WO2018098857A1 - 用于地震区高陡边坡防落石的组合式消能棚架结构 - Google Patents

用于地震区高陡边坡防落石的组合式消能棚架结构 Download PDF

Info

Publication number
WO2018098857A1
WO2018098857A1 PCT/CN2016/110554 CN2016110554W WO2018098857A1 WO 2018098857 A1 WO2018098857 A1 WO 2018098857A1 CN 2016110554 W CN2016110554 W CN 2016110554W WO 2018098857 A1 WO2018098857 A1 WO 2018098857A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
steel
impact
scaffolding
top surface
Prior art date
Application number
PCT/CN2016/110554
Other languages
English (en)
French (fr)
Inventor
王峥峥
朱长安
高阳
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/088,555 priority Critical patent/US11072898B2/en
Publication of WO2018098857A1 publication Critical patent/WO2018098857A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F7/00Devices affording protection against snow, sand drifts, side-wind effects, snowslides, avalanches or falling rocks; Anti-dazzle arrangements ; Sight-screens for roads, e.g. to mask accident site
    • E01F7/04Devices affording protection against snowslides, avalanches or falling rocks, e.g. avalanche preventing structures, galleries
    • E01F7/045Devices specially adapted for protecting against falling rocks, e.g. galleries, nets, rock traps

