WO2018090420A1 - 用于制备透明超疏水涂层的涂料及其制备和使用方法 - Google Patents

用于制备透明超疏水涂层的涂料及其制备和使用方法 Download PDF

Info

Publication number
WO2018090420A1
WO2018090420A1 PCT/CN2016/110382 CN2016110382W WO2018090420A1 WO 2018090420 A1 WO2018090420 A1 WO 2018090420A1 CN 2016110382 W CN2016110382 W CN 2016110382W WO 2018090420 A1 WO2018090420 A1 WO 2018090420A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
component
coating
modified nanoparticles
organic solvent
Prior art date
Application number
PCT/CN2016/110382
Other languages
English (en)
French (fr)
Inventor
龙江游
肖鹏飞
Original Assignee
北京易净星科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京易净星科技有限公司 filed Critical 北京易净星科技有限公司
Publication of WO2018090420A1 publication Critical patent/WO2018090420A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances

Definitions

  • the invention relates to the field of superhydrophobic coating technology, in particular to a coating for preparing a transparent superhydrophobic coating and a preparation and use method thereof.
  • Superhydrophobic surfaces originate from the "foliate effect" in nature.
  • the surface micro/nano structure and lower surface energy are the key to obtaining a superhydrophobic surface.
  • the application of nanoparticles on the surface self-stacking to form a surface micro-nano structure is the most common technical means.
  • Low surface energy properties are generally obtained by using modified nanoparticles or secondary deposition methods.
  • the patent application CN104449357A utilizes fumed silica nanoparticles to form a micro-nano structure on the surface, and then deposits a hydrophobic agent onto the surface by chemical vapor deposition to obtain a transparent superhydrophobic surface;
  • Patent Application CN104261695A utilizes a zinc oxide sol to deposit on the surface.
  • a micro-nano structure is formed, and then a transparent superhydrophobic coating layer is obtained by immersing in an ethanol solution containing a hydrophobic modifier, and taking out and drying.
  • Both of the above methods achieve low surface energy characteristics by means of secondary deposition.
  • the patent application CN105086537A directly uses a hydrophobic modifier to modify the silica nanoparticles, and utilizes the self-stacking of the modified nanoparticles on the surface to form a transparent superhydrophobic coating having low surface energy properties. The method achieves low surface energy characteristics by modifying nanoparticles.
  • the technical problem to be solved by the present invention is to provide a coating for preparing a transparent superhydrophobic coating and a method for preparing and using the same, which is simple and gentle in the production process, effectively enhances the adhesion of the superhydrophobic coating and the light transmittance thereof.
  • the present invention provides the following technical solutions:
  • a coating for preparing a transparent superhydrophobic coating consisting of a component A and a component B, wherein:
  • the A component consists of the following components in mass percentage:
  • the B component consists of the following components in mass percentage:
  • the coagent is a compound having an epoxy functional group (CH 2 OCH-) or a mixture thereof;
  • the A component consists of the following components in mass percent:
  • the B component consists of the following components in mass percentage:
  • Epoxy modified nanoparticles 0.1-5%
  • the coagent is a compound having an amino functional group (-NH 2 ) or a mixture thereof.
  • nanoparticles having different sizes and different surface modification treatments in the two components are used, and each of the modified nanoparticles in the B component has a group reactive with a coagent, that is, an amino group.
  • a coagent that is, an amino group.
  • ammonia-modified nanoparticles are nanoparticles having an amino group on the surface, and the original nanoparticles have a particle size of 10 to 1000 nm.
  • the ammonia-modified nanoparticles may be commercially available nanoparticles with amino groups, and ammonia-modified nanoparticles may also be prepared by laboratory.
  • the ammonia-modified nanoparticles are nanoparticles modified with an amino functional group-containing silane coupling agent having both an amino group and a hydrolyzable functional group - SiX 3 , wherein X It is one or more of -OCH 3 , -OCH 2 CH 3 or -Cl.
  • the nanoparticles modified with an amino functional group-containing silane coupling agent may be commercially available amino-modified nanoparticles, or may be obtained by the following preparation method: 0.1 to 5 parts by weight of nanoparticles are added to 95- 99 parts by weight of the organic solvent B', ultrasonically shake for 10-20 min, add 1-6 parts by weight of the silane coupling agent with an amino functional group, continue stirring, add 1-3 parts by weight of distilled water or ammonia water, continue to stir at a constant temperature 15 ⁇ 25h, a solution containing ammonia-modified nanoparticles was obtained. The obtained solution was separated by a centrifuge, and after removing the solvent, ammonia-modified nanoparticles were obtained.
  • the amino functional group-containing silane coupling agent comprises 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyl A tris-ethoxysilane or the like, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane or the like.
  • the epoxy-modified nanoparticles are nanoparticles having an epoxy group on the surface, and the original nanoparticles have a particle size of 10 to 1000 nm.
  • the epoxy-modified nanoparticles may be commercially available epoxy group-containing nanoparticles, and epoxy-modified nanoparticles may also be prepared by laboratory.
  • the epoxy-modified nanoparticles are nanoparticles modified with an epoxy functional group-containing silane coupling agent having both an epoxy group and a hydrolyzable functional group - SiX 3 wherein X is one or more of -OCH 3 , -OCH 2 CH 3 or -Cl.
  • the nanoparticles modified by the epoxy functional group-containing silane coupling agent may be commercially available epoxy-modified nanoparticles, or may be obtained by the following preparation method: 0.1-5 parts by weight of nanoparticles are added to 95-99 parts by weight of organic solvent B", ultrasonically shake for 10-20 min, add 1-6 parts by weight of silane coupling agent with epoxy functional group, continue stirring, add 1-3 parts by weight of distilled water or ammonia water, continue The solution containing the epoxy-modified nanoparticles is obtained by stirring at a constant temperature for 15 to 25 hours. The obtained solution is separated by a centrifuge, and the solvent is removed to obtain an epoxy modification. Nanoparticles.
  • the epoxy functional group-containing silane coupling agent comprises 3-(2,3-epoxypropoxy)propyltrimethoxysilane, 3-(2,3-epoxypropoxy)propyl three Ethoxysilane, 3-[(2,3)-glycidoxy)]propylmethyldimethoxysilane, and the like.
  • hydrophobically modified nanoparticles are nanoparticles having an alkane or a fluorine-containing alkane on the surface, and the original nanoparticles have a particle diameter of 5 to 30 nm.
  • the hydrophobically modified nanoparticles may be commercially available hydrophobically modified nanoparticles, and hydrophobically modified nanoparticles may also be prepared by laboratory.
  • the coating of the present invention when preparing a superhydrophobic coating, uses two modified nanoparticles, namely hydrophobically modified nanoparticles and amino-modified (or epoxy-modified) nanoparticles, using two modified nanoparticles.
