WO2018079857A1 - ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法 - Google Patents

ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法 Download PDF

Info

Publication number
WO2018079857A1
WO2018079857A1 PCT/JP2017/039441 JP2017039441W WO2018079857A1 WO 2018079857 A1 WO2018079857 A1 WO 2018079857A1 JP 2017039441 W JP2017039441 W JP 2017039441W WO 2018079857 A1 WO2018079857 A1 WO 2018079857A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
gene
locus
mac
human antibody
Prior art date
Application number
PCT/JP2017/039441
Other languages
English (en)
French (fr)
Inventor
康宏 香月
智志 阿部
光雄 押村
Original Assignee
国立大学法人鳥取大学
株式会社Trans Chromosomics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人鳥取大学, 株式会社Trans Chromosomics filed Critical 国立大学法人鳥取大学
Priority to JP2018547235A priority Critical patent/JP6868250B2/ja
Priority to EP17864055.3A priority patent/EP3533867A4/en
Priority to AU2017348743A priority patent/AU2017348743C1/en
Priority to CN201780068107.1A priority patent/CN109906272A/zh
Priority to US16/346,077 priority patent/US12063913B2/en
Priority to CA3042171A priority patent/CA3042171C/en
Publication of WO2018079857A1 publication Critical patent/WO2018079857A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles

Definitions

  • the present invention relates to a mouse artificial chromosome (Mouse Artificial Chromosome (MAC)) containing a human antibody gene, and a non-human animal containing the MAC and capable of producing a human antibody.
  • MAC Mouse Artificial Chromosome
  • the present invention also relates to a method for producing the non-human animal.
  • the present invention further relates to a method for producing a human antibody using the non-human animal.
  • Antibody is used in the medical field as a therapeutic agent for cancer, rheumatoid arthritis and the like.
  • trastuzumab is used in the treatment of breast cancer as a molecular target antibody drug against HER2 (or ErbB2) on the surface of cancer cells.
  • Tocilizumab is a humanized anti-IL-6 receptor antibody and is used as a therapeutic agent for rheumatoid arthritis.
  • the antibody is preferably a humanized antibody or a human antibody in order to enhance the therapeutic effect and safety when administered to a human.
  • Humanized antibodies are obtained by substituting the amino acid sequences of the complementarity determining regions of heavy and light chains of antibodies derived from different animals such as mice with the corresponding complementarity determining regions (CDR1, CDR2 and CDR3) of human antibodies. It can be produced by combining monoclonal antibody production technology and DNA recombination technology.
  • a human antibody is an antibody whose amino acid sequence is completely derived from a human, and uses a human antibody-producing mouse (for example, a KM mouse (Kyowa Hakko Kirin)) carrying a human antibody gene, ScFV Or the like can be produced by a phage display method or the like that displays the surface of a filamentous phage in the form of a recombinant antibody.
  • a human antibody-producing mouse for example, a KM mouse (Kyowa Hakko Kirin) carrying a human antibody gene, ScFV Or the like
  • a phage display method or the like that displays the surface of a filamentous phage in the form of a recombinant antibody.
  • the technique related to the present invention is a technique for producing a non-human animal such as a mouse capable of producing a human antibody, and such an animal holds a human antibody gene.
  • the human antibody gene is a human antibody-producing non-human animal because the heavy chain gene, light chain ⁇ gene, and light chain ⁇ gene constituting the human antibody gene are present on different chromosomes and have a size of about 0.9 Mb or more. To do so, it requires chromosome engineering techniques such as artificial chromosome vectors.
  • Patent Document 1 discloses a method for producing a human antibody and a non-human animal such as a mouse that can produce a human antibody using a human artificial chromosome containing a human antibody gene.
  • Patent document 2 includes one or more nucleic acids encoding all or part of a human immunoglobulin gene that expresses one or more human immunoglobulin molecules via rearrangement, and includes bovine, sheep and goats.
  • a transgenic ungulate characterized by being selected from the group consisting of:
  • Patent Document 3 discloses a human artificial chromosome vector comprising a human antibody heavy chain gene, a human antibody light chain gene and a human antibody surrogate light chain gene, an animal having the human artificial chromosome vector, and a method for producing a human antibody. ing.
  • Patent Document 4 discloses a mouse artificial chromosome.
  • Non-Patent Document 1 provides a review on human antibody production by transgenic animals.
  • the low efficiency of human antibody production in conventional transgenic animals is cited as an issue.
  • the endogenous antibody gene is knocked out and that the V, D and J segments of the human variable region are combined with the endogenous C gene.
  • An object of the present invention is to provide a human antibody-producing non-human animal (eg, mouse, rat, etc.) that is stably maintained and capable of transmitting offspring, and a method for producing a human antibody using the animal.
  • a human antibody-producing non-human animal eg, mouse, rat, etc.
  • the present invention encompasses the following features.
  • a non-human animal comprising a mouse artificial chromosome vector (hereinafter referred to as “hIGHK-MAC”) comprising a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus.
  • hIGHL-MAC mouse artificial chromosome vector
  • hIGHL-MAC mouse artificial chromosome vector
  • a mouse artificial chromosome containing human antibody heavy chain gene or locus and human antibody light chain ⁇ gene or locus (hereinafter referred to as “hIGHK-MAC”), human antibody heavy chain gene or locus and human antibody light
  • hIGHL-MAC mouse artificial chromosome vector
  • hIGHKL-MAC mouse artificial chromosome vector
  • a mouse artificial chromosome vector containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus, and a human antibody heavy chain gene or locus and human antibody light chain ⁇
  • a mouse artificial chromosome vector comprising a non-human animal in which an endogenous antibody gene or locus corresponding to the ⁇ gene or locus is knocked out, and a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus ( a non-human animal containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ and ⁇ gene or locus corresponding to the human antibody heavy chain gene or locus, and hIGHK -Non-human dynamics that contain MAC and hIGHL-MAC and have the endogenous antibody gene or locus knocked out
  • a method for producing a non-human animal capable of producing a human antibody comprising selecting a product.
  • the non-human animal according to (4) above, a human antibody heavy chain gene or locus, a human antibody light chain ⁇ gene or locus, and an endogenous antibody gene corresponding to the human antibody light chain ⁇ gene or locus A non-human animal capable of producing a human antibody, comprising crossing knockout homologous non-human animals, selecting a non-human animal containing hIGHKL-MAC and having the endogenous antibody gene or locus knocked out.
  • a method for producing a human antibody A method for producing a human antibody.
  • the antigenic substance is a cell, protein, polypeptide or peptide.
  • a step of administering an antigenic substance to the non-human animal according to any one of (1) to (8) above, a step of removing spleen cells from the non-human animal, and fusing the spleen cells with myeloma to obtain a hybridoma A method for producing a human monoclonal antibody, comprising the steps of: producing and recovering an antibody that binds to the antigen substance from the hybridoma.
  • the antigenic substance is a cell, protein, polypeptide or peptide.
  • a mouse artificial chromosome vector comprising a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus and / or a human antibody light chain ⁇ gene or locus.
  • the non-human animal of the present invention is a non-human animal that produces a human antibody in which the endogenous antibody heavy chain and light chain genes or loci are knocked out and retains the human antibody heavy chain and light chain genes or loci,
  • This animal has stable retention of human antibody genes or loci (ie, heavy chain genes or loci, light chain ⁇ genes or loci, and light chain ⁇ genes or loci) even in progeny, and human antibodies It has the advantage that it can be produced.
  • the mouse artificial chromosome has the characteristics that it hardly contains mouse-derived genes, retains human antibody genes, and is stably transmitted in rodents such as mice and rats. .
  • FIG. 3 is a two-color FISH analysis diagram showing that PGKhygloxP5′HPRT (arrow) was inserted into human chromosome 2 in a site-specific manner.
  • FIG. 2 is a two-color FISH analysis diagram showing that one copy of human chromosome 2 is retained and PGK5′HPRTFRTBsd (arrow) is inserted.
  • the production of IGK-MAC that translocates and clones the IGK region on human chromosome 2 to MAC using Cre / loxP system is shown.
  • FIG. 2 is a two-color FISH analysis diagram showing that MAC (lower arrow) and modified human chromosome 2 (upper arrow) are independently maintained in CHO cells.
  • FIG. 4 is a two-color FISH analysis diagram showing that IGK-MAC (lower arrow) and by-product (upper arrow) in which the IGK region is mounted on MAC are held independently.
  • the modified human chromosome 14 in which the FRT sequence for mounting the IGH region in IGK-MAC is inserted is shown.
  • the production of an FRT-equipped recombinant allele obtained by modifying human chromosome 14 allele using the indicated targeting vector using homologous recombination is shown.
  • FIG. 3 is a two-color FISH analysis diagram showing that one copy of human chromosome 14 is retained and PGKhyg3′FRTHPRT (arrow) is inserted.
  • FIG. 2 is a two-color FISH analysis diagram showing that one copy of human chromosome 14 showing a signal derived from PGKhygFRT3′HPRT is retained in CHO cells.
  • the production procedure of IGHK-MAC that mounts the IGH region on IGK-MAC is shown.
  • FIG. 2 is a two-color FISH analysis diagram confirming clones in which IGK-MAC (lower arrow) and modified human chromosome 14 (upper arrow) are independently retained one by one. It is a two-color FISH analysis figure which shows that it was confirmed that IGHK-MAC (upper arrow) exists independently by 1 copy. The lower arrow indicates a by-product formed by FRT / FLP recombination.
  • two-color FISH analysis was performed using BAC clones CH17-405H5 (IGK region) and CH17-262H11 (IGH region) as probes, and the IGK region and IGH were respectively present on the MAC in the clone. It is a figure which shows that the signal which shows the presence of an area
  • Left panel A figure with superimposed signals.
  • Middle panel Figure showing only the signal of CH17-405H5 (IGK region).
  • Right panel A diagram showing only the signal of CH17-262H11 (IGH region).
  • FIG. 2 is a two-color FISH analysis diagram showing that IGHK-MAC (arrow) has been transferred to the CHO K1 cell line. It is a two-color FISH analysis figure using BAC clones CH17-216K2 (IGK region) and CH17-212P11 (IGH region) as probes for IGHK-MAC (arrow) in the CHO K1 cell line. It is a two-color FISH analysis figure using BAC clones CH17-405H5 (IGK region) and RP11-731F5 (IGH region) as probes for IGHK-MAC (arrow) in the CHO K1 cell line. It is a FISH analysis figure of Mouse ES holding IGHK-MAC (arrow).
  • FIG. 3 is a two-color FISH analysis diagram showing that PGKhygloxP5′HPRT (arrow) was inserted site-specifically into human chromosome 22. The procedure for inserting the FRT site into the human chromosome 22 allele by using the homologous recombination method with the indicated targeting vector is shown.
  • FIG. 3 is a two-color FISH analysis diagram showing that PGK5′HPRTFRTBsd (arrow) was inserted into human chromosome 22 in a site-specific manner. The production of IGL-MAC that translocates and clones the IGL region on human chromosome 22 to MAC using Cre / loxP system is shown.
  • FIG. 3 is a two-color FISH analysis diagram showing that MAC (left arrow) and modified human chromosome 22 (right arrow) are independently maintained in CHO cells. It is a two-color FISH analysis figure which shows that the IGL-MAC (right arrow) and by-product (left arrow) by which IGL area
  • the present invention includes a mouse artificial chromosome (Mouse Artificial Chromosome (MAC)) containing human antibody heavy and light chain genes or loci, and is capable of producing human antibodies, and a non-human animal, A method for producing a human antibody using the non-human animal is provided.
