WO2018086249A1 - 高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法 - Google Patents

高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法 Download PDF

Info

Publication number
WO2018086249A1
WO2018086249A1 PCT/CN2017/071046 CN2017071046W WO2018086249A1 WO 2018086249 A1 WO2018086249 A1 WO 2018086249A1 CN 2017071046 W CN2017071046 W CN 2017071046W WO 2018086249 A1 WO2018086249 A1 WO 2018086249A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
butadiene rubber
weight
parts
sheet
Prior art date
Application number
PCT/CN2017/071046
Other languages
English (en)
French (fr)
Inventor
马建中
姬占有
邵亮
薛朝华
马忠雷
Original Assignee
陕西科技大学
马建中
姬占有
邵亮
薛朝华
马忠雷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西科技大学, 马建中, 姬占有, 邵亮, 薛朝华, 马忠雷 filed Critical 陕西科技大学
Priority to CA3043354A priority Critical patent/CA3043354C/en
Publication of WO2018086249A1 publication Critical patent/WO2018086249A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the preparation of a polymer foaming material, in particular to a high shrinkage stability styrene-butadiene rubber-based nanocomposite foaming material and a preparation method thereof.
  • the polymer foaming material is a gas/solid two-phase composite material composed of a polymer matrix and gas molecules.
  • the unique gas-solid two-phase structure gives it many excellent properties such as light weight, high elasticity, excellent flexibility, shock absorption, sound insulation and heat insulation.
  • the rubber foaming material also known as rubber sponge, is made of rubber as a matrix, adding a foaming agent, a crosslinking agent and other auxiliary agents to prepare a foam rubber material containing a large number of pores.
  • SBR styrene-butadiene rubber
  • Some properties such as wear resistance, heat resistance, aging resistance and vulcanization speed are better than natural rubber, and can be used together with natural rubber and various synthetic rubbers. It is the most widely used general synthetic rubber. Compared with general synthetic rubber such as EPDM, isopentadiene rubber (IR) and natural rubber (NR), it shows great market advantages in terms of variety, quality and price.
  • SBR foaming materials have low density, high specific strength, excellent flexibility, shock resistance and good wear resistance due to the presence of gas phase. Currently, they are used in wetsuits and thermal insulation materials. However, it is rarely used in the sole material because the polymer foam material for the sole is particularly required to have a small shrinkage ratio, a small compression set (compression enthalpy), a low density, a moderate hardness, and good stability. However, the SBR foam sole material has a large shrinkage rate (10% left) Right), poor stability (up to 50% yield reduction), low yield.
  • the object of the present invention is to provide a styrene-butadiene rubber-based nanocomposite foamed material with high shrinkage stability and a preparation method thereof, which have a low shrinkage rate and exhibit low density and low compression.
  • High-shrinkage stability styrene-butadiene rubber-based nanocomposite foaming material preparation method characterized in that:
  • the sheet obtained in the step (4) is placed in a vulcanizer, subjected to compression molding, and foamed to form a sheet, which is cooled at 25 ° C to obtain a styrene-butadiene rubber-based foamed sole material, that is, a high shrinkage stability styrene-butadiene rubber.
  • Base nanocomposite foaming material
  • the molar ratio of styrene-butadiene rubber/ethylene-vinyl acetate styrene-butadiene rubber and ethylene-vinyl acetate is 1/10-5/5;
  • the content of the styrene monomer unit in the styrene-butadiene rubber is 22%-25%, and the content of the vinyl acetate monomer unit of the ethylene-vinyl acetate is 15%-28%.