  • a superhydrophobic coating having a micro/nano composite structure and high adhesion is obtained by mutual filling and a coagent. Therefore, in terms of the selection of the two modified nanoparticles, the hydrophobically modified nanoparticles select the original nanoparticles to have a small particle size, and the amino-modified (or epoxy-modified) nanoparticles select the original nano-particles.
  • the particle size of the particles has a large selection range.
  • the hydrophobic nanoparticles with the same particle size can be selected. a good filling effect, which has better light transmittance, and another more preferably, the original nanoparticle particle diameter of the hydrophobic nanoparticle is smaller than the amino-modified (or epoxy-modified) nanometer.
  • the particle size of the original nanoparticles is at least 5 nm smaller. Two kinds of nanoparticles with different sizes are filled and stacked with each other, and small nanoparticles are embedded in the gap between the large nanoparticles to produce a sufficient micro-nano composite structure, and the adhesion of the coating can be significantly improved while ensuring light transmittance. ;
  • the hydrophobically modified nanoparticles are nanoparticles modified with a silane coupling agent or a fluorosilane coupling agent
  • the silane coupling agent or the fluorosilane coupling agent has a structural formula of RSiX 3 , wherein R Is a linear or branched C 4-16 hydrocarbyl group or a fluorine-containing hydrocarbyl group, and X is a hydrolyzable group, including one or more of -OCH 3 , -OCH 2 CH 3 or -Cl.
  • the nanoparticles modified by the silane coupling agent or the fluorosilane coupling agent may be commercially available hydrophobically modified nanoparticles, or may be obtained by adding 0.5-5 parts by weight of nanoparticles to 90-99.
  • the organic solvent A' ultrasonically shake for 10-20 min, add 1-6 parts by weight of a silane coupling agent or a fluorosilane coupling agent, continue stirring, and add 1-3 parts by weight of distilled water or ammonia water. Stirring was continued for 15 to 25 hours to obtain a solution containing hydrophobically modified nanoparticles.
  • the obtained solution was separated by a centrifuge, and after removing the solvent, hydrophobically modified nanoparticles were obtained.
  • the silane coupling agent or fluorosilane coupling agent comprises octyltrimethoxysiloxane, octyltriethoxysiloxane, dodecyltrimethoxysiloxane, dodecyl group Triethoxysiloxane, hexadecyltrimethoxysiloxane, hexadecyltriethoxysiloxane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxy One or more of silane, perfluorodecyltrimethoxysilane, perfluorodecyltriethoxysilane, and the like.
  • the organic solvent A or the organic solvent B is selected from the group consisting of acetone, methyl ethyl ketone, methyl ethyl ketone, ethyl acetate, n-butyl acetate, methanol, ethanol, butanol, isopropanol, ethylene glycol, toluene, xylene One or several of them.
  • the organic solvent A may be the same as or different from the organic solvent B.
  • the organic solvent A' may be the same as or different from the organic solvent A
  • the organic solvent B' or the organic solvent B" may be the same as or different from the organic solvent B.
  • nanoparticles include one or more of nano silica, nano aluminum oxide, nano zinc oxide, and nano titanium dioxide.
  • a method of preparing a coating for preparing a transparent superhydrophobic coating comprising:
  • component A the hydrophobically modified nanoparticles are added to the organic solvent A, ultrasonically shaken for 10 to 30 minutes, and the epoxy functional group-containing compound coagent is added to obtain the component A;
  • component B the ammonia-modified nanoparticles are added to the organic solvent B, and ultrasonically shaken for 10 to 30 minutes to obtain a component B;
  • the steps of the preparation method include:
  • component A the hydrophobically modified nanoparticles are added to the organic solvent A, ultrasonically shaken for 10 to 30 minutes, and the amino-functional compound-containing compounding agent is added to obtain the component A;
  • component B The epoxy-modified nanoparticles were added to an organic solvent B, and ultrasonically shaken for 10 to 30 minutes to obtain a component B.
  • a method for preparing a coating for preparing a transparent superhydrophobic coating wherein the components A and B are mixed according to a ratio of (1 to 10): (10 to 1), and sprayed on a substrate to obtain an ultra Hydrophobic coating.
  • the substrate may be a substrate such as glass or steel, and is particularly suitable for a transparent substrate such as glass.
  • the auxiliary agent in the A component can react with the group on the surface of the nano particle in the B component, that is, the amino group forms a stable chemical bond with the epoxy group, thereby forming a certain crosslink between the nanoparticle and the substrate, thereby Improve the overall adhesion of the coating.
  • the auxiliary agent in the A component can react with the group on the surface of the nano particle in the B component, that is, the amino group forms a stable chemical bond with the epoxy group, thereby forming a certain crosslink between the nanoparticle and the substrate, thereby Improve the overall adhesion of the coating.
  • a film having a certain thickness is not formed, and the overall light transmittance is not affected;
  • the nanoparticles in the B component are larger particle nanoparticles, and the nanoparticles in the A component have smaller particle sizes, the two nanoparticles are filled and stacked, and the small nanoparticles are embedded in the gap between the large nanoparticles. Improve the adhesion of the coating while producing a sufficient micro-nano composite structure;
  • the superhydrophobic coating of the invention has simple preparation process, easy operation, low operation cost, easy realization, and can be widely promoted and used.
  • Figure 1 is a view showing the appearance of water on the surface of the glass after the coating prepared by the present invention is applied to the surface of the glass;
  • Figure 2 is a side view of the water contact angle of the coating prepared by the present invention.
  • Figure 3 is a light transmittance of the present invention before and after the coating is prepared on the surface of the glass;
  • Figure 4 is a side elevational view of the contact angle of the coating prepared in accordance with the present invention to water after the falling sand test.
  • a static contact angle is utilized The test characterizes the hydrophobicity of the water on the surface and measures the visible light transmission using a transmittance meter.
  • the abrasion resistance test is performed on the glass sheet coated with the coating by the falling sand experimental device (GBT23988-2009), and the specific method is to utilize After 100% of the standard sand was subjected to the falling sand test, the contact angle at the impact was measured.
  • hydrophobically modified nanoparticles were all added to 200 g of ethyl acetate, ultrasonically shaken for 20 min, and then 6 g of glycerol glycidyl ether was added to obtain a component A.
  • the above AB component is mixed at a mass ratio of 5:1 and sprayed on the surface of a common glass slide to obtain a transparent superhydrophobic effect.
  • Figure 1 shows the text below the slide is clearly visible and the surface coating has good light transmission.
  • Figure 2 shows the contact angle of water on the surface, about 155°.
