WO2018084159A1 - 太陽電池およびその製造方法、ならびに太陽電池モジュール - Google Patents

太陽電池およびその製造方法、ならびに太陽電池モジュール Download PDF

Info

Publication number
WO2018084159A1
WO2018084159A1 PCT/JP2017/039455 JP2017039455W WO2018084159A1 WO 2018084159 A1 WO2018084159 A1 WO 2018084159A1 JP 2017039455 W JP2017039455 W JP 2017039455W WO 2018084159 A1 WO2018084159 A1 WO 2018084159A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
main surface
thin film
silicon substrate
crystalline silicon
Prior art date
Application number
PCT/JP2017/039455
Other languages
English (en)
French (fr)
Inventor
訓太 吉河
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201780069963.9A priority Critical patent/CN110073500A/zh
Priority to EP17867659.9A priority patent/EP3540785B1/en
Priority to JP2018549025A priority patent/JP6746187B2/ja
Publication of WO2018084159A1 publication Critical patent/WO2018084159A1/ja
Priority to US16/401,555 priority patent/US20190259885A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a manufacturing method thereof.
  • the present invention further relates to a solar cell module.
  • a solar cell using a crystalline silicon substrate power is generated by taking out photogenerated carriers (electrons and holes) in crystalline silicon to an external circuit.
  • the output per solar cell using a crystalline silicon substrate is about several watts at most. Therefore, a solar cell string in which a plurality of solar cells are electrically connected in series via a wiring member is formed, and the output is increased by adding the voltages of the respective solar cells.
  • Patent Document 1 discloses a solar cell module in which solar cells in which a silicon substrate is divided into two parts and the area is half that before division are connected by a wiring material. By halving the area of the solar cell, the current is halved, so loss due to the resistance of the wiring material can be reduced.
  • Patent Document 2 discloses a solar cell in which an insulating thin film is formed on a main surface of a silicon substrate and then the substrate is divided into two parts.
  • the side surface existing before the division is covered with an insulating thin film, and the side surface formed by the division is exposed to crystalline silicon is doing.
  • an object of the present invention is to provide a solar cell that maintains a high output even after the substrate is divided, and a solar cell module in which a plurality of the solar cells are electrically connected.
  • the solar cell of the present invention includes a rectangular crystalline silicon substrate.
  • the rectangular crystalline silicon substrate includes a rectangular first main surface, a rectangular second main surface located on the opposite side of the first main surface, a long side of the first main surface, and a long side of the second main surface.
  • the first side surface connecting the first side surface, the second side surface located on the opposite side of the first side surface and connecting the long side of the first main surface and the long side of the second main surface.
  • At least one of the first main surface and the second main surface is covered with a thin film. Examples of the thin film that covers the main surface of the silicon substrate include a silicon-based thin film and an insulating material thin film.
  • At least one of the thin film covering the first main surface and the thin film covering the second main surface is formed around the first side surface. Therefore, the first side surface is covered with a thin film. Neither the thin film that covers the first main surface nor the thin film that covers the second main surface wraps around the second side surface. Therefore, the second side surface is not covered with the thin film covering the main surface.
  • a silicon oxide film is provided on the entire surface of the second side surface in the thickness direction of the crystalline silicon substrate.
  • the silicon substrate After forming a thin film on the main surface of the square crystal silicon substrate, the silicon substrate is divided to obtain two rectangular crystal silicon substrates.
  • a thin film is formed on a crystalline silicon substrate, if the film is formed so as to go around the side surface in addition to the main surface of the square crystalline silicon substrate, the first rectangular crystal silicon substrate after division is The side is covered with a thin film.
  • the second side surface is a side surface generated by dividing the silicon substrate. Therefore, even when the side surface of the square silicon substrate is covered with the thin film, the second side surface of the rectangular silicon substrate is not covered with the thin film formed on the main surface of the silicon substrate.
  • the oxide film on the second side is formed by exposing the crystalline silicon exposed on the second side to an atmosphere (oxidative atmosphere) that is more oxidizing than air at room temperature. That is, the silicon oxide film on the second side surface is a non-natural oxide film and has a larger thickness than the natural oxide film of silicon.
  • the substrate After dividing the crystal silicon substrate along the dividing groove by irradiating the laser beam along the center line of the square crystalline silicon substrate to form the dividing groove, the substrate can be divided into two rectangular crystalline silicon substrates. .
  • a silicon oxide film is formed in the formation region of the dividing groove on the second side surface by the laser light irradiation.
  • Crystalline silicon is exposed on the cut surface formed by folding the silicon substrate.
  • an oxide film can be formed.
  • the heating temperature when heating in an oxidizing atmosphere is, for example, 100 to 200 ° C.
  • the oxide film formed on the surface of the dividing groove by laser light irradiation is smaller than the oxide film formed by heating at about 100 to 200 ° C. Therefore, the thickness of the oxide film provided on the second side surface of the silicon substrate close to the first main surface may be different from the thickness of the oxide film provided on the side close to the second main surface.
  • the present invention relates to a solar cell module including a solar cell string in which a plurality of the solar cells are connected by a wiring material.
  • the solar cell module includes a solar cell string, a sealing material that seals the solar cell string, a light receiving surface protective material provided on the light receiving surface side of the sealing material, and a back surface provided on the back side of the sealing material Protective material.
  • the wiring member is arranged so as to extend in parallel with the rectangular short side of the rectangular solar cell.
  • the solar cell string is connected via a wiring member so that a plurality of rectangular solar cells are aligned along the short side direction of the rectangle.
  • the solar cell of the present invention has a rectangular shape, and the area is half that of a solar cell including a general square silicon substrate. Since the current of the solar cell is small and the current flowing through the wiring material connecting the plurality of solar cells is also small, the electrical loss due to the resistance of the wiring material is small.
  • the oxide film provided on the side surface generated by dividing the silicon substrate has a passivation effect of the silicon substrate. Therefore, the conversion characteristics of the solar cell are improved as compared with the case where crystalline silicon is exposed on the side surface of the silicon substrate.
  • FIG. 1 is a schematic cross-sectional view of a solar cell according to an embodiment of the present invention.
  • FIG. 2A is a plan view of a solar cell string in which a plurality of solar cells are electrically connected via a wiring member, and
  • FIG. 2B is a cross-sectional view thereof.
  • the solar cell of the present invention has a rectangular shape having two long sides and two short sides in plan view.
  • the solar cell 105 includes a crystalline silicon substrate 15 having a rectangular shape in plan view.
  • the crystalline silicon substrate may be a single crystal silicon substrate or a polycrystalline silicon substrate.
  • the silicon substrate 15 has a rectangular first main surface 81 and a rectangular second main surface 82.
  • the second main surface 82 is located on the opposite side of the first main surface 81, one is the light receiving surface of the solar cell, and the other is the back surface.
  • the 1st main surface 81 is demonstrated as a light-receiving surface.
  • the silicon substrate 15 has a first side surface 91, a second side surface 92, a third side surface 93 and a fourth side surface 94.
  • the first side surface 91 and the second side surface 92 are side surfaces that connect the long side of the first main surface 81 and the long side of the second main surface 82, and both are located on the opposite side.
  • the third side surface 93 and the fourth side surface 94 are side surfaces that connect the short side of the first main surface and the short side of the second main surface, and both are located on the opposite side.
  • FIG. 3A is a plan view of the undivided solar cell as viewed from the first main surface side.
  • a square solar cell does not need to be a perfect square.
  • a semi-square type as shown in FIG. 3A (a square having four rounded corners or a notch). But you can.
  • the rectangular solar cell 105 may have a rounded corner or a notch as shown in FIG. 2A.
  • the length of the long side of the rectangle is equal to the length of one side of the silicon substrate before division, and is about 100 to 200 mm.
  • the length of the short side of the rectangle is approximately 1 ⁇ 2 of the length of the long side, and is about 50 to 100 mm.
  • the first side surface 91 of the silicon substrate 15 is the same as the side surface 91 of the silicon substrate 10 in the solar cell 101 before division.
  • the second side surface 92 is a surface (divided surface) newly formed by dividing the square-shaped silicon substrate 10 into two.
  • At least one of the first main surface 81 and the second main surface 82 is covered with a thin film, and the thin film covering the main surface of the silicon substrate 15 wraps around the first side surface 91. Covering.
  • the thin film covering the main surface does not cover the second side surface 92, and the oxide film 50 is provided on the surface of the second side surface 92.
  • FIG. 3B is a cross-sectional view of the solar cell before division shown in FIG. 3A.
  • the solar cell 101 is a heterojunction solar cell in which a silicon-based thin film such as amorphous silicon is provided on a crystalline silicon substrate 10 having a square shape when viewed from the front.
  • a silicon-based thin film such as amorphous silicon
  • the first intrinsic silicon-based thin film 21 the first conductive type silicon-based thin film 31 and the first transparent conductive layer 61 are provided.
  • a second intrinsic silicon thin film 22, a second conductivity type silicon thin film 32, and a second transparent conductive layer 62 are provided on 86.
  • a metal electrode 71 and a metal electrode 72 are provided on the first transparent conductive layer 61 and the second transparent conductive layer 62, respectively.
  • a single conductivity type single crystal silicon substrate is used as the crystalline silicon substrate 10.
  • One conductivity type means either n-type or p-type.
  • the silicon substrate 10 preferably has a concavo-convex structure on the surface from the viewpoint of improving light utilization efficiency by light confinement. For example, a pyramidal uneven structure is formed on the surface of the single crystal silicon substrate by anisotropic etching using alkali.
  • Intrinsic silicon thin films 21 and 22 and conductive silicon thin films 31 and 32 include amorphous silicon thin films, microcrystalline silicon thin films (for example, thin films containing amorphous silicon and crystalline silicon), and the like. Can be mentioned. Among these, an amorphous silicon thin film is preferable.
  • Intrinsic silicon thin films 21 and 22 are preferably intrinsic amorphous silicon thin films composed of silicon and hydrogen. By depositing amorphous silicon on a single crystal silicon substrate, surface passivation can be effectively performed while suppressing impurity diffusion into the silicon substrate.