  • the accelerator is a mixture of tetramethylthiuram disulfide, N-cycloethyl-2-benzothiazole sulfenamide and benzothiazole disulfide, each of 0.2 parts by weight.
  • the organic modified montmorillonite and the organic modified attapulgite are both modified by the silane coupling agent KH-570.
  • the invention adopts the binary compounding system of SBR and EVA and the inorganic nano particles to prepare the SBR/EVA/OMMT/OATP nano composite foaming sole material, which has better comprehensive performance than the traditional foamed sole material. That is, the shrinkage rate is low, the density is small, the hardness is moderate, and the compression is small, and the shrinkage stability and the low cost are high.
  • the shrinkage ratio can be reduced to 0.5-1.5%, the density is 0.21-0.35 g/cm 3 , the compression enthalpy is 10-20%, the hardness (A) is 40-60°, and the post-shrinkage is 5-10%.
  • the invention relates to a method for preparing a high shrinkage stability styrene-butadiene rubber-based nanocomposite foaming material, comprising the following steps:
  • SBR/EVA styrene-butadiene rubber/ethylene-vinyl acetate
  • the sheet obtained in the step (4) is placed in a vulcanizer, subjected to compression molding, and foamed to form a sheet, which is cooled at 25 ° C to obtain a styrene-butadiene rubber-based foamed sole material, that is, a high shrinkage stability styrene-butadiene rubber.
  • Base nanocomposite foaming material
  • the content of the styrene monomer unit in the styrene-butadiene rubber is 22%-25%, and the content of the vinyl acetate monomer unit of the ethylene-vinyl acetate is 15%-28%.
  • the accelerator is a mixture of tetramethylthiuram disulfide, N-cycloethyl-2-benzothiazole sulfenamide and benzothiazole disulfide, each of 0.2 parts by weight.
  • the organic modified montmorillonite and the organic modified attapulgite are both modified by the silane coupling agent KH-570.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the sheet obtained in the step (4) was placed in a vulcanizer, subjected to compression molding, cross-linked foaming, and formed into a sheet, and cooled at 20 ° C to obtain a SBR/EVA/OMMT/OATP nanocomposite foamed sole material.
  • the foamed material prepared in Example 1 had a shrinkage ratio of 1.0%, a density of 0.22 g/cm 3 , a compression enthalpy of 18.5%, a hardness (A) of 42.8°, a resilience of 50.6%, and a post-shrinkage of 9.32%.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the sheet obtained in the step (4) is placed in a vulcanizer, subjected to compression molding, cross-linked, foamed and formed into a sheet, and cooled at 20 ° C to obtain a SBR/EVA/OMMT/OATP nanocomposite foamed sole material;
  • the foamed material prepared in Example 2 had a shrinkage ratio of 1.43%, a density of 0.245 g/cm 3 , a compression enthalpy of 17.4%, a hardness (A) of 46.4°, a resilience of 51%, and a post-shrinkage of 7.82%.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the sheet obtained in the step (4) is placed in a vulcanizer, subjected to compression molding, cross-linked, foamed and formed into a sheet, and cooled at 20 ° C to obtain a SBR/EVA/OMMT/OATP nanocomposite foamed sole material;
  • the foamed material prepared in Example 3 had a shrinkage ratio of 1.1%, a density of 0.237 g/cm 3 , a compression enthalpy of 15.5%, a hardness (A) of 48.2°, a resilience of 52.2%, and a post-shrinkage of 6.3%.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the sheet obtained in the step (4) is placed in a vulcanizer, subjected to compression molding, cross-linked, foamed and formed into a sheet, and cooled at 20 ° C to obtain a SBR/EVA/OMMT/OATP nanocomposite foamed sole material;
  • the foamed material prepared in Example 4 had a shrinkage ratio of 1.5%, a density of 0.226 g/cm 3 , a compression enthalpy of 18.6%, a hardness (A) of 52.2 °, a resilience of 54.6%, and a post-shrinkage of 8.43%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

