WO2018086482A1 - 液流电池电极结构、液流电池电堆及液流电池电堆的密封结构 - Google Patents

液流电池电极结构、液流电池电堆及液流电池电堆的密封结构 Download PDF

Info

Publication number
WO2018086482A1
WO2018086482A1 PCT/CN2017/109236 CN2017109236W WO2018086482A1 WO 2018086482 A1 WO2018086482 A1 WO 2018086482A1 CN 2017109236 W CN2017109236 W CN 2017109236W WO 2018086482 A1 WO2018086482 A1 WO 2018086482A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
electrode
flow battery
gasket
battery stack
Prior art date
Application number
PCT/CN2017/109236
Other languages
English (en)
French (fr)
Inventor
刘盛林
姜宏东
张华民
马相坤
张涛
江杉
杨振坤
孙丹
衣宽荣
Original Assignee
大连融科储能技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610986518.6A external-priority patent/CN106374129B/zh
Priority claimed from CN201611132210.1A external-priority patent/CN106549161B/zh
Priority to AU2017358245A priority Critical patent/AU2017358245B2/en
Priority to JP2019524279A priority patent/JP7128812B2/ja
Priority to EP17869180.4A priority patent/EP3534444B1/en
Priority to KR1020217020310A priority patent/KR102365550B1/ko
Application filed by 大连融科储能技术发展有限公司 filed Critical 大连融科储能技术发展有限公司
Priority to US16/348,263 priority patent/US11063263B2/en
Priority to KR1020197014290A priority patent/KR102273630B1/ko
Publication of WO2018086482A1 publication Critical patent/WO2018086482A1/zh
Priority to US17/343,674 priority patent/US11735747B2/en
Priority to US17/343,682 priority patent/US20220102740A1/en
Priority to AU2022200525A priority patent/AU2022200525B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of liquid flow batteries, in particular to a liquid flow battery electrode structure and a flow battery stack.
  • the flow battery system As a large-scale energy storage technology, the flow battery system has received extensive attention due to its advantages of reliability, safety, freedom of location, independent design of capacity and power.
  • the power performance directly affects the reliability, safety and cost of the entire flow battery system.
  • the main factors affecting the power performance of a flow battery stack include ohmic polarization, electrochemical polarization, and concentration polarization. Among them, electrochemical polarization and concentration polarization are mainly affected by electrode materials, electrolytes and operating conditions, while ohmic polarization is mainly affected by the conductivity of the electrode material body and the contact resistance between the electrode material and adjacent components.
  • the magnitude of the ohmic polarization of the flow battery will depend only on the contact resistance between the electrode and the adjacent component (bipolar plate/ion film).
  • the large contact resistance will greatly limit the performance of the discharge power and voltage efficiency of the flow battery.
  • the electrode material of the flow battery is usually a porous carbon felt or graphite felt.
  • the porosity of the carbon felt or the graphite felt changes in the thickness direction due to the pressing force on both sides thereof.
  • the porosity on both sides is much smaller than the porosity at the center.
  • the unevenness of the porosity will cause the electrolyte to have a different flow rate and resistance at the center of the electrode and at both sides of the surface. This will lead to problems such as uneven electrolyte distribution, uneven electrochemical reaction, uneven current transfer and heat transfer in the flow battery stack, and reduce the energy efficiency and life of the stack.
  • the invention provides a liquid battery electrode structure, which aims to solve the problem that the contact resistance between the conventional electrode and the adjacent component is large, and the porosity of the conventional electrode structure is inconsistent after being assembled into a stack.
  • the electrode of the flow battery is generally composed of a plurality of mutually continuous mesh-like porous structures (electrode fibers), wherein each layer structure is composed of parallel tows woven with at least two directions; the connection between the layered structures passes through the vertical wires.
  • the bundle perpendicular to the electrode surface
  • the present invention provides a flow battery electrode structure comprising electrode fibers, wherein the density of the vertical tows in the electrode fibers is greater than the density of the parallel tows.
  • the ratio of the number of the vertical tow and the parallel tow is at least 6:4.
  • the electrode structure is composed of at least three layers of the electrode fibers, and the other layers have a porosity greater than that of the center layer.
  • the number of layers of the electrode fibers is an odd number, and the porosity of each electrode fiber layer is outwardly increased from the center layer.
  • the central layer electrode fiber has a porosity of 90 to 93%; and the electrode fibers of the other layers have a porosity of 93 to 96%.
  • the electrode fiber is made of a polypropylene-based and/or viscose-based material and/or a pitch-based material.
  • the electrode fibers of each layer can be selected from the same material or different materials.
  • the ratio of the thickness of the central layer electrode fiber to the total thickness of the electrode is 20% to 30%, and the ratio of the thickness of the electrode fiber on one side to the total thickness of the electrode is 20% to 45%, and the assembled flow battery
  • the side of the stack is close to the bipolar plate; the ratio of the thickness of the electrode fiber on the other side to the total thickness of the electrode is 15% to 35%, and the side is close to the ion membrane when the battery stack is assembled.
  • Another object of the present invention is to provide a flow battery stack which is assembled by the above electrode structure, and after being assembled and assembled under a preload of 0.1 to 0.25 MPa, the porosity of each layer of the electrode fibers in the stack is compressed into 89 to 92%.
  • the difference in porosity of each layer of the electrode fibers in the stack is less than 3%, preferably 1.5%.
  • the thickness of each layer is preferably not more than 2.5 mm, and the total thickness of the electrode is preferably from 3 to 6 mm.
  • the thickness of the electrode fibers of each layer is preferably gradually reduced from the outer to the inner layer, and the thickness ratio of the other layers to the central layer is not less than 1.5:1.
  • the surface of the outermost electrode fiber of the electrode is a thorn-like or needle-like structure, and the height of the thorn-like or needle-like structure is high and low.
  • the thorn-like or needle-like structure is composed of a vertical tow perpendicular to the surface of the electrode, the vertical tow having a diameter of 6 to 18 ⁇ m, preferably 7 to 15 ⁇ m.
  • the electrode material is a three-layer structure, wherein the center layer is a viscose-based material, and the two sides are made of a polypropylene-based material.
  • the electrode fiber layer that ensures that the electrode is in contact with the ion membrane and the bipolar plate is a polypropylene-based material. The advantage is that the viscose-based fiber has a large specific surface area, and under the same conditions, it can provide more reactive regions between the electrolyte and the electrode than the polypropylene-based fiber.
  • the porosity of the present invention is a volume porosity, specifically a ratio of a via volume to an electrode material volume.
  • the two side layers in the present invention refer to two layers of electrode fibers located at the outermost side in the electrode structure.
  • the central layer of the present invention refers to an electrode fiber layer located at the center of the electrode structure.
  • the other layers described in the present invention refer to other electrode fiber layers other than the center layer, including the aforementioned two side layers.
  • the electrode structure of the present invention is mainly a vertical tow perpendicular to the surface of the electrode, one can increase the contact resistance of the contact area between the outer surface of the electrode and the adjacent component, and the second is to impart good mechanical properties to the electrode. Compared with the original structure, the contact resistance is reduced by 30% to 50%;
  • the layers of the electrode have different thicknesses depending on the porosity, and the layers with optimized thickness have the same porosity after compression, and the uniform structure after compression avoids mass transfer unevenness when the electrolyte flows through the inside of the electrode. , reducing the concentration polarization of the battery to increase the energy output of the battery at a given power;
  • Figure 1 is a perspective view of a fiber structure of an electrode of the present invention
  • Figure 2 is a structural view of a three-layer electrode of the present invention.
  • Figure 3 is a structural view of a five-layer electrode of the present invention.
  • Figure 4 is a side view comparison of the multilayer electrode structure before and after compression
  • Figure 5 is a schematic structural view of the sealing rubber of the present invention.
  • Figure 6 is a rear view of the sealing rubber of the present invention.
  • Figure 7 is an assembled view of the sealing rubber and the electrode frame of the present invention.
  • Figure 8 is a schematic structural view of the diaphragm, the sealing rubber and the electrode frame of the present invention.
  • Figure 9 is a schematic structural view of the diaphragm side seal of the present invention.
  • 2-1 electrode frame; 2-11, wire sealing groove; 2-12, gasket sealing groove; 2-121, gasket sealing groove and wire sealing groove non-joining area; 2-2, sealing rubber; 2-21 , sealing line; 2-22, sealing gasket; 2-221, gasket sealing groove and wire sealing groove connection area; 2-222, compression deformation structure; 2-223, annular convex structure; 2-224, sealing gasket positioning structure ; 2-3, diaphragm.
  • the electrode structure comprises three layers of electrode fibers, which are an electrode fiber layer 1 near the bipolar plate side, an electrode fiber layer 2 located at the center, and an electrode fiber layer 3 near the ion film side.
  • the polyacrylonitrile-based material has a density ratio of 6:4 for the vertical tow and the parallel tow, and 6 ⁇ m for the vertical tow;
  • the structure of the electrode fiber layer 1 and the electrode fiber layer 3 is as follows: porosity: 95%, thickness: 3 mm
  • the electrode fiber layer 2 has a porosity of 92.5% and a thickness of 1.5 mm, and the surface in contact with the graphite bipolar plate or the ion film is provided with a convex thorn-like structure and has a high and low undulation.
  • Comparative Example 1 The appearance of the electrode was the same as in Example 1, and the structure was a conventional structure (no multi-layer fiber layer,
  • the surface has no thorn-like protrusions and a porosity of 92%.
  • the same 5W single cell as in the first embodiment is assembled by the electrode, and the porosity after compression of the electrode is 91%, and the electrical property test and related parameters are recorded and tested. The data is shown in Table 1.
  • the electrode structure comprises five electrode electrode fibers, which are an electrode fiber layer 1 near the bipolar plate side, a central electrode fiber layer 2 and an electrode fiber layer 3 near the ion film side, and are located at the electrode fiber layer.
  • 1 is an electrode fiber layer 4 between the center electrode fiber layer 2, and an electrode fiber layer 5 between the electrode fiber layer 2 and the electrode fiber layer 3.
  • the five layers of raw materials were all polyacrylonitrile-based materials, the vertical tow and parallel tow bundles had a density ratio of 7:3, and the vertical tow had a diameter of 18 ⁇ m.