  • Figure 3 shows the transmittance curves of the original glass in the visible light band and the coated glass. The transmittance of the original glass in the visible light range of 380 nm to 800 nm is about 89%. After spraying, the overall transmittance is shown. Can be maintained above 80%.
  • Figure 4 shows the contact angle of water droplets on the surface of the impact after the sand drop test, about 136°. It can be seen that the coating has good adhesion and can resist certain external friction.
  • 0.1 g of silica particles having a particle diameter of about 300 nm was added to 93 g of isopropanol, ultrasonically shaken for 15 min, 0.1 g of 3-aminopropyltriethoxysilane was added, 2 mL of ammonia water was slowly added, and the reaction was stirred under constant temperature for 15 hours. A solution containing ammonia-modified nanoparticles is obtained. The obtained solution was separated using a centrifuge to obtain about 0.2 g of ammonia-modified nanoparticles. The obtained ammonia-modified nanoparticles were all added to 198.8 g of n-butanol, and ultrasonically shaken for 20 min to obtain a B component.
  • the above AB component is mixed at a mass ratio of 3:1 and sprayed on a common glass surface (the original light transmittance is about 89%) to obtain a transparent superhydrophobic effect, the contact angle of water is about 152°, and the visible light transmittance is about 79%. After the sand falling test, the contact angle of water on the surface was about 130°.
  • 0.5g of aluminum oxide having a particle diameter of 30nm was added to 93g of ethanol, ultrasonically shaken for 15min, 0.5g of perfluorodecyltriethoxysilane was added, stirring was continued, 1mL of ammonia water was slowly added, and the reaction was stirred at a constant temperature for 20 hours to obtain Hydrophobically modified nanoparticle solution.
  • the obtained solution was separated using a centrifuge to obtain about 1 g of hydrophobically modified nanoparticles.
  • the obtained hydrophobically modified nanoparticles were added to 198 g of acetone, ultrasonically shaken for 20 min, and 1 g of ethylene glycol glycidyl ether was further added to obtain a component A.
  • the above AB component is mixed at a mass ratio of 10:1 and sprayed on a common glass surface (visible light transmittance of about 89%) to obtain a transparent superhydrophobic effect, the contact angle of water is about 160°, and the visible light transmittance is about 78. %. After the sand drop test, the contact angle of water on the surface was about 137°.
  • the above AB component is mixed at a mass ratio of 5:1 and sprayed on a common glass surface (visible light transmittance of about 89%) to obtain a transparent superhydrophobic effect, the contact angle of water is about 150°, and the visible light transmittance is about 78. %. After the sand drop test, the contact angle of water on the surface was about 128°.
  • silica nanoparticles with a particle diameter of 400nm 2g was added to 93g of ethanol, ultrasonically shaken for 15min, 3g of 3-(2,3-epoxypropoxy)propyltriethoxysilane was added, stirring was continued, and 1mL was slowly added. Distilled water was continuously stirred and reacted for 15 hours to obtain a solution containing epoxy-modified nanoparticles. The obtained solution was separated using a centrifuge to obtain about 5 g of epoxy-modified nanoparticles. The obtained epoxy-modified nanoparticles were added to 95 g of ethanol, and ultrasonically shaken for 20 minutes to obtain a B component.
  • the above AB component is mixed at a mass ratio of 10:1 and sprayed on a common glass surface (visible light transmittance of about 89%) to obtain a transparent superhydrophobic effect, the contact angle of water is about 155°, and the visible light transmittance is about 80. %. After the falling sand test, the contact angle of water on the surface was about 135°.
  • the above AB component is mixed at a mass ratio of 6:1 and sprayed on a common glass surface (visible light transmittance of about 89%) to obtain a transparent superhydrophobic effect, the contact angle of water is about 151°, and the visible light transmittance is about 81. %. After the sand falling test, the contact angle of water on the surface was about 131°.
  • the above AB component is mixed at a mass ratio of 5:1 and sprayed on the surface of a common glass slide to obtain a transparent superhydrophobic effect.
  • the contact angle of water is about 155°, and the visible light transmittance is about 82%. However, after the sand drop test, the contact angle of water on the surface was only 105°.
  • the particle size is relatively close, and even the particle size of the ammonia-modified nanoparticles in the B component is smaller than that in the A component.
  • the hydrophobic modified nanoparticles have a particle size, the superhydrophobic effect and the light transmissive effect are better, but the superhydrophobic coating has poor adhesion.
  • Comparative Example 2 requires two drying treatments in the preparation of the superhydrophobic coating as compared with the examples of the present invention, and the preparation process is complicated, and it is impossible to construct at a low cost and large area.
  • titanium dioxide particles 0.51 g of titanium dioxide particles, 0.84 g of silica particles, 6.63 g of ⁇ -aminopropyltriethoxysilane, and 5.61 g of aqueous ammonia were added to 100 g of an ethanol solvent, and the reaction was stirred at room temperature for 8 hours, and dried at 100 ° C to obtain an amino group.
  • the titanium dioxide and silica particles were added to a solvent of 35 mL of ethanol, and 14 g of an aqueous epoxy resin was added to prepare a coating sol.
  • the above coating sol was evenly spread on a glass piece and allowed to stand at room temperature for use.
  • the coated glass piece was immersed in a tetrahydrofuran solution of 5% by mass of perfluoropolypropyltriethoxysilane, immersed for 30 minutes, taken out, and then solidified and crosslinked in a vacuum drying oven at a temperature of 150 ° C.
  • a glass sheet having a superhydrophobic film has a water contact angle of about 155°, but a visible light transmittance of only about 23%. After the sand drop test, the contact angle of water on the surface was only about 117°.
  • Comparative Example 3 requires high-temperature drying treatment when preparing a superhydrophobic coating, and requires spraying a fluorine-containing solution for coating treatment, and the preparation process is complicated, and the comparison process is the same as that of the embodiment of the present invention.
  • the superhydrophobic coating has low light transmittance and poor adhesion.
  • the transparent superhydrophobic coating of the present invention contains two components of AB, which contain nanoparticles of different sizes and different surface modification treatments.
  • the adhesion of the nanoparticles to the surface is improved by the mutual filling of the two nanoparticles and the reaction of some of the nanoparticles with the auxiliary.
  • Ben The technical route of the invention is simple in process, does not require high-temperature heat curing, and requires only one spray forming, and is suitable for large-area spraying applications, and the coating has excellent transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种用于制备透明超疏水涂层的涂料及其制备和使用方法,属于超疏水涂料技术领域。所述涂料由A组分和B组分组成,其中:所述A组分由下述成分按质量百分比组成:疏水改性纳米粒子0.5%-5%,活性助剂0.1%-5%,有机溶剂A90%-99.4%。所述B组分由下述成分按质量百分比组成:氨改性纳米粒子0.1-5%,有机溶剂B95%-99.9%。A组分中的助剂可以和B组分中纳米粒子表面的基团进行反应,即氨基与环氧基团形成稳定的化学键,从而使得纳米粒子与基材间形成一定交联,从而提高涂层的整体附着力。同时由于添加量较少、交联程度低,不会形成一定厚度的薄膜,也不会影响整体透光性。