一种高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法。将丁苯橡胶/乙烯-醋酸乙烯酯与白炭黑、氧化锌和硬脂酸在密炼机里充分混炼均匀;再将发泡剂、交联剂和硫磺、促进剂及石蜡加入到密炼机中,混炼得混合物;将有机改性蒙脱土和有机改性凹凸棒与混合物一起加入到密炼机中充分混炼均匀,在开放式双辊混炼机上压制成片材,放入硫化机,进行模压交联发泡成型出片,冷却得到丁苯橡胶基发泡鞋底材料。采用SBR和EVA的二元复配体系与无机纳米粒子共混制备了复合发泡鞋底材料,具有较好的收缩率、后收缩率、密度、硬度及压缩歪。

Description

高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法 技术领域
本发明涉及高分子发泡材料的制备,具体涉及一种高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法。
背景技术
高分子发泡材料是一种由高分子基体和气体分子组成的气/固两相复合材料。独特的气固两相结构赋予了其质轻、弹性大、屈挠性优良、减震、隔音、隔热等许多优异的性能。橡胶发泡材料又称为橡胶海绵,它以橡胶为基体,添加发泡剂、交联剂及其他助剂,制备出含有大量气孔的泡沫橡胶材料。
丁苯橡胶(SBR)的加工性能及制品的使用性能接近于天然橡胶,有些性能如耐磨、耐热、耐老化及硫化速度较天然橡胶更为优良,可与天然橡胶及多种合成橡胶并用,是用量最大的通用合成橡胶。与三元乙丙橡胶(EPDM)、异戊橡胶(IR)、天然橡胶(NR))等通用合成橡胶相比,其在品种、质量及价格上显现出很大的市场优势。
SBR发泡材料由于气相的存在具有密度低、比强度高、优异的柔韧性、防震以及良好的耐磨性,目前,在潜水衣、保温材料等领域有所应用。但在鞋底材料中应用极少,这是因为,鞋底用高分子发泡材料特别要求收缩率小、压缩永久变形性小(压缩歪)、密度低、硬度适中以及良好的稳定性。然而,SBR发泡鞋底材料收缩率大(10%左 右),稳定性差(后缩收率高达50%),成品率较低。
发明内容
本发明的目的是提供一种高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法,具有较低的收缩率,体现了低密度及压缩歪小的特点。
本发明所采用的技术方案为:
高收缩稳定性丁苯橡胶基纳米复合发泡材料的制备方法,其特征在于:
包括以下步骤:
(1)将100重量份的丁苯橡胶/乙烯-醋酸乙烯酯与20-30重量份的白炭黑、5.0-10.0重量份的氧化锌和1.0-5.0重量份的硬脂酸在密炼机里充分混炼均匀;
(2)再将0.5-5.0重量份的发泡剂偶氮二甲酰胺、0.1-2.0重量份的交联剂过氧化二异丙苯和0.5-5.0重量份硫磺、促进剂及0.5-5.5重量份石蜡加入到密炼机中,混炼得混合物;
(3)将1.0重量份的有机改性蒙脱土和有机改性凹凸棒按1/10-10/1与步骤(2)所得的混合物一起加入到密炼机中充分混炼均匀;
(4)将步骤(3)所得的混合物在开放式双辊混炼机上压制成厚度为1-5mm的片材;
(5)预先将硫化机内嵌模具加热至190-200℃,然后均匀地喷涂上聚硅氧烷水性乳液脱模剂,待水汽蒸发完备用;
(6)将步骤(4)所得的片材放入硫化机,进行模压交联发泡成型出片,25℃下冷却,得到丁苯橡胶基发泡鞋底材料,即高收缩稳定性丁苯橡胶基纳米复合发泡材料。
步骤(1)中,丁苯橡胶/乙烯-醋酸乙烯酯中丁苯橡胶和乙烯-醋酸乙烯酯的摩尔比为1/10-5/5;
其中,丁苯橡胶中的苯乙烯单体单元含量为22%-25%,乙烯-醋酸乙烯酯的醋酸乙烯酯单体单元含量为15%-28%。