Definitions

  • the invention relates to a scaffolding structure for preventing high-steep slope anti-rolling stone damage in highway construction, and is particularly suitable for the field of highway geological disaster prevention and post-disaster reconstruction engineering in the earthquake zone.
  • China's highway construction is in a stage of rapid development.
  • the state has invested more and more in the western region.
  • many traffic routes inevitably walk between valleys and hills, and high steepness.
  • Dangerous rock falling under the terrain has serious safety hazards on the road.
  • China is a country with frequent earthquakes.
  • reinforced concrete shed structure In order to ensure the safety of driving, reinforced concrete shed structure is often used in engineering construction.
  • the traditional reinforced concrete shed structure has long construction period and high cost.
  • the construction has great interference to traffic transportation, and sand is often used as cushioning material.
  • the cushion layer not only has poor energy dissipation, but also seriously affects the stability of the shed structure due to its large weight.
  • the technical problem to be solved by the invention is that under the geological conditions of the high and steep slope of the seismic zone, the dangerous rock falling rock can be prevented from causing damage to the road construction, and the stability of the scaffold can be effectively ensured, and the combination of the Baotong can be quickly set up. Energy dissipation structure.
  • Combined energy dissipation scaffolding structure for high-steep slope anti-falling rock in seismic zone including top impact-resistant system, top support system, scaffold main structure, mountain side anchoring system and anchor-in steel plate concrete combined foundation ;
  • Top impact resistant system including upper steel, lower steel and EPE Anti-shock damping layer
  • the upper steel plate is made of steel corrugated plate
  • the lower layer is made of flat steel plate
  • the upper steel plate and the lower steel plate are filled with EPEExpanded Polyethylene.
  • Impact-absorbing layer and high-strength bolt connection according to the test results: the impact resistance of the steel corrugated board under the same index is much higher than that of the flat plate, so the steel corrugated board on the top surface facing the impact surface is more conducive to improving the scaffolding disaster resistance. ability.
  • the top support system is formed by a combination of lateral, vertical, oblique and longitudinal directions to form a three-dimensional steel frame system, and the top support system is respectively welded with the top impact resistance system and the main structure of the scaffold, thereby improving the stability and the structure of the structure.
  • the carrying capacity of the structure is formed by a combination of lateral, vertical, oblique and longitudinal directions to form a three-dimensional steel frame system, and the top support system is respectively welded with the top impact resistance system and the main structure of the scaffold, thereby improving the stability and the structure of the structure.
  • the carrying capacity of the structure is formed by a combination of lateral, vertical, oblique and longitudinal directions to form a three-dimensional steel frame system, and the top support system is respectively welded with the top impact resistance system and the main structure of the scaffold, thereby improving the stability and the structure of the structure.
  • the carrying capacity of the structure is formed by a combination of lateral, vertical, oblique and longitudinal directions to form a three-dimensional steel frame system, and
  • the main structure of the scaffold consists of I-beams and steel columns on both sides, and 1/3 to 1/2 are placed in the middle and lower part of the steel column.
  • the high degree of concrete is used to improve the stability of the column.
  • the center of gravity is reduced as much as possible, and on the other hand, the inertial force generated by the seismic load is reduced.
  • the main structure of the scaffolding structure is provided with an anti-shock steel plate on the upper side of the steel pipe column on the mountain side, and a movable steel plate is arranged on the lower part to facilitate regular cleaning of the falling rock and gravel on the mountain side, and the anti-shock steel plate is anchored on the slope by the lateral anchor rod, thereby the steel pipe column Reinforcement to ensure the stability of the main structure of the scaffold.
  • the I-beam beam and the steel pipe columns on both sides are connected by a shock-absorbing support to match the top impact system.
  • the EPE impact absorbing layer implements the absorbing and energy absorbing function of the present invention.
  • the anchoring system on the side of the mountain is provided with a locking anchor, the angle is perpendicular to the joint surface of the rock mass, and the anchor bolts are respectively connected with the top impact resistant system and the main structure of the scaffold; on the one hand, the sliding of the rock mass on the mountain side can be prevented Move and collapse; on the other hand, the top impact resistance system and the main structure of the scaffold are enhanced in integrity and stability is improved.
  • the anchored steel plate concrete composite foundation adopts artificial or mechanical excavation foundation pit according to the site geological and topographic conditions, and is connected with the main structure of the scaffold through the fixed base.
  • the base is welded with the steel plate and the steel pipe column, and the steel plate utilizes the anchor and the concrete foundation. Connected to increase the load carrying capacity of the structure.
  • the invention has the beneficial effects that the invention provides a combined scaffolding structure, which not only prevents the safety hazard caused by the dangerous rock falling rock of the high and steep slope in the seismic zone, but also effectively improves the safety of the scaffold structure. Stability and shock resistance, its structural integrity, safety and durability have been significantly improved.
  • Figure 1 is a cross-sectional view of a steel shelving.
  • Figure 2 is a side view of the I-I.
  • Figure 3 is a steel plate at the bottom of the steel pipe.
  • Figure 4 is a diagram of the shock absorbing mount.
  • the top impact resistant system 1 consists of two layers of steel plate and Expanded Polyethylene foamed polyethylene impact-absorbing layer.
  • the upper steel plate 7 is made of steel corrugated plate with a thickness of 10 mm, a wave height of 55 mm and a pitch of 200 mm.
  • the lower steel plate 8 is thick.
  • a 5mm ordinary flat steel plate is filled with a 30cm thick EPE impact damping layer 9 between the two steel plates, the density of which is greater than 23kg/m 3 , and the two steel plates are connected by high-strength bolts 10 with a row spacing of 2 ⁇ 2m.
  • the steel corrugated board on the side of the mountain side should be extended to the existing slope surface, so that the corrugated steel pipe and the slope surface are closely connected, and the corrugated steel plate is laid along the slope of the top surface of the wave groove.
  • Top support system 2 The steel frame support system is composed of I-beam and channel steel from different angles, and the parts are welded together, and anti-corrosion and derusting treatment is required. Top support system 2 and top impact resistant system 1 The channel is placed along the top slope with a spacing of 50cm. The top support system 2 is connected to the top impact system 1 by high-strength bolts 10. The inclination angle of the top surface is comprehensively determined according to the impact energy of the falling rock.
  • Backing anchor system 3 Connect the top impact system 1 and the main structure of the scaffold by 5 lock anchors 4 And it needs to be perpendicular to the joint plane of the rock mass.
  • the upper two locking anchors are connected to the top impact system 1 , the length is 4m, using ⁇ 32 threaded steel bars; the lower three anchors are connected to the main structure of the scaffolding 4 It has a length of 4.5m and uses ⁇ 32 threaded steel bars.
  • the main structure cross section consists of 25b I-beam beams 11 and ⁇ 426mm steel pipe column 13 is composed of I-beam steel beam 11 and steel pipe column 13 is provided with shock-absorbing support 12, wherein the bottom of the steel pipe column is 3.5m perfusion of C15 concrete, and the top is adopted.
  • the 0.6 ⁇ 0.6m steel plate is capped and has a thickness of 16mm.
  • Steel pipe column 13 Longitudinal spacing 2.5m Two steel pipe center line distance, longitudinal and oblique 45° channel steel 21 Connected.
  • a 5mm thick anti-shock steel plate is placed on the upper side of the steel pipe column, and a movable steel plate is arranged at the bottom 1.45m. The two are bolted for easy cleaning.
  • the supporting steel column is placed close to the existing slope section, and a lateral anchor 16 is provided to reinforce the supporting steel column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