  • the first conductivity type silicon-based thin film 31 and the second conductivity type silicon-based thin film 32 have different conductivity types. That is, one of the conductive silicon thin films 31 and 32 is a p-type silicon thin film and the other is an n-type silicon thin film.
  • a plasma CVD method is preferable as a method for forming these silicon-based thin films. If a thin film is formed on one main surface of a silicon substrate by a dry process such as CVD, sputtering, vacuum deposition, or ion plating without using a mask, the side surface of the silicon substrate and the main surface on the opposite side are formed. The thin film wraps around and deposits. That is, as shown in FIG. 3B, the silicon-based thin films 21 and 31 formed on the first main surface 85 of the silicon substrate 10 wrap around the side surfaces 91 and 95, and the first main surface 85. It is also formed on the peripheral edge of the two main surfaces 86.
  • the silicon-based thin films 22 and 32 formed on the second main surface 86 of the silicon substrate 10 are formed on the side surfaces 91 and 95 and the peripheral portion of the first main surface 85 in addition to the second main surface 86. .
  • an intrinsic silicon-based thin film not only on the main surface of the silicon substrate but also on the side surfaces by wraparound, the passivation effect on the silicon substrate is enhanced.
  • the transparent conductive layers 61 and 62 provided on the silicon-based thin film are made of a conductive oxide such as ITO, and can be formed by MOCVD, sputtering, ion plating, or the like.
  • the transparent conductive layers 61 and 62 are formed on the peripheral portions of the main surfaces 85 and 86 of the silicon substrate as shown in FIG. 3B. Is not formed, and no wraparound to the side surface or the opposite surface occurs. If a transparent conductive layer is formed using a mask, a short circuit between the conductive layers on the front and back sides caused by the wraparound of the transparent conductive layer can be prevented. Even when the transparent conductive layer 61 is formed on the first main surface 85 and the transparent conductive layer 62 is formed on the second main surface 86, a mask is used to short-circuit the conductive layers on the front and back sides. Can be prevented.
  • Metal electrodes are provided on the transparent conductive layers 61 and 62.
  • the metal electrode provided on the first main surface which is the light receiving surface has a pattern shape.
  • patterned metal electrodes are provided on both sides.
  • 3A shows a grid-like metal electrode 71 including finger electrodes 711 extending in one direction (y direction) and bus bar electrodes 712 orthogonal to the finger electrodes.
  • Such a patterned metal electrode can be formed by, for example, an inkjet method, a screen printing method, a plating method, or the like.
  • the metal electrode 72 provided on the back surface side may have a pattern shape or may be provided on the entire surface of the transparent conductive layer.
  • a rectangular solar cell is manufactured by dividing after forming a metal electrode on a square silicon substrate.
  • the formation of the metal electrode may be performed after dividing the substrate. Considering the efficiency of pattern printing and the like, it is preferable to divide the substrate after forming the metal electrode.
  • the method for dividing the solar cell is not particularly limited.
  • a solar cell can be divided along the groove by forming a groove along the dividing line and folding the silicon substrate around the groove.
  • channel 19 is formed in the 1st main surface of a solar cell.
  • the method for forming the dividing groove is not particularly limited, but laser beam irradiation is preferable.
  • a laser for forming the division grooves a laser having a light wavelength that can be absorbed by the silicon substrate and sufficient output for forming the grooves can be applied.
  • the laser beam diameter for example, a laser beam having a diameter of 20 to 200 ⁇ m can be used. By irradiating the laser beam under such conditions, it is possible to form the dividing groove 19 having a width substantially the same as the light diameter of the laser beam.
  • the depth of the groove can be appropriately set to a depth at which cleaving along the groove can be easily performed, and is set, for example, in a range of about 10 to 50% of the thickness of the silicon substrate 10.
  • a silicon oxide film 51 is formed on the surface of the dividing groove 19 provided in the silicon substrate 10.
  • the division groove 19 is formed on the first main surface side of the silicon substrate 10.
  • the division groove may be formed on the second main surface side by performing laser light irradiation from the second main surface side. .
  • the solar cell 102 is divided into two, a solar cell 103 and a solar cell 104, as shown in FIG. 4B.
  • a crystalline silicon substrate is cut out to have a predetermined orientation plane, if a dividing groove 19 that is a starting point of cleaving is formed, it can be easily formed in a direction perpendicular to the substrate surface (in the thickness direction of the substrate). Can be cleaved.
  • the solar cell 103 after the division into two has a rectangular shape, and there are two side surfaces 91 and 92 along the long side of the rectangle, and two side surfaces 93 and 94 along the short side of the rectangle.
  • the first side surface 91 is a side surface existing before the division, and a silicon-based thin film formed on the first main surface and the second main surface covers the first side surface.
  • the third side surface 93 and the fourth side surface 94 are side surfaces in which the side surface of the solar cell before the division is divided into two along the center line CC, and the first main surface and the second main surface are the same as the first side surface. It is covered with a silicon-based thin film formed on the surface.
  • the second side surface 92 is a new surface formed by division, is not covered with a thin film, and crystal silicon is exposed.
  • an oxide film 51 is formed by heating during groove formation.
  • Crystalline silicon is exposed in the split section 922 formed by folding.
  • a natural oxide film with a thickness of about 1 nm may be formed on the surface of the fractured surface 922 of crystalline silicon (see FIG. 5).
  • the second side surface 92 of the silicon substrate 15 is provided with an oxide film 50 composed of the oxide film 51 generated when the dividing groove is formed by laser light and the oxide film 52 generated by the oxidation after cleaving. It has been. That is, the second side surface 92 of the solar cell 105 is provided with an oxide film (non-natural oxide film) 50 formed under conditions that are more oxidizable than air at normal temperature over the entire thickness direction.
  • the formation of the oxide film 52 on the fractured surface 922 of the silicon substrate is performed in an oxidizing atmosphere.
  • the oxidizing atmosphere means a condition that is more oxidizing than room temperature air, such as a highly oxidizing gas atmosphere, a heating atmosphere, and contact with an oxidizing solution.
  • a thermal oxide film is formed by heating in air.
  • a chemical oxide film is formed by exposure to an oxidizing atmosphere in which ozone, hydrogen peroxide, high-concentration oxygen, or the like is present.
  • the chemical oxide film may be formed by heating in an oxidizing gas atmosphere.
  • a non-natural oxide film can be formed on the cut surface of the silicon substrate by local heating by laser irradiation or the like, or blowing of an oxidizing gas by air blow.
  • the heating temperature is preferably 100 ° C. or higher. In order to suppress thermal deterioration of the silicon-based thin film and the transparent conductive layer, the heating temperature is preferably 200 ° C. or lower.
  • the local heating temperature is not particularly limited. The blowing of the oxidizing gas by air blow may also serve as an operation for removing debris generated when the silicon substrate is cleaved.
  • the oxide film 52 formed by heating or chemical oxidation is generally thicker than the natural oxide film.
  • the thickness of the oxide film formed in a heating atmosphere of 150 to 200 ° C. is 1.5 to 3 nm. (See FIG. 6).
  • the oxide film 51 formed by heat at the time of laser irradiation has a larger film thickness than the oxide film 52 formed by heating at 200 ° C. or lower.
  • FIG. 5 is a transmission electron microscope (TEM) image of a cross section of a silicon substrate on which a natural oxide film is formed
  • FIG. 6 is a TEM image of a silicon substrate heated at 150 ° C. for 1 hour in an atmosphere containing 100 ppm ozone. is there.
  • cutting was performed with a platinum layer and a resin laminated on the surface of the silicon substrate to protect the surface of the oxide film, thereby preparing a sample for TEM observation.
  • the white area between the silicon and the platinum layer is an oxide film.
  • the film thickness of the natural acid film in FIG. 5 is 1.23 nm
  • the film thickness of the oxide film formed by heating in an ozone-containing atmosphere is 2.18 nm, which is a film compared to natural oxidation. It can be seen that a thick oxide film is formed.
  • a thin oxide film may be formed on the surface of the metal electrode 71 in some cases.
  • an oxidizing gas such as ozone
  • an oxide film is easily formed on the surface of the metal electrode.
  • the oxide film is formed on the surface of the metal electrode, the metallic luster is reduced and the light reflection is reduced. Therefore, the metal electrode is difficult to be visually recognized from the outside, and improvement in design properties of the solar cell and the solar cell module can be expected. Since the thickness of the oxide film formed on the surface of the metal electrode is sufficiently small, there is almost no influence of the resistance due to the oxide film when connecting the wiring material (interconnector) on the electrode electrode.
  • the current density of the solar cells is substantially the same before and after the division. Since the area of the solar cell after division is half that before division, the amount of current per solar cell is about half that before division. The sum of the current amounts of the two solar cells is substantially the same as the current amount of the solar cells before the division.
  • the solar cell after division tends to have a lower fill factor than before division. For this reason, the total output of the rectangular solar cells 103 and 104 after the division tends to be smaller than the output of the square solar cell 101 before the division.
  • the solar cell module in which a plurality of solar cells of the present invention are connected is excellent in power generation characteristics.
  • the increase in the open circuit voltage and the fill factor due to the formation of the oxide film is related to the passivation effect on the silicon substrate.
  • the solar cell 101 before the division all main surfaces and side surfaces are covered with the silicon-based thin film, whereas in the solar cells 103 and 104 after the division, the second side surfaces 92 and 92 ′ are covered with the thin film. The silicon is exposed. Therefore, in the solar cells 103 and 104 before forming the oxide film, the passivation effect of the silicon substrate is insufficient as compared with the solar cell 101 before division, the carrier lifetime is reduced, and the open circuit voltage and the fill factor are reduced. It is thought that there is.
  • the solar cell 105 since the passivation effect is recovered by covering the silicon exposed on the second side surface of the divided silicon substrate 15 with the oxide film 50, the solar cell 105 has an open circuit voltage and a curve equal to or higher than those before the division. It is thought to have a factor.
  • the thickness of the oxide film 52 formed on the fractured surface 922 of the silicon substrate is preferably 1.5 nm or more, more preferably 1,8 nm or more, and 2 nm or more. Is more preferable.
  • a solar cell string 210 is formed by electrically connecting a plurality of rectangular solar cells 103 provided with the oxide film 50 on the second side surface 92 via a wiring member (interconnector) 201.