  • MAC Mouse Artificial Chromosome
  • mouse artificial chromosome (also referred to as a “mouse artificial chromosome vector”) in the present specification is an artificial chromosome constructed by a top-down approach, and is obtained by completely or almost completely deleting a gene region from a mouse chromosome by chromosome modification.
  • examples of the preparation of such a vector that is an artificial chromosome vector that includes a telomere sequence at both ends and can further include a foreign element such as a DNA sequence insertion site are provided by the present inventors.
  • the procedure for producing the developed mouse artificial chromosome vector is exemplified (Re-Table 2011/083870 and Patent No. 5557217).
  • the mouse artificial chromosome can be stably replicated and distributed as a chromosome independent of the original chromosome of the cell to be introduced.
  • the chromosome fragment derived from the mouse is an arbitrary chromosome of chromosomes 1 to 19, X and Y, preferably any one of chromosomes 1 to 19 (at least 99.5% of the total number of endogenous genes in the long arm)
  • the “long arm” of the chromosome refers to the chromosomal region including the gene region from the centromere side of the mouse chromosome. On the other hand, there are almost no short arms in the mouse chromosome.
  • distal means the area far from the centromere (ie, the telomere side). Conversely, the region close to the centromere (ie, the centromere side) is referred to as “proximal”.
  • the long arm distal means an area located on the telomere side of a specific part of the long arm, and the long arm proximal means an area located on the centromere side of the specific part of the long arm.
  • the mouse artificial chromosome vector contains a natural centromere derived from a mouse chromosome, a long arm fragment derived from a mouse chromosome obtained by deleting the distal end of the long arm from the site of the long arm of the mouse chromosome near the centromere, and a telomere sequence. It is characterized by being stably held in cells and individual tissues.
  • the term “natural centromere derived from mouse chromosome” refers to the entire centromere (complete centromere) of any one mouse chromosome. Therefore, such a centromere does not include a structure having a centromere function that is accidentally or artificially obtained by using a part of a centromere sequence of a mouse chromosome, and a centromere of a chromosome of another animal species. .
  • a long arm fragment derived from a mouse chromosome obtained by deleting the distal long arm from the site of the long arm of the mouse chromosome near the centromere is a vector in which the vector of the present invention is stably maintained in cells or tissues of rodents such as mice and rats. It is desirable to eliminate the effects of endogenous genes as much as possible, and to eliminate the endogenous genes in the long arm of mouse chromosomes, so as not to interfere with mouse ontogeny and offspring transmission This refers to a long arm fragment obtained by deleting at a long arm site close to the centromere.
  • ⁇ “ Retention rate ”as used herein refers to the proportion of cells in which artificial chromosomes are present in cultured cells or tissue cells of mammals such as rodents such as mice and rats.
  • stablely maintained of the chromosomal vector of the present invention means that the chromosomal vector does not easily fall off during cell division, that is, it is stably maintained in the cell even after division. This means that the chromosome vector is efficiently transmitted to daughter cells and offspring mice.
  • the long arm fragment is not limited to, for example, AL671968 or BX572640 (located on the centromere side of AL671968) of the long arm of chromosome 11. , CR954170 (located on the centromere side of AL671968 and BX572640) or AL713875 (located on the centromere side of AL671968), consisting of a long arm fragment with the distal region removed.
  • the long arm fragment is a non-limiting example of a long arm fragment from which a region farther from the position such as AC121307, AC161799 is deleted.
  • the long arm fragment is composed of a long arm fragment in which a region farther from the position of, for example, AC127687, AC140982, etc. is deleted.
  • These basic structures can further include a DNA sequence insertion site such as loxP for inserting a human antibody gene sequence.
  • This vector has improved retention in mammalian cells or individual tissues, including rodents such as mice, rats, hamsters, etc., thereby being stably retained in the cells, and thus lengthening the desired human antibody gene (s). It can be kept stable for a long period of time, and the amount of transgene can be expressed for a long time without variation in rodent individuals or tissues.
  • An interesting characteristic compared to human artificial chromosomes (HAC) is that there is extremely little variability between tissues, including blood system tissues with a very low HAC retention of less than 20%, and the retention rate depends on which tissue was tested (For example, tissue derived from liver, intestine, kidney, spleen, lung, heart, skeletal muscle, brain or bone marrow) is 90% or more.
  • ⁇ “ DNA sequence insertion site ”in the present specification means a site in an artificial chromosome where a target DNA (including gene) sequence can be inserted, for example, a site-specific recombinase recognition site.
  • recognition sites include, but are not limited to, for example, loxP (Cre recombinase recognition site), FRT (Flp recombinase recognition site), ⁇ C31attB and ⁇ C31attP ( ⁇ C31 recombinase recognition site), R4attB and R4attP (R4 recombinase recognition site), TP901-1attB and TP901-1attP (TP901-1 recombinase recognition site) or Bxb1attB and Bxb1attP (Bxb1 recombinase recognition site) are included.
  • ⁇ “ Site-specific recombinase ”in the present specification is an enzyme for causing recombination specifically with a target DNA sequence at a recognition site of these enzymes.
  • Examples include Cre integrase (also referred to as Cre recombinase), Flp recombinase, ⁇ C31 integrase, R4 integrase, TP901-1 integrase, Bxb1 integrase.
  • telomere sequence in the present specification is a homologous or heterologous natural telomere sequence or an artificial telomere sequence.
  • the same species means an animal of the same species as the mouse from which the chromosome fragment of the artificial chromosome vector is derived, while the heterogeneous means mammals other than the mouse (including humans).
  • the artificial telomere sequence refers to a sequence having a telomere function produced artificially, such as a (TTAGGG) n sequence (n means repetition).
  • Introduction of a telomere sequence into an artificial chromosome can be performed by telomere truncation (substitution of telomere sequence) as described in, for example, International Publication WO 00/10383. Telomere truncation can be used for chromosome shortening in the production of the artificial chromosome of the present invention.
  • an “embryonic stem cell” or “ES cell” in the present specification is a stem cell having a differentiation pluripotency and a semi-permanent proliferation ability established from an inner cell mass of a blastocyst of a fertilized egg derived from a mammal.
  • Cells artificially induced by somatic cell reprogramming and having the same properties as these cells are "artificial pluripotent stem cells” or "iPS cells” (K. Takahashi and S.Yamanaka (2006) Cell 126). : 663-676; K. Takahashi et al. (2007) Cell 131: 861-872; J.Yu et al. (2007) Science 318: 1917-1920).
  • the artificial chromosome vector of the present invention includes the following steps (a) to (c): (A) obtaining a cell retaining a mouse chromosome, (B) deleting the distal long arm of the mouse chromosome so that it does not contain most of the endogenous gene (number) (99.5% -100%, preferably 100%), and (c) 1 proximal to the long arm It can be produced by a method comprising a step of inserting one or more DNA sequence insertion sites.
  • the order of the steps (b) and (c) may be reversed.
  • mouse embryonic fibroblast mChr11-BSr
  • a drug resistance gene for example, blasticidin Sregistance gene (BSr)
  • BSr blasticidin Sregistance gene
  • neo a mouse chromosome labeled with a drug resistance gene
  • mouse A9x mouse embryonic fibroblast (neo; mChr11-BSr) which is a mouse A9 hybrid cell that retains the mouse chromosome labeled with a drug resistance gene.
  • Mouse fibroblasts can be obtained based on methods described in the literature. For example, mouse fibroblasts can be established from C57B6 strain mice available from CLEA Japan. As cells having a high homologous recombination rate, for example, chicken DT40 cells (Dieken et al., Nature Genetics, 12: 174-182, 1996) can be used. Furthermore, the transfer can be performed by a known chromosome transfer method, for example, the micronucleus cell fusion method (Koi et al., Jpn. J. Cancer Res., 80: 413-418, 1973).
  • the target gene (s) is stably and highly retained in cells, tissues or individuals derived from mammals, preferably from rodents such as mice and rats, into which artificial chromosomes have been introduced. It can be used for accurate analysis and material production.
  • the deletion of the endogenous gene can be performed, for example, by telomere truncation. Specifically, in a cell holding a mouse chromosome, construct a targeting vector that holds an artificial telomere sequence, obtain a clone in which the artificial or natural telomere sequence is inserted at a desired position on the chromosome by homologous recombination, This results in deletion mutants by telomere truncation.
  • the desired position is the cutting position of the distal long arm to be deleted, and the artificial telomere sequence is replaced and inserted at this position by homologous recombination, and the distal long arm is deleted.
  • This position can be appropriately set by designing the target sequence when constructing the targeting vector.
  • the target sequence is designed based on the DNA sequence of the mouse chromosome long arm, and the telomere truncation is set to occur on the telomere side of the target sequence.
  • telomere truncation can be performed for other chromosomes.
  • a certain enzyme recognizes a specific recognition site and specifically causes DNA recombination at the recognition site.
  • a system consisting of an enzyme recognition site, a target gene or DNA sequence can be inserted and loaded.
  • a Cre enzyme derived from bacteriophage P1 and a system of loxP sequence that is a recognition site thereof (Cre / loxP system; B.
  • Flp enzyme derived from Saccharomyces cerevisiae and its recognition site FRT (Flp Recombination Target) sequence system (Flp / FRT system), ⁇ C31 integrase derived from Streptomyces phage, and ⁇ C31attB / attP sequence System, R4 integrase and its recognition site R4attB / attP sequence system, TP901-1 integrase and its recognition site TP901-1attB / attP sequence system, Bxb1 integrase and its recognition site Examples include the Bxb1attB / attP sequence system, but the system is not limited to the above system as long as it can function as a DNA sequence insertion site.
  • a known method such as homologous recombination can be used, and the insertion position and number are within the proximal and proximal arm. It can be set appropriately.
  • One type of recognition site or a different type of recognition site can be inserted into the mouse artificial chromosome vector.
  • the target gene or locus or DNA sequence ie, human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or locus, or human antibody light chain ⁇ gene or locus
  • the insertion position can be specified, the insertion position is constant, and an unexpected position effect (position effect) is not received.
  • a reporter gene may be inserted in advance into a mouse artificial chromosome vector having a DNA sequence insertion site, leaving the target gene or DNA sequence insertion site.
  • the reporter gene is not particularly limited.
  • a fluorescent protein eg, green fluorescent protein (GFP or EGFP), yellow fluorescent protein (YFP), etc.
  • GFP or EGFP green fluorescent protein
  • YFP yellow fluorescent protein
  • tag protein-encoding DNA e.g., luciferase gene
  • GFP or EGFP green fluorescent protein
  • YFP yellow fluorescent protein
  • Examples include luciferase gene, and GFP or EGFP is preferable.
  • the mouse artificial chromosome vector may further contain a selection marker gene.
  • the selectable marker is effective in selecting cells transformed with the vector.
  • Examples of the selection marker gene include either a positive selection marker gene and a negative selection marker gene, or both.
  • Positive selectable marker genes include drug resistance genes such as neomycin resistance gene, ampicillin resistance gene, blasticidin S (BS) resistance gene, puromycin resistance gene, geneticin (G418) resistance gene, hygromycin resistance gene, etc.
  • the negative selectable marker gene includes, for example, herpes simplex thymidine kinase (HSV-TK) gene, diphtheria toxin A fragment (DT-A) gene and the like. In general, HSV-TK is used in combination with ganciclovir or acyclovir.
  • homologous recombination can be preferably used as a technique for inserting a reporter gene or a desired foreign gene or DNA into a mouse artificial chromosome vector.