一种棚架结构,包括:顶面抗冲击系统(1)、顶面支撑系统(2)、棚架主体结构(3)、锚入式钢板混凝土组合基础(4)和靠山侧锚固系统(5);顶面抗冲击系统(1)与既有坡面(6)交接紧密,顶面支撑系统(2)分别与顶面抗冲击系统(1)、棚架主体结构(3)焊接,靠山侧锚固系统(5)分别与顶面抗冲击系统(1)及棚架主体结构(3)相连接,锚入式钢板混凝土组合基础(4)与棚架主体结构(3)连接。该棚架结构防止了落石危害,提高了稳定性及抗震能力。

Description

用于地震区高陡边坡防落石的组合式消能棚架结构
技术领域
本发明涉及到一种用于公路建设中高陡边坡防滚落石危害的棚架结构,尤其适用于地震区公路地质灾害防治及灾后重建工程领域。
背景技术
我国公路建设正处于快速发展阶段,近年来,国家对西部地区的投入越来越大,然而由于我国西部地区地形地貌极为复杂,许多交通路线不可避免的行走于山谷、丘陵之间,而高陡地形下的危岩落石对道路的行驶存在着严重的安全隐患。同时,我国是一个地震多发的国家,地震造成的边坡岩土体失稳、崩塌、滑坡等现象频频发生,对交通运输和生命财产造成了极大的破坏。
为了保证行车安全,工程建设中多采用钢筋混凝土棚洞结构,传统的钢筋混凝土棚洞结构施工工期长、造价高,施工对交通运输干扰较大,且常采用沙土作为缓冲材料,事情证明:沙土垫层不仅消能作用差,并且由于自重较大,严重影响了棚洞结构的稳定性。
发明内容
本发明要解决的技术问题是在地震区高陡边坡的地质条件下,既能防止危岩落石对公路建设造成破坏,又能有效地保证棚架稳定,又能快速架设保通的组合式消能结构。
本发明的技术方案:
一种用于地震区高陡边坡防落石的组合式消能棚架结构,包括顶面抗冲击系统、顶面支撑系统、棚架主体结构、靠山侧锚固系统和锚入式钢板混凝土组合基础;
顶面抗冲击系统包括上层钢板、下层钢板和 EPE 抗冲减震层,上层钢板采用钢波纹板,下层采用平板钢板,上层钢板和下层钢板间填筑 EPEExpanded Polyethylene 抗冲减震层,并采用高强螺栓连接;根据试验结果:同等指标下钢波纹板的抗冲能力大大高于平板,从而顶面上层迎冲击面采用的钢波纹板更有利于提高棚架抗灾能力。
顶面支撑系统由横向、竖向、斜向和纵向组合形成三维立体钢架体系,顶面支撑系统分别与顶面抗冲击系统、棚架主体结构焊接,从而提高了结构的稳定性、增大了结构的承载能力。
棚架主体结构由工字钢横梁与两侧支撑钢管立柱组成,在钢管立柱中下部浇筑 1/3 ~ 1/2 高度的混凝土以提高立柱稳定性,一方面尽量降低其重心,另一方面是减小其由于地震荷载作用下产生的惯性力。棚架主体结构靠山侧的钢管立柱上部设置防冲钢板,下部设置可移动钢板,以便于定期清理靠山侧的落石、碎石,防冲钢板通过横向锚杆锚固在边坡上,从而对钢管立柱进行加固,以确保棚架主体结构的稳定性。工字钢横梁与两侧钢管立柱通过减震支座相连接,从而配合顶面抗冲系统中的 EPE 抗冲减震层实现本发明的减震消能功能。
靠山侧锚固系统通过设置锁脚锚杆,角度与岩体节理结构面垂直,锁脚锚杆分别与顶面抗冲击系统及棚架主体结构相连接;一方面能够防止靠山侧岩土体的滑移、塌落;另一方面使顶面抗冲击系统、棚架主体结构整体性增强,稳定性提高。
锚入式钢板混凝土组合基础视现场地质地形条件采用人工或机械开挖基坑,通过固定基座与棚架主体结构连接,其中基座采用钢板与钢管立柱焊接,并且钢板利用锚杆与混凝土基础相连接,以提高结构的承载能力。
本发明的有益效果:本发明通过设置一种组合式棚架结构,既防止了地震区高陡边坡危岩落石对公路建设、车辆行驶造成的安全隐患,又有效地提高了棚架结构的稳定性及抗震能力,其结构整体性、安全性和耐久性都得到显著提高。