  • FIG. 2A shows a solar cell string in which rectangular solar cells are arranged along the short side direction (x direction) and connected via the wiring member 201.
  • the grid-like metal electrode 71 of the solar cell 103 includes a finger electrode 711 extending in a rectangular long side direction (y direction) and a bus bar electrode 712 extending in a rectangular short side direction (x direction).
  • the wiring member 201 is provided on the bus bar electrode 712, and as shown in FIG. 3B, the wiring member 201 connected to the first main surface of the solar cell is connected to the second main surface of the adjacent solar cell.
  • a plurality of solar cells are electrically connected in series.
  • the wiring material 201 for example, a strip-shaped thin plate made of a metal such as copper is used.
  • the wiring material and the electrode of the solar cell can be connected via solder, a conductive adhesive, a conductive film, or the like.
  • the module voltage can be increased even when the solar cell module is installed in a small area.
  • the area of one solar cell is half, the current flowing through the wiring member is halved, the electrical loss due to the resistance of the wiring member is reduced, and the power generation efficiency of the module can be improved.
  • a solar cell string is formed after an oxide film is formed on the second side surface where the crystalline silicon is exposed by dividing the silicon substrate.
  • An oxide film may be formed on the second side surface of the silicon substrate after the divided rectangular solar cell is connected to the wiring member to produce a string.
  • FIG. 7 is a cross-sectional view of the solar cell module.
  • a light receiving surface protective material 211 is provided on the light receiving surface side (upper side in FIG. 7) of the solar cell string 210 to which a plurality of solar cells are connected via the wiring member 201, and on the back side (lower side in FIG. 7). Is provided with a back surface protective material 212.
  • the solar cell string 210 is sealed by filling the sealing material 215 between the protective materials 211 and 212.
  • EVAT isocyanurate
  • PVB polyvinyl butyrate
  • silicon silicon
  • urethane acrylic
  • epoxy epoxy
  • the light-receiving surface protective material 211 is light transmissive, and glass or transparent plastic is used.
  • the back surface protective material 212 may be any of light transmitting property, light absorbing property, and light reflecting property.
  • As the light-reflecting back surface protective material a material exhibiting a metallic color or white color is preferable, and a white resin film, a laminate in which a metal foil such as aluminum is sandwiched between resin films, and the like are preferably used.
  • As the light-absorbing protective material for example, a material including a black resin layer is used.
  • the sealing material and the protective material are arranged and laminated on the light receiving surface side and the back surface side of the solar cell string 210, vacuum lamination is performed, and after the sealing material is closely attached to the solar cell string and the protective material, By thermocompression bonding, the sealing material flows also in the gaps between the solar cells and the end of the module, and modularization is performed.
  • a solar cell string is produced and sealed to produce a solar cell module.
  • An oxide film may be formed on the second side surface of the silicon substrate after the divided rectangular solar cell is connected to the wiring member to produce a string.
  • the side surface of the silicon substrate is covered with the sealing material, and the oxidizing gas cannot be accessed. Even if heating is performed after vacuum laminating for sealing, no oxidizing gas is present in the vicinity of the side surface of the silicon substrate, so that no oxide film is formed on the side surface of the silicon substrate. Therefore, it is necessary to form the oxide film on the side surface of the silicon substrate before sealing.
  • An example of a solar cell has been described.
  • the thin film covering the first side surface is not limited to the silicon-based thin film.
  • at least one of the transparent conductive layer 61 on the first main surface and the transparent conductive layer 62 on the second main surface may cover the first side surface of the silicon substrate.
  • the insulating material thin film 41 provided on the first main surface 81 and the insulating material thin film 42 provided on the second main surface cover the first side surface 91. Similar to the solar cell 105 shown in FIG. 1, a silicon oxide film 50 is provided on the second side surface of the solar cell 115.
  • a conductive seed 76 is provided on the transparent conductive layer 61.
  • the conductive seed is provided in the same pattern shape as the metal electrode.
  • the conductive seed serving as the base is also provided in the same grid shape.
  • the conductive seed can be formed by printing a metal paste, electroless plating, electrolytic plating, photoplating, or the like.
  • An insulating material thin film 41 is formed so as to cover the transparent conductive layer 61 and the conductive seed 76.
  • the insulating material may be an inorganic insulating material or an organic insulating material.
  • an inorganic insulating material is preferable.
  • Inorganic insulating materials include silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, sialon (SiAlON), yttrium oxide, magnesium oxide, barium titanate, samarium oxide, barium tantalate , tantalum oxide, magnesium fluoride, oxide Titanium, strontium titanate and the like are preferably used.
  • silicon-based insulating materials such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, and sialon, and aluminum-based insulating materials are preferable.
  • the insulating material thin film 41 on the first main surface 81 has an opening on the conductive seed 76, and the metal electrode 77 is electrically connected to the conductive seed 76 through this opening.
  • Examples of the method for forming the opening in the insulating material thin film 41 include a method using a mask when forming a thin film, a method of performing pattern etching using a resist, and the like. Further, as disclosed in WO2013 / 077038 and the like, after forming the conductive seed 76 using a metal paste, the insulating material thin film 41 is formed, and the insulating material thin film is opened by heat flow of the conductive seed. May be formed. If electrolytic plating is performed in a state where an opening is provided in the insulating material thin film on the conductive sheet, the metal is selectively deposited on the conductive seed 76, so that a patterned metal electrode 77 is formed.
  • an insulating material thin film 42 that wraps around the first side surface 91 is formed on the second main surface 82 side, and plating is performed on the conductive seed 78 through the opening of the insulating material thin film 42.
  • a metal electrode 79 may be formed.
  • the insulating material thin films 41 and 42 have a function as a pattern film when a metal electrode is formed by plating.
  • the insulating material thin films 41 and 42 also function as a barrier layer for protecting the transparent conductive layers 61 and 62 from the plating solution.
  • the insulating material thin film formed around the first main surface and the second main surface to the first side surface 91 serves as a passivation layer for the silicon substrate and as a barrier layer for protecting the side surface of the silicon substrate from the plating solution. Has an effect.
  • the insulating material thin films 41 and 42 are formed on both surfaces of the silicon substrate, and both the insulating material thin films wrap around the first side face 91.
  • the insulating material thin film is formed around the side surface and the surface opposite to the film forming surface. Therefore, even when an insulating material thin film is formed only on one of the main surfaces, the entire first side surface 91 is covered with the insulating material thin film.
  • an insulating material thin film is provided on the surface of the silicon substrate for various purposes.
  • an insulating material thin film is formed as a passivation film on the light receiving surface side.
  • a passivation effect on the side surface can be obtained.
  • an insulating material thin film is provided as a passivation film on the back surface of the silicon substrate in order to suppress recombination at the interface between the back surface of the silicon substrate and the metal electrode.
  • a passivation film 342 made of silicon nitride, aluminum oxide, or the like is provided on the back surface of a silicon substrate, and the aluminum film 372 is heated through an opening provided in the passivation film.
  • a back surface electric field (AlBSF) 375 in which aluminum and silicon are alloyed is provided.
  • a passivation film 341 is provided on the surface of the light receiving surface of the silicon substrate 315.
  • An Ag paste electrode is provided on the passivation film 341, penetrates the passivation film 341 by a fire-through method, and contacts the n-type dopant diffusion region 315n of the silicon substrate 315.
  • the passivation film 341 on the light receiving surface and the passivation film 342 on the back surface are formed around the first side surface 391.
  • the passivation films 341 and 342 do not cover the second side surface 392 that is a split section.
  • the oxide film 350 is provided on the silicon exposed surface of the second side surface 392 of the silicon substrate 315 after cleaving, so that the fill factor of the solar cell is reduced. It can be improved.
  • the substrate after removal of PSG was transferred to a CVD film forming apparatus, and a silicon nitride layer was formed to a thickness of 70 nm on the light receiving surface.
  • a silicon nitride layer was formed to a thickness of 70 nm on the light receiving surface.
  • an aluminum oxide layer having a thickness of 40 nm and a silicon nitride layer having a thickness of 130 nm were sequentially formed as a passivation film on the back surface of the silicon substrate.
  • the back surface passivation film was pulse-irradiated with a second harmonic (532 nm) of a YAG laser, and contact openings with a diameter of 100 ⁇ m were provided in a grid pattern with an interval of 1 mm.
  • Ag paste was screen-printed on a grid pattern composed of bus bar electrodes and finger electrodes, and pre-baked at 300 ° C. for about 40 seconds. Thereafter, an Al paste was printed on the entire surface of the silicon nitride layer on the back surface, and an Ag paste was screen printed at a position corresponding to the bus bar on the light receiving surface.
  • the light receiving surface was transferred to a baking furnace and fired at about 900 ° C., and the silicon nitride layer was penetrated through the light receiving surface Ag paste and contacted with the phosphorus diffusion region of the silicon substrate.
  • Al and the silicon substrate reacted through the contact opening of the passivation film on the back surface side, and an aluminum back surface field (AlBSF) was formed on the back surface of the silicon substrate.
  • AlBSF aluminum back surface field
  • the silicon substrate was broken along the dividing groove and divided into two rectangular solar cells. Neither the aluminum oxide layer nor the silicon nitride layer was formed on the split surface of the silicon substrate of the solar cell after division, and crystalline silicon was exposed.
  • Example: Oxidation of side surface of silicon substrate After measuring the conversion characteristics of each of the two rectangular solar cells obtained in Reference Example 2, heating was performed in a heating oven at 150 ° C. for 1 hour to form an oxide film on the exposed surface of crystalline silicon. Thereafter, the conversion characteristics of the two solar cells were measured.
  • Table 1 shows the conversion characteristics of the solar cells of Reference Examples 1 and 2, Examples and Comparative Examples.
  • the current Isc, the open circuit voltage Voc, the fill factor FF, and the maximum output Pmax in Table 1 are all expressed as relative values with the measured value of the square solar cell of Reference Example 1 being 1.
  • Examples and Comparative Examples the sum of the maximum output of one rectangular solar cell (single unit) and the maximum output of two solar cells is shown.