Description

用于制备透明超疏水涂层的涂料及其制备和使用方法 技术领域
本发明涉及超疏水涂料技术领域,特别是指一种用于制备透明超疏水涂层的涂料及其制备和使用方法。
背景技术
超疏水表面起源于自然界中的“荷叶效应”。表面微纳结构和较低的表面能是获得超疏水表面的关键。目前,应用纳米粒子在表面自堆积形成表面微纳结构是最常见的技术手段。而一般通过使用改性纳米粒子或二次沉积的方法获得低表面能特性。例如,专利申请CN104449357A利用气相二氧化硅纳米粒子在表面堆积形成微纳结构,再利用化学气相沉积将疏水剂沉积到表面,从而获得透明的超疏水表面;专利申请CN104261695A利用氧化锌溶胶在表面堆积形成微纳结构,再通过在含有疏水改性剂的乙醇溶液中浸泡、取出烘干后获得透明的超疏水涂层。以上两种方法都是通过二次沉积的方法,获得低表面能特性。再例如,专利申请CN105086537A直接使用疏水改性剂对二氧化硅纳米粒子进行改性,利用改性纳米粒子在表面的自堆积形成具有低表面能特性的透明超疏水涂层。该方法则是通过改性纳米粒子的方法获得低表面能特性。
不管采用何种技术路线,超疏水涂层的附着力及透明性都是决定其应用性能的关键。为了提高涂层的附着力,发展了众多的技术路线,例如,中国专利CN103060773A通过化学气相沉积聚合的方法增强涂层的附着力,具体方法是在二氧化硅的悬浮液中加入引发剂,再将单体蒸气通过化学气相沉积聚合到表面,从而镀上聚合物。中国专利CN103436138A通过将环氧树脂与纳米粒子进行杂化,之后将涂层在一定温度下烘干来增强涂层附着力。但是,目前这些方法普遍工艺复杂,实用性较差,且很难同时取得理想的透光率和附着力。
发明内容
本发明要解决的技术问题是提供一种制作工艺简单温和,有效增强超疏水涂层附着力及其透光率的用于制备透明超疏水涂层的涂料及其制备和使用方法。
为解决上述技术问题,本发明提供技术方案如下:
一方面,提供一种用于制备透明超疏水涂层的涂料,由A组分和B组分组成,其中:
所述A组分由下述成分按质量百分比组成:
疏水改性纳米粒子     0.5%-5%
活性助剂             0.1%-5%
有机溶剂A90%-99.4%
所述B组分由下述成分按质量百分比组成:
氨改性纳米粒子        0.1-5%
有机溶剂B             95%-99.9%
其中,所述活性助剂为带环氧官能团(CH2OCH-)的化合物或其混合物;
或者,所述A组分由下述成分按质量百分比组成:
疏水改性纳米粒子     0.5%-5%
活性助剂             0.1%-5%
有机溶剂A90%-99.4%
所述B组分由下述成分按质量百分比组成:
环氧改性纳米粒子        0.1-5%
有机溶剂B               95%-99.9%
其中,所述活性助剂为带氨基官能团(-NH2)的化合物或其混合物。
本发明中利用两种组分中含有不同大小和不同表面改性处理的纳米粒子,相互填充,并且B组分中的改性纳米粒子带有可与活性助剂反应的基团,即氨基和环氧官能团的反应,从而在形成超疏水涂层的同时,对基材表面产生较好的附着力,使涂层不易被剥离且能保持极好的透光性。
进一步地,所述氨改性纳米粒子为表面带有氨基的纳米粒子,原始纳米粒子的粒径大小为10-1000nm。所述氨改性纳米粒子可以为商品化的带氨基的纳米粒子,也可以通过实验室制得氨改性纳米粒子。
优选地,所述氨改性纳米粒子为利用带氨基官能团的硅烷偶联剂改性的纳米粒子,所述带氨基官能团的硅烷偶联剂同时带有氨基和可水解官能团-SiX3,其中X为-OCH3,-OCH2CH3或-Cl中的一种或多种。
所述利用带氨基官能团的硅烷偶联剂改性的纳米粒子可以为商品化的氨基改性的纳米粒子,也可以通过以下制备方法制得:将0.1-5重量份的纳米粒子加入到95-99重量份的有机溶剂B’中,超声震荡10~20min,加入1-6重量份的带氨基官能团的硅烷偶联剂,继续搅拌,加入1-3重量份的蒸馏水或氨水,继续恒温搅拌15~25h,获得含有氨改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得氨改性纳米粒子。
优选地,所述的带氨基官能团的硅烷偶联剂包括3-氨丙基三乙氧基硅烷,3-氨丙基三甲氧基硅烷,N-(2-氨乙基)-3-氨丙基三乙氧基硅烷等,N-(2-氨乙基)-3-氨丙基三甲氧基硅烷等。
进一步地,所述环氧改性纳米粒子为表面带有环氧基的纳米粒子,原始纳米粒子的粒径大小为10-1000nm。所述环氧改性纳米粒子可以为商品化的带环氧基团的纳米粒子,也可以通过实验室制得环氧改性纳米粒子。
进一步地,所述环氧改性纳米粒子为利用含环氧官能团的硅烷偶联剂改性的纳米粒子,所述带环氧官能团的硅烷偶联剂同时带有环氧基和可水解官能团-SiX3,其中X为-OCH3,-OCH2CH3或-Cl中的一种或多种。
所述利用含环氧官能团的硅烷偶联剂改性的纳米粒子可以为商品化的环氧改性的纳米粒子,也可以通过以下制备方法制得:将0.1-5重量份的纳米粒子加入到95-99重量份的有机溶剂B”中,超声震荡10~20min,加入1-6重量份的带环氧官能团的硅烷偶联剂,继续搅拌,加入1-3重量份的蒸馏水或氨水,继续恒温搅拌15~25h,获得含有环氧改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得环氧改性 纳米粒子。
优选地,所述的带环氧官能团的硅烷偶联剂包括3-(2,3-环氧丙氧)丙基三甲氧基硅烷,3-(2,3-环氧丙氧)丙基三乙氧基硅烷,3-[(2,3)-环氧丙氧)]丙基甲基二甲氧基硅烷等。
进一步地,所述疏水改性纳米粒子,为表面带有烷烃或含氟烷烃的纳米粒子,原始纳米粒子的粒径为5-30nm。所述疏水改性纳米粒子可以为商品化的疏水改性纳米粒子,也可以通过实验室制得疏水改性纳米粒子。
本发明的涂料在制备超疏水涂层时,使用两种改性的纳米粒子,即疏水改性纳米粒子和氨基改性(或环氧基改性)纳米粒子,利用两种改性纳米粒子的相互填充及活性助剂的作用下获得具有微纳复合结构且高附着力的超疏水涂层。因此,在两种改性纳米粒子的选择方面,所述疏水改性纳米粒子选择的原始纳米粒子粒径偏小,而所述氨基改性(或环氧基改性)纳米粒子选择的原始纳米粒子的粒径具有较大的选择范围,在选择较小纳米粒子粒径的氨基改性(或环氧基改性)纳米粒子时,可选择与其粒径相接近的疏水纳米粒子,同样具有较好地填充效果,具有较好地透光性,而另一种更优选地情况则是:所述疏水纳米粒子的原始纳米粒子粒径小于所述氨基改性(或环氧基改性)纳米粒子的原始纳米粒子粒径,且至少小5nm。两种大小不同的纳米粒子相互填充堆积,小纳米粒子嵌入大纳米粒子间的空隙,在产生足够微纳复合结构的同时,在保证透光性的情况下,更能显著提高涂层的附着力;