  • homologous recombination involves both sequences (5′arm and 3 ′) that are homologous to the nucleotide sequences (about 1 to 4 kb, preferably about 2 to 4 kb, respectively) of the 5 ′ region and 3 ′ region of the insertion position on the mouse chromosome. arm) can be performed using a targeting vector obtained by ligating the DNA cassette to be inserted.
  • the vector used for this purpose include plasmids, phages, cosmids, viruses and the like, with plasmids being preferred.
  • Examples of the basic plasmid for constructing the targeting vector include, but are not limited to, V907 or V913 (Lexicon Genetics).
  • a basic vector may include one or more sequences or elements that are commonly inserted in vector construction, such as a promoter, enhancer, selectable marker gene, origin of replication, and the like.
  • the mouse artificial chromosome vector produced by the above-mentioned method is a mouse-derived chromosome fragment (this includes a long-arm fragment from which the endogenous gene of natural centromere, at least 99%, preferably at least 99.5-100% has been deleted, And a short arm (if present)) and an artificial telomere sequence.
  • the centromere is the entire centromere structure of the mouse chromosome used for the production of an artificial chromosome.
  • the following DNA sequence insertion site, selectable marker gene, foreign gene (or DNA), etc. can be inserted into the DNA structure of this vector.
  • the mouse artificial chromosome vector includes one or more DNA sequence insertion sites, such as a site-specific recombination enzyme recognition site (for example, a loxP sequence that is a Cre enzyme recognition site).
  • a site-specific recombination enzyme recognition site for example, a loxP sequence that is a Cre enzyme recognition site.
  • the recognition site of the site-specific recombinase is, for example, a GFP-PGKneo-loxP-3′HPRT type loxP sequence, a 5′HPRT-loxP-hyg type, or a PGKneo-loxP -3'HPRT type loxP sequence or GFP-5'HPRT-loxP-PGKhyg type loxP sequence, but not limited thereto.
  • GFP is a green fluorescent protein gene
  • PGKneo is a phosphoglycerate kinase promoter / neomycin resistance gene cassette
  • HPRT is a hypoxanthine-guanine phosphoribosyltransferase gene
  • hyg is a hygromycin resistance gene. is there.
  • the mouse artificial chromosome vector may further contain a reporter gene and a selectable marker gene (positive selectable marker gene, negative selectable marker gene, etc.).
  • the vector may further contain a target foreign gene or DNA sequence.
  • mouse artificial chromosome vector of the present invention are the advantages of the conventional artificial chromosome vector: 1) Since it is not inserted into the host chromosome and is maintained independently, the host gene is not destroyed. 2) A certain number of copies (Multiple (multiple) copies are possible) are maintained stably and are subject to physiological expression control of the host cell, so there is no overexpression or loss of expression of the inserted gene. 3) There is a restriction on the size of DNA that can be introduced. 4) Improved retention in rodent cells or rodents compared to conventional artificial chromosomes in addition to the introduction of genes including expression regulatory regions and multiple genes / isoforms.
  • the mouse artificial chromosome vector includes a human antibody heavy chain gene or locus, a human antibody light chain ⁇ gene or locus, and / or a human antibody light chain ⁇ gene or locus, as described below. be able to. That is, they are a mouse artificial chromosome vector (hIGHK-MAC) containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus, a human antibody heavy chain gene or locus, and a human antibody light chain ⁇ gene.
  • hIGHK-MAC mouse artificial chromosome vector
  • hIGHL-MAC mouse artificial chromosome vector containing a gene locus
  • a mouse artificial chromosome vector containing a human antibody heavy chain gene or locus, a human antibody light chain ⁇ gene or locus, and a human antibody light chain ⁇ gene or locus is included.
  • human antibody gene can be introduced into the mouse artificial chromosome vector of the present invention.
  • “human antibody gene or locus” refers to human antibody heavy chain gene or locus derived from human chromosome 14, human antibody light chain ⁇ gene derived from human chromosome 2, unless otherwise specified. It refers to the locus and / or human antibody light chain ⁇ gene or locus derived from human chromosome 22.
  • the human antibody gene or locus is, for example, an immunoglobulin heavy locus (human) NC_000014.9 ((base number 105586437..106879844) or (base number 105264221 ..
  • human antibody heavy chain gene or locus is about 1,3 Mb in base length
  • human antibody light chain ⁇ gene or locus is about 1.4 Mb in base length
  • human antibody light chain ⁇ gene or locus is about The base length is about 0.9 Mb.
  • the mouse antibody heavy chain gene or locus is on mouse chromosome 12
  • the mouse antibody light chain ⁇ gene or locus is on mouse chromosome 6,
  • the mouse antibody light chain ⁇ gene or locus The locus is on mouse chromosome 16.
  • the mouse antibody heavy chain gene or locus is, for example, Chromosome 12, NC_000078.6 (113258768..116009954, complement)
  • the mouse antibody light chain ⁇ gene or locus is Chromosome 6, NC_000072.6 (67555636 ..70726754)
  • the mouse antibody light chain ⁇ gene or locus is represented by the nucleotide sequence described in Chromosome 16, NC_000082.6 (19026858..19260844, complement).
  • the rat antibody heavy chain gene or locus is on rat chromosome 6, the rat antibody light chain ⁇ gene or locus is on rat chromosome 4, and the rat antibody light chain ⁇ gene or locus The locus is on rat chromosome 11.
  • the base sequences of these genes or loci can be obtained from US NCBI (GenBank, etc.), publicly known literatures and the like.
  • the above-mentioned mouse artificial chromosome vector containing the above human antibody gene comprises a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or locus derived from human chromosome 2.
  • Mouse artificial chromosome vector hIGHK-MAC or mouse artificial chromosome vector (hIGHL) containing human antibody heavy chain gene or locus derived from human chromosome 14 and human antibody light chain ⁇ gene or locus derived from human chromosome 22 -MAC), or human antibody heavy chain gene or locus derived from human chromosome 14, human antibody light chain ⁇ gene or locus derived from human chromosome 2, and human antibody light chain ⁇ gene derived from human chromosome 22
  • it is a mouse artificial chromosome vector (hIGHKL-MAC) containing all of the loci.
  • the non-human animal of the present invention described below is a mouse artificial chromosome vector comprising the human antibody heavy chain gene or locus derived from human chromosome 14 and the human antibody light chain ⁇ gene or locus derived from human chromosome 2.
  • an animal carrying a mouse artificial chromosome vector comprising a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or locus derived from human chromosome 22, or derived from human chromosome 14 Holds a mouse artificial chromosome vector containing a human antibody heavy chain gene or locus, a human antibody light chain ⁇ gene or locus derived from human chromosome 2, and a human antibody light chain ⁇ gene or locus derived from human chromosome 22. Is an animal. This allows the non-human animal described above to produce human antibodies against the substance when administered with the antigen substance.
  • the human antibody in this specification may be any class and subclass of human immunoglobulin (Ig).
  • Ig human immunoglobulin
  • classes include IgG, IgA, IgM, IgD and IgE, and subclasses include IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2.
  • IgG chain is referred to as ⁇ chain, corresponding to IgG1 to IgG4 as ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 chains
  • IgA, IgM, IgD and IgE are referred to as ⁇ chain ( ⁇ 1 and ⁇ 2), ⁇ chain, ⁇ chain, and ⁇ chain, respectively.
  • each antibody light chain has a ⁇ chain and a ⁇ chain, and it is known that rearrangement of the ⁇ chain gene occurs if the rearrangement of the ⁇ chain gene is unsuccessful during the rearrangement of the immunoglobulin gene.
  • the human antibody heavy chain gene locus is V (variable) region gene containing VH1, VH2, ..VHm (where m is, for example, 38 to 46) from 5 ′ to 3 ′, D (diversity) region gene containing DH1, DH2..DHn (where n is 23, for example), JH1, JH2..JHr (where r is 6), J (joining ) Region genes, including C (constant) region genes including C ⁇ , C ⁇ , C ⁇ 3, C ⁇ 1, C ⁇ 1, C ⁇ 2, C ⁇ 4, C ⁇ , C ⁇ 2.
  • An antibody produced through rearrangement of the above-mentioned human immunoglobulin gene in the immune system is a human antibody.
  • a human antibody molecule consists of two human antibody heavy chains and two human antibody light chains, each heavy chain and each light chain being linked by two disulfide bonds, and the two heavy chains are stationary.
  • C It has a structure connected by two disulfide bonds in the region.
  • V variable region of an antibody molecule has three particularly large portions, and is called the complementarity-determining region (CDR). From the N-terminal side, CDR1, CDR2 And CDR3. The binding characteristics of the antibody to the antigen vary depending on the sequence difference of the CDR region. It is known that antibody diversity is caused by rearrangement of immunoglobulin genes.
  • the non-human animal of the present invention comprises a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or locus derived from human chromosome 2.
  • a mouse artificial chromosome vector comprising a human antibody heavy chain gene or locus derived from human chromosome 14 and an animal carrying a mouse artificial chromosome vector comprising a human antibody light chain ⁇ gene or locus derived from human chromosome 22, or
  • a mouse comprising a human antibody heavy chain gene or locus derived from human chromosome 14, a human antibody light chain ⁇ gene or locus derived from human chromosome 2, and a human antibody light chain ⁇ gene or locus derived from human chromosome 22.
  • An animal carrying an artificial chromosome vector comprising a human antibody heavy chain gene or locus derived from human chromosome 14 and an animal carrying a mouse artificial chromosome vector comprising a human antibody light chain ⁇ gene or locus derived from human chro
  • non-human animals (mouse and rat) of the present invention capable of producing human antibodies can be produced, for example, by the procedure shown in FIG.
  • An animal cell carrying a human antibody light chain ⁇ gene or locus derived from human chromosome 2 modified by introducing a recognition site (eg, loxP and FRT) of a site-specific recombinase, and human Human antibody derived from chromosome 22 light chain ⁇ gene or animal cell (eg, DT40) (STEP1, 2 in Fig. 1) carrying a gene locus, rodent carrying mouse artificial chromosome (MAC) by cell fusion method
  • MAC mouse artificial chromosome
  • the site-specific recombinase eg, Cre
  • Rodent cells carrying MAC containing the rodent cells and human antibody light chain ⁇ gene or locus are prepared (STEP 4 in FIG. 1).
  • Each of a rodent cell carrying a MAC comprising the above human antibody light chain ⁇ gene or locus, and a rodent cell carrying a MAC comprising the human antibody light chain ⁇ gene or locus, and the above human anti-antibody A MAC containing a human antibody light chain ⁇ gene or locus in a rodent cell retaining a human antibody heavy chain gene or locus by fusing with a rodent cell retaining a weight chain gene or locus Or by introducing a human antibody light chain ⁇ gene or a MAC containing the locus (STEP 7 in FIG.
  • a rodent cell carrying a MAC containing a weight chain gene or locus and a human antibody light chain ⁇ gene or locus derived from human chromosome 2, and a human antibody heavy derived from human chromosome 14 To make each of rodent cells carrying the MAC containing the gene or gene locus and a human antibody light chain ⁇ gene or locus from human chromosome 22 (STEP 8 in Fig. 1).