Abstract

太陽電池(105)は、長方形状の結晶シリコン基板(15)を備える。結晶シリコン基板は、長方形状の第一主面(81)、および長方形状の第二主面(82)を有する。第一主面および第二主面の少なくとも一方は、薄膜により被覆されている。この薄膜は、第一主面の長辺と第二主面の長辺とを接続する側面の一方である第一側面(91)に回り込んで形成されており、他方の側面である第二側面(92)には回り込んでいない。第二側面の表面には、結晶シリコン基板の厚み方向の全体にシリコンの酸化膜(50)が設けられている。

Description

太陽電池およびその製造方法、ならびに太陽電池モジュール
 本発明は、太陽電池、およびその製造方法に関する。さらに本発明は太陽電池モジュールに関する。
 結晶シリコン基板を用いた太陽電池では、結晶シリコンでの光生成キャリア(電子および正孔)を外部回路に取り出すことにより、発電がおこなわれる。結晶シリコン基板を用いた太陽電池1個あたりの出力は高々数W程度である。そのため、配線材を介して複数の太陽電池を電気的に直列に接続した太陽電池ストリングを形成し、それぞれの太陽電池の電圧を加算することにより出力を高めている。
 複数の太陽電池を直列接続したストリングでは、配線材の抵抗に起因する電気的ロスが生じる。1つの太陽電池の面積が大きいほど電流量が大きくなるため、配線材の抵抗に起因する電気的ロスが増大する。特許文献1には、シリコン基板を2分割して面積を分割前の半分とした太陽電池を、配線材により接続した太陽電池モジュールが開示されている。太陽電池の面積を半分とすることにより、電流が半分となるため、配線材の抵抗に起因するロスを低減できる。
 特許文献2では、シリコン基板の主面に絶縁性薄膜を形成後に基板を2分割した太陽電池が開示されている。分割後の長方形状の太陽電池では、長方形の長辺に沿った2つの側面のうち、分割前から存在する側面は絶縁性薄膜で覆われており、分割により形成された側面は結晶シリコンが露出している。
特開2012-256728号公報 WO2012/043770号パンフレット
 本発明者らが、特許文献1や特許文献2に開示されているような基板を2分割した太陽電池の特性を測定したところ、分割前の太陽電池に比べて曲線因子が低下していた。この点に鑑み、本発明は、基板を分割後も高い出力を維持した太陽電池、および当該太陽電池の複数を電気的に接続した太陽電池モジュールの提供を目的とする。
 シリコン基板の分割時に形成されたシリコン基板の側面を酸化膜で覆うことにより、パッシベーション効果が得られ、分割前と同等または分割前よりも高い特性を有する太陽電池が得られる。
 本発明の太陽電池は、長方形状の結晶シリコン基板を備える。長方形状の結晶シリコン基板は、長方形状の第一主面、第一主面の反対側に位置する長方形状の第二主面、第一主面の長辺と第二主面の長辺とを接続する第一側面、第一側面の反対側に位置し第一主面の長辺と第二主面の長辺とを接続する第二側面を有する。第一主面および第二主面の少なくとも一方は、薄膜により被覆されている。シリコン基板の主面を被覆する薄膜としては、シリコン系薄膜や、絶縁性材料薄膜が挙げられる。
 第一主面を被覆する薄膜および第二主面を被覆する薄膜の少なくとも一方は、第一側面に回り込んで形成されている。そのため、第一側面は薄膜により覆われている。第一主面を被覆する薄膜および第二主面を被覆する薄膜は、いずれも第二側面には回り込んでいない。そのため、第二側面は主面を被覆する薄膜には覆われていない。第二側面の表面には、結晶シリコン基板の厚み方向の全体にシリコンの酸化膜が設けられている。
 正方形状の結晶シリコン基板の主面に薄膜を製膜後に、シリコン基板を分割することにより、2枚の長方形状の結晶シリコン基板が得られる。結晶シリコン基板上への薄膜の製膜時に、正方形状の結晶シリコン基板の主面に加えて側面にも回り込むように製膜を行えば、分割後の長方形状の結晶シリコン基板においても、第一側面が薄膜により覆われている。第二側面は、シリコン基板の分割により生じる側面である。そのため、正方形状のシリコン基板の側面が薄膜により覆われている場合でも、長方形状のシリコン基板の第二側面は、シリコン基板の主面に形成された薄膜には覆われていない。
 第二側面の酸化膜は、第二側面に露出した結晶シリコンを常温の空気よりも酸化性の強い雰囲気(酸化性雰囲気)に暴露することにより形成される。すなわち、第二側面のシリコン酸化膜は非自然酸化膜であり、シリコンの自然酸化膜に比べて大きな厚みを有する。
 正方形状の結晶シリコン基板の中央線に沿ってレーザ光を照射して分割溝を形成後、分割溝に沿って結晶シリコン基板を折り割ることにより、2枚の長方形状の結晶シリコン基板に分割できる。レーザ光の照射により、第二側面の分割溝の形成領域に、シリコンの酸化膜が形成される場合がある。シリコン基板の折り割りにより形成された割断面には、結晶シリコンが露出している。この結晶シリコンの露出面を酸化性雰囲気に暴露することにより、酸化膜を形成できる。酸化性雰囲気下での加熱を行う場合の加熱温度、例えば100~200℃である。
 レーザ光照射により分割溝の表面に形成される酸化膜は、100~200℃程度の加熱により形成される酸化膜よりも膜厚が小さい。そのため、シリコン基板の第二側面の第一主面に近い側に設けられた酸化膜と、第二主面に近い側に設けられた酸化膜の厚みが異なる場合がある。
 さらに、本発明は、上記の太陽電池の複数が配線材により接続された太陽電池ストリングを備える太陽電池モジュールに関する。太陽電池モジュールは、太陽電池ストリングと、太陽電池ストリングを封止する封止材と、封止材の受光面側に設けられた受光面保護材と、封止材の裏面側に設けられた裏面保護材とを有する。
 一実施形態において、配線材は、長方形状の太陽電池の長方形の短辺と平行に延在するように配置されている。この実施形態において、太陽電池ストリングは、長方形状の太陽電池の複数が、長方形の短辺方向に沿って並ぶように、配線材を介して接続されている。
 本発明の太陽電池は、長方形状であり、一般的な正方形状のシリコン基板を備える太陽電池に比べて面積が半分である。太陽電池の電流が小さく、複数の太陽電池間を接続する配線材に流れる電流も小さいため、配線材の抵抗に起因する電気的ロスが少ない。シリコン基板の分割により生じた側面に設けられた酸化膜が、シリコン基板のパッシベーション効果を有する。そのため、シリコン基板の側面に結晶シリコンが露出している場合に比べて、太陽電池の変換特性が向上する。
一実施形態の太陽電池の断面図である。 太陽電池ストリングの平面図である。 太陽電池ストリングの断面図である。 分割前の太陽電池の平面図である。 分割前の太陽電池の断面図である。 シリコン基板に分割溝が形成された太陽電池の模式的断面図である。 分割溝に沿って2分割された太陽電池の模式的断面図である。 表面に自然酸化膜が形成された結晶シリコン基板の断面TEM像である。 オゾン含有雰囲気下での酸化により表面に酸化膜が形成された結晶シリコン基板の断面TEM像である。 太陽電池モジュールの断面図である。 一実施形態の太陽電池の断面図である。 一実施形態の太陽電池の断面図である。
[太陽電池の構成]
 図1は、本発明の一実施形態の太陽電池の模式的断面図である。図2Aは、複数の太陽電池を、配線材を介して電気的に接続した太陽電池ストリングの平面図であり、図2Bはその断面図である。
 図2Aに示すように、本発明の太陽電池は、平面視において2つの長辺と2つの短辺を有する長方形状である。太陽電池105は、平面視長方形状の結晶シリコン基板15を備える。結晶シリコン基板は単結晶シリコン基板でも多結晶シリコン基板でもよい。シリコン基板15は、長方形状の第一主面81と長方形状の第二主面82とを有する。第二主面82は第一主面81の反対側に位置し、一方が太陽電池の受光面であり、他方が裏面である。以下では第一主面81を受光面として説明する。
 シリコン基板15は、第一側面91、第二側面92、第三側面93および第四側面94を有する。第一側面91および第二側面92は、第一主面81の長辺と第二主面82の長辺とを接続する側面であり、両者は反対側に位置する。第三側面93および第四側面94は、第一主面の短辺と第二主面の短辺とを接続する側面であり、両者は反対側に位置する。
 長方形状の太陽電池は、正方形状のシリコン基板を用いて作製された太陽電池を中央で2分割することにより得られる。図3Aは,分割前の太陽電池を第一主面側からみた平面図である。正方形状の太陽電池は、完全な正方形である必要はなく、例えば、図3Aに示すようなセミスクエア型(正方形の4つの角が丸みを帯びているものや、切欠き部が存在するもの)でもよい。同様に、長方形状の太陽電池105は、図2Aに示すように角が丸みを帯びているものや切欠き部が存在するものでもよい。長方形の長辺の長さは分割前のシリコン基板の1辺の長さに等しく、100~200mm程度である。長方形の短辺の長さは、長辺の長さの略1/2であり、50~100mm程度である。
 長方形状の太陽電池105において、シリコン基板15の第一側面91は、分割前の太陽電池101におけるシリコン基板10の側面91と同一である。第二側面92は、正方形状のシリコン基板10を2分割することにより新たに形成される面(分割面)である。
 本発明の太陽電池では、第一主面81および第二主面82の少なくともいずれか一方が薄膜で被覆されており、シリコン基板15の主面を被覆する薄膜が回り込んで第一側面91を覆っている。主面を被覆する薄膜は、第二側面92を被覆しておらず、第二側面92の表面には酸化膜50が設けられている。
 以下では、図3Aおよび図3Bに示す分割前の太陽電池を参照して、シリコン基板の主面および側面に設けられる薄膜および電極の構成について説明する。
 図3Bは、図3Aに示す分割前の太陽電池の断面図である。太陽電池101は、正面視正方形状の結晶シリコン基板10上に、非晶質シリコン等のシリコン系薄膜が設けられたヘテロ接合太陽電池である。結晶シリコン基板10の第一主面85上には、第一真性シリコン系薄膜21、第一導電型シリコン系薄膜31および第一透明導電層61が設けられ、結晶シリコン基板10の第二主面86上には、第二真性シリコン系薄膜22、第二導電型シリコン系薄膜32および第二透明導電層62が設けられている。第一透明導電層61上、および第二透明導電層62上には、それぞれ、金属電極71および金属電極72が設けられている。
 ヘテロ接合太陽電池では、結晶シリコン基板10として一導電型単結晶シリコン基板が用いられる。「一導電型」とは、n型またはp型のどちらか一方であることを意味する。シリコン基板10は、光閉じ込めによる光利用効率向上の観点から、表面に凹凸構造を有することが好ましい。例えば、アルカリを用いた異方性エッチングにより、単結晶シリコン基板の表面にピラミッド形状の凹凸構造が形成される。
 真性シリコン系薄膜21,22および導電型シリコン系薄膜31,32としては、非晶質シリコン系薄膜、および微結晶シリコン系薄膜(例えば、非晶質シリコンと結晶質シリコンとを含む薄膜)等が挙げられる。中でも非晶質シリコン系薄膜が好ましい。真性シリコン系薄膜21,22としては、シリコンと水素で構成される真性非晶質シリコン薄膜が好ましい。単結晶シリコン基板上に非晶質シリコンを製膜することにより、シリコン基板への不純物拡散を抑えつつ表面パッシベーションを有効に行うことができる。第一導電型シリコン系薄膜31と第二導電型シリコン系薄膜32は、異なる導電型を有する。すなわち、導電型シリコン系薄膜31,32は、一方がp型、他方がn型のシリコン系薄膜である。
 これらのシリコン系薄膜の製膜方法としては、プラズマCVD法が好ましい。マスクを使用せずに、CVD法、スパッタ法、真空蒸着法、イオンプレーティング法等のドライプロセスによりシリコン基板の一方の主面に薄膜を形成すると、シリコン基板の側面および反対側の主面にも薄膜が回り込んで着膜する。すなわち、図3Bに示すように、シリコン基板10の第一主面85に製膜されたシリコン系薄膜21,31は、第一主面85に加えて、回り込みにより、側面91,95、および第二主面86の周縁部にも形成される。シリコン基板10の第二主面86に製膜されたシリコン系薄膜22,32は、第二主面86に加えて、側面91,95、および第一主面85の周縁部にも形成される。シリコン基板の主面だけでなく、回り込みによって側面にも真性シリコン系薄膜が設けられることにより、シリコン基板に対するパッシベーション効果が高められる。