优选地,所述疏水改性纳米粒子为利用硅烷偶联剂或氟硅烷偶联剂改性的纳米粒子,所述硅烷偶联剂或氟硅烷偶联剂的结构通式为RSiX3,其中R为直链或支链的C4-16烃基或含氟烃基,X为可水解基团,包括-OCH3,-OCH2CH3或-Cl一种或多种。
所述利用硅烷偶联剂或氟硅烷偶联剂改性的纳米粒子可以为商品化的疏水改性纳米粒子,也可以通过以下方法制得:将0.5-5重量份纳米粒子加入到90-99重量份有机溶剂A’中,超声震荡10~20min,加入1-6重量份硅烷偶联剂或氟硅烷偶联剂,继续搅拌,加入1-3重量份蒸馏水或氨水, 继续恒温搅拌15~25h,获得含疏水改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得疏水改性纳米粒子。
优选的,所述硅烷偶联剂或氟硅烷偶联剂包括辛基三甲氧基硅氧烷、辛基三乙氧基硅氧烷、十二烷基三甲氧基硅氧烷、十二烷基三乙氧基硅氧烷、十六烷基三甲氧基硅氧烷、十六烷基三乙氧基硅氧烷、十三氟辛基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、全氟癸基三甲氧基硅烷、全氟癸基三乙氧基硅烷等中的一种或多种。
进一步地,所述的有机溶剂A或有机溶剂B选自丙酮、甲乙酮、丁酮、乙酸乙酯、乙酸正丁酯、甲醇、乙醇、丁醇、异丙醇、乙二醇、甲苯、二甲苯中的一种或几种。所述有机溶剂A可以与所述有机溶剂B相同,也可以不同。上述有机溶剂A’可以与所述有机溶剂A相同,也可以不同;上述有机溶剂B’或有机溶剂B”与所述有机溶剂B可以与相同,也可以不同。
进一步地,所述的纳米粒子包括纳米二氧化硅、纳米三氧化二铝、纳米氧化锌、纳米二氧化钛中的一种或多种。
另一方面,提供一种用于制备透明超疏水涂层的涂料的制备方法,所述制备方法的步骤包括:
1)A组分的制备:将所述疏水改性纳米粒子加入到有机溶剂A中,超声震荡10~30min,加入所述含环氧官能团的化合物活性助剂,获得A组分;
2)B组分的制备:将所述氨改性纳米粒子加入到有机溶剂B中,超声震荡10~30min,获得B组分;
或者,所述制备方法的步骤包括:
1)A组分的制备:将所述疏水改性纳米粒子加入到有机溶剂A中,超声震荡10~30min,加入所述含氨基官能团的化合物活性助剂,获得A组分;
2)B组分的制备:将环氧改性纳米粒子加入到有机溶剂B中,超声震荡10~30min,获得B组分。
再一方面,提供一种用于制备透明超疏水涂层的涂料的使用方法,将A、B组分按照(1~10):(10~1)的比例混合,喷涂在基材上获得超疏水涂层。
所述基材可以是玻璃、钢材等基材,尤其适用于玻璃等透明基材。
综上所述,本发明的有益效果表现为:
1)A组分中的助剂可以和B组分中纳米粒子表面的基团进行反应,即氨基与环氧基团形成稳定的化学键,从而使得纳米粒子与基材间形成一定交联,从而提高涂层的整体附着力。同时由于添加量较少、交联程度低,不会形成一定厚度的薄膜,也不会影响整体透光性;
2)B组分中的纳米粒子为较大颗粒的纳米粒子,而A组分中的纳米粒子粒径较小,两种纳米粒子会相互填充堆积,小纳米粒子嵌入大纳米粒子间的空隙,在产生足够微纳复合结构的同时,提高涂层的附着力;
3)本发明的超疏水涂料的制备工艺简单,容易操作,操作成本低,易于实现,可以广泛推广和使用。
附图说明
图1为本发明制备的涂层应用在玻璃表面后,水在玻璃表面的形貌;
图2为本发明制备的涂层对水接触角侧视图;
图3为本发明在玻璃表面制备涂层前后的透光率;
图4为本发明制备的涂层在落砂实验后对水的接触角侧视图。
具体实施方式
为使本发明的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。但本发明绝非限于这些例子。以下所述仅为本发明较好的实施例,仅仅用以解释本发明,并不能因此而理解为本发明专利范围的限制。应当指出的是,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。因此,本发明专利的保护范围应以所附权利要求为准。
为了证实本发明所述的超疏水涂层的透明疏水效果,利用静态接触角 测试表征水在表面的疏水性,利用透过率仪测量可见光透过率。另外,为了进一步证实本发明所述的超疏水涂层具有优异的附着力,利用落砂法实验装置(GBT23988-2009)对涂有该涂层的玻璃片进行耐磨性测试,具体方法是利用100mL的标准砂进行落砂实验后,测量被冲击处的接触角。
本发明部分实施例如下:
实施例一
将2g平均粒径约为20nm的纳米二氧化硅加入到93g丙酮中,超声震荡15min,加入4g正辛基三甲氧基硅烷,继续搅拌,缓慢加入2mL蒸馏水,恒温搅拌反应20h,获得含有疏水改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得约6g的疏水改性纳米粒子。将获得的疏水改性纳米粒子全部加入200g醋酸乙酯中,超声震荡20min,再加入6g丙三醇缩水甘油醚,获得A组分。
将2g粒径为100nm的二氧化硅粒子加入到93g乙醇中,超声震荡15min,加入4gγ-氨丙基三乙氧基硅烷,缓慢加入2mL蒸馏水,继续恒温搅拌反应15h,获得含氨改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得约6g氨改性纳米粒子。将获得的氨改性纳米粒子加入200g醋酸丁酯中,获得B组分。
将上述AB组分按质量比5:1混合,喷涂在普通载玻片表面,即可获得透明超疏水效果。如图1所示,载玻片下方的文字清晰可见,表面涂层具有良好的透光性。同时载玻片上的水滴呈球形,表明其具有较好的超疏水效果。图2所示为水在表面的接触角,约155°。图3所示为可见光波段原玻璃和涂覆有涂层的玻璃的透光率曲线,原玻璃在380nm-800nm的可见光波段的透光率约89%,喷涂有涂层后,整体透光率可以维持在80%以上。图4所示为进行落砂实验后,水滴在冲击处表面的接触角,约136°。可见,涂层具有较好的附着力,可以抵抗一定的外界摩擦。
实施例二
将3g粒径为7nm的纳米二氧化硅加入到93g乙醇中,超声波震荡15min,加入5g十二烷基三甲氧基硅烷,继续搅拌,缓慢加入2mL氨水,恒温搅拌反应20h,获得含有疏水改性纳米粒子的溶液。利用离心机对获 得的溶液进行分离,去除溶剂后,获得约8g疏水改性纳米粒子。将获得的疏水改性纳米粒子全部加入191.8g乙醇中,超声震荡20min。再加入0.2g C12-C14烷基缩水甘油醚(商品牌号Epodil 748),获得A组分。