  • Each of the rodent cells carrying the MAC containing the human antibody heavy chain gene or locus and the human antibody light chain ⁇ gene or locus derived from human chromosome 22 is converted into a non-human animal (eg, Mouse or rat) human antibody heavy chain gene or locus derived from human chromosome 14 and human antibody light chain kappa gene derived from human chromosome 2 fused with pluripotent stem cells (eg ES cells or iPS cells)
  • pluripotent stem cells eg ES cells or iPS cells
  • Non-human animal pluripotent stem cells that hold the MAC containing the locus, and human antibody heavy chain gene or locus derived from human chromosome 14 and human antibody light derived from human chromosome 22 Preparing
  • a non-human animal pluripotent stem cell having a MAC containing the human antibody heavy chain gene or locus derived from human chromosome 14 and the human antibody light chain ⁇ gene or locus derived from human chromosome 2, and human 14 A non-human animal differentiation pluripotent stem cell having a MAC containing a human antibody heavy chain gene or locus derived from chromosome # 22 and a human antibody light chain ⁇ gene or locus derived from human chromosome 22 It is transferred to an early embryo (for example, an 8-cell stage embryo or a blastocyst stage embryo) to produce a chimeric animal that retains each of the MACs, and further a progeny animal is produced (STEP 10 in FIG. 1). Furthermore, progeny animals holding each of the MACs are produced by crossing offspring animals.
  • a mouse artificial chromosome vector containing the above human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or locus, and human antibody light chain ⁇ gene or locus Can be produced.
  • Non-human animal having MAC containing human antibody heavy chain gene or locus derived from human chromosome 14 and human antibody light chain ⁇ gene or locus derived from human chromosome 2, or derived from human chromosome 14 A non-human animal carrying a MAC comprising a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus derived from human chromosome 22, a human antibody heavy chain gene or locus and a human antibody light chain ⁇ and Human antibody heavy chain gene or locus derived from human chromosome 14 and human number 2 by crossing with the same non-human animal in which the endogenous antibody gene or locus corresponding to the ⁇ gene or locus is knocked out Holds the MAC containing the human antibody light chain ⁇ gene or locus derived from the chromosome, and the human antibody heavy chain gene or locus and human antibody light chain ⁇ and ⁇ inheritance Or a non-human animal in which the endogenous antibody gene or locus corresponding to the locus is knocked out,
  • a human antibody heavy chain gene or locus derived from human chromosome 14 and a non-human animal having a MAC comprising a human antibody light chain ⁇ gene or locus derived from human chromosome 2, and human chromosome 14 A human antibody heavy chain gene or locus and a non-human animal carrying a MAC containing a human antibody light chain ⁇ gene or locus derived from human chromosome 22, a human antibody heavy chain gene or locus and a human antibody light chain Human antibody heavy chain gene or locus derived from human chromosome 14 and human by crossing with the same kind of non-human animal in which the endogenous antibody gene or locus corresponding to ⁇ and ⁇ gene or locus is knocked out Human antibody light chain kappa gene derived from chromosome 2 or a MAC containing the locus, and human antibody heavy chain gene derived from human chromosome 14 or Holds the MAC containing the locus and the human antibody light chain ⁇ gene or locus derived from human chromosome
  • a non-human animal comprising a mouse artificial chromosome vector (hIGHKL-MAC) containing the above human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or locus, and human antibody light chain ⁇ gene or locus; A human antibody heavy chain gene or locus and a human antibody light chain ⁇ and ⁇ of the same kind of non-human animal in which the endogenous antibody gene or locus corresponding to the gene or locus is knocked out, including hIGHKL-MAC, and A non-human animal is produced in which the endogenous antibody gene or locus of the animal is knocked out.
  • hIGHKL-MAC mouse artificial chromosome vector
  • non-human animal refers to mammals other than humans, such as rodents (eg, mice, rats, hamsters, etc.), ungulates (eg, cows, goats, etc.), and preferably rodents. More preferably, it is a rat.
  • rodents eg, mice, rats, hamsters, etc.
  • ungulates eg, cows, goats, etc.
  • rodents More preferably, it is a rat.
  • the mouse artificial chromosome vector containing the human antibody gene in the present invention can be transferred or introduced into any cell.
  • Techniques for this include, for example, the micronucleus cell fusion method, lipofection, calcium phosphate method, microinjection, electroporation, and the like, but the preferred technique is the micronucleus cell fusion method.
  • a donor cell for example, mouse A9 cell, CHO cell
  • a micronucleus containing a mouse artificial chromosome vector and the desired recipient cell are used to transfer the vector to the other cell. It is a method to transfer to.
  • Cells having the ability to form micronuclei are treated with a polyploid inducer (for example, colcemid, colchicine, etc.) to form micronucleated multinucleated cells, and after processing to form micronucleated bodies by cytochalasin treatment, the desired Cell fusion with recipient cells.
  • a polyploid inducer for example, colcemid, colchicine, etc.
  • Receptor cells into which the above-mentioned mouse artificial chromosome vector can be introduced are animal cells, preferably mammalian cells including human cells, for example germline cells such as oocytes and sperm cells, embryonic stem (ES) cells, sperm stems (GS) cells, stem cells such as somatic stem cells, somatic cells, fetal cells, adult cells, normal cells, disease cells, primary cultured cells, passaged cells or established cells.
  • germline cells such as oocytes and sperm cells
  • ES embryonic stem
  • GS sperm stems
  • stem cells such as somatic stem cells, somatic cells, fetal cells, adult cells, normal cells, disease cells, primary cultured cells, passaged cells or established cells.
  • Stem cells include, for example, ES cells, embryonic germ (EG) cells, embryonal carcinoma (EC) cells, mGS cells, human mesenchymal stem cells, pluripotent stem cells, induced pluripotent stem (iPS) cells, nuclei Examples include transplanted cloned embryo-derived embryonic stem (ntES) cells.
  • Preferred cells are selected from the group consisting of somatic cells derived from mammals (preferably rodents including mice and rats), non-human germline cells, stem cells and progenitor cells.
  • the vector is more stably maintained in a cell or tissue of a mammal (for example, a rodent such as a mouse or a rat) into which the vector of the present invention has been introduced. That is, the loss of the vector from the cell is significantly reduced or does not occur.
  • the sputum cells are, for example, hepatocytes, intestinal cells, kidney cells, spleen cells, lung cells, heart cells, skeletal muscle cells, brain cells, bone marrow cells, lymphocyte cells, megakaryocyte cells, sperm, eggs and the like.
  • the sputum tissue is a tissue such as liver, intestine, kidney, spleen, lung, heart, skeletal muscle, brain, bone marrow, testis, ovary and the like.
  • ES cells can be established and maintained by removing the inner cell mass from the blastocyst of the fertilized egg of the subject animal and using mitomycin C-treated mouse fetal fibroblasts as a feeder (MJEvans and MHKaufman (1981) Nature 292). : 154-156).
  • iPS cells can be obtained in about 3 to 5 weeks by introducing certain reprogramming factors (DNA or protein) into somatic cells (including somatic stem cells), culturing them in an appropriate medium, and subculturing them. Generate colonies.
  • the reprogramming factor is, for example, a combination consisting of Oct3 / 4, Sox2, Klf4 and c-Myc; a combination consisting of Oct3 / 4, Sox2 and Klf4; a combination consisting of Oct4, Sox2, Nanog and Lin28; or Oct3 / 4,
  • a combination comprising Sox2, Klf4, c-Myc, Nanog and Lin28 is known (K. Takahashi and S.
  • a mouse fetal fibroblast cell line for example, STO
  • a vector-transfected somatic cell about 10 4 to 10 5 cells / cell
  • the basic medium is, for example, Dulbecco's modified Eagle medium (DMEM), Ham F-12 medium, a mixed medium thereof, and the ES cell medium is a mouse ES cell medium, a primate ES cell medium (Reprocell), etc. Can be used.
  • DMEM Dulbecco's modified Eagle medium
  • Ham F-12 Ham F-12 medium
  • Reprocell primate ES cell medium
  • ES cells and iPS cells are known to contribute to the germline, these cells are derived from these cells into which the mouse artificial chromosome vector of the present invention containing the target human antibody gene or locus has been introduced.
  • a non-human animal (or transgenic animal (excluding humans)) is produced by a technique involving injection into a blastocyst of a mammalian embryo of the same species, transplanting the embryo into a foster parent's uterus, and giving birth. be able to.
  • homozygous animals and their progeny animals can be produced by mating the resulting male and female transgenic animals.
  • Human antibodies can be produced by introducing the above human antibody genes or loci into the pluripotent cells such as ES cells and iPS cells and other cells via the mouse artificial chromosome vector of the present invention. Non-human animals can be produced.
  • the endogenous gene or locus corresponding to the human antibody heavy chain and light chain ( ⁇ and ⁇ ) gene or locus is knocked out ( Preferably destroyed or deficient).
  • gene targeting method genome editing method using CRISPR / Cas9 system (M. Jinek et al., Science 337: 816-821 (2012), etc.) can be used.
  • a non-human animal in which an endogenous gene has been knocked out and that has a human antibody gene or gene locus is a chimeric non-human animal that has a mouse artificial chromosome vector containing the human antibody gene (locus) or its progeny and the corresponding endogenous It can be produced by further mating animals having heterogeneous deletion of the endogenous gene obtained by mating a chimeric animal or a progeny in which the gene is deleted together with the cluster.
  • a human antibody heavy chain gene having a MAC containing a human antibody heavy chain gene or locus derived from human chromosome 14 and a human antibody light chain ⁇ gene or locus derived from human chromosome 2 and Alternatively, cells and transgenic non-human animals carrying non-human animal mouse artificial chromosome vectors in which the endogenous antibody genes or loci corresponding to the loci and human antibody light chain ⁇ and ⁇ genes or loci are knocked out
  • Non-human animals in which endogenous antibody genes or loci corresponding to ⁇ and ⁇ genes or loci are knocked out A cell containing a mouse artificial chromosome vector and a transgenic non-human animal, 3) a human antibody heavy chain gene or locus derived from human chromosome
  • transgenic rats capable of producing human antibodies may not be successful by the above method.
  • the methods described in (A), (B) and (C) below are alternatives to the above method.
  • Rat ES cells are the same as mouse ES cells (MJ Evans and MH Kaufman, Nature 1981; 292 (5819): 154-156), rat blastocysts It is a cell line having pluripotency and self-renewal ability, which is established from the inner cell mass of a stage embryo or an 8-cell stage embryo.
  • rat blastocysts lysed with egg zona pellucida are cultured on a mouse embryonic fibroblast (MEF) feeder using a medium containing leukemia inhibitory factor (LIF), and blastocysts 7 to 10 days later
  • LIF leukemia inhibitory factor
  • the outgrowth formed from is dispersed, transferred onto a MEF feeder and cultured, and ES cells appear after about 7 days.
  • Production of rat ES cells is described, for example, in K. Kawaharada et al., World J Stem Cells 2015; 7 (7): 1054-1063.
  • male strain rat ES cells More preferably male strain rat ES cells prepared from hybrid rats, are often used.
  • a model rat capable of transmitting offspring can be obtained by using cells, ROSI method and fluorescence selection method.
  • Male ES cells can be selected by analyzing the XY karyotype of the produced ES cell line using an XY chromosomal probe (for example, available from Chromosome Science Labo Inc.).
  • XY chromosomal probe for example, available from Chromosome Science Labo Inc.
  • “male lineage ES cell” or “ES cell (male lineage)” refers to an ES cell having an XY karyotype.
  • iPS Artificial pluripotent stem cells are known as stem cells similar to ES cells, and rat iPS cells (W.WLi et al., Cell Stem Cell 2009; 4: 16-19 as an alternative to ES cells) It is also possible to use; S. Hamanaka et al., PLoS One 2011; 6: e22008).