 シリコン系薄膜上に設けられる透明導電層61,62は、ITO等の導電性酸化物からなり、MOCVD法、スパッタ法、イオンプレーティング法等により形成できる。シリコン基板の主面85,86の周縁部をマスクで被覆した状態で製膜を行うと、図3Bに示すように、シリコン基板の主面85,86の周縁部には透明導電層61,62が形成されず、側面や反対面への回り込みも生じない。マスクを用いて透明導電層を製膜すれば、透明導電層の回り込みに起因する表裏の導電層の短絡を防止できる。第一主面85上への透明導電層61の製膜、および第二主面86上への透明導電層62の製膜のいずれか一方においてマスクを用いた場合も、表裏の導電層の短絡を防止できる。
 透明導電層61,62上には金属電極が設けられる。受光面である第一主面に設けられる金属電極は、パターン状である。図3Bに示す形態では、両面にパターン状の金属電極が設けられている。図3Aでは、一方向(y方向)に延在するフィンガー電極711、およびフィンガー電極に直交するバスバー電極712からなるグリッド状の金属電極71が図示されている。このようなパターン状の金属電極は、例えば、インクジェット法、スクリーン印刷法、めっき法等により形成できる。裏面側に設けられる金属電極72は、パターン状でもよく、透明導電層上の全面に設けられていてもよい。
 上記の様に、正方形状の太陽電池101では、シリコン基板10の全ての側面がシリコン系薄膜により覆われている。この正方形状の太陽電池101を、中央線C‐Cに沿って2分割することにより、長方形状の太陽電池が得られる。本実施形態では、正方形状のシリコン基板上に金属電極を形成後に分割を行い、長方形状の太陽電池を作製している。金属電極の形成は、基板の分割後に実施してもよい。パターン印刷の効率等を勘案すると、金属電極を形成後に基板を分割することが好ましい。
 太陽電池(シリコン基板)の分割方法は特に限定されない。例えば、分割線に沿って溝を形成し、この溝を中心にして、シリコン基板を折り割ることにより、溝に沿って太陽電池を分割できる。
 図4Aおよび図4Bは、分割溝19を中心としてシリコン基板を折り割って割断する方法の一例を模式的に表す図である。まず、図4Aに示すように、太陽電池の第一主面に分割溝19が形成される。分割溝の形成方法は特に限定されないが、レーザ光照射が好ましい。分割溝を形成するためのレーザとしては、シリコン基板が吸収可能な光の波長で、溝の形成に十分な出力を有するものが適用可能である。例えば、YAGレーザやArレーザの第三高調波等の波長400nm以下のUVレーザが好ましく、レーザパワーは1~20W程度が好ましい。レーザ光の光径としては、例えば、20~200μmのものを用いることができる。このような条件のレーザ光を照射することにより、レーザ光の光径と略同じ幅を有する分割溝19を形成できる。
 溝の深さは、溝に沿った割断を行いやすい深さを適宜設定することができ、例えば、シリコン基板10の厚みの10~50%程度の範囲に設定される。空気等の酸素含有雰囲気下でレーザ光照射により分割溝19を形成すると、シリコン基板10に設けられた分割溝19の表面には、シリコンの酸化膜51が形成される。図4Aでは、シリコン基板10の第一主面側に分割溝19が形成されているが、第二主面側からレーザ光照射を行い、第二主面側に分割溝を形成してもよい。
 分割溝19を中心としてシリコン基板10を折り割ることにより、太陽電池102は、図4Bに示すように、太陽電池103と太陽電池104とに2分割される。一般に、結晶シリコン基板は所定の配向面を有するように切り出されているため、割断の起点となる分割溝19が形成されていれば、基板面と直交する方向(基板の厚み方向)に容易に割断できる。
 2分割後の太陽電池103は長方形状であり、長方形の長辺に沿った2つの側面91,92、および長方形の短辺に沿った2つの側面93,94が存在する。第一側面91は分割前から存在する側面であり、第一主面および第二主面に製膜されたシリコン系薄膜が第一側面を覆っている。第三側面93および第四側面94は、分割前の太陽電池の側面が中央線C‐Cに沿って2分割された側面であり、第一側面と同様に、第一主面および第二主面に製膜されたシリコン系薄膜により覆われている。
 第二側面92は分割により形成された新たな面であり、薄膜に覆われておらず、結晶シリコンが露出している。レーザ光照射による分割溝の形成領域では、溝形成時の加熱により酸化膜51が形成されている。折り割りにより形成された割断面922では結晶シリコンが露出している。結晶シリコンの割断面922の表面には、厚み1nm程度の自然酸化膜が形成される場合がある(図5参照)。
 割断面922に露出しているシリコンを常温の空気よりも酸化性の強い雰囲気に暴露することにより割断面が酸化され、図1に示すように、割断面に酸化膜52が形成される。そのため、太陽電池105において、シリコン基板15の第二側面92には、レーザ光による分割溝形成時に生成した酸化膜51と、割断後の酸化により生成した酸化膜52とからなる酸化膜50が設けられている。すなわち、太陽電池105の第二側面92は、厚み方向の全体に、常温の空気よりも酸化性の強い条件で形成された酸化膜(非自然酸化膜)50が設けられている。
 シリコン基板の割断面922への酸化膜52の形成は、酸化性雰囲気下で行われる。酸化性雰囲気とは、酸化性の強いガス雰囲気、加熱雰囲気、酸化性の溶液との接触等の常温の空気よりも酸化性の強い条件を意味する。例えば、空気中で加熱を行うことにより熱酸化膜が形成される。また、オゾン、過酸化水素、高濃度の酸素等が存在する酸化性雰囲気への暴露により、化学酸化膜が形成される。酸化性ガス雰囲気下で加熱を行って化学酸化膜を形成してもよい。その他、レーザ照射等による局所加熱、エアーブローによる酸化性ガスの吹きつけ等により、シリコン基板の割断面に非自然酸化膜を形成できる。空気中または酸化性ガス雰囲気下での加熱が行われる場合、加熱温度は100℃以上が好ましい。シリコン系薄膜や透明導電層の熱劣化を抑制するために、加熱温度は200℃以下が好ましい。レーザ照射等により側面を局所的に加熱する場合、加熱により温度が上昇する領域が限定されているため、薄膜への熱の影響は小さい。そのため、局所加熱の温度は特に限定されない。エアーブローによる酸化性ガスの吹きつけは、シリコン基板を割断する際に生じた破片を除去するための作業を兼ねてもよい。
 加熱や化学酸化により形成される酸化膜52は、一般に自然酸化膜よりも膜厚が大きく、例えば、150~200℃の加熱雰囲気下で形成された酸化膜の膜厚は、1.5~3nm程度である(図6参照)。レーザ照射時の熱により形成された酸化膜51は、200℃以下の加熱により形成された酸化膜52に比べて大きな膜厚を有する。
 図5は自然酸化膜が形成されたシリコン基板の断面の透過電子顕微鏡(TEM)像であり、図6は、100ppmのオゾン含有雰囲気で150℃1時間の加熱を行ったシリコン基板のTEM像である。切断時の界面の破壊を防止するために、シリコン基板の表面にプラチナ層および樹脂を積層して酸化膜の表面を保護した状態で切断を行い、TEM観察用の試料を作製した。TEM像において、シリコンとプラチナ層の間の白色の領域が酸化膜である。図5の自然酸膜の膜厚は1.23nmであったのに対して、オゾン含有雰囲気下での加熱により形成された酸化膜の膜厚は2.18nmであり、自然酸化に比べて膜厚の大きい酸化膜が形成されていることが分かる。
 分割後の太陽電池を酸化性雰囲気に暴露してシリコンの酸化膜を形成すると、金属電極71の表面にも薄い酸化膜が形成される場合がある。特に、オゾン等の酸化性ガス存在下で加熱を行った場合に、金属電極の表面に酸化膜が形成されやすい。金属電極の表面に酸化膜が形成されると、金属光沢が低減し光反射が小さくなるため、金属電極が外部から視認され難く、太陽電池および太陽電池モジュールの意匠性の向上が期待できる。金属電極の表面に形成される酸化膜の膜厚は十分に小さいため、電極電極上に配線材(インターコネクタ)を接続する際の、酸化膜による抵抗の影響はほとんど生じない。
 正方形状の太陽電池101を、長方形の太陽電池103,104に2分割した場合、太陽電池の電流密度は分割前後で略同等である。分割後の太陽電池は、分割前に比べて面積が半分であるため、太陽電池1枚あたりの電流量は分割前の約半分である。2枚の太陽電池の電流量の合計は、分割前の太陽電池の電流量と略同じである。分割後の太陽電池は、分割前に比べて曲線因子が低下する傾向がある。そのため、分割後の長方形状の太陽電池103,104の出力の合計は、分割前の正方形状の太陽電池101の出力に比べて小さくなる傾向がある。
 太陽電池を分割後に、シリコン基板15の第二側面92のシリコン露出面に酸化膜を設けることにより、太陽電池の開放電圧および曲線因子が向上する傾向があり、分割前と同等以上の出力が得られる。そのため、本発明の太陽電池を複数接続した太陽電池モジュールは発電特性に優れる。
 酸化膜の形成による開放電圧および曲線因子の増加は、シリコン基板に対するパッシベーション効果に関連していると推定される。分割前の太陽電池101では、全ての主面および側面がシリコン系薄膜で被覆されているのに対して、分割後の太陽電池103,104では、第二側面92,92’が薄膜に被覆されずにシリコンが露出している。そのため、酸化膜形成前の太陽電池103,104では、分割前の太陽電池101に比べてシリコン基板のパッシベーション効果が不十分であり、キャリアライフタイムが減少し、開放電圧および曲線因子が低下していると考えられる。これに対して、分割後のシリコン基板15の第二側面に露出したシリコンが酸化膜50で覆われることによりパッシベーション効果が回復するため、太陽電池105は、分割前と同等以上の開放電圧および曲線因子を有すると考えられる。太陽電池の開放電圧および曲線因子を向上するためには、シリコン基板の割断面922に形成される酸化膜52の膜厚は、1.5nm以上が好ましく、1,8nm以上がより好ましく、2nm以上がさらに好ましい。
 第二側面92に酸化膜50が設けられた長方形状の太陽電池103の複数を、配線材(インターコネクタ)201を介して電気的に接続することにより、太陽電池ストリング210が形成される。図2Aでは、長方形状の太陽電池が、短辺方向(x方向)に沿って並ぶように配置され、配線材201を介して接続された太陽電池ストリングが図示されている。
 太陽電池103のグリッド状金属電極71は、長方形の長辺方向(y方向)に延在するフィンガー電極711と、長方形の短辺方向(x方向)に延在するバスバー電極712とからなる。配線材201はバスバー電極712上に設けられ、図3Bに示すように、太陽電池の第一主面に接続された配線材201が、隣接する太陽電池の第二主面に接続されることにより、複数の太陽電池が電気的に直列に接続されている。配線材201としては、例えば、銅等の金属からなる帯状の薄板が用いられる。配線材と太陽電池の電極とは、半田、導電性接着剤、導電性フィルム等を介して接続できる。
 長方形状の太陽電池1枚の面積は、分割前の太陽電池の面積の半分であるため、面積の小さい場所に太陽電池モジュールを設置する場合でも、モジュール電圧を高めることができる。また、1枚の太陽電池の面積が半分であるため、配線部材に流れる電流が半分となり、配線部材の抵抗に起因する電気的ロスを低減し、モジュールの発電効率を向上できる。
 図3Aに示すように、太陽電池の接続方向が長方形の短辺方向と平行である場合は、分割前の正方形状の太陽電池を用いて太陽電池ストリングを形成する場合と対比すると、配線部材の本数が同等であり、電流量が半分である。そのため、配線部材1本あたりの電流量が小さく、抵抗に起因する電気的ロスが低減する。また、側面92に酸化膜50が形成されているため、配線材201がシリコン基板に接触した場合でも、リークが生じ難い。
 本実施形態では、シリコン基板の分割により結晶シリコンが露出した第二側面に酸化膜を形成した後、太陽電池ストリングを作製している。分割後の長方形状の太陽電池を配線材と接続してストリングを作製後に、シリコン基板の第二側面への酸化膜の形成を行ってもよい。
 図7は、太陽電池モジュールの断面図である。複数の太陽電池が配線材201を介して接続された太陽電池ストリング210の受光面側(図7の上側)には、受光面保護材211が設けられ、裏面側(図7の下側)には裏面保護材212が設けられている。モジュール200では、保護材211,212の間に封止材215が充填されることにより、太陽電池ストリング210が封止されている。
 封止材215としては、オレフィン系エラストマーを主成分とするポリエチレン系樹脂組成物、ポリプロピレン、エチレン/α‐オレフィン共重合体、エチレン/酢酸ビニル共重合体(EVA)、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、シリコン、ウレタン、アクリル、エポキシ等の透明樹脂を用いることが好ましい。受光面側と裏面側の封止材の材料は、同一でも異なっていてもよい。
 受光面保護材211は光透過性であり、ガラスや透明プラスチック等が用いられる。裏面保護材212は、光透過性、光吸収性および光反射性のいずれでもよい。光反射性の裏面保護材としては、金属色または白色等を呈するものが好ましく、白色樹脂フィルムや、樹脂フィルム間にアルミニウム等の金属箔を挟持した積層体等が好ましく用いられる。光吸収性の保護材としては、例えば、黒色樹脂層を含むものが用いられる。
 太陽電池ストリング210の受光面側および裏面側のそれぞれに封止材および保護材を配置して積層した状態で、真空ラミネートを行い、太陽電池ストリングおよび保護材に封止材を密着させた後、加熱圧着することにより太陽電池間の隙間やモジュールの端部にも封止材が流動してモジュール化が行われる。
 本実施形態では、シリコン基板の分割によりシリコンが露出した第二側面に酸化膜を形成後に、太陽電池ストリングを作製し、封止を行うことにより太陽電池モジュールを作製している。分割後の長方形状の太陽電池を配線材と接続してストリングを作製後に、シリコン基板の第二側面への酸化膜の形成を行ってもよい。ただし、モジュール化のために封止を実施すると、シリコン基板の側面が封止材により覆われ、酸化性ガスがアクセスできない。また、封止のために真空ラミネートを実施後に加熱を行っても、シリコン基板の側面の近傍には酸化性ガスが存在しないため、シリコン基板の側面には酸化膜が形成されない。そのため、シリコン基板の側面への酸化膜の形成は封止前に実施する必要がある。
 以上、図1を参照して、長方形の長辺に沿った第一側面91が、第一主面85および第二主面86から回り込んで着膜したシリコン系薄膜により覆われているヘテロ接合太陽電池の例について説明した。なお、第一側面を覆う薄膜はシリコン系薄膜に限定されない。例えば、第一主面の透明導電層61および第二主面の透明導電層62の少なくともいずれか一方が、シリコン基板の第一側面を覆っていてもよい。
 図8に示す太陽電池115は、第一主面81に設けられた絶縁性材料薄膜41、および第二主面に設けられた絶縁性材料薄膜42が、第一側面91を覆っている。図1に示す太陽電池105と同様、太陽電池115の第二側面には、シリコンの酸化膜50が設けられている。
 この実施形態では、透明導電層61上に導電性シード76が設けられている。導電性シードは金属電極と同様のパターン形状に設けられている。例えば、図3Aに示すようなフィンガー電極とバスバー電極からなるグリッド状の金属電極が設けられる場合、その下地となる導電性シードも同様のグリッド状に設けられる。導電性シードは、金属ペーストの印刷や、無電解めっき、電解めっき、光めっき等により形成できる。
 透明導電層61および導電性シード76を覆うように、絶縁性材料薄膜41が形成される。絶縁性材料は、無機絶縁性材料でも有機絶縁性材料でもよい。第一側面に回り込んで形成された絶縁性材料薄膜によりシリコン基板のパッシベーション効果を持たせるためには無機絶縁性材料が好ましい。無機絶縁性材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム、サイアロン(SiAlON)、酸化イットリウム、酸化マグネシウム、チタン酸バリウム、酸化サマリウム、タンタル酸バリウム、酸化タンタルフッ化マグネシウム、酸化チタン、チタン酸ストロンチウム等が好ましく用いられる。中でも、シリコン基板へのパッシベーション効果を高めるためには、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム、サイアロン等のシリコン系絶縁材料およびアルミニウム系絶縁材料が好ましい。
 第一主面81上の絶縁性材料薄膜41は、導電性シード76上に開口を有し、この開口を介して、金属電極77が導電性シード76と導通している。絶縁性材料薄膜41に開口を形成する方法としては、薄膜の製膜時にマスクを用いる方法、レジスト等を用いてパターンエッチングを行う方法等が挙げられる。また、WO2013/077038等に開示されているように、金属ペーストを用いて導電性シード76を形成後に絶縁性材料薄膜41を製膜し、導電性シードの熱流動により、絶縁性材料薄膜に開口を形成してもよい。導電性シート上の絶縁性材料薄膜に開口が設けられた状態で電解めっきを実施すれば、導電性シード76上に選択的に金属が析出するため、パターン状の金属電極77が形成される。
 第二主面82側にも、第一主面81と同様に、第一側面91に回り込む絶縁性材料薄膜42が形成され、絶縁性材料薄膜42の開口を介して導電性シード78上にめっき金属電極79が形成されてもよい。
 本実施形態では、絶縁性材料薄膜41,42が、めっきにより金属電極を形成する際のパターン膜としての機能を有する。絶縁性材料薄膜41,42は、めっき液から透明導電層61,62を保護するためのバリア層としても機能も有する。さらに、第一主面および第二主面から第一側面91に回り込んで形成された絶縁性材料薄膜が、シリコン基板のパッシベーション作用、およびシリコン基板の側面をめっき液から保護するバリア層としての作用を有する。
 図8に示す形態では、シリコン基板の両面に絶縁性材料薄膜41,42が形成され、両方の絶縁性材料薄膜が第一側面91に回り込んでいる。ドライプロセスにより絶縁性材料薄膜を製膜すれば、側面および製膜面の反対側の面にも絶縁性材料薄膜が回り込んで形成される。そのため、いずれか一方の主面にのみ絶縁性材料薄膜を製膜する場合でも、第一側面91の全体が絶縁性材料薄膜により被覆される。
 上記の実施形態以外にも、シリコン基板の表面には種々の目的で絶縁性材料薄膜が設けられる。例えば、裏面側にのみ電極が設けられたバックコンタクト型の太陽電池では、受光面側にパッシベーション膜として絶縁性材料薄膜が形成される。この絶縁性材料薄膜が、シリコン基板の側面に回り込んで形成されることにより、側面に対するパッシベーション効果が得られる。PERC(Passivated Emitter and Rear Cell)太陽電池では、シリコン基板の裏面と金属電極との界面での再結合を抑制するために、シリコン基板の裏面に、パッシベーション膜として絶縁性材料薄膜が設けられる。
 例えば、図9に模式的に示すPERC太陽電池では、シリコン基板の裏面に窒化シリコンや酸化アルミニウム等からなるパッシベーション膜342が設けられ、パッシベーション膜に設けられた開口を介して、アルミニウム膜372の加熱によりアルミニウムとシリコンとが合金化した裏面電界(AlBSF)375が設けられている。シリコン基板315の受光面の表面には、パッシベーション膜341が設けられている。パッシベーション膜341上にはAgペースト電極が設けられ、ファイアースルー法によりパッシベーション膜341を貫通して、シリコン基板315のn型ドーパント拡散領域315nにコンタクトしている。
 この太陽電池305では、受光面のパッシベーション膜341および裏面のパッシベーション膜342が第一側面391に回り込んで製膜されている。パッシベーション膜341,342は、割断面である第二側面392を被覆していない。このように、シリコン基板の表面に絶縁性薄膜が設けられた太陽電池において、割断後のシリコン基板315の第二側面392のシリコン露出面に酸化膜350を設けることにより、太陽電池の曲線因子を向上できる。
 以下に、PERC太陽電池の製造例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[参考例1:正方形状の太陽電池の作製]
 アルカリを用いた異方性エッチングにより受光面に高さ約2μmピラミド状のテクスチャが形成された6インチp型単結晶シリコン基板に、リン拡散を行い、基板の両面にリンを拡散させた。基板の裏面をHF/HNO水溶液の液面に接触させ、基板の裏面を約5μmエッチングして、リン拡散時に基板の裏面に生成したリンケイ酸ガラス(PSG)およびリン拡散領域を除去して、リンやガラス等の不純物の無い平滑な表面を得た。その後、約3%のHF水溶液に基板を浸漬して、受光面のPSGを除去した。
 PSGを除去後の基板をCVD製膜装置に移送し、受光面に窒化シリコン層を70nmの膜厚で製膜した。次に、シリコン基板の裏面に、パッシベーション膜として膜厚40nmの酸化アルミニウム層および膜厚130nmの窒化シリコン層を順に製膜した。裏面パッシベーション膜に、YAGレーザの第二高調波(532nm)をパルス照射し、直径100μmのコンタクト開口を1mm間隔の格子状に設けた。
 受光面側の窒化シリコン層上に、バスバー電極とフィンガー電極からなるグリッドパターンに、Agペーストをスクリーン印刷し、300℃で約40秒間の仮焼成を行った。その後、裏面の窒化シリコン層上の全面にAlペーストを印刷し、受光面のバスバーに対応する位置にAgペーストをスクリーン印刷した。受光面を上にして焼成炉へ搬送し、約900℃程度で焼成して、受光面Agペーストに窒化シリコン層を貫通させ、シリコン基板のリン拡散領域にコンタクトさせた。同時に、裏面側のパッシベーション膜のコンタクト開口を通じてAlとシリコン基板が反応し、シリコン基板の裏面にアルミニウムバックサーフェスフィールド(AlBSF)が形成された。
[参考例2:シリコン基板の割断による長方形状の太陽電池の作製]
 上記の参考例1で得られた太陽電池の変換特性を測定後、受光面側からYAGレーザの第三高調波(波長355nm)を照射して、フィンガー電極と平行な方向の面内の中心線に沿って分割溝を形成した。分割溝の深さは、シリコン基板の厚みの3分の1程度であった。
 分割溝に沿ってシリコン基板を折り割って、2枚の長方形状の太陽電池に分割した。分割後の太陽電池のシリコン基板の割断面には、酸化アルミニウム層および窒化シリコン層のいずれも形成されておらず、結晶シリコンが露出していた。
[実施例:シリコン基板の側面の酸化]
 参考例2で得られた2枚の長方形状の太陽電池のそれぞれの変換特性を測定後、150℃の加熱オーブン内で1時間の加熱を行い、結晶シリコンの露出面に酸化膜を形成した。その後、2枚の太陽電池のそれぞれの変換特性を測定した。
[比較例:シリコン基板の側面の真空加熱]
 実施例における空気雰囲気下での加熱に代えて、150℃の加熱を真空オーブン内で実施し、2枚の太陽電池のそれぞれの変換特性を測定した。
 参考例1,2、実施例および比較例の太陽電池の変換特性を表1に示す。表1の電流Isc、開放電圧Voc、曲線因子FFおよび最大出力Pmaxは、いずれも参考例1の正方形状の太陽電池の測定値を1とした相対値で示している。参考例2、実施例および比較例では、長方形の太陽電池1枚(単体)の最大出力と、2枚の太陽電池の最大出力の合計を示している。
Figure JPOXMLDOC01-appb-T000001
 参考例1の正方形の太陽電池と参考例2の長方形の太陽電池とを対比すると、Vocは略同等であり、参考例1のIscと参考例2の2枚のIscの合計も略同等であるが、参考例2では参考例1に比べてFFが低下しており、これに伴って2枚のPmaxの合計も低下していた。これに対して、空気雰囲気下で加熱を行った実施例では、参考例2に比べてFFおよびVocが向上しており、2枚のPmaxの合計は参考例1を上回っていた。一方、真空下で加熱を行った比較例では明確な特性の向上はみられなかった。
 比較例では加熱による特性の向上がみられなかったのに対して、実施例ではVocおよびFFが向上したのは、空気雰囲気下での加熱によりシリコン基板の割断面に形成された酸化膜の影響であると考えられる。これらの結果から、正方形の太陽電池を割断した後に、加熱により割断面に酸化膜を形成することにより、変換特性に優れ、かつ複数の太陽電池を接続してモジュール化した際の電気的ロスの少ない太陽電池が得られることが分かる。
  10,15  結晶シリコン基板
  81,82,85,86  主面
  91,92,95     側面
  21,22,31,32  シリコン系薄膜
  61,62  透明導電層
  41,42  絶縁性材料薄膜
  71,72  金属電極
  711    フィンガー電極
  712    バスバー電極
  50,51,52    酸化膜
  105,115     太陽電池
  200    太陽電池モジュール
  201    配線材
  210    太陽電池ストリング
  211,212    保護材
  215  封止材