步骤(2)中,促进剂为二硫化四甲基秋兰姆、N-环乙基-2-苯并噻唑次磺酰胺和二硫化苯并噻唑的混合物,各为0.2重量份。
步骤(3)中,有机改性蒙脱土和有机改性凹凸棒均由硅烷偶联剂KH-570改性。
如所述的高收缩稳定性丁苯橡胶基纳米复合发泡材料的制备方法制得的发泡材料。
本发明具有以下优点:
本发明采用SBR和EVA的二元复配体系与无机纳米粒子共混制备了SBR/EVA/OMMT/OATP纳米复合发泡鞋底材料,相比于传统的发泡鞋底材料具有较好的综合性能,即收缩率低、密度小、硬度适中及压缩歪小,并且具有高的收缩稳定性和较低的成本。其收缩率可降低至0.5-1.5%、密度为0.21-0.35g/cm3、压缩歪为10-20%、硬度(A)为40-60°、后收缩率为5-10%。
具体实施方式
下面结合具体实施方式对本发明进行详细的说明。
本发明涉及的高收缩稳定性丁苯橡胶基纳米复合发泡材料的制备方法,包括以下步骤:
(1)将100重量份的丁苯橡胶/乙烯-醋酸乙烯酯(SBR/EVA)与20-30重量份的白炭黑、5.0-10.0重量份的氧化锌和1.0-5.0重量份的硬脂酸在密炼机里充分混炼均匀;
(2)再将0.5-5.0重量份的发泡剂偶氮二甲酰胺、0.1-2.0重量份的交联剂过氧化二异丙苯和0.5-5.0重量份硫磺、促进剂及0.5-5.5重量份石蜡加入到密炼机中,混炼得混合物;
(3)将1.0重量份的有机改性蒙脱土(OMMT)和有机改性凹凸棒(OATP)按1/10-10/1与步骤(2)所得的混合物一起加入到密炼机中充分混炼均匀;
(4)将步骤(3)所得的混合物在开放式双辊混炼机上压制成厚度为1-5mm的片材;
(5)预先将硫化机内嵌模具加热至190-200℃,然后均匀地喷涂上聚硅氧烷水性乳液脱模剂,待水汽蒸发完备用;
(6)将步骤(4)所得的片材放入硫化机,进行模压交联发泡成型出片,25℃下冷却,得到丁苯橡胶基发泡鞋底材料,即高收缩稳定性丁苯橡胶基纳米复合发泡材料。
步骤(1)中,丁苯橡胶/乙烯-醋酸乙烯酯中丁苯橡胶和乙烯-醋酸乙烯酯的摩尔比为1/10-5/5,即SBR/EVA=1/10-5/5;其中,丁苯橡胶中的苯乙烯单体单元含量为22%-25%,乙烯-醋酸乙烯酯的醋酸乙烯酯单体单元含量为15%-28%。
步骤(2)中,促进剂为二硫化四甲基秋兰姆、N-环乙基-2-苯并噻唑次磺酰胺和二硫化苯并噻唑的混合物,各为0.2重量份。
步骤(3)中,有机改性蒙脱土和有机改性凹凸棒均由硅烷偶联剂KH-570改性。
实施例一:
(1)将20重量份的白炭黑和6重量份氧化锌与100重量份的SBR/EVA按10/3的比例,在密炼机里充分混炼均匀,密炼温度为100℃,密炼时间为10min、转速为45rpm/min;
(2)再将4.0重量份的发泡剂偶氮二甲酰胺、0.6重量份的交联剂过氧化二异丙苯和0.5重量份的硫磺、促进剂(二硫化四甲基秋兰姆、N-环乙基-2-苯并噻唑次磺酰胺、二硫化苯并噻唑各0.2重量份)、5.0重量份的石蜡及2.0重量份的硬脂酸加入到密炼机中,混炼得混合物;
(3)将1.0重量份的有机蒙脱土和有机凹凸棒按1/4的比例加到步骤(2)所得共混物中,在密炼机中混合均匀;
(4)将步骤(3)所得的混合物在开放式双辊混炼机上压制成厚度为约3mm的片材;
(5)预先将硫化机内嵌模具加热至200℃,然后均匀地喷涂上聚硅氧烷水性乳液脱模剂,待水汽蒸发完备用;
(6)将步骤(4)所得的片材放入硫化机,进行压模交联发泡成型出片,20℃下冷却,得到SBR/EVA/OMMT/OATP纳米复合发泡鞋底材料。
由实施例一制备的发泡材料收缩率为1.0%、密度为0.22g/cm3、压缩歪为18.5%、硬度(A)为42.8°、回弹性为50.6%、后收缩率9.32%。
实施例二:
(1)将25重量份的白炭黑和9重量份氧化锌与100重量份的SBR/EVA按10/3的比例,在密炼机里充分混炼均匀,密炼温度为100℃,密炼时间为10min、转速为35rpm/min;
(2)再将3.0重量份的发泡剂偶氮二甲酰胺、0.2重量份的交联剂过氧化二异丙苯和0.5重量份的硫磺、促进剂(二硫化四甲基秋兰姆、N-环乙基-2-苯并噻唑次磺酰胺、二硫化苯并噻唑各0.2重量份)、5重量份的石蜡及3.0重量份的硬脂酸加入到密炼机中,混炼得混合物;
(3)将1.0重量份的有机蒙脱土和有机凹凸棒按5/3的比例加到步骤(2)所得共混物中,在密炼机中混合均匀;
(4)将步骤(3)所得的混合物在开放式双辊混炼机上压制成厚度为约3mm的片材;
(5)预先将硫化机内嵌模具加热至200℃,然后均匀地喷涂上聚硅氧烷水性乳液脱模剂,待水汽蒸发完备用;
(6)将步骤(4)所得的片材放入硫化机,进行压模交联发泡成型出片,20℃下冷却,得到SBR/EVA/OMMT/OATP纳米复合发泡鞋底材料;
由实施例二制备的发泡材料收缩率为1.43%、密度为0.245g/cm3、 压缩歪为17.4%、硬度(A)为46.4°、回弹性为51%、后收缩率7.82%。
实施例三:
(1)将25重量份的白炭黑和6重量份氧化锌与100重量份的SBR/EVA按5/2的比例,在密炼机里充分混炼均匀,密炼温度为100℃,密炼时间为10min、转速为40rpm/min;
(2)再将3.0重量份的发泡剂偶氮二甲酰胺、0.4重量份的交联剂过氧化二异丙苯和0.5重量份的硫磺、促进剂(二硫化四甲基秋兰姆、N-环乙基-2-苯并噻唑次磺酰胺、二硫化苯并噻唑各0.2重量份)、5重量份的石蜡和1.0重量份的硬脂酸加入到密炼机中,混炼得混合物;
(3)将1.0重量份的有机蒙脱土和有机凹凸棒按7/3的比例加到步骤(2)所得共混物中,在密炼机中混合均匀;
(4)将步骤(2)所得的混合物在开放式双辊混炼机上压制成厚度为约3mm的片材;
(5)预先将硫化机内嵌模具加热至200℃,然后均匀地喷涂上聚硅氧烷水性乳液脱模剂,待水汽蒸发完备用;
(6)将步骤(4)所得的片材放入硫化机,进行压模交联发泡成型出片,20℃下冷却,得到SBR/EVA/OMMT/OATP纳米复合发泡鞋底材料;
由实施例三制备的发泡材料收缩率为1.1%、密度为0.237g/cm3、压缩歪为15.5%、硬度(A)为48.2°、回弹性为52.2%、后收缩率6.3%。
实施例四:
(1)将20重量份的白炭黑和6重量份氧化锌与100重量份的SBR/EVA按5/5的比例,在密炼机里充分混炼均匀,密炼温度为100℃,密炼时间为10min、转速为30rpm/min;
(2)再将3.0重量份的发泡剂偶氮二甲酰胺、0.1重量份的交联剂过氧化二异丙苯1.0重量份的硫磺、促进剂(二硫化四甲基秋兰姆、N-环乙基-2-苯并噻唑次磺酰胺、二硫化苯并噻唑各0.2重量份)、5重量份的石蜡和2.0重量份的硬脂酸加入到密炼机中,混炼得混合物;
(3)将1.0重量份的有机蒙脱土和有机凹凸棒按3/7的比例加到步骤(2)所得共混物中,在密炼机中混合均匀;
(4)将步骤(2)所得的混合物在开放式双辊混炼机上压制成厚度为约3mm的片材;
(5)预先将硫化机内嵌模具加热至200℃,然后均匀地喷涂上聚硅氧烷水性乳液脱模剂,待水汽蒸发完备用;
(6)将步骤(4)所得的片材放入硫化机,进行压模交联发泡成型出片,20℃下冷却,得到SBR/EVA/OMMT/OATP纳米复合发泡鞋底材料;
由实施例四制备的发泡材料收缩率为1.5%、密度为0.226g/cm3、压缩歪为18.6%、硬度(A)为52.2°、回弹性为54.6%、后收缩率8.43%。
本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本 发明的权利要求所涵盖。