  • the micronucleus cell fusion method is a large nucleic acid of about 0.9 Mb or more such as a single or a small number of chromosomes or fragments thereof (here, human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or A gene locus or a chromosome containing a human antibody light chain ⁇ gene or locus, or a fragment thereof) from a donor cell to a recipient cell.
  • chromosomes or fragments thereof here, human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or A gene locus or a chromosome containing a human antibody light chain ⁇ gene or locus, or a fragment thereof
  • the method includes a first step of micronucleating donor cells, a second step of enucleating micronucleated cells, a third step of isolating microcells, a fourth step of fusing microcells and recipient cells, and survival.
  • Micronucleation of donor cells can be performed by culturing animal cells for a long time in a medium containing a micronucleus cell inducer such as colcemid.
  • the micronucleus cell inducer has the ability to induce chromosome decondensation and nuclear membrane re-formation.
  • the concentration of the micronucleus cell inducer is not limited as long as micronucleation occurs.
  • colcemid about 0.01 ⁇ g / ml to about 1 ⁇ g / ml, preferably 0.05 to 0.5 per about 5 ⁇ 10 6 recipient cells. ⁇ g / ml.
  • Micronucleation forms cells, or microcells, containing micronuclei containing a small amount of cytoplasm and one or a few chromosomes from donor cells. Culturing uses the culture conditions of the donor cells, and animal cell media are generally used as media. Examples of the medium for animal cells include Eagle's medium (MEM), Eagle's minimum essential medium (EMEM), Dulbecco's modified Eagle medium (DMEM), Ham's F12 medium, and the like. Fetal calf serum (FBS), replacement serum (Stem Sure® Serum Replacement, etc.), etc. may be added to the medium.
  • the temperature is from room temperature to about 37 ° C., and the culture time is suitably from about 40 to 80 hours.
  • Enucleation of micronucleated cells is performed using cytochalasin B.
  • a culture solution containing micronucleated cells is placed in a centrifuge tube, cytochalasin B is added at a concentration of about 10 ⁇ g / ml, and centrifuged at about 11,900 ⁇ g at 34 ° C.
  • the sedimented microcell is suspended and collected in a serum-free medium.
  • the microcell can be purified by ultrafiltration. Prepare three types of membranes with pore sizes of 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m, and filter in order.
  • the purified microcell is layered on the recipient cell that has been cultured before becoming completely confluent.
  • Microcell fusion cells can be obtained by a technique such as selecting drug-resistant strains.
  • the fusion can be performed by the polyethylene glycol (PEG) method, the retro method, etc. (T. Suzuki et al., PLOS ONE, DOI: 101371 / journal.pone.0157187 (2016)), MV method (M. Katoh et al. , BMC, Biotechnology (2010, 10:37), etc.
  • the retro method uses R-peptide-deleted Env (Env ⁇ R) derived from homotrophic (ecotropic) or amphotropic MLV, and is the method that fuses microcells and recipient cells, the most rodent cells It is an efficient method.
  • the MV method is a method for promoting microcell fusion using a hemagglutinin protein (MV-H) and a fusion protein (MV-F), which are measles virus fusogen. And microcells made from donor cells transformed with the MV-F plasmid are susceptible to cell-cell fusion with recipient cells due to the presence of fusogen expressed on the cell membrane surface.
  • MV-H hemagglutinin protein
  • MV-F fusion protein
  • the above human chromosome or a fragment thereof is introduced as a foreign nucleic acid into the donor cell in advance.
  • the human chromosome moves to the microcell and is introduced into the recipient cell by microcell fusion.
  • the recipient cell is transformed with a human chromosome.
  • ROSI Red Spermatid Injection
  • a pure rat or a hybrid is used using a female rat (or male rat) holding the above human antibody gene or locus.
  • a rat carrying a human antibody gene or gene locus in various rat tissues can be obtained.
  • non-human animals of the present invention include the following animals.
  • a non-human animal comprising a mouse artificial chromosome (hIGHK-MAC) containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus.
  • hIGHK-MAC mouse artificial chromosome
  • a non-human animal comprising a mouse artificial chromosome (hIGHL-MAC) containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus.
  • hIGHL-MAC mouse artificial chromosome
  • hIGHK-MAC Mouse artificial chromosome containing human antibody heavy chain gene or locus and human antibody light chain ⁇ gene or locus, and human antibody heavy chain gene or locus and human antibody light chain ⁇ gene or gene
  • a non-human animal comprising a mouse artificial chromosome (hIGHL-MAC) containing a locus.
  • a non-human animal comprising a mouse artificial chromosome (hIGHKL-MAC) containing a human antibody heavy chain gene or locus, a human antibody light chain ⁇ gene or locus, and a human antibody light chain ⁇ gene or locus .
  • hIGHKL-MAC mouse artificial chromosome
  • a mouse artificial chromosome containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus, and a human antibody heavy chain gene or locus and human antibody light chains ⁇ and ⁇ A non-human animal, wherein an endogenous antibody gene or locus corresponding to the gene or locus is knocked out.
  • a mouse artificial chromosome containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus, and a human antibody heavy chain gene or locus and human antibody light chains ⁇ and ⁇ A non-human animal, wherein an endogenous antibody gene or locus corresponding to the gene or locus is knocked out.
  • Mouse artificial chromosome containing human antibody heavy chain gene or locus and human antibody light chain ⁇ gene or locus, and human antibody heavy chain gene or locus and human antibody light chain ⁇ gene or gene
  • An endogenous antibody gene comprising a mouse artificial chromosome comprising a locus (hIGHL-MAC) and corresponding to a human antibody heavy chain gene or locus, a human antibody light chain ⁇ gene or locus and a human antibody light chain ⁇ gene or locus, or A non-human animal characterized in that a genetic locus is knocked out.
  • Human antibody heavy chain gene or locus, human antibody light chain ⁇ gene or locus, and mouse artificial chromosome (hIGHKL-MAC) containing human antibody light chain ⁇ gene or locus, and human antibody heavy chain gene or gene A rat characterized in that a locus, a human antibody light chain ⁇ gene or locus, and an endogenous antibody gene corresponding to the human antibody light chain ⁇ gene or locus are knocked out.
  • the above non-human animals are mammals such as rodents and ungulates, birds, and the like.
  • Rodents include mice, rats, hamsters and the like.
  • Hoofed animals include cattle and goats.
  • Birds include domestic chickens (eg chickens).
  • Preferred non-human animals are mice, rats and cows, with rats being more preferred.
  • a method for producing a non-human animal capable of producing a human antibody includes the following. 1) a non-human animal containing a mouse artificial chromosome (hIGHK-MAC) containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus; a human antibody heavy chain gene or locus and a human antibody light chain Cross-breeding non-human animals of the same species in which the endogenous antibody gene or locus corresponding to the ⁇ gene or locus is knocked out, including hIGHK-MAC, and the human antibody heavy chain gene or locus and human antibody light chains ⁇ and ⁇
  • a method for producing a non-human animal capable of producing a human antibody comprising selecting a non-human animal in which an endogenous antibody gene or locus corresponding to the gene or locus is knocked out.
  • a non-human animal comprising a mouse artificial chromosome (hIGHL-MAC) containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus; a human antibody heavy chain gene or locus and a human antibody light chain
  • hIGHL-MAC mouse artificial chromosome
  • a non-human animal of the same kind in which the endogenous antibody gene or locus corresponding to the ⁇ and ⁇ genes or locus is knocked out, including hIGHL-MAC, and the endogenous antibody gene or locus is knocked out A method for producing a non-human animal capable of producing a human antibody, comprising selecting an animal.
  • a non-human animal containing a mouse artificial chromosome containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus, and a human antibody heavy chain gene or locus and a human antibody light chain crossing a non-human animal containing a mouse artificial chromosome (hIGHL-MAC) containing a ⁇ gene or a locus to produce a non-human animal containing hIGHK-MAC and hIGHL-MAC, the produced non-human animal and human Mating the same kind of non-human animal in which the endogenous antibody gene or locus corresponding to the antibody heavy chain gene or locus, human antibody light chain ⁇ gene or locus and human antibody light chain ⁇ gene or locus is knocked out, hIGHK -Produces human antibodies, including selecting non-human animals that contain MAC and hIGHL-MAC and have the endogenous antibody gene or locus knocked out
  • a mouse artificial chromosome containing a human antibody heavy chain gene or locus and a human antibody light chain ⁇ gene or locus, and a human antibody heavy chain gene or locus and human antibody light chains ⁇ and ⁇
  • a non-human animal in which the endogenous antibody gene or locus corresponding to the gene or locus is knocked out
  • a mouse artificial chromosome hIGHL-MAC
  • hIGHL-MAC mouse artificial chromosome containing the human antibody heavy chain gene and the human antibody light chain ⁇ gene or locus
  • mating a non-human animal in which the endogenous antibody gene or locus corresponding to the human antibody heavy chain gene and human antibody light chain ⁇ and ⁇ gene or locus is knocked out, including hIGHK-MAC and hIGHL-MAC, And capable of producing a human antibody, comprising selecting a non-human animal in which the endogenous antibody gene or locus is knocked out.
  • a method for manufacturing a non-human animal comprising selecting a non
  • a non-human animal comprising a mouse artificial chromosome (hIGHKL-MAC) containing a human antibody heavy chain gene or locus, a human antibody light chain ⁇ gene or locus, and a human antibody light chain ⁇ gene or locus; Crossing a non-human animal of the same species in which the endogenous antibody gene corresponding to the chain gene or locus, human antibody light chain ⁇ gene or locus and human antibody light chain ⁇ gene or locus is crossed, including hIGHKL-MAC, A method for producing a non-human animal capable of producing a human antibody, comprising selecting a non-human animal in which the endogenous antibody gene or gene locus is knocked out.
  • hIGHKL-MAC mouse artificial chromosome
  • the present invention provides a method for producing a human antibody, comprising administering an antigenic substance to the non-human animal and recovering the produced human antibody that binds to the antigenic substance.
  • the antibody recovered by this method is obtained by applying antiserum containing the antibody to a column packed with a carrier (for example, agarose gel, silica gel, etc.) bound with an antigenic substance, and then applying the human antibody bound to the carrier. It can be recovered by column chromatography, including elution from the support.
  • a carrier for example, agarose gel, silica gel, etc.
  • the present invention also includes a step of administering an antigenic substance to the nonhuman animal, a step of removing spleen cells from the nonhuman animal, a step of producing a hybridoma by fusing the spleen cells and myeloma, and the antigenic substance from the hybridoma.
  • a method for producing a human monoclonal antibody is provided, which comprises the step of recovering an antibody that binds to.
  • Purification of the human monoclonal antibody can be performed using the column chromatography method described above.
  • the antigenic substance is generally a cell, protein, polypeptide or peptide.
  • Human antibodies are currently used as therapeutics for cancer, osteoporosis, rheumatoid arthritis, etc., and many other human antibodies are also found in high cholesterol plasma, autoimmune diseases, inflammatory diseases, tumors, allergies It is being tested in clinical trials for the treatment of sexually transmitted diseases, pain, cardiovascular diseases, metabolic disorders, and the like.
  • Such antigenic substances are exemplified in Non-Patent Document 1 above.
  • Examples of the cells as antigenic substances are tumor cells.
  • the present invention is applicable to many antigenic substances including such antigenic substances.
  • FIG. 1 An outline of production of human antibody-producing mice and rats is shown (FIG. 1).
  • loxP insertion vector into human chromosome 2 v901 (Lexicon genetics) was used as a basic plasmid for inserting the loxP sequence into the cell DT40 521D4 (# 2) carrying human chromosome 2.