Claims (13)

  1.  長方形状の結晶シリコン基板を備える太陽電池であって、
     前記結晶シリコン基板は、長方形状の第一主面、前記第一主面の反対側に位置する長方形状の第二主面、前記第一主面の長辺と前記第二主面の長辺とを接続する第一側面、前記第一側面の反対側に位置し前記第一主面の長辺と前記第二主面の長辺とを接続する第二側面を有し、
     第一主面および第二主面の少なくとも一方は、薄膜により被覆されており、
     第一主面を被覆する薄膜および第二主面を被覆する薄膜の少なくとも一方が前記第一側面に回り込んで形成されることにより、前記第一側面は薄膜により覆われており、
     第一主面を被覆する薄膜および第二主面を被覆する薄膜は、いずれも前記第二側面を覆っておらず、
     前記第二側面の表面には、前記結晶シリコン基板の厚み方向の全体にシリコンの非自然酸化膜が設けられている、太陽電池。
  2.  前記第二側面の第一主面に近い側に設けられた非自然酸化膜と、第二主面に近い側に設けられた非自然酸化膜の厚みが異なる、請求項1に記載の太陽電池。
  3.  前記第一側面を覆う薄膜がシリコン系薄膜である、請求項1または2に記載の太陽電池。
  4.  前記結晶シリコン基板の前記第一側面に接してシリコン系薄膜が設けられており、
     前記シリコン系薄膜が真性非晶質シリコン薄膜である、請求項3に記載の太陽電池。
  5.  前記第一側面を覆う薄膜が絶縁性材料薄膜である、請求項1または2に記載の太陽電池。
  6.  請求項1~5のいずれか1項に記載の太陽電池を製造する方法であって、
     正方形状の結晶シリコン基板の第一主面および第二主面の少なくとも一方に薄膜を製膜する工程;および
     前記薄膜が設けられた正方形状の結晶シリコン基板を、2枚の長方形状の結晶シリコン基板に分割する工程、を有し、
     分割後の結晶シリコン基板は、長方形状の第一主面、前記第一主面の反対側に位置する長方形状の第二主面、前記第一主面の長辺と前記第二主面の長辺とを接続する第一側面、前記第一側面の反対側に位置し前記第一主面の長辺と前記第二主面の長辺とを接続する第二側面を有し、
     前記薄膜の製膜時に、前記薄膜が、正方形状の結晶シリコン基板の主面に加えて、結晶シリコン基板の側面にも回り込んで製膜され、これにより分割後の結晶シリコン基板の前記第一側面は前記薄膜により覆われており、前記第二側面は薄膜により覆われておらず、
     前記第二側面に露出した結晶シリコンを、酸化性雰囲気下に暴露することにより、前記第二側面に酸化膜が設けられる、太陽電池の製造方法。
  7.  前記第二側面に露出した結晶シリコンを、酸化性雰囲気下で加熱することにより、前記第二側面に酸化膜が設けられる、請求項6に記載の太陽電池の製造方法。
  8.  前記酸化性雰囲気下での加熱温度が、100~200℃である、請求項7に記載の太陽電池の製造方法。
  9.  正方形状の結晶シリコン基板を、2枚の長方形状の結晶シリコン基板に分割する工程は、
     前記正方形状の結晶シリコン基板の中央線に沿ってレーザ光を照射することにより分割溝を形成する工程;および
     前記分割溝に沿って結晶シリコン基板を折り割る工程、
     を有する、請求項6~8のいずれか1項に記載の太陽電池の製造方法。
  10.  前記レーザ光の照射により、前記第二側面の前記分割溝の形成領域にシリコンの酸化膜が形成される、請求項9に記載の太陽電池の製造方法。
  11.  前記折り割りにより形成された割断面に露出した結晶シリコンの露出面を酸化性雰囲気下に暴露することにより、酸化膜が設けられる、請求項7~10のいずれか1項に記載の太陽電池の製造方法。
  12.  請求項1~5のいずれか1項に記載の太陽電池の複数が配線材により接続された太陽電池ストリングと、
     前記太陽電池ストリングを封止する封止材と、
     前記封止材の受光面側に設けられた受光面保護材、および前記封止材の裏面側に設けられた裏面保護材と、
     を有する、太陽電池モジュール。
  13.  前記配線材は、長方形状の前記太陽電池の長方形の短辺と平行に延在するように配置されており、
     前記太陽電池ストリングは、長方形状の前記太陽電池の複数が、長方形の短辺方向に沿って並ぶように、前記配線材を介して接続されている、請求項12に記載の太陽電池モジュール。

     
PCT/JP2017/039455 2016-11-02 2017-10-31 太陽電池およびその製造方法、ならびに太陽電池モジュール WO2018084159A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780069963.9A CN110073500A (zh) 2016-11-02 2017-10-31 太阳能电池及其制造方法以及太阳能电池模块
EP17867659.9A EP3540785B1 (en) 2016-11-02 2017-10-31 Method for manufacturing a solar cell
JP2018549025A JP6746187B2 (ja) 2016-11-02 2017-10-31 太陽電池の製造方法
US16/401,555 US20190259885A1 (en) 2016-11-02 2019-05-02 Solar cell, method for manufacturing same, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-215562 2016-11-02
JP2016215562 2016-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,555 Continuation US20190259885A1 (en) 2016-11-02 2019-05-02 Solar cell, method for manufacturing same, and solar cell module