  • the structure of the electrode fiber layer 1 and the electrode fiber layer 3 is as follows: a porosity of 94% and a thickness of 2 mm; the structure of the electrode fiber layer 4 and the electrode fiber layer 5 is as follows: a porosity of 93% and a thickness of 1 mm; pores of the electrode fiber layer 2 The rate was 92% and the thickness was 0.5 mm. Recording the vertical resistivity of the electrode in close contact with the bipolar plate with an overall porosity of 91%, and assembling the electrode to a 10 kW stack, recording the overall porosity and compression ratio of each layer after compression, as shown in Table 2 .
  • Example 2 After integrating the above 10 kW stack into a 100 kW/100 kWh battery system, charge and discharge were performed in a constant current mode of 80 mA/cm 2 , and the energy efficiency conversion of the stable cycle was recorded. The test data is shown in Table 2. Comparative Example 2: The electrode had the same external dimensions as in Example 2, and its structure was a conventional structure (no multilayer fiber layer, porosity: 93%), and the same 100 kW/100 kWh battery system as that of Example 2 was assembled using the electrode, and electrode compression was performed. After the porosity was 91%, and the electrical performance test and related parameters were recorded. The test data is shown in Table 2.
  • the electrode structure comprises five electrode fibers, which are an electrode fiber layer 1 near the bipolar plate side, an electrode fiber layer 2 located at the center, and an electrode fiber layer 3 near the ion film side, which are located in the electrode fiber layer 1.
  • the raw material of the electrode fiber layer 1, the electrode fiber layer 3, the electrode fiber layer 4, and the electrode fiber layer 5 is a polyacrylonitrile-based material
  • the raw material of the electrode fiber layer 2 is a viscose-based material, a vertical tow and a parallel tow.
  • the density ratio was 6.5:3.5 and the diameter of the vertical tow was 7 ⁇ m.
  • the structure of the electrode fiber layer 1 and the electrode fiber layer 3 is as follows: a porosity of 95% and a thickness of 2 mm, and a surface in contact with the carbon composite bipolar plate or the ion film is provided with a convex thorn-like structure and has a high and low undulation shape;
  • the structure of the fiber layer 4 and the electrode fiber layer 5 was as follows: a porosity of 93.5% and a thickness of 1 mm; and an electrode fiber layer 2 having a porosity of 93% and a thickness of 0.5 mm.
  • the electrode structure comprises five electrode fibers, which are an electrode fiber layer 1 near the bipolar plate side, a central electrode fiber layer 2 and an electrode fiber layer 3 near the ion film side, and are located in the electrode fiber layer 1 and the electrode fiber layer 2; An electrode fiber layer 4, and an electrode fiber layer 5 between the electrode fiber layer 2 and the electrode fiber layer 3.
  • the raw materials of the electrode fiber layer 1, the electrode fiber layer 2, the electrode fiber layer 3, the electrode fiber layer 4, and the electrode fiber layer 5 are all polyacrylonitrile-based materials, and the density ratio of the vertical tow and the parallel tow is 6:4.
  • the vertical tow has a diameter of 15 ⁇ m.
  • the structure of the electrode fiber layer 1 and the electrode fiber layer 3 is as follows: a porosity of 94% and a thickness of 1.5 mm; the structure of the electrode fiber layer 4 and the electrode fiber layer 5 is as follows: a porosity of 93%, a thickness of 1 mm; and an electrode fiber layer 2; The porosity was 92% and the thickness was 0.5 mm.
  • the vertical resistivity of the electrode when the electrode was in close contact with the bipolar plate at a porosity of 91% was recorded, and the electrode was used for 5W single cell assembly, and the overall porosity and the compression ratio of each layer after recording the electrode were recorded. The data is shown in Table 4.
  • the single cell was charged and discharged in a constant current mode of 80 mA/cm 2 , and the energy efficiency conversion of the stable cycle was recorded.
  • the test data is shown in 4.
  • Comparative Example 4 The electrode had the same external dimensions as in Example 4, and its structure was a conventional structure (no multi-layer fiber layer, no thorn-like protrusion on the surface, porosity: 93%), and the same 5W as that of Example 4 was assembled using the electrode. Single cell, the porosity after electrode compression is 91%, and the electrical performance test and related parameters are recorded.
  • the test data is shown in Table 4.
  • the electrode structure comprises five electrode fibers, which are an electrode fiber layer 1 near the bipolar plate side, a central electrode fiber layer 2 and an electrode fiber layer 3 near the ion film side, and are located in the electrode fiber layer 1 and the electrode fiber layer 2; An electrode fiber layer 4, and an electrode fiber layer 5 between the electrode fiber layer 2 and the electrode fiber layer 3.
  • the raw materials of the electrode fiber layer 1, the electrode fiber layer 2, the electrode fiber layer 3, the electrode fiber layer 4, and the electrode fiber layer 5 are all polyacrylonitrile-based materials, and the density ratio of the vertical tow and the parallel tow is 6:4.
  • the vertical tow has a diameter of 10 ⁇ m.
  • the structure of the electrode fiber layer 1 and the electrode fiber layer 3 is as follows: a porosity of 96% and a thickness of 1.75 mm; the structure of the electrode fiber layer 4 and the electrode fiber layer 5 is as follows: a porosity of 94%, a thickness of 1.25 mm; and an electrode fiber layer 2 The porosity is 93% and the thickness is 0.75 mm.
  • the vertical resistivity of the electrode when the electrode was in close contact with the bipolar plate was 91%, and the electrode was used for 5W single cell assembly, and the overall porosity and compression of each layer after compression of the recording electrode were recorded. The data is shown in Table 5. The single cell was charged and discharged in a constant current mode of 80 mA/cm 2 , and the energy efficiency conversion of the stable cycle was recorded. The test data is shown in 5.
  • Comparative Example 5 The electrode was the same size as in Example 5, and its structure was a conventional structure (no multi-layer fiber layer, no thorn-like protrusion on the surface, porosity: 93%), and the same 5W single sheet as in Example 5 was assembled using the electrode. The battery, the porosity after compression of the electrode was 91%, and the electrical performance test and related parameters were recorded. The test data is shown in Table 5.
  • the electrode structure comprises five electrode fibers, which are an electrode fiber layer 1 near the bipolar plate side, a central electrode fiber layer 2 and an electrode fiber layer 3 near the ion film side, and are located in the electrode fiber layer 1 and the electrode fiber layer 2; An electrode fiber layer 4, and an electrode fiber layer 5 between the electrode fiber layer 2 and the electrode fiber layer 3.
  • the raw materials of the electrode fiber layer 1, the electrode fiber layer 2, the electrode fiber layer 3, the electrode fiber layer 4, and the electrode fiber layer 5 are all polyacrylonitrile-based materials, and the density ratio of the vertical tow and the parallel tow is 6:4.
  • the vertical tow has a diameter of 9 ⁇ m.
  • the structure of the electrode fiber layer 1 and the electrode fiber layer 3 is as follows: a porosity of 95% and a thickness of 1.6 mm; the structure of the electrode fiber layer 4 and the electrode fiber layer 5 is as follows: a porosity of 93% and a thickness of 1.5 mm; the electrode fiber layer 2 The porosity is 90% and the thickness is 1 mm.
  • the vertical resistivity of the electrode in close contact with the bipolar plate was recorded to be 91%, and the electrode was used for 5W cell assembly, and the overall porosity and compression ratio of each layer after recording were recorded.
  • the data is shown in Table 6.
  • the single cell was charged and discharged in a constant current mode of 80 mA/cm 2 , and the energy efficiency conversion of the stable cycle was recorded.
  • the test data is shown in 6.
  • Comparative Example 6 The electrode was the same size as in Example 6, and its structure was a conventional structure (no multi-layer fiber layer, no thorn-like protrusion on the surface, porosity: 92%), and the same 5W single sheet as in Example 6 was assembled using the electrode. The porosity of the battery electrode after compression was 91%, and the electrical property test and related parameters were recorded. The test data is shown in Table 6.
  • the electrode structure comprises three layers of electrode fibers, which are an electrode fiber layer 1 near the bipolar plate side, an electrode fiber layer 2 located at the center, and an electrode fiber layer 3 near the ion film side.
  • the raw material of the electrode fiber layer 2 is a viscose-based material.
  • the raw material of the electrode fiber layers 1 and 3 is a polypropylene-based material, the density ratio of the vertical tow and the parallel tow is 6:4, and the diameter of the vertical tow is 12 ⁇ m; the structure of the electrode fiber layer 1 and the electrode fiber layer 3
  • the porosity was 93% and the thickness was 1.5 mm; the electrode fiber layer 2 had a porosity of 91.5% and a thickness of 1 mm.
  • the vertical resistivity of the electrode when the electrode was in close contact with the bipolar plate was 91%, and the electrode was used for 5W cell assembly, and the overall porosity and compression ratio of each layer after recording were recorded.
  • the data is shown in Table 7.
  • the single cell was charged and discharged in a constant current mode of 80 mA/cm 2 , and the energy efficiency conversion of the stable cycle was recorded.
  • the test data is shown in 7.
  • Comparative Example 6 The electrode was the same size as in Example 7, and its structure was a conventional structure (no multi-layer fiber layer, no thorn-like protrusion on the surface, porosity: 92%), and the same 5W single sheet as in Example 7 was assembled using the electrode. The battery, the porosity after compression of the electrode was 91%, and the electrical performance test and related parameters were recorded. The test data is shown in Table 7.
  • the flow battery has the characteristics of good safety, long service life, large storage capacity, adjustable power and capacity separation, free site selection and clean and environmental protection. It can ensure the smooth output of new energy such as wind energy and solar energy after storage adjustment.
  • the standard open circuit voltage of the battery of the flow battery is small. To meet the practical application, a certain number of single cells need to be assembled in series into a stack to obtain the required voltage.
  • the stack structure of the stack puts high demands on its sealing.
  • the common sealing methods of the stack include stranded wire seal, sheet surface seal, sheet surface seal, glue, welding or groove matching.
  • the above several sealing methods exist in a single method, and it is impossible to completely solve the problem of leakage and leakage of the electrolyte in the stack.
  • Adhesive, welding and groove matching modes are incapable of disassembly and secondary use after the damage of the stack cell, and the series of problems between the positive electrode frame and the negative electrode frame are not precisely matched, and the practicability is poor.
  • the present invention solves the above problems by a new flow battery stack sealing structure.
  • the invention provides a flow battery stack sealing structure
  • the flow battery stack sealing structure comprises a sealing rubber
  • the sealing rubber is formed by connecting a plurality of sealing gaskets by a sealing wire
  • the sealing gasket is provided with electrolysis
  • the liquid common passage hole has one side of the sealing gasket provided with a compression deformation structure, and the other surface of the sealing gasket is provided with an annular convex structure.
  • the material of the sealing rubber of the present invention is preferably a fluororubber or an ethylene propylene diene monomer.
  • the sealing wire of the present invention preferably has a diameter of from 1 to 3 mm.