  • the DNA sequence of human chromosome 2 as the loxP insertion site was obtained from the GenBank database (NC_000002.12).
  • sequence of the primer used for the amplification of the target sequence for homologous recombination is shown below, using genomic DNA extracted from DT40 (# 2) as a template.
  • cos138-F6B 5'-TCGAGGATCCCACATAGACATTCAACCGCAAAGCAG-3 '(SEQ ID NO: 1)
  • cos138-R6B 5'-TCGAGGATCCAGGCCCTACACATCAAAAAGTGAAGCA-3 '(SEQ ID NO: 2)
  • PCR For PCR, it is recommended to use TP600 manufactured by Takara (Kyoto, Japan) as the thermal cycler, KODFX (TOYOBO) as the PCR enzyme, and the attached buffers and dNTPs (dATP, dCTP, DGTP, dTTP). Used according to conditions. The temperature and cycle conditions were 98 ° C for 1 minute after heat denaturation, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 12 minutes. The PCR product was digested with BamHI (NEB), separated by agarose gel, purified, and cloned into the BamHI site of v901. (Vector name: v901-cos138).
  • BamHI BamHI
  • V913 (Lexicon genetics) was used as the basic plasmid of the cassette containing PGKhygro, loxP, and PGK HPRT exon1-2.
  • 5'HPRT-loxP cloned the loxP sequence synthesized oligo at the XbaI site of V820 (Lexicon genetics).
  • 5'HPRT-loxP was cloned into ClaI and AscI of V907 (Lexicon genetics), and PGKhygro was cloned into the ClaI and KpnI sites (vector name: pX6.1).
  • pX6.1 PGKhygro-loxP-PGK HPRT exon1-2 is digested with KpnI (NEB) and AscI (NEB), blunted with Blunting high kit (TOYOBO), and the SpeI site of v901-cos138 is blunted with Blunting high kit After termination, ligation was performed.
  • a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination are shown in FIG.
  • the medium was replaced with a medium containing 1.5 mg / ml Hygromycin (Wako (Osaka, Japan)), and selective culture was performed for about 2 weeks. 191 drug-resistant strains were acquired in 5 reactions, and 44 randomly selected clones were used for further analysis.
  • cos138 sp L 5'-CTGAGAAGAGTCATTGTTTATGGTAGACT-3 '(SEQ ID NO: 3)
  • cos138 sp R 5'- ATCCCCATGTGTATCACTGGCAAACTGT-3 '(SEQ ID NO: 4)
  • x6.1cosRa L 5'-GGGGAATAAACACCCTTTCCAAATCCTC-3 '(SEQ ID NO: 5)
  • KODFX dNTPs
  • D2S177 F 5'-AGCTCAGAGACACCTCTCCA-3 '(SEQ ID NO: 7)
  • FABP1-F 5'-TATCAAGGGGGTGTCGGAAATCGTG-3 '(SEQ ID NO: 9)
  • EIF2AK3-F 5'-AGGTGCTGCTGGGTGGTCAAGT-3 '(SEQ ID NO: 11)
  • RPIA-F 5'-CTTACCCAGGCTCCAGGCTCTATT-3 '(SEQ ID NO: 13)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • 3 clones were positive, and the subsequent analysis was performed on these.
  • the DNA sequence of human chromosome 2 as the FRT insertion site was obtained from the GenBank database (NC_000002.12).
  • the sequence of the primer used for the amplification of the target sequence for homologous recombination is shown below, using genomic DNA extracted from DT40 (# 2) as a template.
  • kD-R9La L 5'-TCGAGCGGCCGCAGGATCTTTGGGGGACTGAATGGGGTGTGCT-3 '(SEQ ID NO: 23)
  • kD-R9La R 5'-TCGAACGCGTTGGAACCCTCATACGTTGCTGGTGGAATGT-3 '(SEQ ID NO: 24)
  • KD-F9Ra L 5'-CGAGGATCCATTTCTCCACATCCTAGCCAACACTTGACATTTCCT-3 '(SEQ ID NO: 25)
  • KODFX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 2.5 minutes.
  • the obtained PCR product was digested with NotI (NEB) and MluI (NEB), subjected to gel extraction after electrophoresis, and ligated to the overhanging end formed by digesting pMA-kD9FRTBsd with NotI and MluI. (Vector name: pMA-kD9FRTL)
  • KODFX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 2.5 minutes.
  • the obtained PCR product was digested with BamHI and cloned into the BamHI site of pMA-kD9FRTL. (Vector name: pMA-kD9FRTLR).
  • a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination are shown in FIG.
  • DT40 (# 2), 521D4 loxP1-28 and 521D4 loxP4-6 Approximately 10 7 cells were washed once with no added RPMI1640 medium, suspended in 0.5 ml of no added RPMI1640 medium, and with restriction enzyme NotI (NEB) 25 ⁇ g of linearized targeting vector pMA-kD9FRTLR was added, transferred to an electroporation cuvette (Bio-Rad), and allowed to stand at room temperature for 10 minutes. The cuvette was set on a gene pulser (Bio-Rad), and voltage was applied under conditions of 550 V and 25 ⁇ F. The mixture was allowed to stand at room temperature for 10 minutes, then dispensed into 12 96-well culture plates and cultured for 24 hours.
  • NEB restriction enzyme NotI
  • Drug selection was performed at 15 ⁇ g / mL Blasticidin (Funakoshi) .In each of the three reactions, 86 and 82 drug-resistant strains were obtained from 521D4 loxP1-28 and 521D4 loxP4-6. Selected and genomic DNA extracted. In order to select recombinants using it as a template, PCR was performed using the following primers to confirm whether or not recombination occurred in a site-specific manner on human chromosome 2. The primer sequences are shown below.
  • kD9 tcLa L 5'-TGAGAACACAGGGGTCTCCATTCTGACT-3 '(SEQ ID NO: 27)
  • kD9 tcLa R 5'-ACAATCAACAGCATCCCCATCTCTGAAG-3 '(SEQ ID NO: 28)
  • kD9 tcRa L 5'-GACGTGCTACTTCCATTTGTCACGTCCT-3 '(SEQ ID NO: 29)
  • KODFX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • KOD FX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 98 ° C for 1 minute after heat denaturation, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 12 minutes.
  • PCR analysis for confirming the human chromosome 2 region was performed. The primer sequences are shown below.
  • D2S177 F (Previous) D2S177 R (Previous) FABP1-F (above) FABP1-R (supra) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) D2S159_1 F (Previous) D2S159_1 R (Previous)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • 7 and 3 positive clones were obtained from 521D4 loxP1-28 and 521D4 loxP4-6, respectively.
  • Example 2 Mounting of human chromosomal IGK region on mouse artificial chromosome vector (MAC) by translocation cloning
  • MAC mouse artificial chromosome vector
  • the microcell was suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters.
  • the purified microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared with DMEM and added to the recipient CHO MAC cells that had become confluent in a 6 cm cell culture dish after removing the culture medium. . Incubated for 15 minutes to attach micronuclei to CHO cells.
  • PEG1000 (Wako) solution [5 g of PEG1000 was completely dissolved in 6 mL of serum-free DMEM medium, 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused exactly with 1 ml for 1 minute. After washing 4 times to remove PEG with 5 mL of serum-free DMEM, CHO broth was added. After 24 hours, cells were seeded on 10 10 cm cell culture dishes, 800 ⁇ g / mL G418 (Promega) and 6 ⁇ g / mL Blasticidin were added, and selective culture was performed for 10 days.
  • KOD FX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 98 ° C for 1 minute after heat denaturation, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 12 minutes.
  • Human chromosome 2 region confirmation primer D2S177 F (Previous) D2S177 R (Previous) FABP1-F (above) FABP1-R (supra) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) D2S159_1 F (Previous) D2S159_1 R (Previous)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. The temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • FRT sequence confirmation primer on modified human chromosome 2 kD9 tcLa L (above) kD9 tcLa R (above) kD9 tcRa L (above) kD9 tcRa R (above)
  • KOD FX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes. As a result, positive cells of 3 clones and 4 clones were obtained.
  • CHO (MAC) hChr.2 LF1-15 # 9 and CHO (MAC) hChr.2 LF1-15 # 16 when confluent in a 10 cm cell culture dish, 18 ⁇ g of the Cre expression plasmid (vector name: pBS185) Added using Lipofectamine 2000 (Thermo Fisher Scientific) with reference to the manufacturer's procedure. After 6 hours from the addition, the culture medium was changed. After 24 hours, 10 cm cell culture dishes were seeded, and drug selection was performed with 1 ⁇ HAT (Sigma) and 4 ⁇ g / mL Blasticidin. The obtained 23 and 24 clones of HAT resistant clones were used for the subsequent analysis.
  • TRANS L1 5'-TGGAGGCCATAAACAAGAAGAC-3 '(SEQ ID NO: 31)
  • TRANS R1 5'-CCCCTTGACCCAGAAATTCCA-3 '(SEQ ID NO: 32)
  • KJneo 5'-CATCGCCTTCTATCGCCTTCTTGACG-3 '(SEQ ID NO: 33)
  • PGKr-2 5'-ATCTGCACGAGACTAGTGAGACGTGCTA-3 '(SEQ ID NO: 34)
  • LA taq (Takara) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • Human chromosome 2 region confirmation primer D2S177 F (Previous) D2S177 R (Previous) FABP1-F (above) FABP1-R (supra) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra) D2S159_1 F (Previous) D2S159_1 R (Previous)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. The temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • FRT sequence confirmation primer on human chromosome 2 kD9 tcLa L (above) kD9 tcLa R (above) kD9 tcRa L (above) kD9 tcRa R (above)
  • KOD FX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes. As a result, 23 clones and 24 clones were PCR positive.
  • CHO (hprt-) is a host cell for modifying human chromosome 14 and mounting the IGH region in IGK-MAC.
  • the modified human chromosome 14 was transferred to /-) (FIG. 10).
  • the plasmid 3 obtained by digesting the plasmid v907 (Lexicon genetics) with the loxP sequence and 3′HPRT inserted therein (vector name: pX3.1) with XbaI and AscI was used as the NheI (NEB of pMA-SC355hyg).
  • MluI (NEB) site digested and then ligated to the protruding end (vector name: pMA-SC355hyg3′HPRT).
  • the DNA sequence of human chromosome 14 as the FRT insertion site was obtained from the GenBank database (NC_000014.9).
  • the sequence of the primer used for the amplification of the target sequence for homologous recombination is shown below, using genomic DNA extracted from DT40 (# 14) as a template.
  • NotISC355-F 5'-TCGAGCGGCCGCGTACAATCTTGGATCACTACAACCTCTGCCTA-3 '(SEQ ID NO: 35)
  • AscISC355-R 5'-TCGAGGCGCGCCAGGATTATAGATGTGAGCCATCACTAAGACTCCT-3 '(SEQ ID NO: 36)
  • SalISC355-F4 5'-TCGAGTCGACAGCACGTTGGGAGGCCAAGGCAGGAGAATA-3 '(SEQ ID NO: 37
  • BamHISC355-R4 5'-TCGAGGATCCTGGCTGACACAGCCAGTCCCGGATT-3 '(SEQ ID NO: 38)
  • KODFX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • a product obtained by PCR using SalISC355-F4 and BamHISC355-R4 primers was digested with SalI and BamHI, and pMA-SC355hyg3'HPRT was ligated to the overhanging end resulting from digestion with SalI and BamHI (pMA-SC355hyg3 'HPRTR).