Publications (1)

Publication Number Publication Date
WO2018084159A1 true WO2018084159A1 (ja) 2018-05-11

Family

ID=62076207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039455 WO2018084159A1 (ja) 2016-11-02 2017-10-31 太陽電池およびその製造方法、ならびに太陽電池モジュール

Country Status (5)

Country Link
US (1) US20190259885A1 (ja)
EP (1) EP3540785B1 (ja)
JP (1) JP6746187B2 (ja)
CN (1) CN110073500A (ja)
WO (1) WO2018084159A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509596A (ja) * 2018-01-18 2020-03-26 フレックス,リミテッド こけら板状ソーラーモジュールを製造する方法
JP2020072271A (ja) * 2018-10-31 2020-05-07 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール及びその製造方法
WO2020189562A1 (ja) * 2019-03-15 2020-09-24 株式会社カネカ 太陽電池モジュールの製造方法、太陽電池モジュール、並びに原料太陽電池セル
WO2020189240A1 (ja) * 2019-03-20 2020-09-24 株式会社カネカ 太陽電池モジュール及び太陽電池モジュールの製造方法
CN111755541A (zh) * 2019-03-29 2020-10-09 松下电器产业株式会社 太阳能单电池集合体和太阳能单电池的制造方法
CN111755537A (zh) * 2019-03-26 2020-10-09 松下电器产业株式会社 太阳能单电池和太阳能电池组件
US11257968B2 (en) * 2019-03-27 2022-02-22 Panasonic Corporation Method of manufacturing solar cell and splittable solar cell for manufacturing solar cell from splittable solar cell that can be split
EP3961730A4 (en) * 2019-04-25 2023-01-11 Shangrao Jinko solar Technology Development Co., LTD PROCESS FOR MANUFACTURING A SOLAR CELL
JP7471273B2 (ja) 2019-03-20 2024-04-19 株式会社カネカ 太陽電池モジュール及び太陽電池モジュールの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577910B1 (ko) * 2018-09-18 2023-09-14 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 및 이를 포함하는 태양 전지 패널
USD916007S1 (en) * 2018-11-20 2021-04-13 Lg Electronics Inc Solar cell module
USD916008S1 (en) * 2018-11-20 2021-04-13 Lg Electronics Inc. Solar cell module
USD913913S1 (en) * 2018-11-20 2021-03-23 Lg Electronics Inc. Solar cell module
CN111916533B (zh) * 2020-08-28 2023-03-24 苏州联诺太阳能科技有限公司 切片电池的制备方法、切片电池及光伏组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229211A (ja) * 1997-02-18 1998-08-25 Hitachi Ltd 光電変換装置およびその製造方法
JP2011211199A (ja) * 2010-03-29 2011-10-20 Astrium Gmbh 宇宙用途向けの太陽電池、特に、多−接合太陽電池
WO2012043770A1 (ja) 2010-09-29 2012-04-05 京セラ株式会社 太陽電池モジュールおよびその製造方法
JP2012256728A (ja) 2011-06-09 2012-12-27 Mitsubishi Electric Corp 太陽電池モジュール
JP2013062308A (ja) * 2011-09-12 2013-04-04 Mitsubishi Electric Corp 太陽電池とその製造方法および太陽電池モジュール
WO2013077038A1 (ja) 2011-11-22 2013-05-30 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2014192408A1 (ja) * 2013-05-29 2014-12-04 株式会社カネカ 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法
WO2015039128A2 (en) * 2013-09-16 2015-03-19 Special Materials Research And Technology, Inc. (Specmat) Methods, apparatus, and systems for passivation of solar cells and other semiconductor devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350775A (en) * 1963-10-03 1967-11-07 Hoffman Electronics Corp Process of making solar cells or the like
US4166880A (en) * 1978-01-18 1979-09-04 Solamat Incorporated Solar energy device
JP3349308B2 (ja) * 1995-10-26 2002-11-25 三洋電機株式会社 光起電力素子
JP5642355B2 (ja) * 2009-03-27 2014-12-17 三洋電機株式会社 太陽電池モジュール
KR101258938B1 (ko) * 2011-07-25 2013-05-07 엘지전자 주식회사 태양 전지
CN102544208A (zh) * 2011-12-28 2012-07-04 晶澳(扬州)太阳能科技有限公司 一种晶体硅片高温干法双面氧化工艺
JP6028022B2 (ja) * 2012-05-16 2016-11-16 株式会社アルバック 成膜方法
JP6157809B2 (ja) * 2012-07-19 2017-07-05 株式会社Screenホールディングス 基板処理方法
JP6667215B2 (ja) * 2014-07-24 2020-03-18 キヤノン株式会社 X線遮蔽格子、構造体、トールボット干渉計、x線遮蔽格子の製造方法
CN205264726U (zh) * 2015-12-18 2016-05-25 四川钟顺太阳能开发有限公司 一种太阳电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229211A (ja) * 1997-02-18 1998-08-25 Hitachi Ltd 光電変換装置およびその製造方法
JP2011211199A (ja) * 2010-03-29 2011-10-20 Astrium Gmbh 宇宙用途向けの太陽電池、特に、多−接合太陽電池
WO2012043770A1 (ja) 2010-09-29 2012-04-05 京セラ株式会社 太陽電池モジュールおよびその製造方法
JP2012256728A (ja) 2011-06-09 2012-12-27 Mitsubishi Electric Corp 太陽電池モジュール
JP2013062308A (ja) * 2011-09-12 2013-04-04 Mitsubishi Electric Corp 太陽電池とその製造方法および太陽電池モジュール
WO2013077038A1 (ja) 2011-11-22 2013-05-30 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2014192408A1 (ja) * 2013-05-29 2014-12-04 株式会社カネカ 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法
WO2015039128A2 (en) * 2013-09-16 2015-03-19 Special Materials Research And Technology, Inc. (Specmat) Methods, apparatus, and systems for passivation of solar cells and other semiconductor devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540785A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509596A (ja) * 2018-01-18 2020-03-26 フレックス,リミテッド こけら板状ソーラーモジュールを製造する方法
JP2020072271A (ja) * 2018-10-31 2020-05-07 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール及びその製造方法
KR20200049120A (ko) * 2018-10-31 2020-05-08 엘지전자 주식회사 태양 전지 모듈
KR102624328B1 (ko) 2018-10-31 2024-01-15 상라오 신위안 웨동 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 모듈
EP3940794A4 (en) * 2019-03-15 2023-03-15 Kaneka Corporation SOLAR BATTERY MODULE MANUFACTURING PROCESS, SOLAR BATTERY MODULE AND RAW MATERIAL SOLAR BATTERY CELL
WO2020189562A1 (ja) * 2019-03-15 2020-09-24 株式会社カネカ 太陽電池モジュールの製造方法、太陽電池モジュール、並びに原料太陽電池セル
WO2020189240A1 (ja) * 2019-03-20 2020-09-24 株式会社カネカ 太陽電池モジュール及び太陽電池モジュールの製造方法
JP7471273B2 (ja) 2019-03-20 2024-04-19 株式会社カネカ 太陽電池モジュール及び太陽電池モジュールの製造方法
CN111755537A (zh) * 2019-03-26 2020-10-09 松下电器产业株式会社 太阳能单电池和太阳能电池组件
US11257968B2 (en) * 2019-03-27 2022-02-22 Panasonic Corporation Method of manufacturing solar cell and splittable solar cell for manufacturing solar cell from splittable solar cell that can be split
US11374141B2 (en) * 2019-03-29 2022-06-28 Panasonic Holdings Corporation Solar cell assembly and method of manufacturing solar cell
CN111755541A (zh) * 2019-03-29 2020-10-09 松下电器产业株式会社 太阳能单电池集合体和太阳能单电池的制造方法
EP3961730A4 (en) * 2019-04-25 2023-01-11 Shangrao Jinko solar Technology Development Co., LTD PROCESS FOR MANUFACTURING A SOLAR CELL

Also Published As

Publication number Publication date
JPWO2018084159A1 (ja) 2019-07-04
EP3540785B1 (en) 2021-09-22
EP3540785A1 (en) 2019-09-18
JP6746187B2 (ja) 2020-08-26
CN110073500A (zh) 2019-07-30
EP3540785A4 (en) 2020-06-10
US20190259885A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6746187B2 (ja) 太陽電池の製造方法
JP4791098B2 (ja) 集積型薄膜太陽電池モジュール
CN107710419B (zh) 太阳能电池和太阳能电池模块
JP6592447B2 (ja) 太陽電池および太陽電池モジュール、ならびに太陽電池および太陽電池モジュールの製造方法
JP6181979B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
US10388821B2 (en) Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
JP5145456B2 (ja) 太陽電池モジュール及びその製造方法
WO2010064549A1 (ja) 薄膜光電変換装置の製造方法
JP2014199875A (ja) 太陽電池、およびその製造方法、ならびに太陽電池モジュール
JP7043308B2 (ja) 太陽電池の製造方法、および、太陽電池
JP6021392B2 (ja) 光電変換装置の製造方法
JP5771759B2 (ja) 太陽電池、太陽電池モジュール、太陽電池の製造方法、並びに太陽電池モジュールの製造方法
KR20100109312A (ko) 태양전지 및 이의 제조방법
WO2019181834A1 (ja) 太陽電池の製造方法、および、太陽電池
JP2014232820A (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
WO2016114371A1 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム
US11217711B2 (en) Photovoltaic device, solar cell string of photovoltaic devices, and solar cell module including either photovoltaic device or solar cell string
US10896989B2 (en) High efficiency back contact type solar cell, solar cell module, and photovoltaic power generation system
KR101397024B1 (ko) 광전소자의 제조방법
WO2013128566A1 (ja) 太陽電池及びその製造方法
JP2007235180A (ja) 太陽電池モジュール
JPWO2018173125A1 (ja) 太陽電池セルおよび太陽電池モジュール
TW201725741A (zh) 一種具有三氧化二鋁鈍化層之矽晶太陽能電池製造方法以及所形成之該電池
JP2014135358A (ja) 薄膜太陽電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017867659

Country of ref document: EP

Effective date: 20190603