将0.1g粒径约为300nm的二氧化硅粒子加入到93g异丙醇中,超声波震荡15min,加入0.1g 3-氨丙基三乙氧基硅烷,缓慢加入2mL氨水,继续恒温搅拌反应15h,获得含有氨改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,获得约0.2g氨改性纳米粒子。将获得的氨改性纳米粒子全部加入198.8g正丁醇中,超声震荡20min获得B组分。
将上述AB组分按质量比3:1混合,喷涂在普通玻璃表面(原有透光率约89%),即可获得透明超疏水效果,水的接触角约152°,可见光透光率约79%。进行落砂实验后,水在表面的接触角约130°。
实施例三
将0.5g粒径为30nm的三氧化二铝加入到93g乙醇中,超声波震荡15min,加入0.5g全氟癸基三乙氧基硅烷,继续搅拌,缓慢加入1mL氨水,恒温搅拌反应20h,获得含有疏水改性纳米粒子溶液。利用离心机对获得的溶液进行分离,获得约1g疏水改性纳米粒子。将获得的疏水改性纳米粒子加入198g丙酮中,超声震荡20min,再加入1g乙二醇缩水甘油醚,获得A组分。
将1g粒径为100nm的三氧化二铝纳米粒子加入到93g异丙醇中,超声波震荡15min,加入1gN-(2-氨乙基)-3-氨丙基三乙氧基硅烷,缓慢加入2mL氨水,继续恒温搅拌反应15h,获得含有氨改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,获得约2g氨改性纳米粒子。将获得的疏水改性纳米粒子加入200g异丙醇中,超声震荡20min,获得B组分。
将上述AB组分按质量比10:1混合,喷涂在普通玻璃表面(可见光透光率约89%),即可获得透明超疏水效果,水的接触角约160°,可见光透光率约78%。进行落砂实验后,水在表面的接触角约137°。
实施例四
将2g平均粒径约为15-25nm的疏水改性纳米二氧化硅(河南王屋纳米科技有限责任公司生产,型号DNS-2)加入到93g二甲苯中,超声波震 荡15min。再加入5g丙三醇缩水甘油醚,获得A组分。
将1g粒径为600nm的二氧化硅纳米粒子加入到93g乙醇中,超声波震荡15min,加入2gγ-氨丙基三乙氧基硅烷,继续恒温搅拌反应15h,获得含有氨改性纳米粒子溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得约3g氨改性纳米粒子。将获得的氨改性纳米粒子全部加入97g异丙醇中,超声震荡20min,获得B组分。
将上述AB组分按质量比5:1混合,喷涂在普通玻璃表面(可见光透光率约89%),即可获得透明超疏水效果,水的接触角约150°,可见光透光率约78%。进行落砂实验后,水在表面的接触角约128°。
实施例五
将2g粒径为15nm的二氧化硅加入到93g异丙醇中,超声波震荡15min,加入4g全氟葵基三乙氧基硅烷,继续搅拌,缓慢加入1mL蒸馏水,恒温搅拌反应20h,获得含疏水改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得约6g疏水改性纳米粒子。将获得的疏水改性纳米粒子加入200g乙醇中,超声震荡20min,再加入2g三乙烯四胺,获得A组分。
将2g粒径为400nm的二氧化硅纳米粒子加入到93g乙醇中,超声波震荡15min,加入3g 3-(2,3-环氧丙氧)丙基三乙氧基硅烷,继续搅拌,缓慢加入1mL蒸馏水,继续恒温搅拌反应15h,获得含有环氧改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,获得约5g环氧改性纳米粒子。将获得的环氧改性纳米粒子加入95g乙醇中,超声震荡20min,获得B组分。
将上述AB组分按质量比10:1混合,喷涂在普通玻璃表面(可见光透光率约89%),即可获得透明超疏水效果,水的接触角约155°,可见光透光率约80%。进行落砂实验后,水在表面的接触角约135°。
实施例六
将4g粒径为30nm的纳米氧化锌粒子加入到90g二甲苯中,超声波震荡15min,加入6g十二烷基三乙氧基硅烷,继续搅拌,缓慢加入1mL蒸馏水,恒温搅拌反应16h,获得含疏水改性纳米粒子的溶液。用离心机 对获得的溶液进行分离,去除溶剂后,获得约10g疏水改性纳米粒子。将获得的疏水改性纳米粒子加入185g二甲苯中,超声震荡20min,再加入5g间苯二甲胺,获得A组分。
将2g粒径为800nm的纳米氧化锌粒子加入到93g醋酸丁酯中,超声波震荡15min,加入3g 3-[(2,3)-环氧丙氧)]丙基甲基二甲氧基硅烷,继续搅拌,缓慢加入1mL蒸馏水,继续恒温搅拌反应15h,获得含有环氧改性纳米粒子溶液。用离心机对获得的溶液进行分离,去除溶剂后,获得约5g环氧改性纳米粒子。将获得的环氧改性纳米粒子加入200g乙醇中,超声震荡20min,获得B组分。
将上述AB组分按质量比6:1混合,喷涂在普通玻璃表面(可见光透光率约89%),即可获得透明超疏水效果,水的接触角约151°,可见光透光率约81%。进行落砂实验后,水在表面的接触角约131°。
对比例一
将2g平均粒径约为25nm的纳米二氧化硅加入到93g丙酮中,超声震荡15min,加入4g正辛基三甲氧基硅烷,继续搅拌,缓慢加入2mL蒸馏水,恒温搅拌反应20h,获得含有疏水改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,去除溶剂后,获得约6g疏水改性纳米粒子。将获得的疏水改性纳米粒子加入200g醋酸乙酯中,超声震荡20min,再加入6g丙三醇缩水甘油醚,获得A组分。
将2g平均粒径约为15nm的二氧化硅粒子加入到93g乙醇中,超声震荡15min,加入4gγ-氨丙基三乙氧基硅烷,缓慢加入2mL蒸馏水,继续恒温搅拌反应15h,获得含氨改性纳米粒子的溶液。利用离心机对获得的溶液进行分离,获得约6g氨改性纳米粒子。将获得的氨改性纳米粒子加入200g醋酸丁酯中,获得B组分。
将上述AB组分按质量比5:1混合,喷涂在普通载玻片表面,即可获得透明超疏水效果。水的接触角约155°,可见光透光率约82%。但是在进行落砂实验后,水在表面的接触角仅105°。
由此可知,通过对比例一与实施例一制备的超疏水涂层相比可知,使用粒径比较接近,甚至B组分中的氨改性纳米粒子的粒径小于A组分中 的疏水改性纳米粒子粒径时,其超疏水效果和透光性效果较好,但超疏水涂层附着力较差。
对比例二(同CN103436138B实施例一)