  • the product obtained by PCR using the NotISC355-F and AscISC355-R primers was digested with NotI and AscI, and ligated to the overhanging end formed by digesting pMA-SC355hyg3′HPRTR with NotI and AscI ( Vector name: pMA-SC355hyg3'HPRTRL).
  • a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination are shown in FIG.
  • the cuvette was set on a gene pulser (Bio-Rad), and voltage was applied under conditions of 550 V and 25 ⁇ F. The mixture was allowed to stand at room temperature for 10 minutes, then dispensed into 12 96-well culture plates and cultured for 24 hours. Drug selection was performed with 1.5 mg / mL Hygromycin, and 3 reactions were performed. As a result, 73 clones of drug-resistant strains were obtained. Of these, 23 clones were randomly selected and genomic DNA was extracted. Using this as a template, it was confirmed by PCR whether site-specific recombination occurred on human chromosome 14. The primer sequences are shown below.
  • 14TarC_La F 5'-AGCAATTAGGGCCTGTGCATCTCACTTT-3 '(SEQ ID NO: 39)
  • 14TarC_La R 5'-CCAGCTCATTCCTCCCACTCATGATCTA-3 '(SEQ ID NO: 40)
  • 14TarC_Ra F 5'-CATCTGGAGTCCTATTGACATCGCCAGT-3 '(SEQ ID NO: 41)
  • KODFX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute, followed by 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 6 minutes.
  • MTA1-F3 5'-AGCACTTTACGCATCCCAGCATGT-3 '(SEQ ID NO: 43)
  • MTA1-R3 5'-CCAAGAGAGTAGTCGTGCCCCTCA-3 '(SEQ ID NO: 44)
  • ELK2P2-F 5'-CCCACTTTACCGTGCTCATT-3 '(SEQ ID NO: 45)
  • ELK2P2-R 5'-ATGAAGGTCCGTGACTTTGG-3 '(SEQ ID NO: 46)
  • g1 (g2) -F 5'-ACCCCAAAGGCCAAACTCTCCACTC-3 '(SEQ ID NO: 47)
  • VH3-F 5'-AGTGAGATAAGCAGTGGATG-3 '(SEQ ID NO: 49)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • 10 clones were positive, and the subsequent analysis was performed on these.
  • the microcell was suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters.
  • the purified microcell is suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared in DMEM and the culture solution is added to the recipient CHO (hprt-/-) cell line confluent in a 6 cm cell culture dish. Was added after removal. Incubated for 15 minutes to attach micronuclei to CHO cells.
  • PEG1000 (Wako) solution [5 g of PEG1000 was completely dissolved in 6 mL of serum-free DMEM medium, 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused exactly with 1 ml for 1 minute. After washing 4 times to remove PEG with 5 mL of serum-free DMEM, CHO broth was added. After 24 hours, cells were seeded on 10 10 cm cell culture dishes, 400 ⁇ g / mL G418 was added, and selective culture was performed for 10 days. The reaction was performed twice, and the subsequent analysis was performed on the 15 drug-resistant strains and 2 clones obtained.
  • KOD FX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute, followed by 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 6 minutes.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • PCR For PCR using these primers, Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute. As a result, 14 clones and 2 PCR positive clones were obtained.
  • Example 4 Mounting of IGH region on human chromosome 14 to IGK-MAC using reciprocal translocation CHO (hprt-/-) cell line carrying the modified human chromosome 14 with the prepared IGK-MAC IGHK-MAC was prepared by carrying out recombination by the FRT / Flp system and mounting the IGH region on IGK-MAC (FIG. 14).
  • micronuclei also referred to as “microcell”
  • serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, the microcells were suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared in DMEM, and CHO hprt-/-14FRT # 3-17_8 and CHO were confluent in a 6 cm cell culture dish.
  • PEG1000 (Wako) solution [5 g of PEG1000 was completely dissolved in 6 mL of serum-free DMEM medium, 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused exactly with 1 ml for 1 minute. Washing was performed 4 times to remove PEG with 5 mL of serum-free DMEM, and then CHO broth was added.
  • LA taq (Takara) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • FRT insertion site confirmation primer on IGK-MAC kD9 tcLa L (above) kD9 tcLa R (above) kD9 tcRa L (above) kD9 tcRa R (above)
  • KOD FX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • Human chromosome 2 region confirmation primer D2S177 F (Previous) D2S177 R (Previous) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. The temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • KOD FX (TOYOBO) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute, followed by 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 6 minutes.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • PCR For PCR using these primers, Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute. As a result, 12 clones and 15 clones were PCR positive.
  • LA taq (Takara) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • Human chromosome 2 region confirmation primer D2S177 F (Previous) D2S177 R (Previous) EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • BAC clones CH17-405H5 IGK region: CHORI
  • CH17-262H11 IGH region: CHORI
  • CH17-216K2 IGK region: CHORI
  • CH17-212P11 IGH region: CHORI
  • Micronuclei also referred to as “microcell”
  • Micronuclei were suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, after suspending the microcell in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared with DMEM and removing the culture solution to the recipient CHO K1 cell line confluent in a 6 cm cell culture dish Added. Incubated for 15 minutes to attach micronuclei to CHO cells.
  • PEG1000 (Wako) solution [5 g of PEG1000 was completely dissolved in 6 mL of serum-free DMEM medium, 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused exactly with 1 ml for 1 minute. Washing was performed 4 times to remove PEG with 5 mL of serum-free DMEM, and then CHO broth was added. After 24 hours, cells were seeded on 10 10 cm cell culture dishes, 800 ⁇ g / mL G418 was added, and selective culture was performed for 10 days. The following analysis was performed on the 20 drug-resistant strains and 13 clones obtained. About these obtained clones, the fluorescent protein expression of GFP on IGHK-MAC has been confirmed.
  • LA taq (Takara) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • Human chromosome 2 region confirmation primer EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • PCR For PCR using these primers, Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute. As a result, 14 clones and 10 positive clones were confirmed.
  • CHO K1 IGHK-MAC 8-1-1 and CHO K1 IGHK-MAC 14-7-9 were used as donor cells.
  • donor cells are cultured in a cell culture dish, when they become confluent, they are replaced with F12 medium supplemented with 20% FBS and 0.1 ⁇ g / ml colcemid. After further incubation for 48 hours, 20% FBS and 0.1 ⁇ g / ml colcemid are added. The medium was replaced with the prepared F12 medium, and further incubated overnight to form microcells.
  • cytochalasin B (10 ⁇ g / ml, sigma) solution previously kept at 37 ° C. was filled into a centrifuge flask, and centrifuged at 34 ° C., 8000 rpm for 1 hour.
  • Micronuclei also referred to as “microcell” were suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, it was centrifuged at 2000 rpm for 10 minutes. The mixture was centrifuged at 2000 rpm for 10 minutes and suspended in 5 ml of serum-free DMEM medium. The mixture was further centrifuged at 2000 rpm for 10 minutes.
  • Recipient cells include mouse ES cells HKD31 6TG-9 (mouse Igh and Igk genes are disrupted; patent: described in International Publication No. WO98 / 37757) and XO ES9 (antibody genes are not disrupted). Was used.
  • DMEM Dulbecco's Modified Eagle's Medium-high glucose: SIGMA
  • 10% FCS 10% FCS
  • LIF Manine Leukemia Inhibitory Factor
  • L- Glutamine 3.5 g / ml: GIBCO
  • sodium pyruvate solution 3.5 g / ml: GIBCO
  • MEM non-essential amino acid (0.125 mM: GIBCO
  • Mouse ES cells confluent in a 10cm cell culture dish were washed twice with PBS (-) and the cells were dispersed by trypsin treatment.
  • the cells were collected in a culture medium containing 10% FBS in DMEM medium and collected at 1500rpm. Centrifugation, the supernatant was removed, the suspension was resuspended in 5 ml of serum-free culture medium, gently added to the serum-free medium containing the pellet after microcell centrifugation, and further centrifuged at 1200 rpm.
  • PEG1000 (Wako) solution [5 g of PEG1000 was completely dissolved in serum-free DMEM medium, 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused accurately with 0.5 ml for 1 minute and 30 seconds. 13 ml of serum-free medium (DMEM) was gently added and centrifuged at 1200 rpm. The supernatant was removed, normal mouse ES cell culture medium was added, mitomycin-treated G418-resistant mouse embryonic fibroblasts were used as feeder cells, seeded in two 10 cm diameter cell culture dishes, and incubated overnight did.
  • DMEM serum-free medium
  • G418 was added at 250 ⁇ g / mL, and selective culture was performed for 3 to 4 weeks. As a result of performing 4, 4, 6, and 6 reactions, respectively, 6, 4, 7, and 4 clones of EGFP-positive and drug-resistant strains were obtained, and the subsequent analysis was performed.
  • LA taq (Takara) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • Human chromosome 2 region confirmation primer EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • PCR For PCR using these primers, Ampli ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Taq Gold (Applied Biosystems) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • LA taq (Takara) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • Human chromosome 2 region confirmation primer EIF2AK3-F (supra) EIF2AK3-R (supra) RPIA-F (supra) RPIA-R (supra) IGKC-F (supra) IGKC-R (supra) IGKV-F (above) IGKV-R (supra) Vk3-2 F (Previous) Vk3-2 R (supra)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • Example 7 Mouse and rat chimera production and offspring transmission Using ES cells retaining IGHK-MAC, a chimera mouse and a chimera rat are produced and transmitted to offspring.
  • mice holding IGHK-MAC A mouse holding IGHK-MAC was prepared and analyzed. The chimera obtained in the process was also analyzed.
  • chimeric mouse is prepared using mouse ES cells retaining the obtained IGHK-MAC according to the method of Gene Targeting (Experimental Medicine, 1995).
  • morula and 8-cell stage embryos obtained by male-male mating of MCH (ICR) (white, purchased from CLEA Japan) were used. It is possible to determine whether or not a pup mouse born as a result of transplanting an injected embryo into a temporary parent is a chimera based on the hair color.
  • ICR male-male mating of MCH
  • HKD31D6TG-9 IGHK-MAC8-1-1 # 1, 3, 5, 6, HKD31 6TG-9 IGHK-MAC 14-7-9 # 1, XO ES9 IGHK-MAC 8-1-1 Mouse ES cells of # 1 and 2 were used. Among them, 51 embryos injected with HKD31 ⁇ ⁇ 6TG-9 IGHK-MAC 14-7-9 # 1 were transplanted into three temporary parents, resulting in three 100% chimeras and one 90% chimera (determined by coat color). It was. For XO ES9 IGHK-MAC 8-1-1 # 1, 140 embryos injected were transplanted into 8 temporary parents, resulting in 6 100% chimeric mice and 7 80-90% chimeric mice.
  • IGHK-MAC retention analysis of chimeric mice Tail was obtained from chimeric mice more than 3 weeks after birth according to the method described in Motoya Katsuki, Developmental Engineering Experiment Manual, Kodansha Scientific, 1987) Extract genomic DNA using the Puregene DNA Isolation Kit (Qiagen). PCR analysis was performed using the primers and PCR conditions described in Example 6 to confirm retention of IGHK-MAC.
  • Blood is collected from the chimeric mouse, and mouse B cells are detected with a flow cytometer using antibody staining against mouse CD45R (B220). Functional analysis of IGHK-MAC-derived IGM can be confirmed by analyzing whether CD45R and GFP co-positive cells exist. Blood cells were stained with an antibody against mouse CD45R (B220), and human IGM, CD45R, and GFP positive cells were confirmed. Peripheral blood is collected, transferred to a tube containing heparin PBS, mixed by inversion and ice-cooled.