附图说明
图 1 是钢棚架横断面图。
图 2 是 I-I 侧视图。
图 3 是钢管底部钢板图。
图 4 是减震支座图。
图中: 1 顶面抗冲系统; 2 顶面支撑系统; 3 棚架主体结构;
4 锚入式钢板混凝土组合基础; 5 靠山侧锚固系统; 6 现有坡面;
7 上层钢板; 8 下层钢板; 9EPE 防冲减震层; 10 高强螺栓; 11 工字钢横梁; 12 减震支座; 13 钢管立柱; 14 防冲钢板; 15 可移动钢板; 16 横向锚杆; 17 既有路面; 18 开挖基坑; 19 固定基座; 20 锚杆; 21 上支座板;
22 不锈钢板; 23 聚乙烯四氟板圆平板; 24 支座球芯;
25 聚乙烯四氟板球型板; 26 橡胶密封圈; 27 下支座板。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
实施例
1. 顶面抗冲系统
顶面抗冲击系统 1 由两层钢板及 Expanded Polyethylene 发泡聚乙烯抗冲减震层组成,其中上层钢板 7 采用板厚为 10mm ,波高 55mm ,波距 200mm 的钢波纹板,下层钢板 8 采用厚 5mm 的普通平板钢板,两层钢板之间填筑厚 30cm 的 EPE 抗冲减震层 9 ,其密度大于 23kg/m3 ,两层钢板采用高强螺栓 10 连接,其间排距为 2×2m 。靠山侧棚顶钢波纹板需延伸至现有坡面,使波纹钢管与坡面交接紧密,波纹钢板按照波槽顺顶面斜坡铺设。
2. 顶面支撑系统
顶面支撑系统 2 通过工字钢及槽钢由不同角度组成钢架支撑系统,各部件之间采用焊接方式,并需进行防腐除锈处理。顶面支撑系统 2 与顶面抗冲击系统 1 之间顺顶面斜坡架设槽钢,间距为 50cm ,顶面支撑系统 2 通过高强螺栓 10 与顶面冲击系统 1 连接,顶面倾斜角度根据落石冲击能量大小综合确定。
3. 靠山锚固系统
靠山锚固系统 3 通过 5 根锁脚锚杆分别连接顶面冲击系统 1 及棚架主体结构 4 ,且其需与岩体节理结构面垂直。上侧 2 根锁脚锚杆连接顶面冲击系统 1 ,其长度为 4m ,采用 φ32 螺纹钢筋;下侧 3 根锚杆连接棚架主体结构 4 ,其长度为 4.5m ,采用 φ32 螺纹钢筋。
4. 棚架主体结构
棚架主体结构 4 以 4m 一个单元可根据现场情况做灵活调整,采取场外加工在运至现场进行安装,各单元之间需采用型钢双面焊接成整体。主体结构横截面由 25b 工字钢横梁 11 和 φ426mm 钢管立柱 13 组成,工字钢横梁 11 与钢管立柱 13 之间设置减震支座 12 ,其中钢管立柱底部 3.5m 灌注 C15 混凝土,顶部采用 0.6×0.6m 钢板封顶,厚度为 16mm 。钢管立柱 13 纵向间距 2.5m 两钢管中心线距离,采用纵向及斜向 45° 槽钢 21 相连接。靠山侧钢管立柱上部设置厚度为 5mm 的防冲钢板 14 ,底部 1.45m 处设置可移动钢板 15 ,两者通过螺栓连接,以便于清理,在支撑钢柱紧贴现有坡面段,设置横向锚杆 16 对支撑钢柱进行加固。
5. 锚入式钢板砼组合基础
棚架基础 5 人工开挖 1×1×1m 基坑 18 ,钢管立柱底部固定基座 19 采用 0.8×0.8m ,厚度为 20mm 的钢板,与钢柱连接采用焊接,并采用 4 根长度为 3m 的锚杆 20 打入地基,其中锚杆采用 φ32 螺纹钢筋, M30 水泥砂浆锚固。最后基坑浇筑混凝土,完成棚架基础施工。