将30nm的二氧化硅纳米粒子,双酚A型环氧树脂及丙酮进行共混得到环氧树脂杂化溶液,其中纳米粒子,环氧树脂及丙酮的质量比为1:0.1:1;同时将1H,1H-十七氟壬胺及三乙胺溶于丙酮中得到含氟溶液,其中1H,1H-十七氟壬胺,三乙胺及丙酮的质量比为1:20:20。将上述环氧树脂杂化涂料喷涂到基材表面,再将基材放置在烘箱中,80℃下烘干0.5h,再将上述含氟溶液喷涂于基材表面,待溶剂挥发干后,再将基材放置于烘箱中,80℃下烘干0.5h。最后用溶剂冲洗基材表面,即得到透明超疏水涂层。水在表面的接触角约155°,可见光透光率约80%。
由此可知,通过对比例二与本发明的实施例相比,对比例二在制备超疏水涂层时需要两次烘干处理,制备工艺复杂,无法低成本大面积施工。
对比例三(同CN102702553B实施例一)
将0.51g二氧化钛粒子、0.84g二氧化硅粒子、6.63gγ-氨丙基三乙氧基硅烷和5.61g氨水加入到100g乙醇溶剂中,室温搅拌反应8h,100℃下干燥研磨成粉,得到氨基化的二氧化钛和二氧化硅粒子,将其加入到35mL乙醇溶剂中,再加入14g水性环氧树脂,制得涂层溶胶。
将上述涂层溶胶均匀涂抹于玻璃片上,室温下静置待用。将有涂膜的玻璃片浸入到质量分数5%的全氟幸基三乙氧基硅烷的四氢呋喃溶液中,浸泡30分钟,将其取出后放入温度为150℃的真空干燥箱中固化交联获得具有超疏水膜的玻璃片,其水的接触角约155°,但可见光透光率仅约23%。进行落砂实验后,水在表面的接触角仅约117°。
由此可知,通过对比例三与本发明的实施例相比,对比例三在制备超疏水涂层时也需要高温烘干处理,且需要喷涂含氟溶液进行镀膜处理,制备工艺复杂,且所制超疏水涂层透光率低,附着力较差。
因此,本发明的所述透明超疏水涂层含有AB两种组分,两种组分中含有不同大小和不同表面改性处理的纳米粒子。通过两种纳米粒子的相互填充,及部分纳米粒子与助剂的反应,提高纳米粒子在表面的附着力。本 发明的技术路线工艺简单,不需要高温加热固化,只需要一次喷涂成形,适合进行大面积喷涂应用,同时涂层具有极佳的透明性。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种用于制备透明超疏水涂层的涂料,其特征在于,由A组分和B组分组成,其中:
    所述A组分由下述成分按质量百分比组成:
    疏水改性纳米粒子     0.5%-5%
    活性助剂             0.1%-5%
    有机溶剂 A90%-99.4%
    所述B组分由下述成分按质量百分比组成:
    氨改性纳米粒子     0.1-5%
    有机溶剂B          95%-99.9%
    其中,所述活性助剂为含环氧官能团的化合物或其混合物;
    或者,所述A组分由下述成分按质量百分比组成:
    疏水改性纳米粒子     0.5%-5%
    活性助剂             0.1%-5%
    有机溶剂 A90%-99.4%
    所述B组分由下述成分按质量百分比组成:
    环氧改性纳米粒子     0.1-5%
    有机溶剂B            95%-99.9%
    其中,所述活性助剂为带氨基官能团的化合物或其混合物。
  2. 根据权利要求1所述的用于制备透明超疏水涂层的涂料,其特征在于,所述氨改性纳米粒子为表面带有氨基的纳米粒子,原始纳米粒子的粒径大小为10-1000nm。
  3. 根据权利要求2所述的用于制备透明超疏水涂层的涂料,其特征在于,所述氨改性纳米粒子为利用带氨基官能团的硅烷偶联剂改性的纳米粒子,所述带氨基官能团的硅烷偶联剂同时带有氨基和可水解官能团-SiX3,其中X为-OCH3,-OCH2CH3或-Cl一种或多种。
  4. 根据权利要求1所述的用于制备透明超疏水涂层的涂料,其特征 在于,所述环氧改性纳米粒子为表面带有环氧基的纳米粒子,原始纳米粒子的粒径大小为10-1000nm。
  5. 根据权利要求4所述的用于制备透明超疏水涂层的涂料,其特征在于,所述环氧改性纳米粒子为利用含环氧官能团的硅烷偶联剂改性的纳米粒子,所述含环氧官能团的硅烷偶联剂同时带有环氧基和可水解官能团-SiX3,其中X为-OCH3,-OCH2CH3或-Cl一种或多种。
  6. 根据权利要求1至5任一所述的用于制备透明超疏水涂层的涂料,其特征在于,所述疏水改性纳米粒子,为表面带有烷烃或含氟烷烃的纳米粒子,原始纳米粒子的粒径为5-30nm。
  7. 根据权利要求6所述的用于制备透明超疏水涂层的涂料,其特征在于,所述疏水改性纳米粒子为利用硅烷偶联剂或氟硅烷偶联剂改性的纳米粒子,所述硅烷偶联剂或氟硅烷偶联剂的结构通式为RSiX3,其中R为直链或支链的C4-16烃基或含氟烃基,X为可水解基团,包括-OCH3,-OCH2CH3或-Cl一种或多种。
  8. 根据权利要求1至5任一所述的用于制备透明超疏水涂层的涂料,其特征在于,所述的有机溶剂A或有机溶剂B选自丙酮、甲乙酮、丁酮、乙酸乙酯、乙酸正丁酯、甲醇、乙醇、丁醇、异丙醇、乙二醇、甲苯、二甲苯中的一种或几种。
  9. 权利要求1至8任一所述的用于制备透明超疏水涂层的涂料的制备方法,其特征在于,所述制备方法的步骤包括:
    1)A组分的制备:将所述疏水改性纳米粒子加入到有机溶剂A中,超声震荡10~30min,加入所述含环氧官能团的化合物活性助剂,获得A组分;
    2)B组分的制备:将所述氨改性纳米粒子加入到有机溶剂B中,超声震荡10~30min,获得B组分;
    或者,所述制备方法的步骤包括:
    1)A组分的制备:将所述疏水改性纳米粒子加入到有机溶剂A中,超声震荡10~30min,加入所述含氨基官能团的化合物活性助剂,获得A 组分;
    2)B组分的制备:将所述环氧改性纳米粒子加入到有机溶剂B中,超声震荡10~30min,获得B组分。
  10. 权利要求1至8任一所述的用于制备透明超疏水涂层的涂料的使用方法,其特征在于,将A、B组分按照(1~10):(10~1)的比例混合,喷涂在基材上获得超疏水涂层。
PCT/CN2016/110382 2016-11-18 2016-12-16 用于制备透明超疏水涂层的涂料及其制备和使用方法 WO2018090420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611028879.6A CN108373609B (zh) 2016-11-18 2016-11-18 用于制备透明超疏水涂层的涂料及其制备和使用方法
CN201611028879.6 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018090420A1 true WO2018090420A1 (zh) 2018-05-24