  • the thickness of the sealing gasket of the present invention is preferably from 1 to 3 mm.
  • the shortest distance from the outer edge of the sealing gasket of the present invention to the center of the common flow path of the electrolyte is preferably 1.5 to 3 times the radius of the common flow path of the electrolyte.
  • the sealing gasket of the present invention preferably has at least two annular projection structures, and the inner edge diameter of the innermost annular projection structure is greater than or equal to the outer diameter of the common flow passage hole of the electrolyte.
  • the spacing between the annular raised structures of the layers of the present invention is from 0.5 to 3 mm, further preferably from 1 to 2 mm.
  • each of the annular projection structures of the present invention is preferably rectangular, semi-circular or inverted trapezoidal, further preferably rectangular.
  • the compression set structure of the present invention is preferably a plurality of grooves.
  • the shape of the groove of the present invention is preferably curved, rectangular or triangular.
  • the sealing gasket of the present invention is preferably provided with at least one sealing gasket positioning structure, and further preferably provided with at least two sealing gasket positioning structures.
  • the thickness of the sealing gasket positioning structure of the present invention is preferably from 0.3 to 0.8 times the thickness of the sealing gasket, and further preferably from 0.4 to 0.6 times the thickness of the sealing gasket.
  • the sealing rubber of the present invention preferably has a Shore hardness of 40 to 100, more preferably 60 to 80.
  • the compression ratio of the sealing gasket of the present invention is preferably from 10 to 30%.
  • the flow battery stack sealing structure of the present invention preferably further includes an electrode frame, the electrode frame is provided with a wire sealing groove and a gasket sealing groove, and the sealing wire and the sealing gasket are respectively disposed in the wire sealing groove and the gasket sealing groove,
  • the filling ratio of the sealing gasket to the gasket sealing groove is 90-95%, and the filling ratio of the sealing wire to the wire sealing groove is 90-95%.
  • the gasket sealing groove and the wire sealing groove connection region of the present invention are in close contact with the sealing gasket, and other regions of the gasket sealing groove are larger in size than the sealing gasket.
  • the compression deformation structure of the sealing gasket of the present invention is placed in a gasket sealing groove.
  • the width of the wire sealing groove of the present invention is preferably 1-5 mm, the depth of the wire sealing groove is preferably 1-5 mm, and the distance of the outer edge of the gasket sealing groove from the outer edge of the electrode frame is preferably 5-20 mm.
  • the flow battery stack sealing structure of the present invention preferably further comprises two electrode frames, two sealing rubbers and a diaphragm; the line sealing grooves of the two electrode frames are different from the outer edges of the respective electrode frames, and the sealing is
  • the rubber is placed in the sealing groove of the electrode frame, and the sealing gasket of the sealing rubber is provided with one surface of the compression deformation structure in contact with the electrode frame and the other surface is in contact with the diaphragm, and the sealing of the diaphragm at the common flow channel hole of the electrolyte is
  • the electrolyte common flow hole of the diaphragm is sleeved on the outermost annular convex structure of one of the sealing gaskets, one side of the diaphragm is in contact with one of the sealing rubber sealing gaskets, and the other side is in contact with the sealing line of the other sealing rubber
  • the sealing of the diaphragm at the non-electrolyte common channel hole is such that the diaphragm is sealed by
  • the center of the common flow hole of the electrolyte is the same, and the diameter of the common flow hole of the electrolyte of the diaphragm, the sealing gasket and the electrode frame is sequentially increased by 1-5 mm.
  • the sealing line of one of the sealing rubbers of the present invention and the sealing line of the other sealing rubber are sealed to the dislocation side of the diaphragm, and the spacing of the two sealing lines is preferably greater than 0.5 mm, further preferably greater than 2 mm.
  • the function of the annular protrusion of the invention is: a, ensuring accurate positioning of the diaphragm installation; b, preventing the common flow hole of the electrolyte of the diaphragm from shifting; c, sealing the inner wall section of the common flow passage hole of the electrolyte of the diaphragm, Preventing the flow battery electrolyte from flowing through the inner wall of the common flow passage hole of the diaphragm to the external leakage of the stack, causing leakage of the stack and short circuit of the battery.
  • the invention respectively seals the hole and the periphery of the common flow channel of the electrolyte of the diaphragm, and the diaphragm side seal realizes double-layer protection for the inner and outer embedded line sealing manner, and realizes the inside and outside by means of surface sealing at the position of the common flow path of the electrolyte. Leakage protection, and the volume of all sealing components is less than the volume of the corresponding sealing groove.
  • the invention has good sealing property, prolongs the life of the liquid flow battery, and prevents economic leakage caused by frequent leakage of the electrolyte of the liquid flow battery, and has higher secondary utilization than the conventional single-line sealing and single-face sealing. Strong pressure.
  • the symmetrical line seal embedded in the inner and outer sides of the invention on the diaphragm side not only saves materials, but also makes the battery resistance small, the battery system runs fast, and the charge and discharge cost is low.
  • the invention adopts a surface sealing manner at the position of the common flow path of the electrolyte to make the sealing performance better, wherein the annular protrusion increases the compression ratio, so that the electrolyte is less likely to leak.
  • a flow battery stack sealing structure includes two electrode frames 2-1 and two Shore A type 60 hardness seal rubbers 2 - 2, a diaphragm 2-3 provided with an electrolyte common flow hole; the sealing rubber 2-2 (shown in Figures 5-7) is provided with two common electrolyte flow holes by a sealing line 2-21
  • the sealing gaskets 2-22 are connected, and the diameter of the sealing wires 2-21 is 1mm, the thickness of the sealing gasket 2-22 is 1mm, the compression ratio of the sealing gasket 2-22 is 10%, and the shortest distance from the outer edge of the sealing gasket 2-22 to the center of the common flow passage of the electrolyte is electrolysis 1.5 times the radius of the liquid common flow path, one side of the sealing gasket 2-22 is provided with a compression deformation structure 2-222, and the compression deformation structure 2-222 is a plurality of arcuate grooves, the sealing gasket 2-22 The other side is provided with two annular protrusion structures 2-223, the convex section of the annular
  • the sealing gasket 2-22 is provided with two sealing gasket positioning structures 2-224, the sealing gasket positioning structure 2-224 has a thickness of 0.3 times the thickness of the sealing gasket 2-22;
  • the electrode frame 2-1 is provided with a wire Sealing groove 2-11 and gasket sealing groove 2-12, the wire sealing groove 2-11 has a width of 1 mm, the wire sealing groove 2-11 has a depth of 1 mm, and the lines of the two electrode frames 2-1
  • the distance between the sealing grooves 2-11 and the outer edges of the respective electrode frames 2-1 is 5 mm and 10 mm, respectively, and the sealing wires 2-21 and the sealing gaskets 2-22 are respectively placed in the wire sealing grooves 2-11 and the gasket sealing grooves.
  • the sealing gasket 2-22 provided with the compression deformation structure 2-222 is in contact with the electrode frame 2-1, and the filling ratio of the sealing gasket 2-22 to the gasket sealing groove 2-12 is 90%.
  • the filling ratio of the sealing wire 2-21 to the wire sealing groove 2-12 is 90%, and the sealing of the diaphragm 2-3 at the common flow hole of the electrolyte is the common flow of the electrolyte of the diaphragm 2-3
  • the hole is sleeved on the outermost annular projection structure 2-223 of one of the sealing gaskets 2-22, one side of the diaphragm 2-3 is in contact with the sealing gasket 2-22 of one of the sealing rubbers 2-2, and the other side is Contacting the sealing wire 2-21 of the other sealing rubber 2-2, the gasket sealing groove 2-12 is in close contact with the sealing groove 2-11 of the sealing gasket 2-22, the gasket sealing groove 2-12
  • the other area size is larger than the size of the sealing gasket 2-22; the sealing of the diaphragm 2-3
  • a flow battery stack sealing structure includes two electrode frames 2-1 and two Shore A hardnesses of 80 EPDM.
  • Sealing rubber 2-2 a diaphragm 2-3 provided with an electrolyte common flow hole; the sealing rubber 2-2 is sealed by a sealing wire 2-21 to two sealing gaskets 2-22 provided with an electrolyte common flow hole Connected, the sealing wire 2-21 has a diameter of 3 mm, the sealing gasket 2-22 has a thickness of 3 mm, the sealing gasket 2-22 has a compression ratio of 30%, and the sealing gasket 2-22 is externally
  • the shortest distance from the center of the common flow path of the electrolyte is three times the radius of the common flow path of the electrolyte, and one side of the sealing gasket 2-22 is provided with a compression deformation structure 2-222, and the compression deformation structure 2-222 is a plurality of An arcuate groove, the other side of the sealing gasket 2-22 is provided with two layers of annular convex structures 2-223, the convex
  • the electrode frame 2-1 is provided with a wire sealing groove 2-11 and a gasket sealing groove 2-12, and the wire sealing groove 2-11 has a width of 5 mm, and the wire sealing groove 2-11
  • the depth of the wire seal grooves 2-11 of the two electrode frames 2-1 is 10 mm and 20 mm from the outer edges of the respective electrode frames 2-1, respectively, and the sealing wires 2-21 and the sealing gasket 2 - 22 is placed in the wire sealing groove 2-11 and the gasket sealing groove 2-12, respectively, and one side of the sealing gasket 2-22 provided with the compression deformation structure 2-222 is in contact with the electrode frame 2-1, the sealing gasket 2
  • the filling ratio of 22 to the gasket sealing groove 2-12 is 95%
  • the filling ratio of the sealing wire 2-21 to the wire sealing groove 2-12 is 95%
  • the separator 2-3 is in the common flow hole of the electrolyte thereof.
  • the sealing at the end is to cover the electrolyte common flow passage hole of the diaphragm 2-3 on the outermost annular convex structure 2-223 of one of the sealing gaskets 2-22, one side of the diaphragm 2-3 is sealed with one of them.
  • the sealing gasket 2-22 of the rubber 2-2 is in contact, and the other surface is in contact with the sealing wire 2-21 of the other sealing rubber 2-2, and the gasket sealing groove 2-12 is in close contact with the connection region of the wire sealing groove 2-11.
  • the other area of the sealing groove 2-12 is larger than the size of the sealing gasket 2-22; the sealing of the diaphragm 2-3 at the non-electrolyte common flow path hole is the sealing of the diaphragm 2-3 through the two misaligned sealing rubber 2-2
  • the line 2-21 is sealed, the distance between the two sealing lines 2-21 is 2 mm, and the center of the common flow channel hole of the electrode frame 2-1, the sealing gasket 2-2 and the diaphragm 2-3 is the same.
  • the electrolyte common channel hole diameters of the separator 2-3, the gasket 2-2, and the electrode frame 2-1 were sequentially increased by 1 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Gasket Seals (AREA)
  • Secondary Cells (AREA)