Claims (3)

  1. 1. 一种用于地震区高陡边坡防落石的组合式消能棚架结构,其特征在于,该组合式消能棚架结构包括顶面抗冲击系统、顶面支撑系统、棚架主体结构、靠山侧锚固系统和锚入式钢板混凝土组合基础;
    顶面抗冲击系统包括上层钢板、下层钢板和EPE抗冲减震层,上层钢板采用钢波纹板,下层采用平板钢板,上层钢板和下层钢板间填筑EPE抗冲减震层,并采用高强螺栓连接;
    顶面支撑系统由横向、竖向、斜向和纵向组合形成三维立体钢架体系,顶面支撑系统分别与顶面抗冲击系统、棚架主体结构焊接;
    棚架主体结构由工字钢横梁与两侧支撑钢管立柱组成,在钢管立柱中下部浇筑1/3 ~1/2高度的混凝土以提高钢管立柱稳定性;棚架主体结构靠山侧的钢管立柱上部设置防冲钢板,下部设置可移动钢板;工字钢横梁与两侧钢管立柱通过减震支座相连接,配合顶面抗冲系统中的EPE抗冲减震层实现减震消能功能;
    靠山侧锚固系统通过设置锁脚锚杆,角度与岩体节理结构面垂直,锁脚锚杆分别与顶面抗冲击系统及棚架主体结构相连接;
    锚入式钢板混凝土组合基础视现场地质地形条件采用人工或机械开挖基坑,通过固定基座与棚架主体结构连接,其中基座采用钢板与钢管立柱焊接,并且钢板利用锚杆与混凝土基础相连接,以提高结构的承载能力。
  2. 2.根据权利要求 1 所述的 组合式消能棚架结构,其特征在于,所述的 上层钢板采用厚度为 10mm ,波高 55mm ,波距 200mm 的钢波纹板,所述的下层钢板采用厚度为 5mm 的平板钢板,上层钢板和下层钢板间填筑厚度为 30cm 的 EPE 抗冲减震层,其密度大于 23kg/m3 ,其间排距为 2×2m 。
  3. 3.根据权利要求 1 或 2 所述的 组合式消能棚架结构,其特征在于,所述的顶面支撑系统与顶面抗冲击系统之间顺顶面斜坡架设槽钢,间距为 50cm 。
PCT/CN2016/110554 2016-12-02 2016-12-17 用于地震区高陡边坡防落石的组合式消能棚架结构 WO2018098857A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/088,555 US11072898B2 (en) 2016-12-02 2016-12-17 Combined energy dissipation scaffolding structure for preventing falling rock for high and steep slope in seismic region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611100173.6 2016-12-02
CN201611100173.6A CN106638340A (zh) 2016-12-02 2016-12-02 用于地震区高陡边坡防落石的组合式消能棚架结构