Claims (5)

  1. 高收缩稳定性丁苯橡胶基纳米复合发泡材料的制备方法,其特征在于:
    包括以下步骤:
    (1)将100重量份的丁苯橡胶/乙烯-醋酸乙烯酯与20-30重量份的白炭黑、5.0-10.0重量份的氧化锌和1.0-5.0重量份的硬脂酸在密炼机里充分混炼均匀;
    (2)再将0.5-5.0重量份的发泡剂偶氮二甲酰胺、0.1-2.0重量份的交联剂过氧化二异丙苯和0.5-5.0重量份硫磺、促进剂及0.5-5.5重量份石蜡加入到密炼机中,混炼得混合物;
    (3)将1.0重量份的有机改性蒙脱土和有机改性凹凸棒按1/10-10/1与步骤(2)所得的混合物一起加入到密炼机中充分混炼均匀;
    (4)将步骤(3)所得的混合物在开放式双辊混炼机上压制成厚度为1-5mm的片材;
    (5)预先将硫化机内嵌模具加热至190-200℃,然后均匀地喷涂上聚硅氧烷水性乳液脱模剂,待水汽蒸发完备用;
    (6)将步骤(4)所得的片材放入硫化机,进行模压交联发泡成型出片,25℃下冷却,得到丁苯橡胶基发泡鞋底材料,即高收缩稳定性丁苯橡胶基纳米复合发泡材料。
  2. 根据权利要求1所述的高收缩稳定性丁苯橡胶基纳米复合发 泡材料的制备方法,其特征在于:
    步骤(1)中,丁苯橡胶/乙烯-醋酸乙烯酯中丁苯橡胶和乙烯-醋酸乙烯酯的摩尔比为1/10-5/5;
    其中,丁苯橡胶中的苯乙烯单体单元含量为22%-25%,乙烯-醋酸乙烯酯的醋酸乙烯酯单体单元含量为15%-28%。
  3. 根据权利要求1所述的高收缩稳定性丁苯橡胶基纳米复合发泡材料的制备方法,其特征在于:
    步骤(2)中,促进剂为二硫化四甲基秋兰姆、N-环乙基-2-苯并噻唑次磺酰胺和二硫化苯并噻唑的混合物,各为0.2重量份。
  4. 根据权利要求1所述的高收缩稳定性丁苯橡胶基纳米复合发泡材料的制备方法,其特征在于:
    步骤(3)中,有机改性蒙脱土和有机改性凹凸棒均由硅烷偶联剂KH-570改性。
  5. 如权利要求1所述的高收缩稳定性丁苯橡胶基纳米复合发泡材料的制备方法制得的发泡材料。
PCT/CN2017/071046 2016-11-11 2017-01-13 高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法 WO2018086249A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3043354A CA3043354C (en) 2016-11-11 2017-01-13 A method for preparing high shrinkage stability styrene butadiene rubber-based nanocomposite foams

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016109929949 2016-11-11
CN201610992994.9A CN106432842B (zh) 2016-11-11 2016-11-11 高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2018086249A1 true WO2018086249A1 (zh) 2018-05-17

Family

ID=58206916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071046 WO2018086249A1 (zh) 2016-11-11 2017-01-13 高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法

Country Status (3)

