WO2018097210A1 - 多孔質セラミックスの製造方法ならびに多孔質セラミックス - Google Patents

多孔質セラミックスの製造方法ならびに多孔質セラミックス Download PDF

Info

Publication number
WO2018097210A1
WO2018097210A1 PCT/JP2017/042102 JP2017042102W WO2018097210A1 WO 2018097210 A1 WO2018097210 A1 WO 2018097210A1 JP 2017042102 W JP2017042102 W JP 2017042102W WO 2018097210 A1 WO2018097210 A1 WO 2018097210A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
combustion
pores
porous
kneading
Prior art date
Application number
PCT/JP2017/042102
Other languages
English (en)
French (fr)
Inventor
茂雄 福山
嵩 目黒
淳也 大川
一紘 松末
橋本 和明
Original Assignee
株式会社福山医科
大王製紙株式会社
学校法人千葉工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社福山医科, 大王製紙株式会社, 学校法人千葉工業大学 filed Critical 株式会社福山医科
Publication of WO2018097210A1 publication Critical patent/WO2018097210A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Definitions

  • the present invention relates to porous ceramics, particularly porous ceramics having pores.
  • porous ceramics As a method for producing porous ceramics, a method of making a porous material by adding a large amount of a pore-forming agent such as a deflocculant or resin beads to ceramic powder and removing it by oxidation is generally used. However, even if the is removed, there is a problem in that it is difficult to obtain continuous open pores because the holes exist in isolation.
  • a method of attaching ceramic sludge to a flexible polyurethane foam without cell membrane and sintering it Patent Document 1 or adding a ceramic raw material and a deflocculant in an aqueous solution, followed by adding a cell material and sintering.
  • Patent Document 2 A method of performing this method has also been proposed. However, these production methods have a problem that porous ceramics having submicron pores or nano-sized pores cannot be obtained.
  • a preparation step of preparing a combustion vaporization material and a ceramic material, a kneading step of kneading the prepared combustion vaporization material and a ceramic material to obtain an intermediate there is provided a method for producing porous ceramics, comprising: firing a body or / and an intermediate derivative to obtain a ceramic having a large number of pores by burning and vaporizing the combustion vaporized material.
  • the combustion vaporization material has a maximum diameter of submicron.
  • a third invention having a drug impregnation step for impregnating the porous ceramic obtained in the firing step with a drug.
  • an intermediate for producing porous ceramics in which a combustion vaporizing material is uniformly dispersed in a ceramic raw material is provided.
  • the combustion vaporized material is uniformly in the ceramic raw material obtained by blocking the intermediate of the fourth invention, drying the blocked one, and crushing and grinding the dried one.
  • An intermediate derivative for producing a dispersed porous ceramic is provided.
  • a porous ceramic having pores through which a combustion vaporized material filled by firing can be discharged to the outside even when the pores are filled with a combustion vaporized material.
  • the seventh invention provides the seventh invention, wherein the pores include submicron pores.
  • FIG. 3 is a flowchart showing a method for manufacturing the porous ceramic according to the first embodiment.
  • FIG. 3 is a flowchart showing a method for manufacturing the porous ceramic according to the first embodiment.
  • the present embodiment is a method for producing porous ceramics, the feature of which is that ceramics are produced by mixing a combustion vaporized material with ceramic raw materials in advance and kneading (also referred to as “kneading”, hereinafter the same). is there. ⁇ Configuration>
  • FIG. 1 is a flow diagram showing a method for producing a porous ceramic according to the present embodiment.
  • the configuration of this embodiment includes a preparation step (S0101), a kneading step (S0102), and a firing step (S0103).
  • FIG. 2 is another flowchart showing the method for manufacturing the porous ceramics of the present embodiment.
  • This embodiment is based on FIG. 1, and impregnates the chemical into the porous ceramics obtained by the preparation step (S0201), the kneading step (S0202) and the firing step (S0203) (S0204: chemical impregnation step),
  • S0201 preparation step
  • S0202 kneading step
  • S0203 firing step
  • S0204 chemical impregnation step
  • the preparation step is a step of preparing a combustion vaporization material and a ceramic material.
  • Combustion vaporization materials correspond to cellulose, carbon materials, and organic compounds, and are materials that are solid. Accordingly, liquid and gel materials are not included in the combustion vaporization material. However, a material that appears to be macroscopically liquid or gelled by mixing a solid material with a liquid is a solid combustion vaporized material as referred to in the present invention.
  • the essential feature of the aspect of the present invention which has pores of submicron to several tens of nanometers and the pores penetrate the inside of the ceramic block, depends on the shape and size of the combustion vaporization material. In the point, the porous property finally formed in the ceramic material is obtained. That is, the holes provided on the surface or inner surface of the ceramic material are controlled by the shape and size of the combustion vaporized material. Therefore, in the preparation step, preparation is performed assuming the size of the holes to be provided in the target porous ceramic, the amount of holes, the density of the holes, and the like.
  • the shape of the ceramic raw material must be designed in advance to control the properties of the final porous ceramic.
  • the design is performed according to the particle size, particle size distribution, and raw material type.
  • the preparation stage after mixing the ceramic raw material and the combustion vaporizing material, there may be a step of further miniaturizing with a ball mill or the like. This is preferable in order that the ceramic raw material grains and the combustion vaporized material are mixed while being refined and both are uniformly dispersed in the next kneading step. ⁇ Kneading step>
  • the prepared combustion vaporization material and the prepared ceramic material are kneaded.
  • the kneading may be performed by adding a liquid, for example, but the pH of the liquid may be adjusted to be alkaline or acidic as necessary. This is adjusted depending on the ceramic raw material and the type of combustion vaporized material.
  • the liquid may be kneaded using an organic liquid such as water or alcohol. Also, water and an organic liquid such as alcohol may be used in combination. After kneading, liquids such as water and alcohol and components used for kneading are excluded by drying.
  • the drying rate is a control target parameter. This is because the pressure and amount of the gas generated from the combustion vaporized material at the time of firing or the previous ceramic block after kneading and drying change depending on the degree of drying. The pressure of the gas and the amount of the gas influence the size, the amount of the hole, the density of the hole, and the degree of penetration of the hole in the finally obtained porous ceramic.
  • the surfactant is difficult to disperse in the liquid. May be shared. However, care should be taken because the surfactant is also a factor that affects the firing.
  • a preheating substep may be employed to eliminate the surfactant.
  • the kneading step may be performed using a tool such as a normal mixer, propeller stirrer, kneader or the like, but kneading becomes difficult when the material has a very small size. Therefore, it is conceivable to apply ultrasonic waves or high-frequency electromagnetic fields to the kneading vessel.
  • the high-frequency electromagnetic field can polarize fine particles of the ceramic raw material depending on the controlled state, and is easily mixed with water. Moreover, the same effect may be produced also about a combustion vaporization raw material.
  • an intermediate can be obtained.
  • the intermediate is in a state in which the combustion vaporized material is uniformly dispersed in the ceramic raw material by the kneading step.
  • the intermediate may be in the form of powder immediately after kneading, or in the form of liquid or slurry, or may be in the form of a block obtained by drying the liquid or slurry.
  • the uniformly dispersed state is a state in which the combustion vaporized composition has entered between the ceramic raw material, and there is no bias in the amount and concentration of the combustion vaporized composition existing around the ceramic raw material. State.
  • the kneading step may include a sub-step in which a liquid or slurry-like material is dried and once made into a block shape is pulverized again and then kneaded again. That is, another intermediate derived from this intermediate is obtained from the block of the intermediate generated by kneading. This other intermediate is referred to herein as an intermediate derivative.
  • the firing step has two significances. One is the significance that the fine particles of the ceramic raw material are locally melted and welded to grow ceramic grains, and that the pores forming the porous are created. Therefore, in the firing step, the above two phenomena proceed simultaneously.
  • the combustion temperature of the combustion vaporized material is lower than the local melting temperature of the ceramic. Accordingly, if the work vapor (vapor) is burned but the workpiece (intermediate) is retained for a long time at a temperature at which the ceramic grains do not grow, it becomes a non-porous ceramic.
  • a chemical impregnation step can also be performed after the kneading step.
  • the chemical impregnation step is a step of impregnating the chemical into the porous ceramic obtained in the firing step.
  • medical agent with which a porous ceramic is impregnated is not specifically limited, For example, a catalyst, protein, a cell, a chemical
  • the required pore size, the amount of pores, the density of the pores, and the degree of penetration of the pores are different, but the present invention is submicron finally formed in the ceramic material depending on the shape and size of the combustion vaporization material.
  • the method for impregnating the drug is not particularly limited, and examples thereof include an impregnation method, an ion exchange method, a vapor deposition method, and a spray drying method. If the gas, liquid, etc. are not sufficiently infiltrated into the pores due to the surface tension etc. of the impregnated liquid, etc., make the high pressure side and the low pressure side with the ceramic as a partition, and infiltrate the gas, liquid, etc. using the pressure difference .
  • combustion vaporization material is a material that burns and vaporizes in the firing step.
  • the combustion vaporization material is not particularly limited, but is a material that burns and vaporizes in the firing step and disappears from the fired porous ceramics.
  • FIG. 3 is a diagram for explaining the maximum diameter when the combustion vaporization material is substantially cylindrical.
  • the maximum diameter in the case of an elongated shape such as a substantially cylinder is not the length in the longitudinal direction, but the maximum value (D1 in the drawing) corresponding to the diameter of the cylinder is the maximum diameter.
  • the combustion vaporization material of the present invention preferably has a maximum diameter of submicron.
  • the combustion vaporization material having a maximum diameter of submicron is not particularly limited.
  • the submicron diameter is about several tens of nanometers.
  • the porous ceramics can be obtained in such a manner that the pores pass through the inside of the ceramic block.
  • Carbon fiber is a fiber composed of 90% or more by mass of carbon, and is a fiber made by carbonizing polyacrylonitrile fiber or pitch fiber at a high temperature. Carbon fiber is characterized by a low heat shrinkage rate, and when carbon fiber or a material containing carbon fiber pulverized material is used as a combustion vaporized fine material. Since expansion and contraction of the combustion vaporized fine material in the firing step are unlikely to occur, it is preferable because the occurrence of cracks and cracks in the fired body is suppressed and pores corresponding to the size of the carbon fiber or the carbon fiber crushed material are easily formed.
  • Cellulose is a main component of plant fiber and is a polysaccharide insoluble in water.
  • the combustion vaporizing material containing cellulose it is particularly preferable to use a material containing cellulose nanofibers.
  • Cellulose nanofiber refers to fine cellulose fiber obtained by defibrating pulp (pulp fiber), which is a plant material, and generally includes cellulose fine fiber having a fiber width of nanosize (1 nm to 1000 nm). Refers to fiber.
  • the water retention of cellulose nanofibers is preferably 250% or more and 500% or less, for example.
  • the water retention (%) of the cellulose nanofibers is JAPAN TAPPI No. 26 is measured.
  • the cellulose nanofiber preferably has only one peak in a pseudo particle size distribution curve measured by a laser diffraction method in an aqueous dispersion state.
  • a particle size (mode) of the cellulose nanofiber which becomes this peak 5 micrometers or more and 50 micrometers or less are preferable, for example.
  • the “pseudo particle size distribution curve” means a curve indicating a volume-based particle size distribution measured using a particle size distribution measuring apparatus.
  • cellulose Since cellulose is derived from plants, the use of cellulose nanofibers as a material for combustion and vaporization is more effective for a low-carbon society than when chemically synthesized materials such as polyvinyl alcohol and ammonium polyacrylate are used. There is an advantage of being able to contribute. In addition, there is an advantage that it is an environmentally friendly material because it does not discharge harmful substances such as nitrogen oxides even if it is vaporized by combustion. Cellulose is also characterized by a low thermal shrinkage similar to carbon fibers, and is also superior in that it does not easily cause expansion and contraction of the combustion vaporized fine material in the firing step, like carbon fibers. (Ceramic raw material)
  • the “ceramic raw material” is not particularly limited, but is known as a porous ceramic material, for example, alumina, aluminum silicate, cordierite, silica, zirconia, silicon carbide, silicon nitride, mullite, magnesia, nitriding Examples thereof include, but are not limited to, aluminum, boron nitride, and calcium phosphate. These raw materials can be used alone, but two or more ceramic raw materials can also be mixed and used.
  • the ceramic raw material it is preferable to use calcium phosphate such as ⁇ -tricalcium phosphate or hydroxyapatite.
  • Porous ceramic materials such as ⁇ -tricalcium phosphate and hydroxyapatite, are used as granules or molded bodies as bone substitute materials or artificial bone implants. Attempts have been made to promote replacement with autologous bone and to improve the bioabsorbability of bone substitutes. In general, it is said that cells are micron-sized, proteins are sub-micron-sized, and drugs are easily fixed to nano-sized pores. According to the present invention, pore size, pore volume, pore density, pore penetration This is because it is possible to obtain porous ceramics with a controlled degree and to immobilize proteins and the like.
  • ⁇ -tricalcium phosphate, alumina, or hydroxyapatite was used as a ceramic raw material.
  • cellulose was used as the combustion vaporizing material.
  • ⁇ -tricalcium phosphate and cellulose were prepared as follows. (1) ⁇ -tricalcium phosphate (preparation of ⁇ -tricalcium phosphate)
  • ⁇ -tricalcium phosphate As raw materials for ⁇ -tricalcium phosphate, 301.78 g of calcium carbonate and 266.79 g of ammonium dihydrogen phosphate were prepared, and pulverized and mixed in a ball mill for 48 hours using 2 liters of ethanol as a solvent. Ethanol was separated from the liquid mixture using a filtration device and / or an evaporator to obtain a slurry. The slurry was divided into two alumina sheaths and subjected to pre-sintering A to obtain pre-sintered body A.
  • the pre-sintering conditions were as follows: air temperature rate of 3 ° C./min, firing temperature of 900 ° C., holding time of 12 hours, and temperature drop rate of 3 ° C./min to room temperature.
  • the crystal phase of the obtained pre-fired product A had a ⁇ -tricalcium phosphate structure of 95% or more, but in order to make the crystal phase a ⁇ -tricalcium phosphate structure more reliably, two more times.
  • Pre-sintering was performed. Specifically, the pre-fired body A was pulverized with a ball mill for 4 hours, then placed in an alumina sheath, and pre-sintered B was performed under the same conditions as pre-sintered A to obtain a pre-fired body B. The pre-sintered body B returned to room temperature was again pre-sintered C under the same conditions as pre-sintered A and B to obtain a pre-sintered body C.
  • the powder of ⁇ -tricalcium phosphate having an average particle diameter of about 3 ⁇ m obtained by pulverizing the pre-fired product C with a ball mill or pulverizing with a mortar was used as a ceramic raw material. (Preparation of ⁇ -tricalcium phosphate with solid solution of silicon, sodium and magnesium)
  • ⁇ -tricalcium phosphate in which silicon, sodium and magnesium are dissolved can be used as a ceramic raw material.
  • sodium carbonate, magnesium oxide and silicon dioxide By adding sodium carbonate, magnesium oxide and silicon dioxide to the ⁇ -tricalcium phosphate starting material described above, a ⁇ -tricalcium phosphate powder in which 2.0 mol% of silicic acid was dissolved was similarly prepared. The obtained powder was used as a ceramic raw material.
  • 446.34 g of calcium carbonate, 427.40 g of ammonium dihydrogen phosphate, 3.4722 g of sodium carbonate, 18.8463 g of magnesium oxide, and 3.9332 g of silicon dioxide were used as starting materials.
  • hydroxyapatite high-purity calcium phosphate, spherical HAP (3Ca 3 (PO 4 ) 2 ⁇ Ca (OH) 2 ) from Taihei Chemical Industrial Co., Ltd. having an average particle size of 15 to 20 ⁇ m was used.
  • HAP spherical HAP
  • an aqueous cellulose nanofiber solution having a particle size (mode) of 21 ⁇ m, a water retention of 389%, and a concentration of 1.7 wt% was used as the cellulose.
  • the cellulose nanofiber aqueous solution used contains cellulose fine fibers of several tens of nm.
  • the water retention (%) of cellulose was determined by JAPAN TAPPI No. Measured according to No. 26.
  • the volume-based particle size distribution measured using a particle size distribution measuring device was measured, and the mode value of the obtained pseudo particle size distribution curve was taken as the particle size. (Method for evaluating porous ceramics)
  • the method for evaluating the produced porous ceramic will be described first.
  • the pore distribution was measured with a mercury porosimeter, and the microstructure was observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the open porosity and closed porosity were calculated from volume, dry mass, water absorption mass and true specific gravity (document values).
  • the volume was calculated by measuring the length and diameter of the obtained sintered body.
  • the water absorption mass was measured by immersing the specimen in boiling water for 2 hours and then allowing it to cool in water.
  • the intermediate after drying had a certain shape and strength and did not collapse even when cut out with a diamond cutter. It was also possible to drill holes with a drill.
  • the dried intermediate body taken out of the Teflon (registered trademark) container was cut with a diamond cutter to form a substantially cubic shape of about 10 mm square. (Baking step)
  • the molded body was fired to produce a porous ceramic. Firing was carried out under conditions of a temperature rising rate of 3 ° C./min, a calcining temperature of 1130 ° C., a holding time of 24 hours, a temperature lowering rate of 3 ° C./min to room temperature, and the atmosphere.
  • FIG. 4 is a diagram showing the pore distribution, physical property values and microstructure of the obtained porous ceramic.
  • the obtained porous ceramics was a dense body having a certain strength, the mode pore diameter was 2.79 ⁇ m, and pores were also observed in the vicinity of 90 to 110 nm. Moreover, it was confirmed from the SEM photograph showing the fine structure that it was porous and sintered.
  • FIG. 5 is a diagram showing the pore distribution, physical properties, and microstructure of the obtained porous ceramic.
  • the obtained porous ceramics was a dense body having a certain strength, the mode pore diameter was 1.72 ⁇ m, and pores were observed at 30 to 70 nm. Moreover, it was confirmed from the SEM photograph showing the fine structure that it was porous and sintered.
  • FIG. 6 is a diagram showing the pore distribution, physical properties, and microstructure of the obtained porous ceramic.
  • the obtained porous ceramic was a dense body having a certain strength, the mode pore diameter was 1.03 ⁇ m, and pores were observed at 20 to 60 nm. Moreover, it was confirmed from the SEM photograph showing the fine structure that it was porous and sintered.
  • Preparation step 50 g of cellulose nanofiber aqueous solution and 45 g of hydroxyapatite were prepared. (Kneading step) The mixture was stirred with a stirrer for 3 minutes, and 20 g of ion-exchanged water was further added.
  • the state after kneading was pasty, and water did not separate into the surface layer. Drying at 65 ° C. for 1-2 days gave an intermediate.
  • the intermediate after drying had a certain shape and strength and did not collapse even when cut out with a diamond cutter. It was also possible to drill holes with a drill.
  • the resulting dried intermediate was pulverized with an alumina mortar, and relatively large particles were removed using a sieve covered with nylon mesh fibers to obtain an intermediate derivative.
  • the intermediate derivative was subjected to uniaxial pressure molding at 98 MPa for 1 minute using a ⁇ 20 mm mold to prepare a molded body. (Baking step)
  • the obtained molded body was fired under the same conditions as in Experiment 1 to produce porous ceramics.
  • FIG. 7 is a diagram showing the pore distribution, physical property values, and microstructure of the obtained porous ceramic.
  • the obtained porous ceramics was a dense body having a certain strength, the mode pore diameter was 0.15 ⁇ m, and pores were observed at 40 to 90 nm. Moreover, it was confirmed from the SEM photograph showing the fine structure that it was porous and sintered.
  • Preparation step 50 g of cellulose nanofiber aqueous solution and 45 g of alumina were prepared.
  • Kneading step The mixture was stirred for 3 minutes with a stirrer, and 20 g of ion-exchanged water was further added.
  • Firing was carried out under conditions of a temperature rising rate of 3 ° C./min, a calcining temperature of 1600 ° C., a holding time of 24 hours, a temperature lowering rate of 3 ° C./min to room temperature, and atmospheric conditions.
  • FIG. 8 is a diagram showing the pore distribution, physical property values, and microstructure of the obtained porous ceramic.
  • the obtained porous ceramics was a dense body having a certain strength, the mode pore diameter was 0.42 ⁇ m, and pores were observed at 90 to 200 nm. Moreover, it was confirmed from the SEM photograph showing the fine structure that it was porous and sintered. ⁇ Effect>
  • the obtained porous ceramics had nano-sized pores in addition to the peak of the most frequent pore diameter.
  • a peptizer dispersant
  • a binder a binder
  • a lubricant of about 5 to 20 in terms of solid content
  • ceramics are used. It is also excellent in that the effect of the dispersant and the binder is exhibited at a low concentration of about 2 in terms of solid content with respect to the raw material 100.
  • the present embodiment is a porous ceramic, and its characteristic feature is that it has fine pores that can be discharged to the outside even when filled with the combustion vaporization material used in the production, and the fine pores are submicron diameter fine. It is in the point including a hole.
  • This ceramic uses the ceramic as a partition to create a high-pressure side and a low-pressure side, and infiltrates the combustion vaporized material using a pressure difference. Then, by placing the infiltrated ceramics in the combustion vaporization material combustion atmosphere, all of the combustion vaporization material infiltrated inside is removed. This makes it possible to carry a combustion vaporized material having a large surface area per unit volume.
  • This ceramic can be manufactured by the previously described embodiments. For example, it can be manufactured by a process such as Experiment 1 to Experiment 3.
  • the porous ceramic according to the present embodiment has pores through which the combustion vaporized material filled by firing can be discharged to the outside even when the pores are filled with the combustion vaporized material. Contains pores.
  • the combustion vaporization material corresponds to carbon or cellulose nanofiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Structural Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

【課題】サブミクロン径から数十ナノ径程度の細孔を有し、かつ、細孔がセラミックスブロックの内部を貫通する態様の物を制御性良く製造することを課題とする。 【解決手段】燃焼気化素材及びセラミックス原料を準備し、燃焼気化素材をあらかじめセラミックス原材料と混錬し、セラミックス原料中に燃焼気化素材が均一に分散された多孔質セラミックスを製造するための中間体又は/及び中間体派生物を得たのち、燃焼気化素材を燃焼気化させ多数の孔を有するセラミックスを製造する。

Description

多孔質セラミックスの製造方法ならびに多孔質セラミックス
 本発明は多孔質セラミックス、特に細孔を有する多孔質セラミックスに関する発明である。
 従来から各種のセラミックスが製造されているが、セラミックス表面に細孔を有するセラミックスは各種の用途があり用いられてきた。細孔のサイズや貫通度合いに関しては応用製品の用途によって異なるが、サブミクロンの細孔、ないしはナノレベルの径の細孔を有するセラミックスはその製造が困難であった。
 多孔質セラミックスの製造方法としては、セラミックス粉体に解膠剤や樹脂ビーズなどの造孔剤を大量に添加し、酸化除去することにより多孔質とする方法が一般的であるが、造孔剤が除去されても、孔が孤立して存在してしまうため連続した開気孔を得られにくいという問題点があった。また、セル膜のない軟質ポリウレタンフォームにセラミックス泥漿を付着させてこれを焼結する方法(特許文献1)やセラミックス原料と解膠剤を水溶液にして添加後、気泡材を添加して焼結を行う方法(特許文献2)も提案されている。しかしながら、これらの製造方法ではサブミクロンの細孔、ないしはナノレベルの径の細孔を有する多孔質セラミックスを得ることはできないという問題がある。
特開平6-239673 特開昭63-40782
 サブミクロン径から数十ナノ径程度の細孔を有し、かつ、細孔がセラミックスブロックの内部を貫通する態様の物を制御性良く製造することを課題とする。
 上記課題を解決するために、第一の発明として、燃焼気化素材及びセラミックス原料を準備する準備ステップと、準備した燃焼気化素材及びセラミックス原料を混錬して中間体を得る混錬ステップと、中間体又は/及び中間体派生物を焼成して前記燃焼気化素材を燃焼気化させ多数の孔を有するセラミックスを得るための焼成ステップと、からなる多孔質セラミックスの製造方法を提供する。
 さらに、第一の発明において燃焼気化素材は最大径がサブミクロンである第二の発明を提供する。
 さらに、第一の発明、第二の発明において前記焼成ステップにて得られた多孔質セラミックスに薬剤を含侵させる薬剤含侵ステップを有する第三の発明を提供する。
 さらに、第四の発明として、セラミックス原料中に燃焼気化素材が均一に分散された多孔質セラミックスを製造するための中間体を提供する。
 さらに、第五の発明として、第四の発明の中間体をブロック化し、このブロック化したものを乾燥させ、乾燥したものを砕いてすりつぶしたことによって得られるセラミックス原料中に燃焼気化素材が均一に分散された多孔質セラミックスを製造するための中間体派生物を提供する。
 さらに、第六の発明として、細孔に燃焼気化素材を充てんした場合でも焼成によって充てんされた燃焼気化素材が外部に排出可能な細孔を有する多孔質セラミックスを提供する。
 さらに、第六の発明において、前記細孔はサブミクロン径の細孔を含む第七の発明を提供する。
サブミクロン径から数十ナノ径程度の細孔を有し、かつ、細孔がセラミックスブロックの内部を貫通する態様の物を制御性良く製造することができる。
実施形態1の多孔質セラミックスの製造方法を示すフロー図 実施形態1の多孔質セラミックスの製造方法を示すフロー図 最大径を説明する図 多孔質セラミックスの細孔分布、物性値及び微細構造を示す図 多孔質セラミックスの細孔分布、物性値及び微細構造を示す図 多孔質セラミックスの細孔分布、物性値及び微細構造を示す図 多孔質セラミックスの細孔分布、物性値及び微細構造を示す図 多孔質セラミックスの細孔分布、物性値及び微細構造を示す図
 以下に発明を実施するための形態を説明する。なお、本件発明はこれから記載する実施形態に限定して解釈されるべきものでない。なお、実施形態と請求項の関係は次の通りである。実施形態1は、主に請求項1から請求項5などに関する。実施形態2は、主に請求項6及び請求項7などに関する。
<実施形態1>
<概要>
 本実施形態は、多孔質セラミックスの製造方法であって、その特徴点は燃焼気化素材をあらかじめセラミックス原材料と混合し、混錬(「混練」とも書く。以下同じ)してセラミックスを製造する点にある。
<構成>
 図1は、本実施形態の多孔質セラミックスの製造方法を示すフロー図である。本実施形態の構成は、準備ステップ(S0101)と、混錬ステップ(S0102)と、焼成ステップ(S0103)と、からなる。
 図2は、本実施形態の多孔質セラミックスの製造方法を示すまた別のフロー図である。本実施形態は、図1を基本とし、準備ステップ(S0201)、混錬ステップ(S0202)及び焼成ステップ(S0203)により得られる多孔質セラミックスに薬剤を含浸し(S0204:薬剤含浸ステップ)、薬剤を含浸させた多数の孔を有するセラミックスを得る、多孔質セラミックスの製造方法である。以下に、各構成及び実施例について詳述する。
<準備ステップ>
 準備ステップは燃焼気化素材とセラミックス原料とを準備するステップである。燃焼気化素材はセルロース、炭素材料、有機化合物が該当するが、素材であって、固形のものを指す。したがって、液状、ゲル状のものは燃焼気化素材に含まれない。ただし、固形のものが液体と混ざることによってマクロ的に液状、ゲル状と見える素材は、本件発明にいうところの固形の燃焼気化素材である。
 本件発明の課題であるサブミクロン径から数十ナノ径程度の細孔を有し、かつ、細孔がセラミックスブロックの内部を貫通する態様の本質的な特徴は、燃焼気化素材の形状、サイズによって、最終的にセラミックス材料に形成される多孔質性を得る点にある。つまり、セラミックス素材の表面ないし内面に設けられる孔は燃焼気化素材の形状、サイズによってコントロールする。したがって、準備ステップでは、目的とする多孔質セラミックスに備えられるべき孔のサイズ、孔の量、孔の密度などを想定して準備を行う。
 また、セラミックス原料の形状も最終的な多孔質セラミックスの性状をコントロールするためにあらかじめ設計されなければならない。設計は、粒径、粒径分布、原料の種類によって行われる。
 また準備段階ではセラミックス原料と燃焼気化素材とを混ぜたのちにボールミルなどでさらに微細化する工程を有してもよい。これは、セラミックス原料の粒と燃焼気化素材とが微細化しながら混在し次の混錬ステップで両者を均一に分散した状態にするのに好ましい。
<混錬ステップ>
 混錬ステップは、準備した燃焼気化素材と準備したセラミックス原料とを混錬する。混錬は例えば液体を加えて行われる場合があるが、必要に応じてアルカリ性、酸性に液体のpHを調節してもよい。これはセラミックス原料と燃焼気化素材の種類等によって調節する。また、燃焼気化素材がセラミックス原料である微細セラミックス粒どうしが崩壊しないようなつなぎの役割を果たすようにする必要がある。この点からも準備ステップでの燃焼気化素材の選別が重要となる。
 前記液体としては、水やアルコールなどの有機液体を利用して混錬してもよい。また、水とアルコールなどの有機液体を併用して混錬してもよい。混錬後は、水、アルコールなどの液体や混錬のために用いた成分を乾燥等することによって除外する。乾燥率は制御対象パラメータである。乾燥度によって、焼成時の燃焼気化素材ないしは混錬乾燥後の前セラミックスブロック中から発生するガスの圧力や量が変化するからである。このガスの圧力、ガスの量は最終的に得られる多孔質セラミックスの孔のサイズ、孔の量、孔の密度、孔の貫通度合いを左右する。
 なお、セラミックス材料である粒や燃焼気化素材のサイズがナノサイズ(本明細書では10ナノから300ナノ程度の値をナノサイズという。)である場合には液中に分散しにくいので界面活性剤を共用してもよい。ただし、界面活性剤も焼成の際に影響を与える因子となるので、注意が必要である。界面活性剤を排除するために乾燥のみでなく、予備加熱サブステップを採用してもよい。
 混錬ステップは、通常のミキサー、プロペラ攪拌機、ニーダー等のような道具を用いて行ってもよいが、素材が微小サイズになると、十分混練が困難となる。そこで、混錬用の容器に超音波を加えたり、高周波電磁界を加えることが考えられる。高周波電磁界は、制御状態によってセラミックス原料の微細粒を分極させることができ、水に混ざりやすくなる。また燃焼気化素材についても同様の効果を生む場合がある。
 混錬ステップでは、中間体を得ることができる。中間体は、混錬ステップによりセラミックス原料中に燃焼気化素材が均一に分散されている状態となっている。中間体は混錬直後の粉状、又は液状やスラリー状である場合もあるし、液状やスラリー状のものを乾燥してブロック状としたもの含まれる。均一に分散している状態とは、セラミックス原料とセラミックス原料の間に燃焼気化組成物が入り込んでいる状態であって、セラミックス原料の周りに存在する燃焼気化組成物の量や濃度に偏りがない状態である。
 混錬ステップでは、液状やスラリー状のものを乾燥していったんブロック状としたものを再度粉砕しその後再度混錬を繰り返すサブステップを含んでいてもよい。つまり、混錬して生成した中間体のブロックから、この中間体由来の別の中間体を得るのである。この別の中間体を本明細書においては中間体派生物と呼ぶ。
<焼成ステップ>
 混錬ステップの後に焼成を行う。焼成ステップは、二つの意義を有する。一つはセラミックス原料の微細粒どうしが局所的に溶融して溶着し、セラミックス粒が成長するための工程であるという意義と、多孔質を形成する孔を生み出すという意義である。焼成ステップはしたがって、上記二つの現象が同時に進行する。通常は、燃焼気化素材の燃焼温度のほうがセラミックスの局所的な溶融温度よりも低い。したがって燃焼気化素材が燃焼するがセラミックス粒が成長しない温度に長時間ワーク(中間物)を滞留させると多孔質でないセラミックスとなってしまう。<薬剤含浸ステップ>
 混錬ステップの後に薬剤含浸ステップを行うこともできる。薬剤含浸ステップは、焼成ステップにて得られた多孔質セラミックスに薬剤を含侵させるステップである。多孔質セラミックスに含浸させる薬剤は特に限定されず、例えば触媒、タンパク質、細胞、薬剤などが挙げられる。含浸させる薬剤によって求められる孔のサイズ、孔の量、孔の密度、孔の貫通度合いは異なるが、本件発明は、燃焼気化素材の形状、サイズによって、最終的にセラミックス材料に形成されるサブミクロン径から数十ナノ径程度の細孔を有し、かつ、細孔がセラミックスブロックの内部を貫通する態様の多孔質性を制御できるので、含浸させる薬剤に応じて最適な多孔質セラミックスを製造することが可能となる。薬剤の含浸方法は特に限定されないが、例えば、含浸法、イオン交換法、蒸着法、噴霧乾燥法などが挙げられる。なお含侵させる液体等の表面張力等によって細孔に十分ガス、液体等が浸潤しない場合には当該セラミックスを隔壁として高圧側と低圧側を作り、圧力差を用いてガス、液体等を浸潤させる。
<燃焼気化素材>
 「燃焼気化素材」は、焼成ステップで燃焼気化する素材である。本発明において燃焼気化素材は、特に制限されるものでないが、焼成ステップで燃焼気化し、焼成後の多孔質セラミックスから消失する素材である。
 図3は、燃焼気化素材が略円柱状である場合の最大径を説明する図である。略円柱のような細長い形状の場合の最大径は長手方向の長さではなく、円柱の直径に相当する部分の最大値(図中のD1)が最大径である。一方で、例えば、燃焼気化素材が略球状であれば直径に相当する部分の最大値が最大径である。本発明の燃焼気化素材は最大径がサブミクロンであることが望ましい。最大径がサブミクロンの燃焼気化素材としては、特に制限されるものでないが、例えば、カーボン繊維又はカーボン繊維解砕物、あるいはセルロースを含む素材などを用いることで、サブミクロン径から数十ナノ径程度の細孔を有し、かつ、細孔がセラミックスブロックの内部を貫通する態様の多孔質セラミックスを得ることができる。
 カーボン繊維は、質量比で90%以上が炭素で構成される繊維であり、ポリアクリロニトリル繊維またはピッチ繊維を原料に高温で炭化して作った繊維である。カーボン繊維は、熱収縮率が低いことが特徴であり、カーボン繊維又はカーボン繊維解砕物を含む素材を燃焼気化微素材として使用すると。焼成ステップにおける燃焼気化微素材の膨張や収縮が起きにくいので、焼成体のひびや割れの発生を抑えるとともに、カーボン繊維又はカーボン繊維解砕物のサイズに応じた細孔を形成しやすいので好ましい。
 セルロースは、植物繊維の主成分であって、水に不溶の多糖類である。セルロースを含む燃焼気化素材としては、特にセルロースナノファイバーを含む素材を使用することが好ましい。セルロースナノファイバーとは、植物原料であるパルプ(パルプ繊維)を解繊して得られる微細なセルロース繊維をいい、一般的に繊維幅がナノサイズ(1nm以上1000nm以下)のセルロース微細繊維を含むセルロース繊維をいう。
 セルロースナノファイバーの保水度としては、例えば250%以上500%以下であることが好ましい。セルロースナノファイバーの保水度(%)はJAPAN TAPPI No.26に準拠して測定される。セルロースナノファイバーは、水分散状態でレーザー回折法により測定される擬似粒度分布曲線において1つのみのピークを有することが好ましい。また、このピークとなるセルロースナノファイバーの粒径(最頻値)としては、例えば5μm以上50μm以下が好ましい。なお、「擬似粒度分布曲線」とは、粒度分布測定装置を用いて測定される体積基準粒度分布を示す曲線を意味する。
 セルロースは植物由来であるため、セルロースナノファイバーを燃焼気化素材として使用することは、ポリビニルアルコールやポリアクリル酸アンモニウムのような化学的に合成されたものを使用する場合にくらべ、低炭素化社会に貢献することができるという利点がある。また、燃焼気化しても窒素酸化物のような有害物質を排出することもないため環境にも優しい素材であるという利点もある。また、セルロースはカーボン繊維と同様に熱収縮率が低いことが特徴であり、カーボン繊維と同様に焼成ステップにおける燃焼気化微素材の膨張や収縮が起きにくいという点でも優れている。
(セラミックス原料)
 「セラミックス原料」としては、特に制限されるものでないが、例えば多孔質セラミックス材として知られている、アルミナ、ケイ酸アルミニウム、コージェライト、シリカ、ジルコニア、炭化ケイ素、窒化ケイ素、ムライト、マグネシア、窒化アルミニウム、窒化ホウ素、リン酸カルシウムなどがあげられるが、これらに限定されるものではない。これらの原料は単独で使用することもできるが、2以上のセラミックス原料を混合して使用することもできる。
 セラミックス原料としては、β-リン酸三カルシウムやハイドロキシアパタイトなどリン酸カルシウムを使用することが好ましい。β-リン酸三カルシウムやハイドロキシアパタイトなどの多孔質セラミックス材料は、骨補填材料や人工骨インプラントとして顆粒や成型体として用いられているが、細胞、タンパク質、薬剤などを固定化させて使用することにより自家骨への置換を促進や代用骨の生体吸収性を向上させる試みがなされている。一般に細胞はミクロンサイズ、タンパク質はサブミクロンサイズ、薬剤はナノサイズの細孔に固定化されやすいといわれ、本件発明により目的に合わせて、孔のサイズ、孔の量、孔の密度、孔の貫通度合いを制御した多孔質セラミックスを得て、タンパク質などを固定化することが可能になるからである。
 以下に実施例を示す。実施例ではセラミックス原料としてβ-リン酸三カルシウム又はアルミナ、ハイドロキシアパタイトを用いた。また、実施例では燃焼気化素材としてセルロースを用いた。実施の前提としてβ-リン酸三カルシウム及びセルロースは以下のようにして準備した。
(1)β-リン酸三カルシウム
(β-リン酸三カルシウムの準備)
 β-リン酸三カルシウムの原料として、炭酸カルシウム301.78gとリン酸二水素アンモニウム266.79gを準備し、エタノール2リットルを溶媒として用いてボールミルで48時間、粉砕及び混合した。液状の混合物から濾過装置又は/及びエバポレーターを用いてエタノールを分離し、スラリーを得た。スラリーは、2つのアルミナ製のサヤに分け入れ、仮焼結Aを行い、仮焼成体Aを得た。仮焼結の条件は、昇温速度3℃/min、焼成温度900℃、保持時間12時間、室温までの降温速度3℃/minとして大気雰囲気中の条件で行った。得られた仮焼成体Aの結晶相は、95%以上がβ-リン酸三カルシウム構造であったが、結晶相をより確実にβ-リン酸三カルシウム構造とするために、さらに2回の仮焼結を行った。具体的には、仮焼成体Aをボールミルで4時間粉砕後、アルミナ製のサヤに入れ、仮焼結Aと同様の条件で仮焼結Bを行い、仮焼成体Bを得た。室温まで戻った仮焼成体Bを再度、仮焼結A及びBと同様の条件で仮焼結Cを行い、仮焼成体Cを得た。
 仮焼成体Cをボールミルで粉砕、又は乳鉢で粉砕後、篩分けして得られた、平均粒子径として3μm程度のβ-リン酸三カルシウムの粉体をセラミックス原料とした。
(ケイ素、ナトリウム及びマグナシウムを固溶したβ-リン酸三カルシウムの準備)
 セラミックス原料として、ケイ素、ナトリウム及びマグナシウムを固溶したβ-リン酸三カルシウムを用いることもできる。上述したβ-リン酸三カルシウムの出発原料に、炭酸ナトリウム、酸化マグネシウム、二酸化ケイ素を加えて、ケイ酸を2.0mol%固溶したβ-リン酸三カルシウムの粉体を同様に調整し、得られた粉体をセラミックス原料とした。具体的には、出発原料として炭酸カルシウム446.34gとリン酸二水素アンモニウム427.40g炭酸ナトリウム3.4722g、酸化マグネシウム18.8463g、二酸化ケイ素3.9332gを使用した。
(2)ハイドロキシアパタイト
 ハイドロキシアパタイトは、平均粒子径が15~20μmの太平化学産業株式会社の高純度リン酸カルシウム、球形HAP(3Ca3(PO42・Ca(OH)2)を用いた。
(3)アルミナ
 アルミナは、中心粒子径が0.79μmの昭和電工株式会社の易焼結性アルミナAL-45-Aを用いた。
(セルロースの準備)
 セルロースは、粒径(最頻値)21μm、保水度389%、濃度1.7wt%のセルロースナノファイバー水溶液を用いた。使用したセルロースナノファイバー水溶液には数十nmのセルロース微細繊維を含んでいる。但し、セルロースの保水度(%)はJAPAN TAPPI No.26に準拠して測定した。粒度分布測定装置を用いて測定される体積基準粒度分布を測定し、得られた擬似粒度分布曲線の最頻値を粒子径とした。
(多孔質セラミックスの評価方法)
 製造した多孔質セラミックスの評価方法について先に説明する。細孔分布は、水銀ポロシメーターで測定し、微細構造は、走査型電子顕微鏡(SEM)で観察した。開気孔率及び閉気孔率は、体積、乾燥質量、吸水質量と真比重(文献値)から算出した。体積は得られた焼結体の長さや直径を計測して算出した。吸水質量は、沸騰した水中に試験体を2時間浸水させた後、水中で放冷後、質量を測定した。
 <実験1>
(準備ステップ)
 セルロースナノファイバー水溶液50gとケイ酸が2mol%固溶したβ-リン酸三カルシウム45gを準備した。
(混錬ステップ)
 撹拌機で3分間攪拌し、さらにイオン交換水を20g加え、撹拌機で3分間混錬後、テフロン(登録商標)の容器に移した。混錬後の状態はペースト状で、水が表層に分離してくるようなことはなかった。65℃で1~2日間乾燥し、中間体を得た。乾燥後の中間体は一定の形状と強度を有し、ダイヤモンドカッターで切り出しても崩れることはなかった。また、ドリルで穴をあけるなどの加工も可能であった。テフロン(登録商標)の容器から取り出した乾燥後の中間体をダイヤモンドカッターで切断し、約10mm四方の略立方体の成型を作成した。
(焼成ステップ)
 当該成型体を焼成し、多孔質セラミックスを製造した。焼成は、昇温速度3℃/min、焼成温度1130℃、保持時間24時間、室温までの降温速度3℃/min、大気雰囲気中の条件で行った。
 図4は、得られた多孔質セラミックスの細孔分布、物性値及び微細構造を示す図である。得られた多孔質セラミックスは、一定の強度を有する緻密体であり、最頻細孔径は2.79μmで、90~110nm付近にも細孔が見られた。また、微細構造を示すSEM写真からも多孔質であること及び焼結されていることが確認できた。
 <実験2>
(準備ステップ)
 実験1と同様にセルロースナノファイバー水溶液50gとケイ酸が2mol%固溶したβ-リン酸三カルシウム45gを準備した。
(混錬ステップ)
 実験1の混錬ステップで得られた乾燥後の中間体をアルミナ製の乳鉢で粉砕し、ナイロン製のメッシュ繊維で覆った篩を用いて比較的大きな粒子を除去して、中間体派生物を得た。中間体派生物をφ20mmの金型を使用し、32MPaで1分間一軸加圧成型し、成型体を作成した。
 (焼成ステップ)
 得られた成型体を実験1と同様の条件で焼成し多孔質セラミックスを製造した。
 図5は、得られた多孔質セラミックスの細孔分布、物性値及び微細構造を示す図である。得られた多孔質セラミックスは、一定の強度を有する緻密体であり、最頻細孔径は1.72μmで、30~70nmにも細孔が見られた。また、微細構造を示すSEM写真からも多孔質であること及び焼結されていることが確認できた。
 <実験3>
(準備ステップ)
 実験1と同様にセルロースナノファイバー水溶液50gとケイ酸が2mol%固溶したβ-リン酸三カルシウム45gを準備した。
(混錬ステップ)
 一軸加圧成型を98MPaで1分間加圧する以外は、実験2と同様にして成型体を作成した。
(焼成ステップ)
 得られた成型体を実験1と同様の条件で焼成し、多孔質セラミックスを製造した。
 図6は、得られた多孔質セラミックスの細孔分布、物性値及び微細構造を示す図である。得られた多孔質セラミックスは、一定の強度を有する緻密体であり、最頻細孔径は1.03μmで、20~60nmにも細孔が見られた。また、微細構造を示すSEM写真からも多孔質であること及び焼結されていることが確認できた。
 <実験4>
(準備ステップ)
 セルロースナノファイバー水溶液50gとハイドロキシアパタイト45gを準備した。
(混錬ステップ)
 撹拌機で3分間攪拌し、さらにイオン交換水を20g加え、撹拌機で3分間混錬後、テフロン(登録商標)の容器に移した。混錬後の状態はペースト状で、水が表層に分離してくるようなことはなかった。65℃で1~2日間乾燥し、中間体を得た。乾燥後の中間体は一定の形状と強度を有し、ダイヤモンドカッターで切り出しても崩れることはなかった。また、ドリルで穴をあけるなどの加工も可能であった。
 得られた乾燥後の中間体をアルミナ製の乳鉢で粉砕し、ナイロン製のメッシュ繊維で覆った篩を用いて比較的大きな粒子を除去して、中間体派生物を得た。中間体派生物をφ20mmの金型を使用し、98MPaで1分間一軸加圧成型し、成型体を作成した。
(焼成ステップ)
 得られた成型体を実験1と同様の条件で焼成し、多孔質セラミックスを製造した。
 図7は、得られた多孔質セラミックスの細孔分布、物性値及び微細構造を示す図である。得られた多孔質セラミックスは、一定の強度を有する緻密体であり、最頻細孔径は0.15μmで、40~90nmにも細孔が見られた。また、微細構造を示すSEM写真からも多孔質であること及び焼結されていることが確認できた。
<実験5>
(準備ステップ)
 セルロースナノファイバー水溶液50gとアルミナ45gを準備した。
(混錬ステップ)
 撹拌機で3分間攪拌し、さらにイオン交換水を20g加え、撹拌機で3分間混錬後、テフロン(登録商標)の容器に移した。混錬後の状態はペースト状で、水が表層に分離してくるようなことはなかった。65℃で1~2日間乾燥し、中間体を得た。乾燥後の中間体は一定の形状と強度を有し、ダイヤモンドカッターで切り出しても崩れることはなかった。また、ドリルで穴をあけるなどの加工も可能であった。テフロン(登録商標)の容器から取り出した乾燥後の中間体をダイヤモンドカッターで切断し、約10mm四方の略立方体の成型を作成した。
(焼成ステップ)
 当該成型体を焼成し、多孔質セラミックスを製造した。焼成は、昇温速度3℃/min、焼成温度1600℃、保持時間24時間、室温までの降温速度3℃/min、大気雰囲気中の条件で行った。
 図8は、得られた多孔質セラミックスの細孔分布、物性値及び微細構造を示す図である。得られた多孔質セラミックスは、一定の強度を有する緻密体であり、最頻細孔径は0.42μmで、90~200nmにも細孔が見られた。また、微細構造を示すSEM写真からも多孔質であること及び焼結されていることが確認できた。
<効果>
 図4~8に示したように、得られた多孔質セラミックスは最頻細孔径のピークのほかにナノサイズの細孔を有していた。
 また、通常、多孔質セラミックスの製造では、セラミックス原料100に対して固形分換算で5~20程度の解膠剤(分散剤)、バインダー、滑剤が用いられることが多いが、本実施形態ではセラミックス原料100に対して固形分換算で2程度の低濃度で、分散剤及びバインダーの効果を奏している点でも優れている。
<実施形態2>
 本実施形態は、多孔質セラミックスであって、その特徴点は製造する際に用いた燃焼気化素材を充てんした場合でも外部に排出可能な細孔を有し、前記細孔はサブミクロン径の細孔を含む点にある。このセラミックスは、当該セラミックスを隔壁として高圧側と低圧側を作り、圧力差を用いて燃焼気化素材を浸潤させる。そして、浸潤済みのセラミックスを燃焼気化素材燃焼雰囲気に置くことによって内部に浸潤した燃焼気化素材がすべて除去されるものである。これによって単位体積当たり大きな表面積を有する燃焼気化素材を担持することが可能となる。このセラミックスはすでに述べた実施形態によって製造可能で得ある。例えば、実験1から実験3などのプロセスによって製造できる。
 つまり、本実施形態の多孔質セラミックスは、細孔に燃焼気化素材を充てんした場合でも焼成によって充てんされた燃焼気化素材が外部に排出可能な細孔を有し、前記細孔はサブミクロン径の細孔を含む。例えば燃焼気化素材は炭素やセルロースナノファイバーが該当する。

Claims (7)

  1.  燃焼気化素材及びセラミックス原料を準備する準備ステップと、
     準備した燃焼気化素材及びセラミックス原料を混錬して中間体を得る混錬ステップと、
     中間体又は/及び中間体派生物を焼成して前記燃焼気化素材を燃焼気化させ多数の孔を有するセラミックスを得るための焼成ステップと、
    からなる多孔質セラミックスの製造方法。
  2.  燃焼気化素材は最大径がサブミクロンである請求項1に記載の多孔質セラミックスの製造方法。
  3.  前記焼成ステップにて得られた多孔質セラミックスに薬剤を含侵させる薬剤含侵ステップを有する請求項1又は2に記載の多孔質セラミックスの製造方法。
  4.  セラミックス原料中に燃焼気化素材が均一に分散された多孔質セラミックスを製造するための中間体。
  5.  請求項4に記載の中間体をブロック化し、このブロック化したものを乾燥させ、乾燥したものを砕いてすりつぶしたことによって得られるセラミックス原料中に燃焼気化素材が均一に分散された多孔質セラミックスを製造するための中間体派生物。
  6.  細孔に燃焼気化素材を充てんした場合でも焼成によって充てんされた燃焼気化素材が外部に排出可能な細孔を有する多孔質セラミックス。
  7.  前記細孔はサブミクロン径の細孔を含む請求項6に記載のセラミックス。
PCT/JP2017/042102 2016-11-25 2017-11-22 多孔質セラミックスの製造方法ならびに多孔質セラミックス WO2018097210A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-229140 2016-11-25
JP2016229140A JP7016610B2 (ja) 2016-11-25 2016-11-25 多孔質セラミックスの製造方法ならびに多孔質セラミックス

Publications (1)

Publication Number Publication Date
WO2018097210A1 true WO2018097210A1 (ja) 2018-05-31

Family

ID=62195902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042102 WO2018097210A1 (ja) 2016-11-25 2017-11-22 多孔質セラミックスの製造方法ならびに多孔質セラミックス

Country Status (2)

Country Link
JP (1) JP7016610B2 (ja)
WO (1) WO2018097210A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795474A (zh) * 2019-06-04 2021-12-14 学校法人千叶工业大学 多孔质陶瓷和多孔质陶瓷的制造方法
WO2022138906A1 (ja) * 2020-12-25 2022-06-30 東亞合成株式会社 無機成形体及び無機成形体用バインダー
CN116217269A (zh) * 2021-12-03 2023-06-06 深圳麦克韦尔科技有限公司 多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116684A (ja) * 1988-10-21 1990-05-01 Permelec Electrode Ltd リン酸カルシウム化合物多孔質体の製造方法
JPH08301672A (ja) * 1995-05-01 1996-11-19 Shin Etsu Chem Co Ltd 多孔質焼結体用粉末の製造方法
JPH10158075A (ja) * 1996-11-25 1998-06-16 Advance Co Ltd セラミックスの製造方法
JP2005263537A (ja) * 2004-03-17 2005-09-29 Rikogaku Shinkokai 貫通孔を有するセラミックス多孔体の製造方法
WO2005091393A1 (ja) * 2004-03-22 2005-09-29 Japan Science And Technology Agency 多孔質熱電材料及びその製造方法
JP2016056460A (ja) * 2014-09-05 2016-04-21 大王製紙株式会社 セルロースナノファイバー、構造体、積層体及びセルロースナノファイバーの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135778A (ja) * 1991-07-18 1994-05-17 Takeo Omi 発泡陶器
JPH05294751A (ja) * 1992-04-10 1993-11-09 Kaminishi Kagaku:Kk 軽量タイルの製造方法
JP3135110B2 (ja) * 1995-11-29 2001-02-13 工業技術院長 多孔質セラミックス膜とその製造方法
JP2007269622A (ja) * 2006-03-06 2007-10-18 Inax Corp 軽量セラミックスの製造方法及びその原料
JP2008007342A (ja) * 2006-06-27 2008-01-17 Toshiba Corp 異方性多孔質セラミックス材料およびその製造方法
WO2008073417A2 (en) * 2006-12-11 2008-06-19 Corning Incorporated Alpha-alumina inorganic membrane support and method of making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116684A (ja) * 1988-10-21 1990-05-01 Permelec Electrode Ltd リン酸カルシウム化合物多孔質体の製造方法
JPH08301672A (ja) * 1995-05-01 1996-11-19 Shin Etsu Chem Co Ltd 多孔質焼結体用粉末の製造方法
JPH10158075A (ja) * 1996-11-25 1998-06-16 Advance Co Ltd セラミックスの製造方法
JP2005263537A (ja) * 2004-03-17 2005-09-29 Rikogaku Shinkokai 貫通孔を有するセラミックス多孔体の製造方法
WO2005091393A1 (ja) * 2004-03-22 2005-09-29 Japan Science And Technology Agency 多孔質熱電材料及びその製造方法
JP2016056460A (ja) * 2014-09-05 2016-04-21 大王製紙株式会社 セルロースナノファイバー、構造体、積層体及びセルロースナノファイバーの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795474A (zh) * 2019-06-04 2021-12-14 学校法人千叶工业大学 多孔质陶瓷和多孔质陶瓷的制造方法
CN113795474B (zh) * 2019-06-04 2023-08-18 学校法人千叶工业大学 多孔质陶瓷和多孔质陶瓷的制造方法
WO2022138906A1 (ja) * 2020-12-25 2022-06-30 東亞合成株式会社 無機成形体及び無機成形体用バインダー
CN116217269A (zh) * 2021-12-03 2023-06-06 深圳麦克韦尔科技有限公司 多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用

Also Published As

Publication number Publication date
JP2018083742A (ja) 2018-05-31
JP7016610B2 (ja) 2022-02-07

Similar Documents

Publication Publication Date Title
Chen et al. Porous ceramics: Light in weight but heavy in energy and environment technologies
JP3362267B2 (ja) 生体インプラント材料及びその製造方法
Engin et al. Preparation of Porous Ca10 (PO4) 6 (OH) 2 and β‐Ca3 (PO4) 2 Bioceramics
WO2018097210A1 (ja) 多孔質セラミックスの製造方法ならびに多孔質セラミックス
JP4693992B2 (ja) 発泡セラミック
IL180965A (en) Method for obtaining porous ceramic materials
US7279219B2 (en) Porous calcium phosphate ceramic and method for producing same
JPH02180631A (ja) ゾル・ゲル法によるセラミック中空微小球及びその製法
CN109279909A (zh) 一种高强度碳化硼多孔陶瓷的制备方法
JP3940770B2 (ja) 多孔質セラミックスインプラント材料の製造方法及びその方法によって製造される多孔質セラミックスインプラント材料
Kumar et al. Low cost porous alumina with tailored gas permeability and mechanical properties prepared using rice husk and sucrose for filter applications
Dapporto et al. A novel route for the synthesis of macroporous bioceramics for bone regeneration
RU2691207C1 (ru) Способ получения пористой керамики с бимодальным распределением пористости
WO2000030998A1 (en) Porous ceramic composites
US20030224924A1 (en) Nano ceramics and method thereof
CA3107290C (en) Biomimetic biomaterial and production method thereof
JP2004275202A (ja) 多孔質セラミックスインプラント材料およびその製造方法
JP4443077B2 (ja) 多孔質リン酸カルシウム系セラミックス焼結体の製造方法及び多孔質リン酸カルシウム系セラミックス焼結体
Saidi et al. Fabrication and characterization nanostructured forsterite foams with high compressive strength, desired porosity and suitable bioactivity for biomedical applications
JP4866765B2 (ja) リン酸カルシウム系焼結多孔体およびリン酸カルシウム系焼結多孔体顆粒状物
US20180334411A1 (en) Alumina body having nano-sized open-cell pores that are stable at high temperatures
Richardson et al. Sintering of yttrium oxide powders prepared by emulsion evaporation
Ahmed et al. Porous hydroxyapatite ceramics fabricated via starch consolidation technique
JPH0572355B2 (ja)
JP5846972B2 (ja) 生体吸収性インプラント及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874958

Country of ref document: EP

Kind code of ref document: A1