Publications (1)

Publication Number Publication Date
WO2018098857A1 true WO2018098857A1 (zh) 2018-06-07

Family

ID=58818317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110554 WO2018098857A1 (zh) 2016-12-02 2016-12-17 用于地震区高陡边坡防落石的组合式消能棚架结构

Country Status (3)

Country Link
US (1) US11072898B2 (zh)
CN (1) CN106638340A (zh)
WO (1) WO2018098857A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101966A (zh) * 2019-12-29 2020-05-05 中铁二院工程集团有限责任公司 一种大型岩溶空洞防落石弹性隧道结构及构筑方法
IT201900005478A1 (it) 2019-04-09 2020-10-09 Univ Pisa Dispositivo per proteggere manufatti, in particolare opere d’arte, da azioni sismiche e fenomeni vibratori in genere
CN113216024A (zh) * 2021-05-08 2021-08-06 四川省交通勘察设计研究院有限公司 一种分级防护的装配式钢箱棚洞
CN114293571A (zh) * 2021-12-30 2022-04-08 文华 一种塔吊式高陡边坡锚固施工装置
CN115506364A (zh) * 2022-09-21 2022-12-23 中铁建工集团有限公司 一种基坑支护结构的施工方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107245962B (zh) * 2017-06-30 2019-02-15 成都理工大学 棚洞减震器及其设计方法
CN108824242A (zh) * 2018-05-28 2018-11-16 中铁第勘察设计院集团有限公司 双层门形墩加纵横梁防落石结构
CN108716192A (zh) * 2018-05-28 2018-10-30 中铁第勘察设计院集团有限公司 铁路桥墩加上承式拱防落石结构
FR3081891B1 (fr) * 2018-05-30 2022-10-21 Gilles Carpentier Kit de structure de protection d’une voie de circulation contre les chutes de debris, structure de protection formee a partir dudit kit et procede d’installation de ladite structure
CN108797405B (zh) * 2018-06-27 2020-06-19 重庆水利电力职业技术学院 一种桥隧相连防坠石的缓冲结构
CN108842641B (zh) * 2018-07-26 2021-07-23 赵宁雨 钢结构消能棚洞
CN109027696A (zh) * 2018-09-13 2018-12-18 西南石油大学 一种埋地输油气管防护落石结构
CN109208453A (zh) * 2018-09-30 2019-01-15 中铁第勘察设计院集团有限公司 槽型梁组合桁架防落石结构
CN110158498B (zh) * 2019-05-30 2024-01-23 中铁二院工程集团有限责任公司 一种弹性被动防护网立柱结构的施工方法
CN110205951B (zh) * 2019-06-24 2021-05-28 重庆交通大学 用于山区傍山公路防护的耗能棚洞
CN111101968B (zh) * 2019-12-29 2024-08-27 中铁二院工程集团有限责任公司 一种大型岩溶空洞隧道大变形框架防落石结构的构筑方法
CN111058462A (zh) * 2019-12-29 2020-04-24 中铁二院工程集团有限责任公司 一种陡崖坡脚道路工程的危岩防护结构及施工方法
CN111910539B (zh) * 2020-06-29 2022-05-10 中铁第一勘察设计院集团有限公司 桥隧一体化消能防护结构
CN111651901B (zh) * 2020-06-29 2023-03-07 中国有色金属工业昆明勘察设计研究院有限公司 一种昔格达地层岩质边坡动力稳定性的时程分析方法
CN111926643A (zh) * 2020-09-04 2020-11-13 中国铁路设计集团有限公司 一种控制软土地区公路工后沉降的复合地基
CN113240735B (zh) * 2021-02-01 2023-06-23 北方工业大学 一种边坡位移活动性监测方法
CN113235473B (zh) * 2021-05-21 2022-07-05 长沙理工大学 一种路堤施工中坡面仪器的防护装置及其施工方法
CN113403972B (zh) * 2021-07-28 2022-08-09 中铁建新疆京新高速公路有限公司 一种用于公路建设中防滚落石危害的消能棚架结构
CN114438913B (zh) * 2022-03-17 2023-06-27 陕西核工业工程勘察院有限公司 一种适用于边坡危岩体的崩塌防治装置
CN114809570A (zh) * 2022-04-20 2022-07-29 保利长大工程有限公司 一种高边坡锚杆施工阶梯式移动支架施工方法
CN114606855A (zh) * 2022-04-26 2022-06-10 四川省公路规划勘察设计研究院有限公司 一种装配式桥墩防碰撞缓冲装置及其施工方法
CN115198669B (zh) * 2022-05-17 2023-08-25 江西省公路科研设计院有限公司 用于公路防护的边坡滚石速排结构及使用方法
CN115434200B (zh) * 2022-09-16 2023-04-28 南昌航空大学 山岭区道路加宽结构及其施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734418A (ja) * 1993-07-16 1995-02-03 P S Co Ltd シェッドの衝撃力緩和装置
CN201330361Y (zh) * 2008-12-24 2009-10-21 中国科学院水利部成都山地灾害与环境研究所 新型抗滚石冲击的复合材料防护垫层结构
KR20100071377A (ko) * 2008-12-19 2010-06-29 신광에코로드이엔씨 주식회사 피암터널의 기능을 가진 하이브리드형 사면붕괴 안전구조물
CN101974886A (zh) * 2010-07-30 2011-02-16 陈洪凯 一种组合式落石棚洞及其安设方法
CN103510476A (zh) * 2013-08-05 2014-01-15 四川川交路桥有限责任公司 预防飞石坠落的防护棚及施工方法
CN204311364U (zh) * 2014-10-29 2015-05-06 四川省交通运输厅公路规划勘察设计研究院 棚洞

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282056A (en) * 1961-07-24 1966-11-01 Armco Steel Corp Flexible retaining wall structure
US3187852A (en) * 1962-10-31 1965-06-08 Avco Corp Transportable shelter
US4211504A (en) * 1976-06-24 1980-07-08 Sivachenko Eugene W High strength corrugated metal plate and method of fabricating same
FR2381865A1 (fr) * 1977-02-23 1978-09-22 Fougerolle Perfectionnements aux ouvrages de protection contre les chutes de pierres
JPH0721168B2 (ja) * 1988-09-15 1995-03-08 株式会社吉澤総合防水 スノーシェッド、ロックシェッドの荷重軽減構造
US5252002A (en) * 1992-07-14 1993-10-12 Day Jesse C Natural bottom culvert and method for installation
CN201165638Y (zh) * 2008-03-05 2008-12-17 陈莉 边坡防护装置
CN101899816A (zh) * 2009-05-27 2010-12-01 成都铁路局成都工务机械段贵阳劳动服务公司 钢结构棚洞及安装方法
FR3081891B1 (fr) * 2018-05-30 2022-10-21 Gilles Carpentier Kit de structure de protection d’une voie de circulation contre les chutes de debris, structure de protection formee a partir dudit kit et procede d’installation de ladite structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734418A (ja) * 1993-07-16 1995-02-03 P S Co Ltd シェッドの衝撃力緩和装置
KR20100071377A (ko) * 2008-12-19 2010-06-29 신광에코로드이엔씨 주식회사 피암터널의 기능을 가진 하이브리드형 사면붕괴 안전구조물
CN201330361Y (zh) * 2008-12-24 2009-10-21 中国科学院水利部成都山地灾害与环境研究所 新型抗滚石冲击的复合材料防护垫层结构
CN101974886A (zh) * 2010-07-30 2011-02-16 陈洪凯 一种组合式落石棚洞及其安设方法
CN103510476A (zh) * 2013-08-05 2014-01-15 四川川交路桥有限责任公司 预防飞石坠落的防护棚及施工方法
CN204311364U (zh) * 2014-10-29 2015-05-06 四川省交通运输厅公路规划勘察设计研究院 棚洞

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900005478A1 (it) 2019-04-09 2020-10-09 Univ Pisa Dispositivo per proteggere manufatti, in particolare opere d’arte, da azioni sismiche e fenomeni vibratori in genere
CN111101966A (zh) * 2019-12-29 2020-05-05 中铁二院工程集团有限责任公司 一种大型岩溶空洞防落石弹性隧道结构及构筑方法
CN113216024A (zh) * 2021-05-08 2021-08-06 四川省交通勘察设计研究院有限公司 一种分级防护的装配式钢箱棚洞
CN114293571A (zh) * 2021-12-30 2022-04-08 文华 一种塔吊式高陡边坡锚固施工装置
CN114293571B (zh) * 2021-12-30 2024-05-03 安徽博汉科技工程有限公司 一种塔吊式高陡边坡锚固施工装置
CN115506364A (zh) * 2022-09-21 2022-12-23 中铁建工集团有限公司 一种基坑支护结构的施工方法
CN115506364B (zh) * 2022-09-21 2024-04-30 中铁建工集团有限公司 一种基坑支护结构的施工方法

Also Published As

Publication number Publication date
CN106638340A (zh) 2017-05-10
US20190177932A1 (en) 2019-06-13
US11072898B2 (en) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2018098857A1 (zh) 用于地震区高陡边坡防落石的组合式消能棚架结构
CN107558387B (zh) 防护高空落石及崩积碎石的新型组合式柔性棚洞结构
CN103485363B (zh) 立体连续框架式钢筋混凝土结构挡土墙
CN107841953B (zh) 高空斜交梁陡坡侧边跨现浇段施工支架及施工方法
Andreini et al. Collapse of the historic city walls of Pistoia (Italy): causes and possible interventions
CN103628587A (zh) 自复位梁-格栅式摩擦墙结构体系
CN208105091U (zh) 一种适用于抗落石冲击的缓冲耗能棚洞顶部复合结构
CN105178206B (zh) 拼装式棚洞
CN205806684U (zh) 一种横跨基坑工程管线悬吊结构
CN108086083B (zh) 道路垫层
CN103966947A (zh) 一种基于桥梁梁体减震的防落梁装置
CN110656723B (zh) 用于柱面拱壳屋盖滑移施工的轨道支架
CN203846390U (zh) 一种基于桥梁梁体减震的防落梁装置
CN116220749B (zh) 一种用于岩爆隧道的防控结构
CN210013239U (zh) 一种防山体滑坡保护挡土墙
CN202081383U (zh) 跨越既有线桥梁施工用临时支架
CN203498863U (zh) 立体连续框架式钢筋混凝土结构挡土墙
CN112855168B (zh) 一种跨越特大型溶洞的悬索桥式隧道施工方法
CN209925762U (zh) 一种油气输送隧道内架空管道的混凝土抗震支墩
CN210712576U (zh) 现浇大跨度箱梁多抱箍桁架支撑贝雷支架
CN207862947U (zh) 一种地铁车站基坑围护结构支撑
CN219118055U (zh) 一种适用于高烈度地区的自复位耗能码头
CN216240724U (zh) 一种穿越大型溶洞的隧道结构
CN215925658U (zh) 一种邻近高铁既有线的钢箱梁临时支撑结构
CN117188512B (zh) 一种输电铁塔的分体式防护和抗变形结构及其构筑方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922971

Country of ref document: EP

Kind code of ref document: A1