Country Link
CN (1) CN106432842B (zh)
CA (1) CA3043354C (zh)
WO (1) WO2018086249A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370231A (zh) * 2018-10-04 2019-02-22 南京万和新材料有限公司 一种抗菌憎水橡塑发泡保温材料
CN111004432A (zh) * 2019-10-28 2020-04-14 茂泰(福建)鞋材有限公司 一种镂空设计的高性能复合鞋底的制备方法
CN113024960A (zh) * 2021-03-31 2021-06-25 成都市水泷头化工科技有限公司 一种耐热、耐磨、高强的改性eva橡塑发泡材料及制备方法
CN114085438A (zh) * 2021-11-19 2022-02-25 温州市耀阳鞋业有限公司 一种防滑男鞋及其制备方法
CN115746538A (zh) * 2022-10-10 2023-03-07 福建美明达鞋业发展有限公司 一种减震运动鞋鞋底及其制备工艺
CN116102814A (zh) * 2021-11-11 2023-05-12 茂泰(福建)鞋材有限公司 一种超轻型减震eva鞋底及其制备工艺
CN116285360A (zh) * 2023-03-15 2023-06-23 东莞市富颖电子材料有限公司 一种智能穿戴产品用硅胶及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128711B (zh) * 2019-05-20 2021-09-03 陕西科技大学 耐磨天然橡胶基纳米复合发泡材料及其制备方法
CN111087662B (zh) * 2019-12-07 2022-04-01 福建元吉体育用品有限公司 球中胎表皮材料以及球中胎表皮的制备方法
CN111704755A (zh) * 2020-06-28 2020-09-25 陕西科技大学 一种具有气泡内壁壳橡胶发泡材料的制备方法
CN113603948B (zh) * 2021-08-27 2023-03-31 温州市巨创鞋材有限公司 一种耐磨弹性鞋底及其制备工艺
CN114316339A (zh) * 2021-12-07 2022-04-12 茂泰(福建)鞋材有限公司 一种抗菌eva发泡鞋底及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161734A1 (en) * 2005-12-20 2007-07-12 Hiroyuki Fudemoto Nano-composite and method thereof
CN101555332A (zh) * 2009-05-05 2009-10-14 陕西科技大学 一种改性eva微孔弹性体复合材料及其制备方法
CN102863644A (zh) * 2012-10-23 2013-01-09 南通市黄海电机有限公司 发泡橡胶的制备方法
CN103484677A (zh) * 2012-12-20 2014-01-01 江苏凯特汽车部件有限公司 一种处理铝灰铝渣的专用设备
CN105713262A (zh) * 2016-04-14 2016-06-29 陕西科技大学 一种低收缩率丁苯橡胶发泡鞋底材料的制备工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993545B (zh) * 2012-08-13 2016-05-11 茂泰(福建)鞋材有限公司 用于鞋底的质轻防滑高耐磨橡胶材料及其制备方法
CN103483677A (zh) * 2013-10-11 2014-01-01 昆山纯柏精密五金有限公司 一种耐磨鞋底材料
CN104672514A (zh) * 2013-12-01 2015-06-03 朱伟萍 一种耐磨耐湿滑的登山鞋底材料及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161734A1 (en) * 2005-12-20 2007-07-12 Hiroyuki Fudemoto Nano-composite and method thereof
CN101555332A (zh) * 2009-05-05 2009-10-14 陕西科技大学 一种改性eva微孔弹性体复合材料及其制备方法
CN102863644A (zh) * 2012-10-23 2013-01-09 南通市黄海电机有限公司 发泡橡胶的制备方法
CN103484677A (zh) * 2012-12-20 2014-01-01 江苏凯特汽车部件有限公司 一种处理铝灰铝渣的专用设备
CN105713262A (zh) * 2016-04-14 2016-06-29 陕西科技大学 一种低收缩率丁苯橡胶发泡鞋底材料的制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, JIANZHONG ET AL.: "Effects of Thermoplastic Polymers/Montmorillonite on Properties of Foamed Ethylene Vinyl Acetate", CHINA LEATHER, vol. 40, no. 18, 18 September 2011 (2011-09-18), pages 116, ISSN: 1001-6813 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370231A (zh) * 2018-10-04 2019-02-22 南京万和新材料有限公司 一种抗菌憎水橡塑发泡保温材料
CN111004432A (zh) * 2019-10-28 2020-04-14 茂泰(福建)鞋材有限公司 一种镂空设计的高性能复合鞋底的制备方法
CN113024960A (zh) * 2021-03-31 2021-06-25 成都市水泷头化工科技有限公司 一种耐热、耐磨、高强的改性eva橡塑发泡材料及制备方法
CN113024960B (zh) * 2021-03-31 2024-02-13 蔡杰 一种耐热、耐磨、高强的改性eva橡塑发泡材料及制备方法
CN116102814A (zh) * 2021-11-11 2023-05-12 茂泰(福建)鞋材有限公司 一种超轻型减震eva鞋底及其制备工艺
CN114085438A (zh) * 2021-11-19 2022-02-25 温州市耀阳鞋业有限公司 一种防滑男鞋及其制备方法
CN115746538A (zh) * 2022-10-10 2023-03-07 福建美明达鞋业发展有限公司 一种减震运动鞋鞋底及其制备工艺
CN116285360A (zh) * 2023-03-15 2023-06-23 东莞市富颖电子材料有限公司 一种智能穿戴产品用硅胶及其制备方法
CN116285360B (zh) * 2023-03-15 2023-09-19 东莞市富颖电子材料有限公司 一种智能穿戴产品用硅胶及其制备方法

Also Published As

Publication number Publication date
CA3043354A1 (en) 2018-05-17
CA3043354C (en) 2023-03-07
CN106432842A (zh) 2017-02-22
CN106432842B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2018086249A1 (zh) 高收缩稳定性丁苯橡胶基纳米复合发泡材料及其制备方法
CN105713262B (zh) 一种低收缩率丁苯橡胶发泡鞋底材料的制备工艺
CN110128711B (zh) 耐磨天然橡胶基纳米复合发泡材料及其制备方法
WO2018024191A1 (zh) 一种掺杂石墨烯的发泡材料的制备方法
CN103304857A (zh) 一种改性丁腈橡胶的制备方法及改性丁腈橡胶
CN108192162B (zh) 一种运动鞋底用耐磨橡胶及其制备方法
JP2012213615A (ja) 靴底用発泡体ゴム組成物及びアウトソール
CN103923351A (zh) 一种木质纤维素/蒙脱土橡胶补强剂的制备方法及橡胶的补强方法
CN103980620B (zh) 一种耐高温、难燃的输送带覆盖层胶料及其制备方法
CN114350036B (zh) 一种高耐候性防滑发泡鞋底及其制备方法
CN102924802A (zh) 一种poe/epdm/rec复合发泡材料及其制备方法
CN111607185A (zh) 一种eva发泡鞋材及其制备方法
CN108892853A (zh) 一种抗热收缩橡塑共混发泡中底及其配方
CN105566702B (zh) 一种高填充轮胎再生胶的农业轮胎胎冠胶
CN109206680B (zh) 一种补强天然橡胶的方法
CN108299708B (zh) 一种超轻超耐磨橡胶及其制备方法
CN106832552A (zh) 一种用于鞋底的橡塑发泡材料
CN111004422A (zh) 一种连续挤出发泡用nbr胶料
CN115286862B (zh) 一种柔软质轻鞋底材料及其制备方法
CN109627527A (zh) 一种高收缩稳定性、高硬度橡胶基复合发泡材料及其制备方法
CN109608706A (zh) 一种石墨烯橡胶复合材料的制备方法
CN115340721A (zh) 一种含生物基eva的鞋材及其制备方法和应用
CN104497584A (zh) 一种硅橡胶及其制备方法
JP2015183104A (ja) タイヤトレッド用ゴム組成物
CN114196142A (zh) 一种pvc改性发泡材料及其成型方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3043354

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869836

Country of ref document: EP

Kind code of ref document: A1