Abstract

一种液流电池电极结构、液流电池电堆及液流电池电堆的密封结构,电极纤维中垂直丝束的密度大于平行丝束的密度。单位体积的电极纤维中,垂直丝束与平行丝束的数量比至少为6∶4。所述电极结构由奇数层所述电极纤维构成,其他各层的孔隙率大于中心层。所述电极结构以垂直于电极表面的垂直丝束为主,一是可增加电极外表面与相邻部件的接触面积减小接触电阻,二是赋予电极良好的机械性能,此种结构与原结构相比,接触电阻减小了30%~50%;所述电极的各层随孔隙率不同而厚度各异,厚度优化的各层在压缩后孔隙率一致,此种压缩后的均匀结构避免电解液流经电极内部时的传质不均现象,降低电池的浓差极化从而提高给定功率下的电池能量输出。

Description

液流电池电极结构、液流电池电堆及液流电池电堆的密封结构 技术领域
本发明涉及液流电池技术领域,特别涉及液流电池电极结构及液流电池电堆。
背景技术
液流电池系统作为一种大规模储能技术,由于其可靠性、安全性、选址自由、容量功率独立设计等优点,已受到广泛的关注。电堆作为液流电池系统的主要核心部件,其功率性能的好坏直接影响整个液流电池系统的可靠性、安全性和成本。影响液流电池电堆功率性能的主要因素包括欧姆极化、电化学极化和浓差极化。其中电化学极化、浓差极化主要受电极材料、电解液及操作条件的影响,而欧姆极化主要受电极材料本体导电率以及电极材料与相邻部件间接触电阻的共同作用和影响。对于选定某一固定的电池材料情况下,液流电池的欧姆极化的大小将仅仅取决于电极与相邻部件(双极板/离子膜)之间的接触电阻。接触电阻大,将大幅度制约液流电池的放电功率及电压效率等性能。
此外,液流电池的电极材料通常为多孔的碳毡或石墨毡,在组装为电堆后,由于其两侧受到压紧力的作用,导致碳毡或石墨毡在厚度方向的孔隙率发生变化,两侧的孔隙率远远小于中心位置的孔隙率,孔隙率的不均匀将导致电解液在电极中心位置、表面两侧位置的流动速率和阻力大不相同。这将会导致液流电池电堆出现电解液分布不均匀、电化学反应不均匀、电流传递和热量传递的不均匀等诸多问题,降低电堆的能量效率和寿命。
发明内容
本发明提供一种液流电池电极结构,目的在于解决传统电极与相邻部件间的接触电阻较大、传统电极结构组装为电堆后孔隙率不一致的问题。液流电池的电极一般为多层相互连续的网状多孔结构(电极纤维)构成,其中每一层结构由至少两个方向相互编织的平行丝束构成;层状结构之间的连接通过垂直丝束(垂直于电极表面)构成。本发明提供的液流电池电极结构,包括电极纤维,所述电极纤维中垂直丝束的密度大于平行丝束的密度。
作为优选的技术方案,所述单位体积的电极纤维中,垂直丝束与平行丝束的数量比至少为6∶4。
作为优选的技术方案,所述电极结构由至少三层所述电极纤维构成,其他各层的孔隙率大于中心层。
作为优选的技术方案,所述电极纤维的层数为奇数层,各电极纤维层的孔隙率由中心层向外递增。
作为优选的技术方案,所述中心层电极纤维的孔隙率为90~93%;其他各层的电极纤维的孔隙率为93~96%。
作为优选的技术方案,所述电极纤维的层数为三层、五层或七层。
作为优选的技术方案,所述电极纤维的材质为聚丙烯晴基和/或粘胶基材料和/或沥青基材料。各层电极纤维可选为相同材质也可为不同材质。
作为优选的技术方案,所述中心层电极纤维的厚度占电极总厚度的比例为20%~30%,一侧的电极纤维厚度占电极总厚度的比例为20%~45%,组装液流电池电堆时该侧靠近双极板;另一侧的电极纤维厚度占电极总厚度的比例为15%~35%,组装液流电池电堆时该侧靠近离子膜。
本发明另一目的是提供液流电池电堆,采用上述电极结构组装,在0.1~0.25MPa的电堆预紧力下压缩组装后,所述电堆中各层电极纤维的孔隙率被压缩为89~92%。
作为优选的技术方案,所述电堆中各层电极纤维的孔隙率差值小于3%,优选为1.5%。
考虑到薄电极在高电流密度时的低消耗性,每层厚度优选为不超过2.5mm,电极总厚度优选为3~6mm。根据各层的压缩能力不同,各层电极纤维厚度优选为由外而内向中心层逐渐变小,其他各层与中心层的厚度比例为不小于1.5∶1。
电极最外侧电极纤维的表面为刺状或针状结构,所述刺状或针状结构的高度不同,呈高低起伏状态。所述刺状或针状结构由垂直于电极表面的垂直丝束构成,所述垂直丝束的直径为6~18μm,优选地7~15μm。
更进一步的,所述电极原料为三层结构,其中中心层为粘胶基材料,两侧层为聚丙烯晴基材料。保证电极与离子膜和双极板接触的电极纤维层为聚丙烯晴基材料。其优点在于,粘胶基纤维丝比表面积大,同样条件下与聚丙烯晴基纤维丝相比,可为电解液和电极间提供更多的反应活性区域。
本发明所述孔隙率为体积孔隙率,具体为通孔体积与电极材料体积之比。
本发明中所述两侧层是指位于电极结构中最外侧的两层电极纤维。
本发明所述中心层是指位于电极结构中心的电极纤维层。
本发明所述其他各层是指除中心层以外的其他各电极纤维层,包括前述的两侧层。
本发明的有益效果如下:
1)本发明所述电极结构以垂直于电极表面的垂直丝束为主,一是可增加电极外表面与相邻部件的接触面积较小接触电阻,二是赋予电极良好的机械性能,此种结构与原结构相比,接触电阻减小了30%~50%;
2)所述电极的各层随孔隙率不同而厚度各异,厚度优化的各层在压缩后孔隙率一致,此种压缩后的均匀结构避免电解液流经电极内部时的传质不均现象,降低电池的浓差极化从而提高给定功率下的电池能量输出;
3)所述电极结构制备工艺简单极易实现,用极小的生产成本最大程度的优化了液流电池功率性能。
附图说明
图1本发明电极的纤维立体结构图;
图2本发明三层电极结构图;
图3本发明五层电极结构图;
图4多层电极结构压缩前后侧视对比图;
图中:1、双极板侧纤维层;2、中心纤维层;3、离子膜侧纤维层;4、介于双极板侧纤维层1和中心纤维层2之间的纤维层;5、介于中心纤维层2和离子膜侧纤维层3之间的纤维层;6、离子膜或双极板。
图5为本发明所述密封橡胶的结构示意图;
图6为本发明所述密封橡胶的背视图;
图7为本发明所述密封橡胶与电极框的装配图;
图8为本发明所述隔膜、密封橡胶与电极框的结构示意图;
图9为本发明所述隔膜侧密封的结构示意图;
其中;2-1、电极框;2-11、线密封槽;2-12、垫圈密封槽;2-121、垫圈密封槽与线密封槽非连接区域;2-2、密封橡胶;2-21、密封线;2-22、密封垫圈;2-221、垫圈密封槽与线密封槽连接区域;2-222、压缩变形结构;2-223、环形凸起结构;2-224、密封垫圈定位结构;2-3、隔膜。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
如图2所示,电极结构包括三层电极纤维,分别为靠近双极板侧的电极纤维层1,位于中心的电极纤维层2和靠近离子膜侧的电极纤维层3,三层原料均为聚丙烯腈基材料,垂直丝束和平行丝束的密度比为6∶4,垂直丝束的直径为6μm;电极纤维层1和电极纤维层3的结构如下:孔隙率为95%,厚度3mm;电极纤维层2的孔隙率为92.5%,厚度为1.5mm,与石墨双极板或离子膜接触的表面设有凸起的刺状结构且呈高低起伏状。记录所述电极与双极板紧密接触整体孔隙率达91%时的垂直向电阻率,并将该电极以同等压缩条件组装到5W单电池上记录电极压缩后的整体孔隙率和各层压缩率。5W单电池以80mA/cm2的恒流模式进行充放电,记录其稳定循环的能量效率转化情况。
对比例1:电极外观尺寸与实施例1相同,其结构为常规结构(无多层纤维层,
表面无刺状凸起,孔隙率为92%),利用该电极组装与实施例1相同的5W单电池,电极压缩后的孔隙率为91%,并进行电性能测试及相关参数的记录,测试数据见表1。
表1
实施例2
如图3所示,电极结构包括五层电极电极纤维,分别为靠近双极板侧的电极纤维层1,位于中心的电极纤维层2和靠近离子膜侧的电极纤维层3,位于电极纤维层1与中心电极纤维层2之间的电极纤维层4,和位于电极纤维层2与电极纤维层3之间的电极纤维层5。五层原料均为聚丙烯腈基材料,垂直丝束和平行丝束的密度比为7∶3,垂直丝束的直径为18μm。电极纤维层1和电极纤维层3的结构如下:孔隙率为94%,厚度2mm;电极纤维层4和电极纤维层5的结构如下:孔隙率为93%,厚度1mm;电极纤维层2的孔隙率为92%,厚度为0.5mm。记录所述电极与双极板紧密接触整体孔隙率达91%时的垂直向电阻率,并将该电极组装到10kW电堆,记录电极压缩后整体孔隙率和各层压缩率,数据见表2。将含有以上10kW电堆集成为100kW/100kWh的电池系统后,以80mA/cm2恒流模式进行充放电,记录其稳定循环的能量效率转化情况,测试数据见表2。对比例2:电极外观尺寸与实施例2相同,其结构为常规结构(无多层纤维层,孔隙率为93%),利用该电极组装与实施例2相同的100kW/100kWh电池系统,电极压缩后的孔隙率为91%,并进行电性能测试及相关参数的记录,测试数据见表2。
表2
Figure PCTCN2017109236-appb-000002
实施例3
如图3所示,电极结构包括五层电极纤维,分别为靠近双极板侧的电极纤维层1,位于中心的电极纤维层2和靠近离子膜侧的电极纤维层3,位于电极纤维层1和电极纤维层2之间的电极纤维层4,和位于电极纤维层2和电极纤维层3之间的电极纤维层5。其中电极纤维层1、电极纤维层3、电极纤维层4、电极纤维层5层的原料为聚丙烯腈基材料,电极纤维层2的原料为粘胶基材料,垂直丝束和平行丝束的密度比为6.5∶3.5,垂直丝束的直径为7μm。电极纤维层1和电极纤维层3的结构如下:孔隙率为95%,厚度2mm,与碳素复合双极板或离子膜接触的表面设有凸起的刺状结构且呈高低起伏状;电极纤维层4和电极纤维层5的结构如下:孔隙率为93.5%,厚度1mm;电极纤维层2的孔隙率为93%,厚度为0.5mm。记录所述电极与双极板紧密接触整体孔隙率达91%时的垂直向电阻率,采用该电极进行30kW级电堆组装,记录电极压缩后整体孔隙率和各层压缩率,数据见表3。30kW电堆以80mA/cm2恒流模式进行充放电,记录其稳定循环的能量效率转化情况,测试数据见表3。对比例3:电极尺寸与实施例3相同,其结构为常规结构(无多层纤维层,表面无刺状凸起,孔隙率为92%),利用该电极组装与实施例3相同的30kW电堆,电极压缩后的孔隙率为91%,并进行电性能测试及相关参数的记录,测试数据见表3。
表3
Figure PCTCN2017109236-appb-000003
实施例4
电极结构包括五层电极纤维,分别为靠近双极板侧的电极纤维层1,位于中心的电极纤维层2和靠近离子膜侧的电极纤维层3,位于电极纤维层1和电极纤维层2之间的电极纤维层4,和位于电极纤维层2和电极纤维层3之间的电极纤维层5。其中电极纤维层1、电极纤维层2、电极纤维层3、电极纤维层4、电极纤维层5层的原料均为聚丙烯腈基材料,垂直丝束和平行丝束的密度比为6∶4,垂直丝束的直径为15μm。电极纤维层1和电极纤维层3的结构如下:孔隙率为94%,厚度1.5mm;电极纤维层4和电极纤维层5的结构如下:孔隙率为93%,厚度1mm;电极纤维层2的孔隙率为92%,厚度为0.5mm。记录所述电极与双极板紧密接触整体孔隙率达91%时的垂直向电阻率,采用该电极进行5W单电池组装,记录电极压缩后整体孔隙率和各层压缩率,数据见表4。单电池以80mA/cm2的恒流模式进行充放电,记录其稳定循环的能量效率转化情况,测试数据见4。对比例4:电极外观尺寸与实施例4相同,其结构为常规结构(无多层纤维层,表面无刺状凸起,孔隙率为93%),利用该电极组装与实施例4相同的5W单电池,电极压缩后的孔隙率为91%,并进行电性能测试及相关参数的记录,测试数据见表4。
表4
Figure PCTCN2017109236-appb-000004
实施例5
电极结构包括五层电极纤维,分别为靠近双极板侧的电极纤维层1,位于中心的电极纤维层2和靠近离子膜侧的电极纤维层3,位于电极纤维层1和电极纤维层2之间的电极纤维层4,和位于电极纤维层2和电极纤维层3之间的电极纤维层5。其中电极纤维层1、电极纤维层2、电极纤维层3、电极纤维层4、电极纤维层5层的原料均为聚丙烯腈基材料,垂直丝束和平行丝束的密度比为6∶4,垂直丝束的直径为10μm。电极纤维层1和电极纤维层3的结构如下:孔隙率为96%,厚度1.75mm;电极纤维层4和电极纤维层5的结构如下:孔隙率为94%,厚度1.25mm;电极纤维层2的孔隙率为93%,厚度为0.75mm。记录所述电极与双极板紧密接触整体孔隙率达91%时的垂直向电阻率,采用该电极进行5W单电池组装,记录电极压缩后整体孔隙率和各层压缩,数据见表5。单电池以80mA/cm2的恒流模式进行充放电,记录其稳定循环的能量效率转化情况,测试数据见5。
表5
Figure PCTCN2017109236-appb-000005
对比例5:电极尺寸与实施例5相同,其结构为常规结构(无多层纤维层,表面无刺状凸起,孔隙率为93%),利用该电极组装与实施例5相同的5W单电池,电极压缩后的孔隙率为91%,并进行电性能测试及相关参数的记录,测试数据见表5。
实施例6
电极结构包括五层电极纤维,分别为靠近双极板侧的电极纤维层1,位于中心的电极纤维层2和靠近离子膜侧的电极纤维层3,位于电极纤维层1和电极纤维层2之间的电极纤维层4,和位于电极纤维层2和电极纤维层3之间的电极纤维层5。其中电极纤维层1、电极纤维层2、电极纤维层3、电极纤维层4、电极纤维层5层的原料均为聚丙烯腈基材料,垂直丝束和平行丝束的密度比为6∶4,垂直丝束的直径为9μm。电极纤维层1和电极纤维层3的结构如下:孔隙率为95%,厚度1.6mm;电极纤维层4和电极纤维层5的结构如下:孔隙率为93%,厚度1.5mm;电极纤维层2的孔隙率为90%,厚度为1mm。记录所述电极与双极板紧密接触整体孔隙率达91%时的垂直向电阻率,采用该电极进行5W单电池组装,记录电极压缩后整体孔隙率和各层压缩率,数据见表6。单电池以80mA/cm2的恒流模式进行充放电,记录其稳定循环的能量效率转化情况,测试数据见6。
表6
Figure PCTCN2017109236-appb-000006
对比例6:电极尺寸与实施例6相同,其结构为常规结构(无多层纤维层,表面无刺状凸起,孔隙率为92%),利用该电极组装与实施例6相同的5W单电池电极压缩后的孔隙率为91%,并进行电性能测试及相关参数的记录,测试数据见表6。
实施例7
电极结构包括三层电极纤维,分别为靠近双极板侧的电极纤维层1,位于中心的电极纤维层2和靠近离子膜侧的电极纤维层3,电极纤维层2的原料为粘胶基材料,电极纤维层1和3的原料为聚丙烯晴基材料,垂直丝束和平行丝束的密度比为6∶4,垂直丝束的直径为12μm;电极纤维层1和电极纤维层3的结构如下:孔隙率为93%,厚度1.5mm;电极纤维层2的孔隙率为91.5%,厚度为1mm。记录所述电极与双极板紧密接触整体孔隙率达91%时的垂直向电阻率,采用该电极进行5W单电池组装,记录电极压缩后整体孔隙率和各层压缩率,数据见表7。单电池以80mA/cm2的恒流模式进行充放电,记录其稳定循环的能量效率转化情况,测试数据见7。
表7
Figure PCTCN2017109236-appb-000007
对比例6:电极尺寸与实施例7相同,其结构为常规结构(无多层纤维层,表面无刺状凸起,孔隙率为92%),利用该电极组装与实施例7相同的5W单电池,电极压缩后的孔隙率为91%,并进行电性能测试及相关参数的记录,测试数据见表7。
实施例8
现代经济社会发展对传统能源日益增长的需求,使得其供给不足的问题日益突出。人们不得不寻找风能、太阳能等可再生能源,近些年,以风能和太阳能为代表的新能源已经占据了能源供给的一席之地,随着需求增加,比例仍然在不断增大,但其受天气影响而造成发电间歇性的供需矛盾比较突出,规模储能的发展已经势在必行。
作为大规模能量储存的途径-液流电池的产生和发展为上述新能源的缺陷提供了很好的补充。液流电池具有安全性好、寿命长,蓄电容量大、功率与容量分离可调、选址自由和清洁环保等特点,可以保证风能、太阳能等新能源经过存储调整后的平稳输出,实现规模化电能管理、电网辅助、电压控制、大型不间断电源的重要作用。
液流电池的单电池标准开路电压较小,为满足实际应用,需要将一定数量的单电池串联组装成电堆,以便得到所需的电压。电堆的堆栈结构对其密封性提出了较高的要求,目前电堆常用的密封方式包括绞线密封、片状面密封、片状面密封、胶粘、焊接或者沟槽配合等。但是,以上几种密封方式存在方法单一,无法彻底解决电堆的电解液内漏及外漏问题。
a、绞线密封虽然成本较低,但是对电解液公共流道孔处的密封效果不佳,以及容易导致电解液外漏至电堆外部;
b、片状面密封虽然密封效果略好,但是具有成本昂贵、无法二次使用的问题;
c、胶粘、焊接及沟槽配合模式存在电堆单电池损坏后无法拆装及二次利用,以及正极电极框与负极电极框之间无法精确匹配等一系列问题,实用性较差。
另外,研究人员发现,如果对隔膜电解液公共流道孔处没有进行单独绝缘处理,电堆长期使用后,隔膜电解液公共流道孔处将发生电解液内漏的情况,导致隔膜作为导电介质引发电堆内部的漏电,进而在隔膜的电解液公共流道孔发生化学和电化学腐蚀,产生活性物质沉淀物或者结晶物,导致正负极电解液在隔膜两侧发生互串,破坏隔膜及其密封结构。上述现象的发生会导致电堆性能的衰减,进而影响液流电池的整体性能和寿命。
本发明通过新的液流电池电堆密封结构,解决了上述问题。
本发明提供了一种液流电池电堆密封结构,所述液流电池电堆密封结构包括密封橡胶,所述密封橡胶由密封线将若干个密封垫圈连接而成,所述密封垫圈设有电解液公共流道孔,所述密封垫圈的一面设有压缩变形结构,所述密封垫圈的另一面设有环形凸起结构。
本发明所述密封橡胶的材质优选为氟橡胶或三元乙丙橡胶。
本发明所述密封线的直径优选为1-3mm。
本发明所述密封垫圈的厚度优选为1-3mm。
本发明所述密封垫圈外缘到电解液公共流道中心的最短距离优选为电解液公共流道半径的1.5-3倍。
本发明所述密封垫圈优选为至少设有两层环形凸起结构,其最内层环形凸起结构的内缘直径大于等于电解液公共流道孔的外缘直径。
本发明所述各层环形凸起结构之间的间距为0.5-3mm,进一步优选为1-2mm。
本发明所述各层环形凸起结构的截面形状优选为矩形、半圆形或倒梯形,进一步优选为矩形。
本发明所述压缩变形结构优选为若干个凹槽。
本发明所述凹槽形状优选为弧形、矩形或三角形。
本发明所述密封垫圈优选为设有至少一个密封垫圈定位结构,进一步优选为设有至少两个密封垫圈定位结构。本发明所述密封垫圈定位结构的厚度优选为密封垫圈厚度的0.3-0.8倍,进一步优选为密封垫圈厚度的0.4-0.6倍。
本发明所述密封橡胶的邵氏硬度优选为40-100,进一步优选为60-80。
本发明所述密封垫圈的压缩比优选为10-30%。
本发明所述液流电池电堆密封结构优选为还包括电极框,所述电极框设有线密封槽和垫圈密封槽,所述密封线与密封垫圈分别置于线密封槽与垫圈密封槽内,所述密封垫圈与垫圈密封槽的填充比为90-95%,所述密封线与线密封槽的填充比为90-95%。
本发明所述垫圈密封槽与线密封槽连接区域优选为紧密接触密封垫圈,所述垫圈密封槽的其他区域尺寸大于密封垫圈尺寸。
本发明所述密封垫圈的压缩变形结构置于垫圈密封槽内。
本发明所述线密封槽的宽度优选为1-5mm,所述线密封槽的深度优选为1-5mm,所述垫圈密封槽外缘距离电极框外缘的距离优选为5-20mm。
本发明所述液流电池电堆密封结构优选为还包括两个电极框、两个密封橡胶、隔膜;所述两个电极框的线密封槽距离各自电极框外边缘的距离不同,所述密封橡胶置于电极框的密封槽内,所述密封橡胶的密封垫圈设有压缩变形结构的一面与电极框接触、另一面与隔膜接触,所述隔膜在电解液公共流道孔处的密封为将隔膜的电解液公共流道孔套在其中一个密封垫圈的最外层环形凸起结构上,所述隔膜的一面与其中一个密封橡胶的密封垫圈接触、另一面与另一个密封橡胶的密封线接触,所述隔膜在非电解液公共流道孔处的密封为隔膜通过两个错位密封橡胶的密封线密封,即隔膜公用流道孔处的密封结构是隔膜上下均采用密封线密封,但是其中一侧的密封线为密封圈接触,而另一侧为线密封结构。。
本发明所述电极框、密封垫圈和隔膜的电解液公共流道孔的圆心相同,所述隔膜、密封垫圈和电极框的电解液公共流道孔直径依次增大1-5mm。
本发明所述其中一个密封橡胶的密封线与另一个密封橡胶的密封线对隔膜错位侧密封,所述两个密封线的间距优选为大于0.5mm,进一步优选为大于2mm。
本发明所述环形凸起的作用为:a、保证隔膜安装定位的准确;b、防止隔膜的电解液公共流道孔偏移;c、对隔膜的电解液公共流道孔内壁截面的密封,防止液流电池电堆电解液通过隔膜的公共流道孔内壁截面向电堆外渗液而造成电堆外漏和单电池导通短路状况的发生。
本发明有益效果为:
①本发明分别对隔膜的电解液公共流道孔处和周边进行密封,隔膜侧密封为内外嵌透的线密封方式实现双层保护,在电解液公共流道的位置采用面密封的方式实现内外漏的保护,且所有密封部件的体积小于相应密封槽的体积。
②本发明密封性好,延长了液流电池的寿命,防止液流电池的电解液频繁泄漏而带来的经济损失,与传统的单一线密封、单一面密封相比二次利用性高、承压能力强。
③本发明在隔膜侧采用的内外嵌透的对称的线密封不仅节省材料,还可以使电池电阻变小,电池系统运行速度快、充放电成本低。
④本发明在电解液公共流道的位置采用面密封的方式使得密封性能更好,其中环形凸起加大了压缩比,使得电解液更不容易泄漏。
实施例9
如图8、9所示,一种液流电池电堆密封结构,所述液流电池电堆密封结构包括两个电极框2-1、两个邵氏A型硬度为60的氟密封橡胶2-2、设有电解液公共流道孔的隔膜2-3;所述密封橡胶2-2(如图5-7所示)由密封线2-21将两个设有电解液公共流道孔的密封垫圈2-22连接而成,所述密封线2-21的直径为 1mm,所述密封垫圈2-22的厚度为1mm,,所述密封垫圈2-22的压缩比为10%,所述密封垫圈2-22外缘到电解液公共流道中心的最短距离为电解液公共流道半径的1.5倍,所述密封垫圈2-22的一面设有压缩变形结构2-222,所述压缩变形结构2-222为若干个弧形凹槽,所述密封垫圈2-22的另一面设有两层环形凸起结构2-223,所述环形凸起结构2-223的凸起截面为矩形,所述两层环形凸起结构2-223之间的间距为0.5mm,所述密封垫圈2-22设有两个密封垫圈定位结构2-224,所述密封垫圈定位结构2-224的厚度为密封垫圈2-22厚度的0.3倍;所述电极框2-1设有线密封槽2-11和垫圈密封槽2-12,所述线密封槽2-11的宽度为1mm,所述线密封槽2-11的深度为1mm,所述两个电极框2-1的线密封槽2-11距离各自电极框2-1外边缘的距离分别为5mm和10mm,所述密封线2-21与密封垫圈2-22分别置于线密封槽2-11与垫圈密封槽2-12内,所述密封垫圈2-22设有压缩变形结构2-222的一面与电极框2-1接触,所述密封垫圈2-22与垫圈密封槽2-12的填充比为90%,所述密封线2-21与线密封槽2-12的填充比为90%,所述隔膜2-3在其电解液公共流道孔处的密封为将隔膜2-3的电解液公共流道孔套在其中一个密封垫圈2-22的最外层环形凸起结构2-223上,所述隔膜2-3的一面与其中一个密封橡胶2-2的密封垫圈2-22接触、另一面与另一个密封橡胶2-2的密封线2-21接触,所述垫圈密封槽2-12与线密封槽2-11连接区域紧密接触密封垫圈2-22,所述垫圈密封槽2-12的其他区域尺寸大于密封垫圈2-22尺寸;所述隔膜2-3在非电解液公共流道孔处的密封为隔膜2-3通过两个错位密封橡胶2-2的密封线2-21密封,所述两个密封线2-21的间距为0.5mm,所述电极框2-1、密封垫圈2-2和隔膜2-3的电解液公共流道孔的圆心相同,所述隔膜2-3、密封垫圈2-2和电极框2-1的电解液公共流道孔直径依次增大1mm。
实施例10
如图5-9所示,一种液流电池电堆密封结构,所述液流电池电堆密封结构包括两个电极框2-1、两个邵氏A型硬度为80的三元乙丙密封橡胶2-2、设有电解液公共流道孔的隔膜2-3;所述密封橡胶2-2由密封线2-21将两个设有电解液公共流道孔的密封垫圈2-22连接而成,所述密封线2-21的直径为3mm,所述密封垫圈2-22的厚度为3mm,所述密封垫圈2-22的压缩比为30%,所述密封垫圈2-22外缘到电解液公共流道中心的最短距离为电解液公共流道半径的3倍,所述密封垫圈2-22的一面设有压缩变形结构2-222,所述压缩变形结构2-222为若干个弧形凹槽,所述密封垫圈2-22的另一面设有两层环形凸起结构2-223,所述环形凸起结构2-223的凸起截面为倒梯形,所述两层环形凸起结构2-223之间的间距为3mm,所述密封垫圈2-22设有两个密封垫圈定位结构2-224,所述密封垫圈定位结构2-224的厚度为密封垫圈22厚度的0.8倍;所述电极框2-1设有线密封槽2-11和垫圈密封槽2-12,所述线密封槽2-11的宽度为5mm,所述线密封槽2-11的深度为5mm,所述两个电极框2-1的线密封槽2-11距离各自电极框2-1外边缘的距离分别为10mm和20mm,所述密封线2-21与密封垫圈2-22分别置于线密封槽2-11与垫圈密封槽2-12内,所述密封垫圈2-22设有压缩变形结构2-222的一面与电极框2-1接触,所述密封垫圈2-22与垫圈密封槽2-12的填充比为95%,所述密封线2-21与线密封槽2-12的填充比为95%,所述隔膜2-3在其电解液公共流道孔处的密封为将隔膜2-3的电解液公共流道孔套在其中一个密封垫圈2-22的最外层环形凸起结构2-223上,所述隔膜2-3的一面与其中一个密封橡胶2-2的密封垫圈2-22接触、另一面与另一个密封橡胶2-2的密封线2-21接触,所述垫圈密封槽2-12与线密封槽2-11连接区域紧密接触密封垫圈2-22,所述垫圈密封槽2-12的其他区域尺寸大于密封垫圈2-22尺寸;所述隔膜2-3在非电解液公共流道孔处的密封为隔膜2-3通过两个错位密封橡胶2-2的密封线2-21密封,所述两个密封线2-21的间距为2mm,所述电极框2-1、密封垫圈2-2和隔膜2-3的电解液公共流道孔的圆心相同,所述隔膜2-3、密封垫圈2-2和电极框2-1的电解液公共流道孔直径依次增大1mm。

Claims (20)

  1. 液流电池电极结构,包括电极纤维,其特征在于,所述电极纤维中垂直丝束的密度大于平行丝束的密度。
  2. 根据权利要求1所述的液流电池电极结构,其特征在于,单位体积的电极纤维中,垂直丝束与平行丝束的数量比至少为6∶4。
  3. 根据权利要求1或2所述的液流电池电极结构,其特征在于,所述电极纤维的层数为奇数层,各电极纤维层的孔隙率由中心层向外递增。
  4. 根据权利要求3所述的液流电池电极结构,其特征在于,所述中心层电极纤维的孔隙率为90~93%;其他各层的电极纤维的孔隙率为93~96%。
  5. 根据权利要求3所述的液流电池电极结构,其特征在于,所述电极纤维的层数为三层、五层或七层。
  6. 液流电池电堆,其特征在于,采用权利要求1-5中任意一项所述的电极结构组装,在0.1~0.25MPa的电堆预紧力下压缩组装后,所述电堆中各层电极纤维的孔隙率被压缩为89~92%。
  7. 根据权利要求6所述的液流电池电堆,其特征在于,所述电堆中各层电极纤维的孔隙率差值小于3%。
  8. 根据权利要求6所述的液流电池电堆,其特征在于,所述电极总厚度为3~6mm,各层电极纤维的厚度由外而内向中心层逐渐变小,其他各层与中心层的厚度比例为不小于1.5∶1。
  9. 根据权利要求6所述的液流电池电堆,其特征在于,两侧层电极纤维的表面为刺状或针状结构,所述刺状或针状结构的高度不同。
  10. 根据权利要求9所述的液流电池电堆,其特征在于,所述刺状或针状结构由垂直于电极表面的垂直丝束构成,所述垂直丝束的直径为6~18μm。
  11. 一种权利要求6-10任一项所述的液流电池电堆的密封结构,其特征在于:所述液流电池电堆密封结构包括密封橡胶,所述密封橡胶由密封线将若干个密封垫圈连接而成,所述密封垫圈设有电解液公共流道孔,所述密封垫圈的一面设有压缩变形结构,所述密封垫圈的另一面设有环形凸起结构。
  12. 根据权利要求11所述的液流电池电堆密封结构,其特征在于:所述密封垫圈至少设有两层环形凸起结构,其最内层环形凸起结构的内缘直径大于等于电解液公共流道孔的外缘直径。
  13. 根据权利要求12所述的液流电池电堆密封结构,其特征在于:各层所述环形凸起结构的截面形状为矩形、半圆形或倒梯形。
  14. 根据权利要求11所述的液流电池电堆密封结构,其特征在于:所述压缩变形结构为若干个凹槽。
  15. 根据权利要求11所述的液流电池电堆密封结构,其特征在于:所述密封垫圈设有至少一个密封垫圈定位结构,所述密封垫圈定位结构的厚度为密封垫圈厚度的0.3-0.8倍。
  16. 根据权利要求11所述的液流电池电堆密封结构其特征在于所述密封橡胶的邵氏硬度优选为40-100。
  17. 根据权利要求11所述的液流电池电堆密封结构,其特征在于:所述密封垫圈的压缩比为10-30%。
  18. 根据权利要求11所述的液流电池电堆密封结构,其特征在于:所述液流电池电堆密封结构还包括电极框,所述电极框设有线密封槽和垫圈密封槽,所述密封线与密封垫圈分别置于线密封槽与垫圈密封槽内,所述密封垫圈与垫圈密封槽的填充比为90-95%,所述密封线与线密封槽的填充比为90-95%。
  19. 根据权利要求18所述的液流电池电堆密封结构,其特征在于:所述垫圈密封槽与线密封槽连接区域紧密接触密封垫圈,所述垫圈密封槽的其他区域尺寸大于密封垫圈尺寸。
  20. 根据权利要求18所述的液流电池电堆密封结构,其特征在于:所述液流电池电堆密封结构包括两个电极框、两个密封橡胶和一个隔膜;两个所述电极框的线密封槽距离各自电极框外边缘的距离不同,所述密封橡胶置于电极框的密封槽内,所述密封橡胶的密封垫圈设有压缩变形结构的一面与电极框接触、另一面与隔膜接触,所述隔膜在电解液公共流道孔处的密封是将隔膜的电解液公共流道孔套在其中一个密封垫圈的最外层环形凸起结构上,所述隔膜的一面与其中一个密封橡胶的密封垫圈接触、另一面与另一个密封橡胶的密封线接触,所述隔膜在非电解液公共流道孔处的密封为隔膜通过两个错位密封橡胶的密封线密封。
PCT/CN2017/109236 2016-11-09 2017-11-03 液流电池电极结构、液流电池电堆及液流电池电堆的密封结构 WO2018086482A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020197014290A KR102273630B1 (ko) 2016-11-09 2017-11-03 흐름 전지 전극 구조, 흐름 전지 전지 스택 및 흐름 전지 전지 스택의 밀봉 구조
US16/348,263 US11063263B2 (en) 2016-11-09 2017-11-03 Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
JP2019524279A JP7128812B2 (ja) 2016-11-09 2017-11-03 フロー電池の電極構造、フロー電池電堆及びフロー電池電堆の密封構造
EP17869180.4A EP3534444B1 (en) 2016-11-09 2017-11-03 Electrode structure of flow battery, flow battery stack, and sealing structure for flow battery stack
KR1020217020310A KR102365550B1 (ko) 2016-11-09 2017-11-03 흐름 전지 전극 구조, 흐름 전지 전지 스택 및 흐름 전지 전지 스택의 밀봉 구조
AU2017358245A AU2017358245B2 (en) 2016-11-09 2017-11-03 Electrode structure of flow battery, flow battery stack, and sealing structure for flow battery stack
US17/343,674 US11735747B2 (en) 2016-11-09 2021-06-09 Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
US17/343,682 US20220102740A1 (en) 2016-11-09 2021-06-09 Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
AU2022200525A AU2022200525B2 (en) 2016-11-09 2022-01-27 Electrode structure of flow battery, flow battery stack, and sealing structure for flow battery stack

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610986518.6A CN106374129B (zh) 2016-11-09 2016-11-09 一种液流电池电堆密封结构
CN201610986518.6 2016-11-09
CN201611132210.1 2016-12-09
CN201611132210.1A CN106549161B (zh) 2016-12-09 2016-12-09 液流电池电极结构及液流电池电堆

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/348,263 A-371-Of-International US11063263B2 (en) 2016-11-09 2017-11-03 Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
US17/343,674 Division US11735747B2 (en) 2016-11-09 2021-06-09 Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
US17/343,682 Division US20220102740A1 (en) 2016-11-09 2021-06-09 Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire

Publications (1)

Publication Number Publication Date
WO2018086482A1 true WO2018086482A1 (zh) 2018-05-17

Family

ID=62110388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109236 WO2018086482A1 (zh) 2016-11-09 2017-11-03 液流电池电极结构、液流电池电堆及液流电池电堆的密封结构

Country Status (6)

Country Link
US (3) US11063263B2 (zh)
EP (1) EP3534444B1 (zh)
JP (1) JP7128812B2 (zh)
KR (2) KR102365550B1 (zh)
AU (2) AU2017358245B2 (zh)
WO (1) WO2018086482A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316083B1 (ko) * 2020-11-25 2021-10-25 한국해양과학기술원 선박의 횡요 주기에 의한 gm 산출 시스템 및 방법
CN113889643A (zh) * 2020-07-03 2022-01-04 中国科学院大连化学物理研究所 全钒液流电池用一体化电池结构的制备与电池结构和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823806B (zh) * 2020-06-19 2023-02-03 中国科学院大连化学物理研究所 一种全钒液流电池用一体化电极框结构和制备方法和应用
CN114530621A (zh) * 2022-01-23 2022-05-24 纬景储能科技有限公司 一种液流电池密封线和密封线槽及其加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822413A (zh) * 2005-01-11 2006-08-23 三星Sdi株式会社 用于电化学电池的电极,其制造方法和包括其的电化学电池
JP4632043B2 (ja) * 2005-07-29 2011-02-16 東邦テナックス株式会社 ポリアクリロニトリル系酸化繊維フェルト、炭素繊維フェルト、及びそれらの製造方法
CN203288696U (zh) * 2013-06-08 2013-11-13 上海璞慧电池科技有限公司 一种高密封防泄漏的钒电池
CN103811779A (zh) * 2014-03-13 2014-05-21 大连融科储能技术发展有限公司 液流电池用电极框、电堆及其电池系统
CN103840180A (zh) * 2012-11-23 2014-06-04 中国科学院大连化学物理研究所 一种具有自定位功能的液流电池线密封结构
CN104471774A (zh) * 2012-07-20 2015-03-25 卡尔·弗罗伊登贝格两合公司 导电片材
CN104766935A (zh) * 2015-03-26 2015-07-08 罗琦俊 一种用于液流电池的密封圈
CN106374129A (zh) * 2016-11-09 2017-02-01 大连融科储能技术发展有限公司 一种液流电池电堆密封结构
CN106549161A (zh) * 2016-12-09 2017-03-29 大连融科储能技术发展有限公司 液流电池电极结构及液流电池电堆
CN206148546U (zh) * 2016-11-09 2017-05-03 大连融科储能技术发展有限公司 一种液流电池电堆密封结构

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239767A (ja) * 1988-03-18 1989-09-25 Toray Ind Inc 電極基材およびその製造方法
DE69908386T2 (de) 1999-07-01 2003-11-27 Squirrel Holdings Ltd Bipolarelektrode für elektrochemische redox-reaktionen
JP2001167785A (ja) 1999-12-08 2001-06-22 Toyobo Co Ltd レドックスフロー電池用電解槽および電極材
JP3682244B2 (ja) 2001-06-12 2005-08-10 住友電気工業株式会社 レドックスフロー電池用セルフレーム及びレドックスフロー電池
JP3954850B2 (ja) * 2002-01-24 2007-08-08 東邦テナックス株式会社 ポリアクリロニトリル系炭素繊維不織布、及びその製造方法
US7070876B2 (en) * 2003-03-24 2006-07-04 Ballard Power Systems, Inc. Membrane electrode assembly with integrated seal
CN1536698B (zh) * 2003-04-02 2010-12-15 松下电器产业株式会社 燃料电池用电解质膜结构、mea结构及燃料电池
JP5128068B2 (ja) * 2005-12-19 2013-01-23 本田技研工業株式会社 燃料電池用シール構造
JP5188872B2 (ja) * 2008-05-09 2013-04-24 パナソニック株式会社 直接酸化型燃料電池
JP5883301B2 (ja) * 2011-02-07 2016-03-15 日本バイリーン株式会社 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP2013065530A (ja) 2011-09-20 2013-04-11 Sumitomo Electric Ind Ltd レドックスフロー電池
WO2014010715A1 (ja) * 2012-07-13 2014-01-16 日本バイリーン株式会社 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池
JP2014130778A (ja) * 2012-12-28 2014-07-10 Tohoku Techno Arch Co Ltd 静止型バナジウムレドックス電池
KR101484252B1 (ko) * 2013-05-21 2015-01-20 한국과학기술원 수직 방향 탄소 섬유 층을 구비한 탄소 전극 및 그 제조방법, 수직 방향 탄소 섬유 층을 구비한 탄소 전극을 포함하는 단위 셀 및 그 제조방법
WO2015068745A1 (ja) * 2013-11-06 2015-05-14 日本バイリーン株式会社 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池
JP2015122229A (ja) 2013-12-24 2015-07-02 住友電気工業株式会社 電極、およびレドックスフロー電池
JP6577697B2 (ja) * 2014-03-27 2019-09-18 帝人株式会社 炭素繊維フェルト、その製造方法、及び液流通型電解槽
JP6380911B2 (ja) * 2014-11-05 2018-08-29 住友電気工業株式会社 電解液循環型電池
JP6540961B2 (ja) * 2016-01-26 2019-07-10 住友電気工業株式会社 電池、及びシール材
WO2018198252A1 (ja) * 2017-04-26 2018-11-01 日立化成株式会社 二次電池、二次電池システム及び発電システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822413A (zh) * 2005-01-11 2006-08-23 三星Sdi株式会社 用于电化学电池的电极,其制造方法和包括其的电化学电池
JP4632043B2 (ja) * 2005-07-29 2011-02-16 東邦テナックス株式会社 ポリアクリロニトリル系酸化繊維フェルト、炭素繊維フェルト、及びそれらの製造方法
CN104471774A (zh) * 2012-07-20 2015-03-25 卡尔·弗罗伊登贝格两合公司 导电片材
CN103840180A (zh) * 2012-11-23 2014-06-04 中国科学院大连化学物理研究所 一种具有自定位功能的液流电池线密封结构
CN203288696U (zh) * 2013-06-08 2013-11-13 上海璞慧电池科技有限公司 一种高密封防泄漏的钒电池
CN103811779A (zh) * 2014-03-13 2014-05-21 大连融科储能技术发展有限公司 液流电池用电极框、电堆及其电池系统
CN104766935A (zh) * 2015-03-26 2015-07-08 罗琦俊 一种用于液流电池的密封圈
CN106374129A (zh) * 2016-11-09 2017-02-01 大连融科储能技术发展有限公司 一种液流电池电堆密封结构
CN206148546U (zh) * 2016-11-09 2017-05-03 大连融科储能技术发展有限公司 一种液流电池电堆密封结构
CN106549161A (zh) * 2016-12-09 2017-03-29 大连融科储能技术发展有限公司 液流电池电极结构及液流电池电堆

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHOU, HANTAO: "Studies on the Sodium Polysulfide/Bromine Redox Flow Battery for Energy Storage", SCIENCE -ENGINEERING, CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER'S THESES FULL-TEXT DATABASES (DOCTORAL, 15 April 2007 (2007-04-15), pages 1 - 165, XP009513781, ISSN: 1671-6779 *
ZHOU, HANTAO: "Studies on the Sodium Polysulfide/Bromine Redox Flow Battery for Energy Storage", THESIS, 15 April 2007 (2007-04-15), CN, pages 1, XP009513781, ISSN: 1671-6779 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889643A (zh) * 2020-07-03 2022-01-04 中国科学院大连化学物理研究所 全钒液流电池用一体化电池结构的制备与电池结构和应用
CN113889643B (zh) * 2020-07-03 2023-10-20 中国科学院大连化学物理研究所 全钒液流电池用一体化电池结构的制备与电池结构和应用
KR102316083B1 (ko) * 2020-11-25 2021-10-25 한국해양과학기술원 선박의 횡요 주기에 의한 gm 산출 시스템 및 방법

Also Published As

Publication number Publication date
US11063263B2 (en) 2021-07-13
KR102273630B1 (ko) 2021-07-07
EP3534444B1 (en) 2021-03-24
EP3534444A4 (en) 2019-12-04
US20190319274A1 (en) 2019-10-17
KR20210084672A (ko) 2021-07-07
EP3534444A1 (en) 2019-09-04
AU2017358245B2 (en) 2021-11-04
US20220102740A1 (en) 2022-03-31
JP7128812B2 (ja) 2022-08-31
US20210313588A1 (en) 2021-10-07
AU2022200525A1 (en) 2022-02-17
US11735747B2 (en) 2023-08-22
AU2022200525B2 (en) 2023-08-24
JP2020501298A (ja) 2020-01-16
KR20190062586A (ko) 2019-06-05
AU2017358245A1 (en) 2019-06-20
KR102365550B1 (ko) 2022-02-23

Similar Documents

Publication Publication Date Title
US11735747B2 (en) Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
CN106374129B (zh) 一种液流电池电堆密封结构
AU2015344623B2 (en) Battery cell and redox flow battery
CN107681190B (zh) 一种高电压电池的双极性结构体及电芯
JP2014099416A (ja) 電気化学電池のための皿形状の圧力均一化電極
WO2023169600A1 (zh) 液流电池堆或单电池、电极-隔膜复合组件及其复合电极结构
CN105529486A (zh) 一种卷绕柔性钒电池的制备方法
AU2016432004B2 (en) Redox flow battery
CN104911628A (zh) 一种节能水电解制氢电解槽
CN206148546U (zh) 一种液流电池电堆密封结构
CN103151547A (zh) 一种复合式燃料电池
CN218101328U (zh) 一种超声波焊接的液流电池电堆单元
CN207993964U (zh) 钒电池复合电极
TWI703759B (zh) 分散式液流電池儲能模組
CN204752865U (zh) 一种节能水电解制氢电解槽
CN106549161A (zh) 液流电池电极结构及液流电池电堆
CN203300747U (zh) 一种复合式燃料电池
CN212587546U (zh) 一种电堆密封机构
CN117096370B (zh) 一种新型液流电池端电极及其装配的液流电池
CN208306005U (zh) 高效可逆储能电池的全氟离子膜
CN108933270A (zh) 液流电池和液流电池堆
JP2009277465A (ja) 高分子電解質形燃料電池スタック
KR20240028862A (ko) 정체형 레독스 전지 및 이를 구비한 에너지 저장 시스템
CN117638126A (zh) 一种降低电极厚度的三层双极板及液流电池
CN115133087A (zh) 一种膜电极组件及燃料电池单电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014290

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017869180

Country of ref document: EP

Effective date: 20190531

ENP Entry into the national phase

Ref document number: 2017358245

Country of ref document: AU

Date of ref document: 20171103

Kind code of ref document: A