灵敏度光敏三极管及其制造方法
CN114975657A (zh) Spad器件结构、spad探测器及spad器件结构制备方法
CN117239000B (zh) 一种雪崩光电二极管及其制作方法、单光子探测器
CN115548157B (zh) 一种具有宽漂移区的双结单光子雪崩二极管及其制备方法
CN114823740A (zh) 内嵌可控硅整流结构复合雪崩结光电探测器及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant