WO2018096655A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2018096655A1
WO2018096655A1 PCT/JP2016/085004 JP2016085004W WO2018096655A1 WO 2018096655 A1 WO2018096655 A1 WO 2018096655A1 JP 2016085004 W JP2016085004 W JP 2016085004W WO 2018096655 A1 WO2018096655 A1 WO 2018096655A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
oil
amount
outdoor unit
outdoor
Prior art date
Application number
PCT/JP2016/085004
Other languages
English (en)
French (fr)
Inventor
宗希 石山
裕輔 島津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680090216.9A priority Critical patent/CN109964086B/zh
Priority to PCT/JP2016/085004 priority patent/WO2018096655A1/ja
Priority to JP2018552355A priority patent/JP6790115B2/ja
Priority to US16/329,431 priority patent/US11168927B2/en
Priority to EP16922199.1A priority patent/EP3546849B1/en
Publication of WO2018096655A1 publication Critical patent/WO2018096655A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus including a plurality of compressors.
  • a conventional multi air conditioner including a plurality of outdoor units and a plurality of indoor units is connected to a plurality of outdoor units with a common refrigerant pipe (liquid pipe and gas pipe) to transport the refrigerant,
  • the compressor of each outdoor unit is connected by an oil equalizing pipe for avoiding uneven distribution of oil in the compressor to keep the balance of the oil amount in the compressor of each outdoor unit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-101127
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-69213.
  • Patent Document 3 JP 2011-2160
  • Patent Document 1 in order to keep the amount of oil in the compressor moderate, in the oil equalization operation control, the oil supply time to the compressor is kept constant and the oil equalization operation is performed. Yes. Further, JP 2004-69213 A (Patent Document 2) performs control to switch operation / stop of the compressor when the accumulated operation time of the operation compressor reaches a predetermined time.
  • the present invention has been made to solve the above-described problems, and accurately detects the amount of refrigerating machine oil using a sensor so that refrigerating machine oil is not unevenly distributed in a plurality of compressor containers. It aims at protecting a compressor by controlling a compressor, and preventing the performance fall of a compressor and a refrigerating cycle apparatus.
  • the refrigeration cycle apparatus disclosed in the embodiment of the present application includes an indoor unit having at least an indoor heat exchanger, a plurality of outdoor units connected to the indoor unit in parallel to each other, a control device that controls the plurality of outdoor units, At least one expansion device.
  • Each of the plurality of outdoor units includes an outdoor heat exchanger, a compressor, and a sensor for detecting the amount of refrigerating machine oil in the outdoor unit.
  • the indoor heat exchanger, the expansion device, and the outdoor heat exchanger and the compressor included in the plurality of outdoor units constitute a refrigerant circuit in which the refrigerant circulates.
  • the control device operates, as operation modes, a first operation mode in which some of the plurality of outdoor units are operated and the other outdoor units are stopped, and a second operation mode in which all of the plurality of outdoor units are operated. And have.
  • the control device is in operation when the operation time of the outdoor unit being operated exceeds a specified time and the amount of refrigeration oil in the compressor of the outdoor unit being operated is less than the specified amount.
  • the operation time of the outdoor unit being operated exceeds the specified time, and the amount of refrigeration oil in the compressor of the outdoor unit being operated is greater than the specified amount.
  • the outdoor unit that is operating is stopped, and the outdoor unit that is stopped among the plurality of outdoor units is switched to operate.
  • oil exhaustion of a plurality of compressors can be suppressed, and the reliability of each compressor can be improved. Since oil depletion can be prevented without using an oil equalizing pipe, it is not necessary to connect the oil equalizing pipe for each outdoor unit, and the installation workability can be improved.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 3 is a flowchart for illustrating control during single outdoor unit operation performed by the control device in the first embodiment.
  • FIG. 3 is a diagram showing a refrigerant flow before switching to an outdoor unit during single outdoor unit operation in the first embodiment.
  • FIG. 3 is a diagram showing a refrigerant flow after outdoor unit switching during single outdoor unit operation in the first embodiment.
  • 3 is a flowchart for illustrating control during multi-outdoor operation performed by the control device in the first embodiment. It is the figure which showed an example of the flow of the refrigerant before the frequency change at the time of multi outdoor unit operation.
  • FIG. 3 is an overall configuration diagram of a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. It is the figure which showed an example of the relationship between the liquid level height in a compressor, and the taking-out amount of refrigerator oil.
  • 10 is a flowchart for illustrating control during single outdoor unit operation performed by the control device in the second embodiment.
  • FIG. 6 is a diagram illustrating a refrigerant flow before switching to an outdoor unit during single outdoor unit operation in the second embodiment.
  • FIG. 6 is a diagram illustrating a refrigerant flow in a transition process of outdoor unit switching during single outdoor unit operation in the second embodiment.
  • FIG. 6 is a flowchart for illustrating control during operation of a multi-outdoor unit that is executed by a control device in a second embodiment.
  • FIG. 4 is an overall configuration diagram of a refrigeration cycle apparatus according to Embodiment 3.
  • 10 is a flowchart for illustrating control during single outdoor unit operation performed by the control device in the third embodiment.
  • 10 is a flowchart for illustrating control during operation of a multi-outdoor unit executed by a control device in a third embodiment.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • the refrigeration cycle apparatus includes a plurality of outdoor units 50a and 50b, an indoor unit 54 having at least the indoor heat exchanger 4, a high-pressure side pipe 52, a low-pressure side pipe 53, Control device 100.
  • the outdoor units 50 a and 50 b and the indoor unit 54 are connected by a pipe 52 and a pipe 53.
  • the outdoor units 50a and 50b are connected to the indoor unit 54 in parallel with each other.
  • the outdoor unit 50a includes at least a compressor 1a, an outdoor heat exchanger 2a, and an expansion device 3a.
  • the outdoor unit 50b includes at least a compressor 1b, an outdoor heat exchanger 2b, and an expansion device 3b.
  • an electronic expansion valve LUV
  • a capillary tube, a temperature automatic expansion valve, or the like may be used.
  • it may replace with the expansion apparatuses 3a and 3b, and the structure which uses one expansion apparatus for the indoor unit side may be sufficient.
  • the indoor heat exchanger 4, the expansion devices 3a and 3b, the outdoor heat exchangers 2a and 2b, and the compressors 1a and 1b constitute a refrigerant circuit in which the refrigerant circulates.
  • Each of the outdoor units 50a and 50b includes outdoor heat exchangers 2a and 2b, compressors 1a and 1b, and sensors 5a and 5b for detecting the amount of refrigerating machine oil in the outdoor unit.
  • the sensors 5a and 5b include liquid level detectors 101a and 101b, respectively. That is, the compressor 1a is provided with a liquid level detector 101a capable of detecting the liquid level in the compressor, and the compressor 1b is provided with a liquid level detector 101b capable of detecting the liquid level in the compressor. Is done.
  • the control device 100 controls the discharge amounts of the compressors 1a and 1b in accordance with the liquid level height (outputs of the liquid level detectors 101a and 101b) in each compressor.
  • the control device 100 appropriately switches between the single outdoor unit operation and the multi outdoor unit operation according to the load of the refrigeration cycle apparatus.
  • single outdoor unit operation refers to an operation in which one outdoor compressor and one stopped compressor exist at the same time in two outdoor units.
  • "" refers to an operation in which two or more compressors operating with a plurality of outdoor units exist at the same time.
  • the single outdoor unit operation refers to a case where only one of the compressors is operating.
  • the “single outdoor unit operation” mode corresponds to a first operation mode in which a part of the plurality of outdoor units 50a and 50b is operated and the other outdoor units are stopped.
  • Embodiment 1 Since the refrigeration cycle apparatus of Embodiment 1 having such a configuration uses a plurality of outdoor units, when the refrigeration cycle apparatus is continuously operated for a long time, an oil bias occurs, which may cause oil depletion. There is sex. More specifically, depending on the operating conditions of the compressor in the outdoor unit, a large amount of refrigeration oil is discharged into the piping, and the refrigeration oil is unevenly distributed on the side of some outdoor units, and in the compressors of the remaining outdoor units There is a risk of exhaustion of refrigerating machine oil.
  • Compressor is not leveled, and if it remains in an uneven state, the reliability of the compressor decreases. It is conceivable to install oil leveling pipes in order to match the amount of refrigeration oil in each compressor. However, if oil leveling pipes are installed, the number of connection points will increase during installation work, the number of parts will increase, and installation workability will deteriorate. To do.
  • the control device 100 of the refrigeration cycle apparatus controls the plurality of compressors so that the refrigeration oil discharged into the pipes appropriately returns to the compressor.
  • the control device 100 exceeds the specified time for the operating time of the operating outdoor unit, and the amount of refrigeration oil in the compressor of the operating outdoor unit is less than the specified amount. If the operation of the outdoor unit during operation exceeds the specified time in the “single outdoor unit operation” mode, the refrigeration in the compressor of the outdoor unit during operation is maintained.
  • the amount of machine oil is equal to or greater than the specified amount, the outdoor unit being operated is stopped, and the outdoor unit being stopped among the plurality of outdoor units 50a and 50b is switched to operate.
  • FIG. 2 is a flowchart for explaining control during single outdoor unit operation performed by the control device in the first embodiment.
  • FIG. 3 is a diagram showing the refrigerant flow before switching to the outdoor unit during single outdoor unit operation in the first embodiment.
  • FIG. 4 is a diagram showing the refrigerant flow after outdoor unit switching during single outdoor unit operation in the first embodiment.
  • step S1 the control device 100 detects the liquid level of the compressor in operation.
  • the compressor in operation is the compressor 1a
  • the refrigerant flows at this time as indicated by arrows shown in FIG.
  • the control device 100 detects the liquid level height of the compressor 1a during operation based on the output of the liquid level detector 101a.
  • the liquid level detector 101a is not particularly limited as long as it can detect the liquid level height.
  • an ultrasonic sensor that detects the ultrasonic wave transmission time
  • a sound speed sensor that detects the sound velocity of the sound wave
  • a heat capacity is detected.
  • a heat capacity sensor that detects capacitance, a capacitance sensor that detects capacitance, an optical fiber sensor that detects a light wavelength from a light source, and the like can be used. In any of these sensors, the detection value changes as the density of the space to be observed changes.
  • a temperature sensor can be used as the liquid level detector 101a. Unlike the sensor that directly measures the liquid level, the temperature sensor is indirectly detected.
  • the installation position of the temperature sensor is preferably inside the compressor, but may be outside the compressor.
  • the refrigerant and the refrigerating machine oil are divided into a gas part and a liquid part, and the gas part and the liquid part have different heat capacities, so that a temperature difference occurs in the temperature sensor.
  • a plurality of temperature sensors can be provided at different heights to detect a temperature difference, determine whether it is a liquid part or a gas part, and estimate the liquid level height.
  • refrigerant and refrigerating machine oil are released from the compressor 1a.
  • the discharged refrigerant and refrigerating machine oil return to the compressor 1a through the pipe 52, the indoor heat exchanger 4, the pipe 53, the expansion device 3a, and the outdoor heat exchanger 2a in this order.
  • the amount of refrigerating machine oil flowing into the compressor 1a decreases.
  • the liquid level of the compressor 1a decreases.
  • step S2 the control device 100 determines whether or not the liquid level position detected by the liquid level detector 101a is higher than the specified position (the amount of refrigerating machine oil is larger than the specified amount).
  • the “specified position” is the position of the liquid level at which the reliability of the compressor is ensured.
  • step S2 when the liquid level is lower than the specified position (NO in S2), the switching control is performed until the liquid level of the compressor 1a is restored and the inflow amount of the refrigerating machine oil to the compressor 1a becomes stable. Not implemented (S5).
  • switching control refers to control for switching the control of a plurality of compressors such that the operating compressor is stopped and the stopped compressor is operated.
  • step S3 the control device 100 determines whether or not the elapsed time from the start of operation of the compressor 1a is longer than the specified time.
  • the “specified time” is a time for forcibly performing the switching control.
  • the control device 100 switches the compressor to be operated from the compressor 1a to the compressor 1b, and the elapsed time
  • the count value is reset (S4).
  • the refrigerant and the refrigerating machine oil are released from the compressor 1b.
  • the discharged refrigerant and refrigerating machine oil sequentially pass through the pipe 52, the indoor heat exchanger 4, the pipe 53, the expansion device 3b, and the outdoor heat exchanger 2b, and return to the compressor 1b.
  • the compressor to be operated is switched every time the specified time elapses, so that the possibility that refrigeration oil is unevenly distributed in one compressor is reduced.
  • the switching timing is selected so as to avoid a state where a large amount of refrigerating machine oil is temporarily accumulated in the pipe or the like, it is possible to prevent the refrigerating machine oil from being depleted in both compressors.
  • control during multi-outdoor operation When the amount of refrigerating machine oil in the compressor of the first outdoor unit among the plurality of outdoor units 50a and 50b is smaller than the specified amount in the “multi-outdoor unit operation” mode, the control device 100 The plurality of outdoor units 50a and 50b are controlled so as to increase the discharge refrigerant flow rate of the compressor of the outdoor unit and to decrease the discharge refrigerant flow rate of the compressor of the second outdoor unit. That is, when the amount of the refrigerating machine oil of the compressor 1a of the outdoor unit 50a is smaller than the specified amount, the discharge refrigerant flow rate of the compressor 1a is increased and the discharge refrigerant flow rate of the compressor 1b is decreased.
  • FIG. 5 is a flowchart for illustrating control during “multi-outdoor unit operation” executed by the control device in the first embodiment.
  • FIG. 6 is a diagram showing an example of the refrigerant flow before the frequency change during the multi-outdoor unit operation.
  • FIG. 7 is a diagram illustrating an example of the refrigerant flow after the frequency change during the multi-outdoor unit operation.
  • step S11 the control device 100 detects the liquid level of each of the compressors 1a and 1b during operation.
  • the refrigerant flow rate of the compressor 1b is small, and the refrigerant flow rate of the compressor 1a is larger than the refrigerant flow rate of the compressor 1b.
  • the refrigerant flow rate in the indoor heat exchanger 4 of the indoor unit 54 is a higher total flow rate.
  • the control device 100 detects the liquid level height of the compressors 1a and 1b during operation based on the outputs of the liquid level detectors 101a and 101b.
  • step S12 the control device 100 determines whether or not the liquid level height detection position of the compressor 1a is higher than the specified position.
  • step S13 the control device 100 determines whether or not the liquid level height detection position of the compressor 1b is higher than the specified position.
  • control device 100 performs control to change the operating frequency of the compressor in step S15.
  • the control device 100 changes the operation frequency of the compressor 1a (Control) is executed, and as shown in FIG. 7, the discharge flow rate of the compressor 1a is increased (large flow rate), and the inflow amount of refrigerating machine oil to the compressor 1a is increased.
  • the control apparatus 100 performs control which changes (reduces) the operating frequency of the compressor 1b.
  • the control device 100 attenuates (small flow rate) the discharge flow rate of the compressor 1b so that the flow rate to the indoor unit becomes constant, and the oil flows into the compressor 1b. Reduce the amount.
  • the frequency of the compressor whose liquid level is less than the specified position is increased and the liquid level is compressed above the specified position. Reduce the frequency of the machine.
  • the operation is performed when the liquid level height of the operating compressor is equal to or higher than a specified position and longer than a specified time.
  • Switching control for stopping the compressor in the middle and switching the stopped compressor to operation is executed.
  • the frequency of each compressor is controlled so as to increase the liquid level. For example, the frequency of the compressor whose liquid level is less than the specified position is increased, and the frequency of the compressor having the specified level or more is decreased.
  • frequency control (control so that the total value of the refrigerant flow rate becomes the same) is performed so that the indoor capacity is constant.
  • This control has the following effects. That is, by detecting the liquid level height, it is possible to suppress the oil depletion of the compressor under each operation condition, environmental condition, and installation condition. In addition, it is possible to switch and control the compressor that operates with the liquid level secured. As a result, the reliability of each compressor can be improved.
  • FIG. FIG. 8 is an overall configuration diagram of the refrigeration cycle apparatus according to the second embodiment.
  • the refrigeration cycle apparatus according to Embodiment 2 includes position detectors 102a, 102b, which can detect the pipe lengths of pipe 52 and pipe 53. 103b and a storage device 200 are further included.
  • the sensor 5a includes a liquid level detector 101a and a position detector 102a.
  • the sensor 5b includes a liquid level detector 101b and a position detector 102b.
  • the control device 100 converts the oil take-out amount according to the liquid level height and frequency of each of the compressors 1a and 1b, and converts the estimated oil return time T from the oil take-out amount and the pipe length.
  • the storage device 200 stores a target oil return time T * determined in advance by experiments or the like.
  • the “oil return time” means the time taken to return when the liquid level of the refrigeration oil in the compressor is temporarily lowered.
  • the control apparatus 100 controls each compressor according to the estimated oil return time T, the liquid level height, and the target oil return time T *. Since the other configuration of the refrigeration cycle apparatus of the second embodiment is the same as that of the refrigeration cycle apparatus of FIG. 1, description thereof will not be repeated.
  • the second embodiment is characterized in that the pipe length is detected and the oil return time is estimated. That is, the control device 100 calculates the length of the refrigerant pipe 53 based on the outputs of the position detectors 102a to 102c, and based on the calculated length of the refrigerant pipe 53, the refrigeration discharged from the compressors 1a and 1b. The oil return time until the machine oil returns to the compressors 1a and 1b is calculated. The control device 100 controls the discharge amounts of the compressors 1a and 1b based on the oil return time.
  • the position detectors 102a, 102b, and 103b may be any ones that can know the positions of the outdoor unit and the indoor unit.
  • a pressure sensor may be used as the position detector, and the pipe length may be estimated from the pressure loss determined by the pipe diameter and the pressure difference between the pipe inlet and outlet.
  • the position can be known by attaching a GPS or the like, the distance from the indoor unit to the outdoor unit may be known, and the pipe length may be estimated from the distance.
  • the length of the wiring may be estimated from the current value (voltage drop amount) of the communication line connecting the indoor unit and the outdoor unit, and this may be used as the pipe length.
  • the control device 100 calculates the pipe length La of the pipes 52 and 53 based on the outputs of the position detectors 102a, 102b and 102c. Furthermore, after calculating the pipe length La, the control device 100 calculates the pipe volume Va from the pipe length La. Then, the control device 100 estimates the oil take-out amounts ⁇ a and ⁇ b of each compressor from the relationship between the liquid level height and the frequency stored in the storage device 200 in advance.
  • FIG. 9 is a diagram showing an example of the relationship between the liquid level in the compressor and the amount of refrigeration oil taken out. Note that FIG. 9 is an example, and such a graph depends on the characteristics of the compressor. Therefore, a graph suitable for the compressor to be used is used.
  • the changing point where the inclination changes in the middle corresponds to the boundary point of whether or not the refrigerating machine oil is immersed in the motor. If the liquid level is higher than the change point, the refrigerating machine oil is immersed in the motor, and the refrigerating machine oil higher than the installation height of the motor is easily taken out to the refrigerant circuit, so that the inclination suddenly increases.
  • Some compressors have characteristics that do not have a change point as in the graph of FIG.
  • control device 100 estimates the discharge flow rates Gra and Grab of each compressor from the compressor operating frequency and the compressor stroke volume.
  • the control device 100 calculates the estimated oil return time T by the following equation (1).
  • T Va / [ ⁇ (Gra ⁇ ⁇ a) + (Grb ⁇ ⁇ b) ⁇ ⁇ ⁇ Gra / (Gra + Grb) ⁇ ] (1)
  • Va indicates the pipe capacity (liter)
  • ⁇ a and ⁇ b indicate the oil take-out amount (%)
  • Gra and Grab indicate the discharge flow rate (liter / min)
  • T indicates the estimated oil return time ( min).
  • the amount of oil flowing outside the system is indicated by (discharge flow rate x oil take-out amount).
  • the refrigerant coolant and refrigeration oil which were discharged from each outdoor unit once merge with an indoor unit. Therefore, the refrigerating machine oil discharged from one compressor (for example, 1b) also joins. Therefore, when branching after merging, refrigeration oil is distributed at a flow rate ratio, and the flow rate ratio of the compressors 1a and 1b is applied.
  • FIG. 10 is a flowchart for illustrating control during single outdoor unit operation performed by the control device in the second embodiment.
  • FIG. 11 is a diagram illustrating the refrigerant flow before the outdoor unit switching during the single outdoor unit operation in the second embodiment.
  • FIG. 12 is a diagram illustrating the refrigerant flow in the transition process of outdoor unit switching during single outdoor unit operation in the second embodiment.
  • FIG. 13 is a diagram illustrating the refrigerant flow after completion of outdoor unit switching during single outdoor unit operation in the second embodiment.
  • the liquid level of the compressor that is first operating is detected (S21). Assuming that the operating compressor is the compressor 1a, the refrigerant and the refrigerating machine oil circulate in the refrigerant circuit as shown by the solid line arrows in FIG. When the refrigerant and the refrigeration oil are released from the compressor 1a, the released refrigerant and the refrigeration oil return to the compressor 1a through the pipe 52, the indoor heat exchanger 4, and the pipe 53. At this time, if a large amount of refrigeration oil stays in each element of the refrigerant circuit temporarily, the amount of inflow into the compressor 1a decreases. By reducing the inflow amount, the liquid level of the compressor 1a decreases.
  • the control device 100 determines whether or not the liquid level height detection position is higher than the specified position in step S22. At this time, when the liquid level is equal to or lower than the specified position (NO in S22), the control device 100 does not perform the switching control. The control device 100 releases the refrigerant and the refrigerating machine oil from the compressor 1a so that the estimated oil return time T is equal to or less than the target oil return time T *. Specifically, if the detected position is not greater than the specified position in step S22 (NO in S22), the amount of oil taken out from the compressor is converted according to the liquid level height and frequency of the compressor as shown in FIG.
  • the control device 100 calculates the pipe length La of the pipes 52 and 53 from the outputs of the position detectors 102a, 102b and 102c (S24). Then, the process which calculates the estimated oil return time T based on the said Formula (1) is performed (S25).
  • the pipe length La may be calculated once after the refrigeration cycle apparatus is installed and stored in the storage device 200, and may not be calculated every time.
  • step S26 when the estimated oil return time T> the target oil return time T *, the operation of the stopped compressor 1b is started and the operating frequency is increased (S27).
  • the circulation of the refrigerant and the refrigerating machine oil indicated by the broken line arrows is also started.
  • the refrigerating machine oil is discharged to the pipe 52 from the stopped compressor, so that it is lowered.
  • the liquid level is expected to recover to the specified position or higher at an early stage.
  • the refrigerating machine oil discharged from the compressor 1a (and the compressor 1b) passes through each element of the refrigerant circuit and flows into the compressors 1a and 1b, respectively (S28). If the condition is not satisfied in S29 or S26, the process proceeds to S28, the switching control is not performed, and the elapsed time measurement is continued.
  • the processing of the flowchart of FIG. 10 is executed again, and when the level of the refrigeration oil of the compressor 1a is higher than the specified position (YES in S22) and the elapsed time from switching exceeds the specified time (YES in S29).
  • the control device 100 switches the compressor to be operated from the compressor 1a to the compressor 1b. At that time, the refrigerating machine oil released into the pipes 52 and 53 and the indoor heat exchanger 4 flows into the compressor 1b. Specifically, if the detected position> the specified position (YES in S22), if the elapsed time> the specified time (YES in S29), the switching control is started and the elapsed time count is reset. (S30).
  • step S30 the operating compressor is switched from the compressor 1a to the compressor 1b, and the refrigerant and the refrigeration oil are changed so as to circulate through the refrigerant circuit as shown by the solid line arrows in FIG. Is done.
  • the operation switching from the compressor 1a to the compressor 1b has been described above, but the switching from the compressor 1b to the compressor 1a is also performed by a similar process.
  • FIG. 14 is a flowchart for explaining the control during the multi-outdoor unit operation performed by the control device in the second embodiment.
  • the compressors 1a and 1b are both operated.
  • the liquid level height of the compressors 1a and 1b during operation is detected (S31).
  • the control device 100 determines whether the liquid level height of the compressor 1a is higher than the specified position (S32) or whether the liquid level height of the compressor 1b is higher than the specified position (S33).
  • step S34 When the liquid level height of the refrigeration oil is higher than the specified position in both the compressors 1a and 1b (YES in S32 and S33), the process proceeds to step S34, and the operating frequencies of the compressors 1a and 1b are maintained as they are. There is no change in frequency (S34).
  • step S38 when the estimated oil return time T> the target oil return time T *, the control device 100 executes frequency change control in step S39.
  • the frequency change control for example, when the liquid level height of the compressor 1a is equal to or less than a specified position, frequency control is performed so that the estimated oil return time T is equal to or less than the target estimated time, and the control device 100 controls the compressor 100a.
  • the discharge flow rate is increased (large flow rate) and the inflow amount of refrigeration oil is increased.
  • the control device 100 decreases the discharge flow rate of the compressor 1b (small flow rate) so that the flow rate in the room becomes constant as the discharge flow rate of the compressor 1a increases, and the inflow amount of the refrigerating machine oil to the compressor 1b Decrease.
  • the following effects can be obtained. (1) By detecting the liquid level height, it is possible to suppress the oil depletion of the compressor and improve the reliability in each operation / environment / installation condition. (2) During the oil return operation, an operation different from the operation for air-conditioning to the set temperature is performed, but by reducing the oil return time, it is possible to suppress a decrease in comfort due to the oil return operation. (3) Even when the amount of oil shortage differs among the compressors, the control according to the oil return time of each compressor is performed on each compressor, thereby suppressing oil depletion while suppressing power consumption. Can be improved.
  • FIG. 15 is an overall configuration diagram of a refrigeration cycle apparatus according to Embodiment 3.
  • the oil concentrations of compressors 1a and 1b can be detected.
  • Detectors 103a and 103b are installed.
  • the sensors 5a and 5b include concentration detectors 103a and 103b for detecting the concentration of the refrigerating machine oil provided in the compressors 1a and 1b of the outdoor units 50a and 50b, respectively.
  • concentration detectors 103a and 103b for detecting the concentration of the refrigerating machine oil provided in the compressors 1a and 1b of the outdoor units 50a and 50b, respectively.
  • control device 100 controls the discharge amounts of the compressors 1a and 1b according to the outputs of the concentration detectors 103a and 103b.
  • the control device 100 calculates a converted value of the oil amount in the compressor based on the detected values of the liquid level and the oil concentration, and controls the operating frequency of the compressor according to the calculated oil amount in the compressor.
  • concentration detectors 103a and 103b that can detect the oil concentrations of the compressors 1a and 1b
  • optical sensors that detect changes in transmitted light intensity of the refrigerating machine oil can be used.
  • concentration detector for example, a capacitive sensor that detects a change in capacitance between electrodes, an ultrasonic sensor that generates ultrasonic waves and detects a change in sound speed, and the like can be used.
  • the oil concentration can be calculated based on the temperature detected by the temperature sensor. Since there are concentration curves for temperature and pressure depending on the type of refrigerant and refrigerating machine oil, the oil concentration can be estimated by calculating from the relationship.
  • FIG. 16 is a flowchart for explaining control during single outdoor unit operation performed by the control device in the third embodiment.
  • step S51 the liquid level of the operating compressor is detected. Subsequently, in step S52, the oil concentration of the operating compressor is detected. In step S53, the control device 100 converts the oil amount of the compressor in operation from the liquid level and the oil concentration.
  • the liquid level in the compressor can be estimated from the liquid level.
  • a value obtained by multiplying the liquid amount by the oil concentration is the oil concentration. Therefore, the oil concentration can be estimated using the liquid level and the graph of FIG. 9 and converted to the oil amount.
  • the refrigerant and the refrigerating machine oil circulate in the refrigerant circuit as shown by solid arrows in FIG.
  • the released refrigerant and the refrigeration oil return to the compressor 1a through the pipe 52, the indoor heat exchanger 4, and the pipe 53.
  • the amount of inflow into the compressor 1a decreases.
  • the liquid level of the compressor 1a decreases and the oil amount also decreases.
  • the control device 100 determines in step S54 whether or not the oil equivalent amount of the compressor is higher than the specified amount. At this time, the control device 100 does not perform the switching control when the oil conversion amount> the specified amount is not satisfied (NO in S54). The control device 100 releases the refrigerant and the refrigerating machine oil from the compressor 1a so that the estimated oil return time T is equal to or less than the target oil return time T *. Specifically, if the detected position is not greater than the specified position in step S54 (NO in S54), the amount of oil taken out from the compressor is converted according to the liquid level height and frequency of the compressor as shown in FIG.
  • the control device 100 calculates the pipe length La of the pipes 52 and 53 from the outputs of the position detectors 102a, 102b and 102c (S56). Then, the process which calculates the estimated oil return time T based on the above-mentioned Formula (1) is performed (S57).
  • step S58 if the estimated oil return time T> the target oil return time T *, the operation of the stopped compressor 1b is started and the operating frequency is increased (S59).
  • the circulation of the refrigerant and the refrigerating machine oil indicated by the broken line arrows is also started.
  • the refrigerating machine oil discharged from the compressor 1a (and the compressor 1b) passes through each element of the refrigerant circuit and flows into the compressors 1a and 1b, respectively (S60). If the condition is not satisfied in S61 or S58, the process proceeds to S60, the switching control is not performed, and the elapsed time measurement is continued.
  • the processing from S51 is executed again, and when the conversion amount of the refrigeration oil of the compressor 1a is larger than the prescribed amount (YES in S54) and the elapsed time from switching exceeds the prescribed time (YES in S61), the control is performed.
  • the apparatus 100 switches the compressor to operate from the compressor 1a to the compressor 1b. At that time, the refrigerating machine oil released into the pipes 52 and 53 and the indoor heat exchanger 4 flows into the compressor 1b. Specifically, if the converted amount> the specified amount (YES in S54), if the elapsed time> the specified time (YES in S61), the switching control is started and the elapsed time count is reset ( S62).
  • step S62 the operating compressor is switched from the compressor 1a to the compressor 1b, and the refrigerant and the refrigeration oil are changed so as to circulate through the refrigerant circuit as shown by the solid line arrows in FIG. Is done.
  • the operation switching from the compressor 1a to the compressor 1b has been described above, but the switching from the compressor 1b to the compressor 1a is also performed by a similar process.
  • FIG. 17 is a flowchart for explaining control during operation of the multi-outdoor unit executed by the control device in the third embodiment.
  • the compressors 1a and 1b are both operated.
  • the liquid level height of compressors 1a and 1b in operation is detected in step S71.
  • the oil concentrations of the compressors 1a and 1b are detected.
  • the control device 100 converts the oil amounts of the compressors 1a and 1b during operation from the liquid level and the oil concentration.
  • control device 100 determines whether the amount of oil in the compressor 1a is greater than the specified amount (YES in S74) or whether the amount of oil in the compressor 1b is greater than the specified amount (S75).
  • step S80 when the estimated oil return time T> the target oil return time T *, the control device 100 executes frequency change control in step S81.
  • the frequency change control for example, when the liquid level height of the compressor 1a is equal to or less than a specified position, frequency control is performed so that the estimated oil return time T is equal to or less than the target estimated time.
  • the discharge flow rate is increased (large flow rate) and the inflow amount of refrigeration oil is increased.
  • the control device 100 decreases the discharge flow rate of the compressor 1b (small flow rate) so that the flow rate in the room becomes constant as the discharge flow rate of the compressor 1a increases, and the inflow amount of the refrigerating machine oil to the compressor 1b Decrease.
  • Embodiment 4 Since the entire configuration of the refrigeration cycle apparatus according to Embodiment 4 is the same as that shown in FIG. 15 as in Embodiment 3, description thereof will not be repeated.
  • the estimated oil return time T and the target oil return time T * used in steps S58 and S80 are corrected in the control executed in the third embodiment shown in FIGS. There is a feature.
  • the estimated oil return time T was calculated based on the above equation (1).
  • the target oil return time T * is a predetermined value and is stored in the storage device 200.
  • the control device 100 measures the recovery time for the reduced oil amount to recover to the specified amount, and returns it.
  • the oil time is corrected based on the recovery time.
  • the aforementioned target oil return time T * is corrected based on the oil amount recovery time. For example, when the oil amount increases after reaching the target oil return time T *, the target oil return time T * is increased. When the oil amount increases before the target oil return time T * is reached, the target oil return time T * is increased. Decrease.
  • the estimated oil return time T is corrected.
  • the oil return flow rate is converted from the oil amount recovery time and the change amount, and the estimated oil return time T is corrected according to the oil return flow rate.
  • an operation for correcting the error is performed.
  • the time is different between the first estimated oil return time T (assumed to be the estimated oil return time T0) and the second estimated oil return time T.
  • the correction coefficient ⁇ is calculated from the estimated oil return time T0 and the estimation error, and the second estimated oil return time T is obtained by multiplying the estimated oil return time T calculated by the same method as the estimated oil return time T0. calculate.
  • the amount of oil in the compressor is converted from the liquid level and oil concentration (similar to S51 to S53 in FIG. 16).
  • a change amount ⁇ M that is the difference between the detected oil amount and the specified amount is detected.
  • a time (oil recovery time) ⁇ T required for the oil amount to reach the specified amount is detected.
  • T0 is the estimated oil return time T calculated by the above formula (1) before the oil amount is reduced.
  • T * ⁇ T (3)
  • T Va / [ ⁇ (Gra ⁇ ⁇ a) + (Grb ⁇ ⁇ b) ⁇ ⁇ ⁇ Gra / (Gra + Grb) ⁇ ] ⁇ ⁇ (4)
  • the target oil return time T *, the estimated oil return time T, and the correction coefficient ⁇ are stored in the storage device 200.
  • the control device 100 controls each compressor according to the corrected target oil return time T * and the estimated oil return time T and the detected liquid level height.
  • the target oil return time T * and the estimated oil return time T are corrected according to the operating conditions, environmental conditions, and installation conditions by detecting the oil amount recovery time and the amount of change. As a result, oil depletion can be suppressed with the minimum necessary power consumption, and reliability can be improved.
  • Embodiment 5 the amount of oil in the compressor of other units is estimated by one outdoor unit among a plurality of outdoor units.
  • the refrigeration cycle apparatus is a refrigeration cycle apparatus in which at least one outdoor unit has the same configuration as in Embodiments 1 to 4.
  • the amount of oil in the compressors of some outdoor units is converted by the oil amount detection means (liquid level detector or concentration detector) in the same manner as described in Embodiments 1 to 4, and the residence amount is detected.
  • the oil retention amount in the circuit is converted, and the remaining oil amount in the compressor is estimated from the oil amount in the compressor and the oil retention amount.
  • the amount of oil in the compressor of some outdoor units and the amount of oil in the refrigerant circuit can be estimated from the enclosed amount of oil (total amount). For example, when there is a base unit outdoor unit and a slave unit outdoor unit, if there is a means for detecting the oil amount only in the base unit outdoor unit, the slave unit outdoor unit has no means for detecting the oil amount, and the remaining oil amount Is assumed to be in the compressor of another outdoor unit.
  • the oil amount sensor is provided in the compressor and the oil amount of the outdoor unit is detected or estimated.
  • the oil amount sensor is also used for these.
  • An amount sensor may be provided to detect the oil amount of the outdoor unit together with these oil amounts.

Abstract

冷凍サイクル装置は、複数の室外機(50a,50b)を備える。複数の室外機(50a,50b)の各々は、室外熱交換器(2a,2b)と、圧縮機(1a,1b)と、室外機中の冷凍機油の量を検出するためのセンサ(5a,5b)とを含む。制御装置(100)は、複数の室外機(50a,50b)のうちの一部の室外機を運転し、他の室外機を停止する第1運転モードと、複数の室外機(50a,50b)の全てを運転する第2運転モードと有する。制御装置(100)は、第1運転モードにおいて、運転中の室外機の運転時間が規定の時間を超え、かつ、運転中の室外機の圧縮機中の冷凍機油の量が規定量以上ある場合、運転中の室外機を停止し、複数の室外機(50a,50b)のうち停止中の室外機を運転するように切り替える。

Description

冷凍サイクル装置
 この発明は、冷凍サイクル装置に関し、特に、複数の圧縮機を備える冷凍サイクル装置に関する。
 従来の複数台の室外機と複数台の室内機を備えるマルチエアコンは、共通の冷媒管(液管とガス管)によって、複数の室外機を室内機と接続して冷媒輸送を行なう一方で、各室外機の圧縮機を圧縮機内の油の偏在を回避するための均油管で連絡して各室外機の圧縮機における油量のバランスを保っている。
 しかし、均油管を用いる場合、現地での据付工事性や、コスト面で問題があった。また、圧縮機内の油量が適度でないと、圧縮機の性能が低下するため消費電力が増加するという問題があった。
 このため、均油管を用いないで、圧縮機の油の偏在を回避する技術が適用された空気調和装置の制御方法が、特開2007-101127号公報(特許文献1)、特開2004-69213号公報(特許文献2)、特開2011-2160号公報(特許文献3)に開示されている。
特開2007-101127号公報 特開2004-69213号公報 特開2011-2160号公報
 上記特開2007-101127号公報(特許文献1)、では、圧縮機の油量を適度に保つため、均油運転制御において圧縮機への油の供給時間を一定にして均油運転を行なっている。また、特開2004-69213号公報(特許文献2)運転圧縮機の運転積算時間が所定時間に達した場合に圧縮機の運転・停止を切り替える制御を行なっている。
 しかし、均油運転時間または運転積算時間の判定時間が一定のため、各環境・設置・運転条件によっては均油が不十分となる可能性が有り、圧縮機の油枯渇が生じた場合、信頼性が低下し、油過充填が生じた場合、性能が低下する。
 本発明は、上記のような課題を解決するためになされたもので、センサを用いて冷凍機油の量を正確に検知し、複数の圧縮機の容器内に冷凍機油の偏在が起こらないように圧縮機を制御することによって圧縮機の保護を図り、かつ圧縮機および冷凍サイクル装置の性能低下を防ぐことを目的とする。
 本願実施の形態に開示された冷凍サイクル装置は、少なくとも室内熱交換器を有する室内機と、室内機に互いに並列に接続される複数の室外機と、複数の室外機を制御する制御装置と、少なくとも1つの膨張装置とを備える。複数の室外機の各々は、室外熱交換器と、圧縮機と、室外機中の冷凍機油の量を検出するためのセンサとを含む。室内熱交換器と膨張装置と複数の室外機に含まれる室外熱交換器と圧縮機とは、冷媒が循環する冷媒回路を構成する。制御装置は、運転モードとして、複数の室外機のうちの一部の室外機を運転し、他の室外機を停止する第1運転モードと、複数の室外機の全てを運転する第2運転モードと有する。制御装置は、第1運転モードにおいて、運転中の室外機の運転時間が規定の時間を超え、かつ、運転中の室外機の圧縮機中の冷凍機油の量が規定量より少ない場合、運転中の室外機の運転を維持し、第1運転モードにおいて、運転中の室外機の運転時間が規定の時間を超え、かつ、運転中の室外機の圧縮機中の冷凍機油の量が規定量以上ある場合、運転中の室外機を停止し、複数の室外機のうち停止中の室外機を運転するように切り替える。
 本発明によれば、複数の圧縮機の油枯渇を抑制することができ、各圧縮機の信頼性を向上させることができる。均油管を用いなくても油枯渇を防止できるので、室外機毎の均油管の接続作業の必要がなくなり据付工事性を向上させることができる。
実施の形態1に係る冷凍サイクル装置の全体構成図である。 実施の形態1において制御装置が実行するシングル室外機運転時の制御を説明するためのフローチャートである。 実施の形態1におけるシングル室外機運転時の室外機切替前における冷媒の流れを示した図である。 実施の形態1におけるシングル室外機運転時の室外機切替後における冷媒の流れを示した図である。 実施の形態1において制御装置が実行するマルチ室外機運転時の制御を説明するためのフローチャートである。 マルチ室外機運転時の周波数変更前における冷媒の流れの一例を示した図である。 マルチ室外機運転時の周波数変更後における冷媒の流れの一例を示した図である。 実施の形態2に係る冷凍サイクル装置の全体構成図である。 圧縮機における液面高さと冷凍機油の持ち出し量との関係の一例を示した図である。 実施の形態2において制御装置が実行するシングル室外機運転時の制御を説明するためのフローチャートである。 実施の形態2におけるシングル室外機運転時の室外機切替前における冷媒の流れを示した図である。 実施の形態2におけるシングル室外機運転時の室外機切替の遷移過程における冷媒の流れを示した図である。 実施の形態2におけるシングル室外機運転時の室外機切替完了後における冷媒の流れを示した図である。 実施の形態2において制御装置が実行するマルチ室外機運転時の制御を説明するためのフローチャートである。 実施の形態3に係る冷凍サイクル装置の全体構成図である。 実施の形態3において制御装置が実行するシングル室外機運転時の制御を説明するためのフローチャートである。 実施の形態3において制御装置が実行するマルチ室外機運転時の制御を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置の全体構成図である。図1を参照して、冷凍サイクル装置は、複数台の室外機50a,50bと、少なくとも室内熱交換器4を有した室内機54と、高圧側の配管52と、低圧側の配管53と、制御装置100とを含む。室外機50a,50bと室内機54とは、配管52と配管53で接続される。
 室外機50a,50bは、室内機54に互いに並列に接続される。室外機50aは、少なくとも、圧縮機1aと、室外熱交換器2aと、膨張装置3aとを含む。室外機50bは、少なくとも、圧縮機1bと、室外熱交換器2bと、膨張装置3bとを含む。膨張装置3a,3bとしては、電子膨張弁(LEV)が用いられる場合が多いが、キャピラリチューブ、温度自動膨張弁などを用いても良い。また膨張装置3a,3bに代えて室内機側に1つの膨張装置を用いる構成でも良い。
 室内熱交換器4と膨張装置3a,3bと室外熱交換器2a,2bおよび圧縮機1a,1bとは、冷媒が循環する冷媒回路を構成する。
 室外機50a,50bの各々は、室外熱交換器2a,2bと、圧縮機1a,1bと、室外機中の冷凍機油の量を検出するためのセンサ5a,5bとを含む。センサ5a,5bは、それぞれ液面検出器101a,101bを備える。すなわち、圧縮機1aには、圧縮機内の液面高さが検知できる液面検出器101aが設置され、圧縮機1bには、圧縮機内の液面高さが検知できる液面検出器101bが設置される。制御装置100は、各圧縮機内の液面高さ(液面検出器101a,101bの出力)に応じて、圧縮機1a,1bの吐出量を制御する。
 制御装置100は、冷凍サイクル装置の負荷に応じて、シングル室外機運転とマルチ室外機運転を適宜切り替える。ここで、「シングル室外機運転」は、2台の室外機において1台の運転中の圧縮機と1台の停止中の圧縮機とが同時刻に存在する運転をいい、「マルチ室外機運転」は、複数台の室外機で運転中の圧縮機が同時刻に2台以上存在する運転をいう。なお、3台以上の室外機が並列接続される構成の場合、シングル室外機運転は、全ての圧縮機のうち1台の圧縮機のみが運転している場合をいう。
 「シングル室外機運転」モードは、複数の室外機50a,50bのうちの一部の室外機を運転し、他の室外機を停止する第1運転モードに相当し、「マルチ室外機運転」モードは、複数の室外機50a,50bの全てを運転する第2運転モードに相当する。
 このような構成の実施の形態1の冷凍サイクル装置は、複数の室外機を使用するので、冷凍サイクル装置を長時間連続運転させた場合に、油の偏りが生じ、それにより油枯渇が生じる可能性がある。より具体的には、室外機中の圧縮機の運転状況によっては、配管中に冷凍機油が多量に吐出され、冷凍機油が一部の室外機側に偏在し、残りの室外機の圧縮機において冷凍機油の枯渇が生じる虞がある。
 圧縮機が均油されず、不均等な状態が続くと、圧縮機の信頼性が低下する。各圧縮機における冷凍機油の量を一致させるために、均油管を設置することも考えられるが、均油管を設置すると、据え付け工事時に接続箇所が増え、部材点数も増加し、据付工事性が低下する。
 そこで、実施の形態1の冷凍サイクル装置の制御装置100は、配管中に吐出された冷凍機油が適切に圧縮機に戻るように複数の圧縮機を制御する。制御装置100は、「シングル室外機運転」モードにおいて、運転中の室外機の運転時間が規定の時間を超え、かつ、運転中の室外機の圧縮機中の冷凍機油の量が規定量より少ない場合、運転中の室外機の運転を維持し、「シングル室外機運転」モードにおいて、運転中の室外機の運転時間が規定の時間を超え、かつ、運転中の室外機の圧縮機中の冷凍機油の量が規定量以上ある場合、運転中の室外機を停止し、複数の室外機50a,50bのうち停止中の室外機を運転するように切り替える。
 上記のシングル室外機運転時における制御について説明する。図2は、実施の形態1において制御装置が実行するシングル室外機運転時の制御を説明するためのフローチャートである。図3は、実施の形態1におけるシングル室外機運転時の室外機切替前における冷媒の流れを示した図である。図4は、実施の形態1におけるシングル室外機運転時の室外機切替後における冷媒の流れを示した図である。
 図2を参照して、このフローチャートの処理は、冷凍サイクル装置の制御のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。
 ステップS1において、制御装置100は、運転中の圧縮機の液面高さを検知する。ここで、運転中の圧縮機が圧縮機1aであったとすると、このとき冷媒は、図3に示される矢印のように流れる。この状態において、制御装置100は、液面検出器101aの出力に基づいて、運転中の圧縮機1aの液面高さを検知する。
 液面検出器101aは、液面高さを検出可能なものであれば特に限定されないが、例えば、超音波の伝達時間より検知する超音波センサ、音波の音速を検知する音速センサ、熱容量を検知する熱容量センサ、静電容量を検知する静電容量センサ、光源から光波長等を検知する光ファイバセンサなどを使用することができる。これらのセンサは、いずれも観測する空間の密度が変化することで、検知値が変化する。
 また、温度センサを液面検出器101aとして使用することもできる。温度センサに関しては、上記の液面高さを直接測定するセンサとは異なり、間接的に検知させる。温度センサの設置位置は、圧縮機の内部が好ましいが、圧縮機の外部であっても良い。圧縮機内部の空間には冷媒と冷凍機油がガス部と液部に分かれて存在しており、ガス部と液部では熱容量が異なるため、温度センサに温度差が生じる。複数の温度センサを高さの異なる位置に設けて温度差を検知し、液部かガス部かを判断し、液面高さを推定することができる。
 図3に示すように、圧縮機1aから冷媒と冷凍機油が放出される。放出された冷媒と冷凍機油は配管52、室内熱交換器4、配管53、膨張装置3a、室外熱交換器2aを順に通り、圧縮機1aに戻る。このとき、一時的に各配管や熱交換器等の冷媒回路に多量に冷凍機油が滞留すると、圧縮機1aへの冷凍機油の流入量が低下する。流入量が低下することにより、圧縮機1aの液面高さが低下する。
 ステップS2では、制御装置100は、液面検出器101aによって検出された液面位置が規定位置よりも高い(冷凍機油の量が規定量よりも多い)か否かを判断する。なお、「規定位置」は、圧縮機の信頼性が確保される液面の位置である。
 ステップS2において、液面高さが規定位置より低い時は(S2でNO)、圧縮機1aの液面が復帰し圧縮機1aへの冷凍機油の流入量が安定した状態となるまで切替制御を実施しない(S5)。ここで「切替制御」とは、運転中の圧縮機を停止させ、停止中の圧縮機を運転させるように、複数の圧縮機の制御を切り替える制御をいう。
 続いて、ステップS3において、制御装置100は、圧縮機1aの運転開始からの経過時間が規定時間より長いか否かを判断する。ここで「規定時間」は、強制的に切替制御を行なう時間である。
 液面が規定位置以上(S2でYES)かつ経過時間が規定時間以上(S3でYES)の時、制御装置100は、運転する圧縮機を圧縮機1aから圧縮機1bへと切り替えるとともに、経過時間の計数値をリセットする(S4)。経過時間の計数値がリセットされると、新たな経過時間のカウントがスタートする。
 切替後は、図4に示すように、圧縮機1bから冷媒と冷凍機油が放出される。放出された冷媒と冷凍機油は配管52、室内熱交換器4、配管53、膨張装置3b、室外熱交換器2bを順に通り、圧縮機1bに戻る。
 切替直後は、その前に圧縮機1aより配管52、室内熱交換器4、配管53中に放出されていた冷凍機油は、圧縮機1bへ流入する。しかしこの流入量は、圧縮機からの冷凍機油の持ち出し量が多量となった瞬間を避けるように、切り替えタイミングを適切に選ぶことにより、毎回の切替制御時にほぼ同量とすることができる。このため、一方の圧縮機から他方の圧縮機に冷凍機油が多量に移動してしまう事態を避けることができる。
 このように制御することにより、規定時間経過ごとに運転する圧縮機が切り替えられるので、一方の圧縮機に冷凍機油が偏在する可能性が低減される。また、一時的に多量に冷凍機油が配管等に滞留している状態を避けるように切り替えタイミングを選ぶので、双方の圧縮機において冷凍機油の枯渇が生じないようにすることができる。
 次に、マルチ室外機運転時における制御について説明する。
 制御装置100は、「マルチ室外機運転」モードにおいて、複数の室外機50a,50bのうちの第1の室外機の圧縮機中の冷凍機油の量が規定量よりも少ない場合には、第1の室外機の圧縮機の吐出冷媒流量を増加させ、第2の室外機の圧縮機の吐出冷媒流量を減少させるように、複数の室外機50a,50bを制御する。すなわち、室外機50aの圧縮機1aの冷凍機油の量が規定量よりも少ない場合には、圧縮機1aの吐出冷媒流量を増加させ、圧縮機1bの吐出冷媒流量を減少させる。吐出冷媒流量は、圧縮機の周波数に応じて変化するので、室外機50aの圧縮機1aの冷凍機油の量が規定量よりも少ない場合には、圧縮機1aの運転周波数を高め、圧縮機1bの運転周波数を低下させる。これにより、配管52,53および室内熱交換器4の内部に滞留していた冷凍機油が圧縮機1aに多く返油される。
 「マルチ室外機運転」モード時には、制御装置100は、「周波数制御」を実行する。ここで「周波数制御」とは、室内能力が一定となるように、液面が規定位置未満の圧縮機の周波数を上昇させ、液面高さが規定位置以上の圧縮機の周波数を低下させる制御を言う。図5は、実施の形態1において制御装置が実行する「マルチ室外機運転」時の制御を説明するためのフローチャートである。図6は、マルチ室外機運転時の周波数変更前における冷媒の流れの一例を示した図である。図7は、マルチ室外機運転時の周波数変更後における冷媒の流れの一例を示した図である。
 図5を参照して、このフローチャートの処理は、冷凍サイクル装置の制御のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。
 ステップS11において、制御装置100は、運転中の圧縮機1a,1bの各々の液面高さを検知する。ここで、図6に示すように、圧縮機1bの冷媒流量が小流量で、圧縮機1aの冷媒流量が圧縮機1bの冷媒流量よりも多い大流量であったとする。室内機54の室内熱交換器4における冷媒流量はさらに多い合計流量となる。この状態において、制御装置100は、液面検出器101a,101bの出力に基づいて、それぞれ運転中の圧縮機1a,1bの液面高さを検知する。
 続いて、ステップS12において、制御装置100は、圧縮機1aの液面高さの検知位置が規定位置よりも高いか否かを判断する。
 続いて、ステップS13において、制御装置100は、圧縮機1bの液面高さの検知位置が規定位置よりも高いか否かを判断する。
 圧縮機1aおよび圧縮機1bのいずれにおいても液面高さが規定位置よりも高い場合(S12,S13でYES)、双方の圧縮機において油枯渇は生じていない。このため、圧縮機1a,1bの各々の運転周波数を現状のまま変更せずに維持する(ステップS14)。
 一方、圧縮機1aにおいて液面高さが規定位置以下の場合(S12でNO)、または圧縮機1bにおいて液面高さが規定位置以下の場合(S13でNO)、いずれかの圧縮機において油枯渇が生じている。この場合、制御装置100は、ステップS15において圧縮機の運転周波数を変更する制御を行なう。
 たとえば、図6に示した冷媒流量で運転中に、圧縮機1aの液面高さが規定位置より低下する場合(S12でNO)、制御装置100は、圧縮機1aの運転周波数を変更する(高める)制御を実行し、図7に示すように、圧縮機1aの吐出流量を増加(大流量)させ、圧縮機1aに対する冷凍機油の流入量を増加させる。一方、制御装置100は、圧縮機1bの運転周波数を変更する(低下させる)制御を実行する。制御装置100は、圧縮機1aの吐出流量の増加に合わせて、室内機への流量が一定となるように圧縮機1bの吐出流量を減衰(小流量)させ、圧縮機1bへの油の流入量を減少させる。なお、液面高さが圧縮機1aと1bで逆の関係にある場合にも同様に、液面高さが規定位置未満の圧縮機の周波数を高め、液面高さが規定位置以上の圧縮機の周波数を低下させる。
 以上説明したように、実施の形態1の冷凍サイクル装置においては、シングル室外機運転実行中には、運転中の圧縮機の液面高さが規定位置以上かつ規定時間以上の場合に、前記運転中の圧縮機を停止させて、停止中の圧縮機を運転に切り替える切替制御を実行する。またマルチ室外機運転実行中には、液面高さが規定位置未満の圧縮機が存在する時、各圧縮機の周波数を液面高さが増加するように制御する。例えば、液面高さが規定位置未満の圧縮機の周波数を高め、規定位置以上の圧縮機の周波数を低下させる。このとき、室内側の能力が一定となるように周波数制御(冷媒流量の合計値が同じになるように制御)する。
 このように制御することによって、以下の効果がある。すなわち、液面高さを検知することで、各運転条件・環境条件・設置条件において、圧縮機の油枯渇を抑制することができる。また、液面が確保された状態で運転する圧縮機を切替制御することができる。これらにより、各圧縮機の信頼性を向上させることができる。
 実施の形態1の冷凍サイクル装置の構成および制御を用いれば、均油管を用いなくても油枯渇を防止できる。複数台の室外機を設置する際、均油管が必要な構成では据付時に室外機毎に均油管の接続作業が必要となるが、実施の形態1の冷凍サイクル装置では、室外機毎の均油管の接続作業の必要がなくなり据付工事性を向上させることができる。
 実施の形態2.
 図8は、実施の形態2に係る冷凍サイクル装置の全体構成図である。図8を参照して、実施の形態2に係る冷凍サイクル装置は、図1に示した冷凍サイクル装置の構成に加えて、配管52、配管53の配管長が検知できる位置検出器102a、102b,103bと、記憶装置200とをさらに含む。センサ5aは、液面検出器101aと、位置検出器102aとを含む。センサ5bは、液面検出器101bと、位置検出器102bとを含む。制御装置100は、各圧縮機1a,1bの液面高さと周波数に応じて油持ち出し量を換算し、油持ち出し量と配管長から推定返油時間Tを換算する。なお、記憶装置200には、あらかじめ実験等によって定められた目標返油時間T*が記憶される。なお、ここで、「返油時間」は、圧縮機の冷凍機油の液面が一時的に低下した際に、復帰するまでにかかる時間を意味する。制御装置100は、推定返油時間Tおよび液面高さ、目標返油時間T*に応じて、各圧縮機を制御する。なお、実施の形態2の冷凍サイクル装置の他の構成については、図1の冷凍サイクル装置と同じであるので説明は繰り返さない。
 実施の形態2では、配管長を検知し、返油時間を推定する点が特徴の一つである。すなわち、制御装置100は、位置検出器102a~102cの出力に基づいて冷媒配管53の長さを算出し、算出した冷媒配管53の長さに基づいて、圧縮機1a,1bから吐出された冷凍機油が圧縮機1a,1bに戻るまでの返油時間を算出する。制御装置100は、返油時間に基づいて、圧縮機1a,1bの吐出量を制御する。
 位置検出器102a、102b,103bとしては、室外機と室内機の位置が分かるものであればよい。例えば、位置検出器として圧力センサを用い、配管径によって決まる圧力損失と配管出入口の圧力差から配管長を推定しても良い。また、GPS等を取り付ければ位置が分かるので、室内機から室外機までの距離が分かり、配管長を距離から推定しても良い。その他にも、室内機と室外機をつないでいる通信線の電流値(電圧降下量)より配線の長さを推定し、これを配管長としても良い。
 制御装置100は、位置検出器102a,102b,102cの出力に基づいて、配管52,53の配管長Laを算出する。さらに、制御装置100は、配管長Laを算出した後に、配管長Laから配管容積Vaを換算して求める。そして、制御装置100は、予め記憶装置200に記憶されている液面高さおよび周波数の関係より各圧縮機の油持ち出し量φa、φbを推定する。
 図9は、圧縮機における液面高さと冷凍機油の持ち出し量との関係の一例を示した図である。なお、図9に関しては一例であり、このようなグラフは圧縮機の特性に依存するため、使用する圧縮機に合ったグラフを使用する。図9において、途中で傾きが変化している変化点は、モータに冷凍機油が浸漬するかしないかの境界点に対応する。液面高さが変化点より高いと、冷凍機油がモータに浸かり、モータの設置高さ以上の冷凍機油は冷媒回路へ持ち出されやすくなるため、急に傾きが増加している。なお、図9のグラフのような変化点を持たない特性の圧縮機もある。
 また、制御装置100は、圧縮機運転周波数と圧縮機行程容積より各圧縮機の吐出流量Gra、Grbを推定する。
 図9によって油持ち出し量φa,φbが求まると、制御装置100は、以下の式(1)によって推定返油時間Tを算出する。
T=Va/[{(Gra×φa)+(Grb×φb)}×{Gra/(Gra+Grb)}] …(1)
 なお、Vaは、配管容量(リットル)を示し、φa,φbは、油持ち出し量(%)を示し、Gra,Grbは、吐出流量(リットル/min)を示し、Tは、推定返油時間(min)を示す。上記Vaは、Laを配管長(m)とすると、Va=La×(配管径)で算出される。
 なお、上式では、(吐出流量×油持ち出し量)で、系外に流れる油量を示している。また、各室外機から吐出された冷媒および冷凍機油は、一度室内機で合流する。従って、一方の圧縮機(例えば1b)から吐出された冷凍機油も合流する。そこで、合流後に分岐する際に、流量比で冷凍機油が分配されるとし、圧縮機1aと1bの流量比をかけている。
 なお、上記式(1)は室外機が50a,50bの2台の場合であるが、50-1,50-2,…50-nのn台の場合は以下の式(2)のようになる。
T=Va/[{(Gr1×φ1)+(Gr2×φ2)+…+(Grn×φn)}×{Gr1/(Gr1+Gr2+…+Grn)}] …(2)
 まず、シングル室外機運転時における制御について説明する。図10は、実施の形態2において制御装置が実行するシングル室外機運転時の制御を説明するためのフローチャートである。図11は、実施の形態2におけるシングル室外機運転時の室外機切替前における冷媒の流れを示した図である。図12は、実施の形態2におけるシングル室外機運転時の室外機切替の遷移過程における冷媒の流れを示した図である。図13は、実施の形態2におけるシングル室外機運転時の室外機切替完了後における冷媒の流れを示した図である。
 図10を参照して、最初に運転中の圧縮機の液面高さが検知される(S21)。運転中の圧縮機が圧縮機1aである場合を想定すると、図11の実線矢印に示すように冷媒と冷凍機油が冷媒回路を循環している。圧縮機1aから冷媒と冷凍機油が放出されると、放出された冷媒と冷凍機油は配管52、室内熱交換器4、配管53を通り、圧縮機1aに戻る。このとき、一時的に冷媒回路の各要素に多量に冷凍機油が滞留すると、圧縮機1aへの流入量が低下する。流入量が低下することにより、圧縮機1aの液面高さが低下する。
 ここで、制御装置100は、ステップS22において液面高さの検知位置が規定位置より高いか否かを判断する。このとき、制御装置100は、液面高さが規定位置以下の時は(S22でNO)、切替制御を実施しない。制御装置100は、推定返油時間Tが目標返油時間T*以下となるように、圧縮機1aから冷媒と冷凍機油を放出させる。具体的には、ステップS22において検知位置>規定位置でない場合に(S22でNO)、図9に示したように圧縮機の液面高さと周波数に応じて圧縮機からの油持ち出し量を換算し(S23)、制御装置100は、位置検出器102a,102b,102cの出力から、配管52,53の配管長Laを算出する(S24)。その後、上記式(1)に基づいて推定返油時間Tを算出する処理が実行される(S25)。
 なお、配管長Laは、冷凍サイクル装置の設置後に一度行なって、記憶装置200に記憶しておけばよく、必ずしも毎回算出を行なわなくても良い。
 続いて、ステップS26において、推定返油時間T>目標返油時間T*の場合、停止中の圧縮機1bの運転を開始し運転周波数を上昇させる(S27)。この場合、図12に示すように、実線矢印に示した冷媒および冷凍機油の循環に加えて、破線矢印に示した冷媒および冷凍機油の循環も開始される。これにより、運転中の圧縮機の冷凍機油の液面が一時的に規定位置よりも低くなったとしても、停止していた圧縮機からも配管52に冷凍機油が吐出されるため、低下していた液面が早期に規定位置以上に回復することが期待される。
 圧縮機1a(および圧縮機1b)から放出された冷凍機油は、冷媒回路の各要素を通り、圧縮機1aおよび1bにそれぞれ流入する(S28)。S29またはS26で条件が満たされない場合には、S28に処理が進められ、切替制御は行なわれず経過時間の測定が継続される。
 その後再び図10のフローチャートの処理が実行され、圧縮機1aの冷凍機油の液面が規定位置より高く(S22でYES)、かつ切替からの経過時間が規定時間を超えた(S29でYES)時、制御装置100は、運転する圧縮機を圧縮機1aから圧縮機1bに切り替える。その際、配管52,53、および室内熱交換器4中に放出されていた冷凍機油は、圧縮機1bへ流入する。具体的には、検知位置>規定位置であった場合(S22でYES)、経過時間>規定時間であれば(S29でYES)、切替制御が開始されるとともに、経過時間のカウントがリセットされる(S30)。ステップS30の処理が実行された後は、運転中の圧縮機が圧縮機1aから圧縮機1bに切替えられ、図13の実線矢印に示すように冷媒と冷凍機油が冷媒回路を循環するように変更される。なお、以上は圧縮機1aから圧縮機1bへの運転切替について説明したが、圧縮機1bから圧縮機1aへの切替も同様な処理によって行なわれる。
 図14は、実施の形態2において制御装置が実行するマルチ室外機運転時の制御を説明するためのフローチャートである。マルチ室外機運転時では、圧縮機1a,1bがともに運転されている。図14を参照して、運転中の圧縮機1a,1bの液面高さが検知される(S31)。続いて、制御装置100は、圧縮機1aの液面高さが規定位置より高いか(S32)、または、圧縮機1bの液面高さが規定位置より高いか(S33)を判断する。
 圧縮機1a,1bともに冷凍機油の液面高さが規定位置よりも高い場合(S32かつS33でYES)、ステップS34に処理が進められ圧縮機1a,1bの運転周波数は、現状のまま維持され、周波数の変更はない(S34)。
 一方、圧縮機1a,1bのいずれか一方において、冷凍機油の液面高さが規定位置以下である場合(S32またはS33でNO)、ステップS35,S36,S37,S38の処理が順に行なわれる。ステップS35,S36,S37,S38の処理は、それぞれ図10のS23,S24,S25,S26の処理と同じであるので説明は繰り返さない。
 続いて、ステップS38において、推定返油時間T>目標返油時間T*の場合、制御装置100は、ステップS39において、周波数変更制御を実行する。周波数変更制御では、たとえば、圧縮機1aの液面高さが規定位置以下である場合、推定返油時間Tが目標推定時間以下となるように、周波数制御され、制御装置100は、圧縮機1aの吐出流量を増加(大流量)させ、冷凍機油の流入量を増加させる。制御装置100は、圧縮機1aの吐出流量の増加に合わせて、室内の流量が一定となるように圧縮機1bの吐出流量を減少(小流量)させ、圧縮機1bへの冷凍機油の流入量を減少させる。
 以上の実施の形態2の冷凍サイクル装置によれば、次の効果が得られる。(1)液面高さを検知することで各運転・環境・設置条件において、圧縮機の油枯渇を抑制し、信頼性を向上させることができる。(2)返油運転中は設定温度に空調する運転とは異なる運転が実行されるが、返油時間を短縮させることで、返油運転による快適性低下を抑制することができる。(3)各圧縮機で油不足量が異なる場合でも、各圧縮機の返油時間に応じた制御を各圧縮機に対して行なうことで、消費電力を抑制しつつ油枯渇を抑制し、信頼性を向上させることができる。
 実施の形態3.
 図15は、実施の形態3に係る冷凍サイクル装置の全体構成図である。図15を参照して、実施の形態3に係る冷凍サイクル装置は、図8に示した実施の形態2の冷凍サイクル装置の構成に加えて、圧縮機1a,1bの油濃度がそれぞれ検知できる濃度検出器103a,103bが設置される。実施の形態3では、センサ5a,5bは、それぞれ室外機50a,50bの圧縮機1a,1bに設けられた冷凍機油の濃度を検出する濃度検出器103a,103bを含む。他の部分の構成については、図8の冷凍サイクル装置と同じである。実施の形態3では、制御装置100は、濃度検出器103a,103bの出力に応じて、圧縮機1a,1bの吐出量を制御する。制御装置100は、液面高さと油濃度の検知値に基づいて圧縮機内の油量の換算値を算出し、算出した圧縮機内油量に応じて、圧縮機の運転周波数を制御する。
 各圧縮機1a,1bの油濃度が検知できる濃度検出器103a,103bとしては、冷凍機油の透過光強度の変化を検出する光学式センサを使用することができる。他にも濃度検出器として、例えば、電極間の静電容量の変化を検出する静電容量式センサや超音波を発生させ、音速の変化を検出する超音波センサ等を用いることができる。
 また、温度センサで温度を検出し、これに基づいて油濃度を算出することもできる。温度、圧力に対する濃度曲線というものが冷媒と冷凍機油の種類に応じて存在しているため、その関係から演算し油濃度を推定することができる。
 図16は、実施の形態3において制御装置が実行するシングル室外機運転時の制御を説明するためのフローチャートである。
 図16を参照して、最初にステップS51において運転中の圧縮機の液面高さが検知される。続いて、ステップS52において、運転中の圧縮機の油濃度が検知される。ステップS53において、液面高さおよび油濃度から、制御装置100は、運転中の圧縮機の油量を換算する。
 液面高さからは、圧縮機内の液量が推定できる。ここで、冷凍機油が液冷媒に均一な濃度で溶けていると仮定した場合、液量に油濃度を乗じた値が油濃度となる。従って、液面高さと図9のグラフを用いて油濃度を推定し、油量に換算することができる。
 運転中の圧縮機が圧縮機1aである場合を想定すると、図11の実線矢印に示すように冷媒と冷凍機油が冷媒回路を循環している。圧縮機1aから冷媒と冷凍機油が放出されると、放出された冷媒と冷凍機油は配管52、室内熱交換器4、配管53を通り、圧縮機1aに戻る。このとき、一時的に冷媒回路の各要素に多量に冷凍機油が滞留すると、圧縮機1aへの流入量が低下する。流入量が低下することにより、圧縮機1aの液面高さが低下し油量も減少する。
 ここで、制御装置100は、ステップS54において圧縮機の油換算量が規定量より高いか否かを判断する。このとき、制御装置100は、油換算量>規定量でない時は(S54でNO)、切替制御を実施しない。制御装置100は、推定返油時間Tが目標返油時間T*以下となるように、圧縮機1aから冷媒と冷凍機油を放出させる。具体的には、ステップS54において検知位置>規定位置でない場合に(S54でNO)、図9に示したように圧縮機の液面高さと周波数に応じて圧縮機からの油持ち出し量を換算し(S55)、制御装置100は、位置検出器102a,102b,102cの出力から、配管52,53の配管長Laを算出する(S56)。その後、前述の式(1)に基づいて推定返油時間Tを算出する処理が実行される(S57)。
 続いて、ステップS58において、推定返油時間T>目標返油時間T*の場合、停止中の圧縮機1bの運転を開始し運転周波数を上昇させる(S59)。この場合、図12に示すように、実線矢印に示した冷媒および冷凍機油の循環に加えて、破線矢印に示した冷媒および冷凍機油の循環も開始される。これにより、運転中の圧縮機の冷凍機油の液面が一時的に規定位置よりも低くなったとしても、停止していた圧縮機からも配管52に冷凍機油が吐出されるため、低下していた液面が早期に規定位置以上に回復することが期待される。
 圧縮機1a(および圧縮機1b)から放出された冷凍機油は、冷媒回路の各要素を通り、圧縮機1aおよび1bにそれぞれ流入する(S60)。S61またはS58で条件が満たされない場合には、S60に処理が進められ、切替制御は行なわれず経過時間の測定が継続される。
 その後再びS51からの処理が実行され、圧縮機1aの冷凍機油の換算量が規定量より多く(S54でYES)、かつ切替からの経過時間が規定時間を超えた(S61でYES)時、制御装置100は、運転する圧縮機を圧縮機1aから圧縮機1bに切り替える。その際、配管52,53、および室内熱交換器4中に放出されていた冷凍機油は、圧縮機1bへ流入する。具体的には、換算量>規定量であった場合(S54でYES)、経過時間>規定時間であれば(S61でYES)、切替制御開始されるとともに、経過時間のカウントがリセットされる(S62)。ステップS62の処理が実行された後は、運転中の圧縮機が圧縮機1aから圧縮機1bに切替えられ、図13の実線矢印に示すように冷媒と冷凍機油が冷媒回路を循環するように変更される。なお、以上は圧縮機1aから圧縮機1bへの運転切替について説明したが、圧縮機1bから圧縮機1aへの切替も同様な処理によって行なわれる。
 図17は、実施の形態3において制御装置が実行するマルチ室外機運転時の制御を説明するためのフローチャートである。マルチ室外機運転時では、圧縮機1a,1bがともに運転されている。図17を参照して、ステップS71において運転中の圧縮機1a,1bの液面高さが検知される。続いて、ステップS72において、圧縮機1a,1bの油濃度が検知される。そしてステップS73において、液面高さおよび油濃度から、制御装置100は、運転中の圧縮機1a,1bの油量を換算する。
 続いて、制御装置100は、圧縮機1aの油量が規定量より多いか(S74でYES)、または、圧縮機1bの油量が規定量より多いか(S75)を判断する。
 圧縮機1a,1bともに冷凍機油の油量が規定量より多い場合(S74かつS75でYES)、ステップS76に処理が進められ圧縮機1a,1bの運転周波数は、現状のまま維持され、周波数の変更はない(S76)。
 一方、圧縮機1a,1bのいずれか一方において、冷凍機油の油量が規定量以下である場合(S74またはS75でNO)、ステップS77,S78,S79,S80の処理が順に行なわれる。ステップS77,S78,S79,S80の処理は、それぞれ図10のS23,S24,S25,S26の処理と同じであるので説明は繰り返さない。
 続いて、ステップS80において、推定返油時間T>目標返油時間T*の場合、制御装置100は、ステップS81において、周波数変更制御を実行する。周波数変更制御では、たとえば、圧縮機1aの液面高さが規定位置以下である場合、推定返油時間Tが目標推定時間以下となるように、周波数制御され、制御装置100は、圧縮機1aの吐出流量を増加(大流量)させ、冷凍機油の流入量を増加させる。制御装置100は、圧縮機1aの吐出流量の増加に合わせて、室内の流量が一定となるように圧縮機1bの吐出流量を減少(小流量)させ、圧縮機1bへの冷凍機油の流入量を減少させる。
 マルチ室外機の冷凍サイクル装置は、液面低下以外にも液バック過多条件等、油濃度低下による油枯渇が生じる可能性があり、信頼性を低下させるおそれがある。例えば、圧縮機を起動する場合、デフロスト運転終了後に暖房運転に切り替える場合、および接続配管が短尺の時などの余剰冷媒が多い場合に、液バックが生じやすい。以上の実施の形態3の冷凍サイクル装置によれば、液面低下および油濃度低下による油量低下を検知することで、あらゆる条件における油枯渇を抑制することができ、信頼性を向上させることができる。
 実施の形態4.
 実施の形態4に係る冷凍サイクル装置の全体構成は、実施の形態3と同様な図15に示した構成であるので、説明は繰り返さない。
 実施の形態4では、図16、図17に示した実施の形態3で実行される制御において、ステップS58およびS80で使用される推定返油時間Tと目標返油時間T*とを補正する点に特徴がある。
 実施の形態3では、前述の式(1)に基づいて推定返油時間Tが計算された。また、目標返油時間T*は、あらかじめ定められた値であり、記憶装置200に記憶されていた。
 これに対し、実施の形態4では、制御装置100は、圧縮機1a,1bの油量が規定量よりも減少した場合に、減少した油量が規定量まで回復する回復時間を測定し、返油時間を回復時間に基づいて補正する。具体的には、前述の目標返油時間T*が油量回復時間に基づいて補正される。例えば、目標返油時間T*到達後に油量が増加した場合、目標返油時間T*を増加させ、目標返油時間T*到達前に油量が増加した場合、目標返油時間T*を減少させる。
 また実施の形態4では、推定返油時間Tを補正する。たとえば、油量回復時間および変化量より、返油流量が換算され、推定返油時間Tは、返油流量に応じて補正される。
 このようにして、推定返油時間Tに対し、実際にかかってしまった返油時間から、推定誤差が生じた場合、その誤差を補正する運転(学習運転)を行なう。推定誤差が生じた場合、最初の推定返油時間T(推定返油時間T0とする)と2番目の推定返油時間Tとは時刻が異なる。推定返油時間T0と推定誤差から補正係数ηを算出し、推定返油時間T0と同様な方法で算出した推定返油時間Tに補正係数ηをかけることで2番目の推定返油時間Tを算出する。補正係数ηにより学習した推定返油時間Tを適用して推定誤差を小さくしていく狙いがある。
 以下に、より詳しく補正方法について述べる。まず、液面高さおよび油濃度より圧縮機内油量が換算される(図16のS51~S53と同様)。油量が予め定めた所定量よりも減少した場合、検知された油量と規定量との差である変化量ΔMが検知される。また、その後、油量が規定量まで到達するのに要した時間(油量回復時間)ΔTが検知される。
 このときの返油流量Gr(oil)は、Gr(oil)=ΔM/ΔTで算出され、補正係数ηは、η=(Gr(oil)/ΔM)/T0で算出される。ここで、T0は、油量減少前に前述の式(1)で算出していた推定返油時間Tである。
 そして、以下の式(3)(4)に示すように、補正係数に応じて目標返油時間T*および推定返油時間Tを補正して図16のステップS58および図17のステップS80に適用すればよい。
T*=ΔT …(3)
T=Va/[{(Gra×φa)+(Grb×φb)}×{Gra/(Gra+Grb)}]×η…(4)
 なお、目標返油時間T*、推定返油時間T、補正係数ηは、記憶装置200に記憶される。制御装置100は、補正後の目標返油時間T*および推定返油時間Tと検出した液面高さに応じて各圧縮機を制御する。
 実施の形態4では、油量回復時間および変化量を検知することで、運転条件、環境条件、および設置条件に応じて、目標返油時間T*及び推定返油時間Tを補正する。これによって、必要最小限の消費電力で油枯渇を抑制し、信頼性を向上させることができる。
 実施の形態5.