Family

ID=62146007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110382 WO2018090420A1 (zh) 2016-11-18 2016-12-16 用于制备透明超疏水涂层的涂料及其制备和使用方法

Country Status (2)

Country Link
CN (1) CN108373609B (zh)
WO (1) WO2018090420A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425508A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 具有超疏水表面的金属材料及其制备方法和应用以及油水分离的方法
CN115011154A (zh) * 2022-06-20 2022-09-06 常州大学 一种常温可高效率固化新型纳米有机硅复合涂层的制备方法
CN115124872A (zh) * 2021-03-26 2022-09-30 宁波激智科技股份有限公司 一种抗污阻燃涂料组合物及其制备方法,及一种抗污阻燃薄膜
CN115198516A (zh) * 2022-03-11 2022-10-18 天津仁爱学院 改性环氧树脂溶液以及应用改性环氧树脂溶液制备的超疏水纤维毡
CN115748237A (zh) * 2022-11-08 2023-03-07 杭州传化精细化工有限公司 无氟超疏水材料及其制备方法
CN116769396A (zh) * 2023-05-10 2023-09-19 中国华能集团清洁能源技术研究院有限公司 一种超疏水风电叶片表面防护涂料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467830B (zh) * 2019-07-23 2021-11-09 北京易净星科技有限公司 耐磨疏水涂层和制备耐磨疏水涂层的方法
CN111621120A (zh) * 2020-07-16 2020-09-04 贵阳学院 一种复合阻燃材料及其制备方法
CN116769413B (zh) * 2023-06-27 2024-04-19 广东中鼎科技发展有限公司 一种抗污tpu高低温膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233173A (zh) * 2005-05-25 2008-07-30 帝斯曼知识产权资产管理有限公司 疏水涂层
CN102702553A (zh) * 2012-06-29 2012-10-03 山东轻工业学院 一种无机粒子/环氧树脂超疏水薄膜的制备方法
CN102863154A (zh) * 2012-10-18 2013-01-09 山东轻工业学院 一种超疏水性表面的制备方法
US20130064990A1 (en) * 2011-09-09 2013-03-14 Weixing Lu Systems and Methods for Super-Hydrophobic and Super-Oleophobic Surface Treatments
CN103555012A (zh) * 2013-10-23 2014-02-05 三棵树涂料股份有限公司 超双疏透明纳米涂层及其制备方法
CN104513585A (zh) * 2013-09-27 2015-04-15 无锡市顺业科技有限公司 超疏水涂料组合物及用其形成的超疏水涂层

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838496B (zh) * 2010-04-09 2013-02-06 南京工业大学 一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料及其制备方法
CN104449357B (zh) * 2014-11-26 2017-01-04 浙江大学 一种透明超疏水涂层材料及其制备透明超疏水涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233173A (zh) * 2005-05-25 2008-07-30 帝斯曼知识产权资产管理有限公司 疏水涂层
US20130064990A1 (en) * 2011-09-09 2013-03-14 Weixing Lu Systems and Methods for Super-Hydrophobic and Super-Oleophobic Surface Treatments
CN102702553A (zh) * 2012-06-29 2012-10-03 山东轻工业学院 一种无机粒子/环氧树脂超疏水薄膜的制备方法
CN102863154A (zh) * 2012-10-18 2013-01-09 山东轻工业学院 一种超疏水性表面的制备方法
CN104513585A (zh) * 2013-09-27 2015-04-15 无锡市顺业科技有限公司 超疏水涂料组合物及用其形成的超疏水涂层
CN103555012A (zh) * 2013-10-23 2014-02-05 三棵树涂料股份有限公司 超双疏透明纳米涂层及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425508A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 具有超疏水表面的金属材料及其制备方法和应用以及油水分离的方法
CN115124872A (zh) * 2021-03-26 2022-09-30 宁波激智科技股份有限公司 一种抗污阻燃涂料组合物及其制备方法,及一种抗污阻燃薄膜
CN115198516A (zh) * 2022-03-11 2022-10-18 天津仁爱学院 改性环氧树脂溶液以及应用改性环氧树脂溶液制备的超疏水纤维毡
CN115011154A (zh) * 2022-06-20 2022-09-06 常州大学 一种常温可高效率固化新型纳米有机硅复合涂层的制备方法
CN115748237A (zh) * 2022-11-08 2023-03-07 杭州传化精细化工有限公司 无氟超疏水材料及其制备方法
CN116769396A (zh) * 2023-05-10 2023-09-19 中国华能集团清洁能源技术研究院有限公司 一种超疏水风电叶片表面防护涂料及其制备方法

Also Published As

Publication number Publication date
CN108373609A (zh) 2018-08-07
CN108373609B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2018090420A1 (zh) 用于制备透明超疏水涂层的涂料及其制备和使用方法
CN108587447B (zh) 一种适应多种基底的耐久性透明超疏水涂层的制备方法
CN104558447B (zh) 一种无机纳米复合的防涂鸦树脂及其制备方法
Pathak et al. Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy
WO2021121422A1 (zh) 一种超疏水涂层及其制备方法与应用
JP6625987B2 (ja) ポリフッ素含有シロキサン被覆
JP6483822B2 (ja) 塗膜
CN107722792B (zh) 一种具有高防腐蚀性能环氧树脂涂层的制备方法
JP6239086B2 (ja) 共重合体または組成物からなる膜
JP2010528123A5 (zh)
JP5206312B2 (ja) 水系塗料
TWI598416B (zh) 塗佈組合物、所形成之膜層、及該塗佈組合物的製備方法
CN112094422B (zh) 一种高透光性阻隔膜及其应用
CN113122081B (zh) 一种透明、高硬、可多功能集成的自修复涂料及其制备方法与应用
KR20170141703A (ko) 코팅 조성물 및 광학부재
JP2020050808A (ja) コーティング組成物
CN108300083B (zh) 一种含氟共聚物/纳米SiO2超疏水涂层及其制备方法
WO2021139215A1 (zh) 一种自修复或可重复使用的制品及其制备方法与应用
CN104893376A (zh) 一种可常温喷涂的瓷膜涂料
KR20070051940A (ko) 비절연성 코팅을 포함하는 물품
KR20200061954A (ko) 나노입자를 포함하는 수지 조성물 및 그 제조방법
JPH07138530A (ja) ハードコートの製造方法
CN111511805B (zh) 改性硅氧烷树脂、改性硅氧烷树脂交联体以及所述树脂交联体的制造方法
CN105669922A (zh) 草莓型聚合物/二氧化硅纳米复合粒子的制备方法
CN112724767A (zh) 一种增强减反增透疏水涂层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921914

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16921914

Country of ref document: EP

Kind code of ref document: A1