 実施の形態5では、複数台の室外機のうち、一つの室外機で、その他のユニットの圧縮機内油量を推定する。
 実施の形態5に係る冷凍サイクル装置は、少なくとも一つの室外機が実施の形態1~4と同様な構成を備えた冷凍サイクル装置である。実施の形態1~4に示した方法と同様な方法で、油量検知手段(液面検出器または濃度検出器)によって、一部の室外機の圧縮機内の油量が換算され、滞留量検知手段によって回路内の油滞留量が換算され、圧縮機内油量および油滞留量により、残りの圧縮機内油量が推定される。
 一部の室外機の圧縮機内と冷媒回路内の油量が分かれば、封入した油量(合計量)から、他の室外機の圧縮機の油量を推定することができる。たとえば、親機室外ユニットと子機室外ユニットがある場合、親機室外ユニットのみ油量を検知する手段があれば、子機室外ユニットは油量を検知する手段がなくても、残りの油量は、他の室外機の圧縮機にあると仮定し、推定すればよい。
 実施の形態5に係る冷凍サイクル装置は、圧縮機に油量センサが設置していない機種と並列接続された場合でも、各圧縮機内の油量を推定することによって、各圧縮機の油枯渇を抑制し、信頼性を向上させることができる。
 なお、以上の実施の形態では、圧縮機に油量センサを設け室外機の油量を検出または推定することとしたが、オイルセパレータやアキュムレータが室内機に含まれる場合には、これらにも油量センサを設けこれらの油量も併せて室外機の油量を検出しても良い。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1a,1b 圧縮機、2a,2b 室外熱交換器、3a,3b 膨張装置、4 室内熱交換器、5a,5b センサ、50a,50b 室外機、52,53 配管、54 室内機、100 制御装置、101a,101b 液面検出器、102a,102b,102c 位置検出器、103a,103b 濃度検出器、200 記憶装置。

Claims (6)

  1.  冷凍サイクル装置であって、
     少なくとも室内熱交換器を有する室内機と、
     前記室内機に互いに並列に接続される複数の室外機と、
     前記複数の室外機を制御する制御装置とを備え、
     前記複数の室外機の各々は、
     室外熱交換器と、
     圧縮機と、
     前記室外機中の冷凍機油の量を検出するためのセンサとを含み、
     前記冷凍サイクル装置は、少なくとも1つの膨張装置をさらに備え、
     前記室内熱交換器と前記膨張装置と前記複数の室外機に含まれる前記室外熱交換器と前記圧縮機とは、冷媒が循環する冷媒回路を構成し、
     前記制御装置は、運転モードとして、前記複数の室外機のうちの一部の室外機を運転し、他の室外機を停止する第1運転モードと、前記複数の室外機の全てを運転する第2運転モードと有し、
     前記制御装置は、前記第1運転モードにおいて、運転中の室外機の運転時間が規定の時間を超え、かつ、運転中の室外機の圧縮機中の冷凍機油の量が規定量より少ない場合、前記運転中の室外機の運転を維持し、前記第1運転モードにおいて、前記運転中の室外機の運転時間が前記規定の時間を超え、かつ、前記運転中の室外機の圧縮機中の冷凍機油の量が前記規定量以上ある場合、前記運転中の室外機を停止し、前記複数の室外機のうち停止中の室外機を運転するように切り替える、冷凍サイクル装置。
  2.  前記制御装置は、前記第2運転モードにおいて、前記複数の室外機のうちの第1の室外機の圧縮機中の冷凍機油の量が前記規定量よりも少ない場合には、前記第1の室外機の圧縮機の吐出冷媒流量を増加させ、前記複数の室外機のうちの第2の室外機の圧縮機の吐出冷媒流量を減少させるように、前記複数の室外機を制御する、請求項1に記載の冷凍サイクル装置。
  3.  前記センサは、前記複数の室外機の各々の圧縮機に設けられた冷凍機油の液面高さを検出する液面検出器を備え、
     前記制御装置は、前記液面検出器の出力に応じて、圧縮機の吐出量を制御する、請求項1または2に記載の冷凍サイクル装置。
  4.  前記センサは、前記複数の室外機と前記室内機とを接続する冷媒配管の長さを算出するための位置検出器を備え、
     前記制御装置は、前記位置検出器の出力に基づいて前記冷媒配管の長さを算出し、算出した前記冷媒配管の長さに基づいて、前記圧縮機から吐出された冷凍機油が前記圧縮機に戻るまでの返油時間を算出し、
     前記制御装置は、前記返油時間に基づいて、前記圧縮機の吐出量を制御する、請求項1または2に記載の冷凍サイクル装置。
  5.  前記制御装置は、前記圧縮機の油量が規定量よりも減少した場合に、減少した油量が前記規定量まで回復する回復時間を測定し、前記返油時間を前記回復時間に基づいて補正する、請求項4に記載の冷凍サイクル装置。
  6.  前記センサは、前記複数の室外機の各々の圧縮機に設けられた冷凍機油の濃度を検出する濃度検出器を備え、
     前記制御装置は、前記濃度検出器の出力に応じて、圧縮機の吐出量を制御する、請求項1または2に記載の冷凍サイクル装置。
PCT/JP2016/085004 2016-11-25 2016-11-25 冷凍サイクル装置 WO2018096655A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680090216.9A CN109964086B (zh) 2016-11-25 2016-11-25 制冷循环装置
PCT/JP2016/085004 WO2018096655A1 (ja) 2016-11-25 2016-11-25 冷凍サイクル装置
JP2018552355A JP6790115B2 (ja) 2016-11-25 2016-11-25 冷凍サイクル装置
US16/329,431 US11168927B2 (en) 2016-11-25 2016-11-25 Refrigeration cycle apparatus
EP16922199.1A EP3546849B1 (en) 2016-11-25 2016-11-25 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085004 WO2018096655A1 (ja) 2016-11-25 2016-11-25 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018096655A1 true WO2018096655A1 (ja) 2018-05-31

Family

ID=62194861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085004 WO2018096655A1 (ja) 2016-11-25 2016-11-25 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11168927B2 (ja)
EP (1) EP3546849B1 (ja)
JP (1) JP6790115B2 (ja)
CN (1) CN109964086B (ja)
WO (1) WO2018096655A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109654760A (zh) * 2018-12-14 2019-04-19 广州斯派克环境仪器有限公司 一种用于检测食品药品稳定性的双压缩机无缝切换系统
WO2020174677A1 (ja) * 2019-02-28 2020-09-03 三菱電機株式会社 冷凍サイクル装置
WO2022185443A1 (ja) * 2021-03-03 2022-09-09 三菱電機株式会社 空気調和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067325B2 (en) * 2019-06-14 2021-07-20 Hitachi-Johnson Controls Air Conditioning, Inc. Refrigeration cycle optimization
CN110608520B (zh) * 2019-09-26 2021-07-16 广东美的制冷设备有限公司 空调器及其控制方法、可读存储介质
JP2023516463A (ja) * 2020-03-12 2023-04-19 ジョンソン・コントロールズ・タイコ・アイピー・ホールディングス・エルエルピー 暖房、換気、又は空調(hvac)システム内の障害を予測するためのコントローラ及び方法
CN113719963B (zh) * 2020-05-25 2022-12-27 青岛海尔空调电子有限公司 多联机系统的回油控制方法
CN112146315B (zh) * 2020-10-22 2023-08-29 珠海格力电器股份有限公司 节流装置、制冷装置和节流装置的调控方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184048A (ja) * 1990-11-13 1992-07-01 Sanyo Electric Co Ltd 冷凍装置
JPH11142002A (ja) * 1997-11-07 1999-05-28 Mitsubishi Electric Corp 冷凍空気調和装置
JP2000046419A (ja) * 1998-07-27 2000-02-18 Daikin Ind Ltd 冷凍装置
JP2004069213A (ja) 2002-08-08 2004-03-04 Fujitsu General Ltd 多室形空気調和機の制御方法
JP2004116805A (ja) * 2002-09-24 2004-04-15 Fujitsu General Ltd 多室形空気調和機の制御方法
JP2007101127A (ja) 2005-10-06 2007-04-19 Mitsubishi Electric Corp 空気調和装置
JP2011002160A (ja) 2009-06-18 2011-01-06 Aisin Seiki Co Ltd 空気調和装置
JP2012184876A (ja) * 2011-03-04 2012-09-27 Mitsubishi Heavy Ind Ltd マルチ形空気調和機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718870B2 (ja) * 1995-01-31 2005-11-24 ダイキン工業株式会社 冷凍装置の運転制御装置
JP3732907B2 (ja) * 1996-12-12 2006-01-11 三洋電機株式会社 空気調和機およびその冷凍機油回収方法
ES2228796T3 (es) * 2000-01-21 2005-04-16 Toshiba Carrier Corporation Detector de cantidad de aceite, dispositivo de refrigeracion y acondicionador de aire.
JP4499863B2 (ja) * 2000-01-21 2010-07-07 東芝キヤリア株式会社 マルチ形空気調和機
JP2001336840A (ja) * 2000-05-30 2001-12-07 Sanyo Electric Co Ltd 空気調和装置
JP2002317785A (ja) 2001-04-25 2002-10-31 Mitsubishi Electric Corp 冷凍装置、及び冷媒圧縮機
JP3935716B2 (ja) * 2001-11-30 2007-06-27 三洋電機株式会社 空気調和装置
JP3939314B2 (ja) * 2004-06-10 2007-07-04 三星電子株式会社 空気調和装置及びその均油運転方法
CN100516682C (zh) * 2004-07-08 2009-07-22 乐金电子(天津)电器有限公司 具有均油功能的空调机
CN1959257A (zh) * 2005-11-03 2007-05-09 乐金电子(天津)电器有限公司 空调器及其控制方法
JP4715615B2 (ja) * 2006-04-20 2011-07-06 ダイキン工業株式会社 冷凍装置
CN101988717B (zh) * 2009-08-07 2012-11-28 珠海格力电器股份有限公司 模块化多联机组及其冷冻机油均衡控制方法
CN104180563B (zh) * 2013-05-27 2017-06-20 珠海格力电器股份有限公司 多联机系统制热时的回油方法
WO2015045129A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
EP3534086B1 (en) * 2016-10-31 2021-11-24 Mitsubishi Electric Corporation Refrigeration cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184048A (ja) * 1990-11-13 1992-07-01 Sanyo Electric Co Ltd 冷凍装置
JPH11142002A (ja) * 1997-11-07 1999-05-28 Mitsubishi Electric Corp 冷凍空気調和装置
JP2000046419A (ja) * 1998-07-27 2000-02-18 Daikin Ind Ltd 冷凍装置
JP2004069213A (ja) 2002-08-08 2004-03-04 Fujitsu General Ltd 多室形空気調和機の制御方法
JP2004116805A (ja) * 2002-09-24 2004-04-15 Fujitsu General Ltd 多室形空気調和機の制御方法
JP2007101127A (ja) 2005-10-06 2007-04-19 Mitsubishi Electric Corp 空気調和装置
JP2011002160A (ja) 2009-06-18 2011-01-06 Aisin Seiki Co Ltd 空気調和装置
JP2012184876A (ja) * 2011-03-04 2012-09-27 Mitsubishi Heavy Ind Ltd マルチ形空気調和機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109654760A (zh) * 2018-12-14 2019-04-19 广州斯派克环境仪器有限公司 一种用于检测食品药品稳定性的双压缩机无缝切换系统
WO2020174677A1 (ja) * 2019-02-28 2020-09-03 三菱電機株式会社 冷凍サイクル装置
JPWO2020174677A1 (ja) * 2019-02-28 2020-09-03
CN113498467A (zh) * 2019-02-28 2021-10-12 三菱电机株式会社 制冷循环装置
EP3933296A4 (en) * 2019-02-28 2022-03-02 Mitsubishi Electric Corporation REFRIGERATING CYCLE DEVICE
JP7233517B2 (ja) 2019-02-28 2023-03-06 三菱電機株式会社 冷凍サイクル装置
WO2022185443A1 (ja) * 2021-03-03 2022-09-09 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
EP3546849A4 (en) 2019-10-02
EP3546849B1 (en) 2020-06-03
US11168927B2 (en) 2021-11-09
EP3546849A1 (en) 2019-10-02
CN109964086B (zh) 2021-03-12
CN109964086A (zh) 2019-07-02
JPWO2018096655A1 (ja) 2019-07-11
US20190346188A1 (en) 2019-11-14
JP6790115B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2018096655A1 (ja) 冷凍サイクル装置
JP5414482B2 (ja) 空気調和機
JP6101815B2 (ja) 冷凍サイクル装置
JP4114691B2 (ja) 空気調和装置
JP5259944B2 (ja) 空気調和装置
JP4306636B2 (ja) 空気調和装置
US20090095000A1 (en) Air conditioner
JPH11108485A (ja) 空気調和機及び冷媒加熱器出口温度の制御方法
AU2007208727A1 (en) Air conditioner
JP2006292213A (ja) 空気調和装置
AU2012317517B2 (en) Refrigeration system
JP2006292211A (ja) 空気調和装置
JP2009079842A (ja) 冷凍サイクル装置およびその制御方法
AU2007228078A1 (en) Air conditioner
JPWO2004076945A1 (ja) 冷凍サイクル装置
JP2008175444A (ja) 空気調和装置
AU2007225803A1 (en) Air conditioner
JP4957243B2 (ja) 空気調和装置
JP2007101127A (ja) 空気調和装置
JP2011012958A (ja) 冷凍サイクル装置の制御方法
AU2006324598B8 (en) Air conditioner
JP4562650B2 (ja) 空気調和装置
JPH07198187A (ja) 空気調和機
JP2656285B2 (ja) 空気調和機
US11306952B2 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018552355

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016922199

Country of ref document: EP

Effective date: 20190625