  • the sample was centrifuged at 2000 rpm for 3 minutes at 4 ° C., washed with 5% FBS / PBS, then suspended in 500 ⁇ l of 5% FBS / PBS, and analyzed with a flow cytometer.
  • HKD31 6TG-9 IGHK-MAC 14-7-9 # 1 derived chimeric mice were analyzed for peripheral blood lymphocytes by the above-mentioned means.
  • GFP and B220 co-positive cells were confirmed and constructed. Results suggesting MAC functionality were obtained (FIG. 24).
  • ELISA enzyme linked immunosorbent assay
  • the biotin-labeled antibody is basically used in the same manner, and after washing the plate, the avidin-enzyme complex is added to the plate, incubated, washed, and the substrate solution is added.
  • Measure absorbance with a microplate reader To measure serum concentration, serially dilute a standard with a known concentration, perform ELISA at the same time as the sample, draw a calibration curve, and analyze the concentration.
  • This mouse strain is called HKD mTC (IGHK-MAC).
  • IGHK-MAC IGHK-MAC
  • chimeric mice derived from XO ES9 IGHK-MAC 8-1-1 # 1 a total of 12 high chimeric mice (> 80% in hair color determination) were mated. From the cross of 10 chimeric mice and HKD mice, 97 mice were obtained, 32 of which GFP fluorescence was observed, confirming the offspring transmission (F1) of IGHK-MAC. Furthermore, by crossing two chimeric mice with HKLD mice, 18 mice were obtained, and GFP fluorescence was observed in three of them, confirming the offspring transmission (F1) of IGHK-MAC. As a result of mating 3 F1 individuals with HKD mice, transmission of offspring (F2) was confirmed in 10 out of 33 individuals.
  • [A] LoxP sequence insertion into human chromosome 22 [A.1] Construction of loxP insertion vector into human chromosome 22 pX6.1 (previous plasmid) is the basic plasmid for inserting loxP sequences into cells DT40 52-18 # 22 (# 22) carrying human chromosome 22. Out) was used. The DNA sequence of human chromosome 22 as the loxP insertion site was obtained from the GenBank database (NC_000022.11).
  • TP600 manufactured by Takara was used as the thermal cycler
  • KOD FX (TOYOBO) was used as the PCR enzyme
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were 98 ° C for 1 minute after heat denaturation, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 6 minutes.
  • FIG. 30 shows a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination.
  • PCR For PCR, TP600 manufactured by Takara was used as the thermal cycler, KOD FX (TOYOBO) was used as the PCR enzyme, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • PCR For PCR using these primers, Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, and 50 ° C for 30 seconds and 72 ° C for 1 minute were performed. As a result, 17 clones were PCR positive.
  • TP600 manufactured by Takara was used as the thermal cycler
  • KOD FX (TOYOBO) was used as the PCR enzyme
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were 98 ° C for 1 minute after heat denaturation, followed by 30 cycles of 98 ° C for 15 seconds and 68 ° C for 5 minutes.
  • PCR products of BamHISL350La L and AscISL350La R were digested with BamHI (NEB) and AscI (NEB), separated by agarose gel and purified, and then ligated to the protruding ends formed by digesting pMA-kD9FRTBsd with BamHI and AscI. (Vector name pMA-kD9FRTBsd22L :).
  • FIG. 32 shows a targeting vector, a target sequence, and a chromosomal allele resulting from homologous recombination.
  • 22DT40 KloxP3 1-5 and 22DT40 KloxP3 2-1 Approximately 10 7 cells were washed once with no RPMI1640 medium, suspended in 0.5 ml of RPMI1640 medium, and linearized with restriction enzyme NotI (NEB) 25 ⁇ g of the targeting vector pMA-kD9FRTBsd22LR was added, transferred to a cuvette for electroporation (Bio-Rad), and allowed to stand at room temperature for 10 minutes. The cuvette was set on a gene pulser (Bio-Rad), and voltage was applied under conditions of 550 V and 25 ⁇ F. The mixture was allowed to stand at room temperature for 10 minutes, then dispensed into 12 96-well culture plates and cultured for 24 hours.
  • NEB restriction enzyme NotI
  • Drug selection is performed with 15 ⁇ g / mL Blasticidin (Funakoshi), and genomic DNA of Blasticidin resistant strains is extracted.
  • PCR was performed using the following primers to confirm whether or not recombination occurred in a site-specific manner on human chromosome 22. The primer sequences are shown below.
  • TP600 manufactured by Takara was used as the thermal cycler
  • KOD FX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • the temperature and cycle conditions were 98 ° C for 1 minute after heat denaturation, followed by 35 cycles of 98 ° C for 15 seconds and 68 ° C for 5 minutes to confirm recombination.
  • PCR For PCR, TP600 manufactured by Takara was used as the thermal cycler, KOD FX (TOYOBO) was used as the PCR enzyme, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • the microcell was suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters.
  • the purified microcell was suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared with DMEM and added to the recipient CHO MAC cells that had become confluent in a 6 cm cell culture dish after removing the culture medium. . Incubated for 15 minutes to attach micronuclei to CHO cells.
  • PEG1000 (Wako) solution [5 g of PEG1000 was completely dissolved in 6 mL of serum-free DMEM medium, 1 ml of dimethyl sulfoxide was added and sterilized by filtration] was fused exactly with 1 ml for 1 minute. After washing 4 times to remove PEG with 5 mL of serum-free DMEM, CHO broth was added. After 24 hours, cells were seeded on 10 10 cm cell culture dishes, 800 ⁇ g / mL G418 (Promega) and 8 ⁇ g / mL Blasticidin were added, and selective culture was performed for 10 days.
  • PCR For PCR, TP600 manufactured by Takara was used as the thermal cycler, KOD FX (TOYOBO) was used as the PCR enzyme, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • TP600 manufactured by Takara was used as the thermal cycler
  • KOD FX TOYOBO
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions are 98 ° C for 1 minute after heat denaturation, followed by 35 cycles of 98 ° C for 15 seconds and 68 ° C for 5 minutes.
  • PCR using these primers Ampli ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Taq Gold (Applied Biosystems) was used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, and 50 ° C for 30 seconds and 72 ° C for 1 minute were performed.
  • clones derived from 22DT40 KL3F 1-5 # 2-1, 22DT40 KL3F 2-1 # 1-2, # 1-3, and clones 2, 9, and 12 were PCR positive. Based on this result, 6 PCR-positive clones were selected and the subsequent experiments were advanced.
  • CHO hprt-/-
  • MAC modified human chromosome 22 and MAC
  • 18 ⁇ g of a Cre expression plasmid was used using Lipofectamine2000 (Thermo Fisher Scientific) Added with reference to manufacturer's instructions. After 6 hours from the addition, the culture medium was changed. After 24 hours, 10 cm cell culture dishes were seeded, and drug selection was performed with 1 ⁇ HAT (Sigma) and 8 ⁇ g / mL Blasticidin.
  • LA taq (Takara)
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • PCR For PCR, TP600 manufactured by Takara was used as the thermal cycler, KOD FX (TOYOBO) was used as the PCR enzyme, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were heat denaturation at 98 ° C. for 1 minute and then 35 cycles of 98 ° C. for 15 seconds and 68 ° C. for 5 minutes.
  • micronuclei also referred to as “microcell”
  • serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, the microcells were suspended in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared in DMEM, and CHO hprt-/-14FRT # 3-17_8 and CHO were confluent in a 6 cm cell culture dish.
  • the cells are seeded in 10 10 cm cell culture dishes, 800 ⁇ g / mL G418 and 8 ⁇ g / mL Blasticidin are added, selective culture is performed for 10 days, and the obtained drug-resistant strain is analyzed thereafter.
  • PCR For PCR, use TP600 manufactured by Takara as the thermal cycler, KOD FX (TOYOBO) for the PCR enzyme, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) according to the recommended conditions. Temperature and cycle conditions are 98 ° C for 1 minute after heat denaturation, followed by 35 cycles of 98 ° C for 15 seconds and 68 ° C for 5 minutes.
  • PCR For PCR using these primers, Ampli® Taq® Gold (Applied® Biosystems) is used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, 50 ° C for 30 seconds and 72 ° C for 1 minute.
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Ampli® Taq® Gold (Applied® Biosystems) is used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • LA taq (Takara)
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions are: heat denaturation at 98 ° C for 1 minute, then perform 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, 72 ° C for 3 minutes.
  • PCR For PCR using these primers, Ampli Taq Gold (Applied Biosystems) is used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, 50 ° C for 30 seconds and 72 ° C for 1 minute.
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Ampli® Taq® Gold (Applied® Biosystems) is used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute.
  • Micronuclei also referred to as “microcell” are suspended in serum-free DMEM medium and purified with 8 ⁇ m, 5 ⁇ m, and 3 ⁇ m filters. After purification, after suspending the microcell in 2 mL of 0.05 mg / ml PHA-P (Sigma) solution prepared with DMEM and removing the culture solution to the recipient CHO K1 cell line confluent in a 6 cm cell culture dish Added. Incubate for 15 minutes to attach micronuclei to CHO cells.
  • LA taq (Takara)
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions are: heat denaturation at 98 ° C for 1 minute, then perform 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, 72 ° C for 3 minutes.
  • PCR For PCR using these primers, Ampli® Taq® Gold (Applied® Biosystems) is used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, 50 ° C for 30 seconds and 72 ° C for 1 minute.
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • PCR-positive cell lines For PCR using these primers, Ampli® Taq® Gold (Applied® Biosystems) is used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute. Perform the following analysis for PCR-positive cell lines.
  • Two-color FISH analysis FISH analysis is performed using Human cot-1 DNA and Mouse cot-1 DNA as probes, and it is confirmed that one copy of IGHL-MAC is retained independently. Furthermore, two-color FISH analysis was performed using combinations of BAC clones CH17-95F2 (IGL region) and CH17-262H11 (IGH region) and CH17-424L4 (IGL region) and CH17-212P11 (IGH region) as probes, The structure of IGHL-MAC is analyzed in detail. Those in which signals indicating the presence of the IGL region and the IGH region are observed on the MAC are positive (named as CHO K1 IGHL-MAC) and used in the subsequent experiments.
  • Micronuclear cell fusion and isolation of drug resistant clones Donor cells are CHO K1 IGHL-MAC. Micronucleus cell fusion is performed using the same method as in Example 6 [A.1] to obtain an EGFP-positive and drug-resistant strain, and the subsequent analysis is performed.
  • LA taq (Takara)
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Temperature and cycle conditions are: heat denaturation at 98 ° C for 1 minute, then perform 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, 72 ° C for 3 minutes.
  • PCR For PCR using these primers, Ampli Taq Gold (Applied Biosystems) is used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, 50 ° C for 30 seconds and 72 ° C for 1 minute.
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • PCR-positive cell lines For PCR using these primers, Ampli® Taq® Gold (Applied® Biosystems) is used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute. Perform the following analysis for PCR-positive cell lines.
  • Two-color FISH analysis was performed using a combination of BAC clones CH17-95F2 (IGL region) and CH17-262H11 (IGH region) and CH17-424L4 (IGL region) and CH17-212P11 (IGH region) as probes. -Analyze in detail whether the MAC is built. The cells observed on the MAC at the positions where signals indicating the presence of the IGL region and the IGH region are expected are defined as positive cell lines (HKD31 IGHL-MAC) and used for injection.
  • FIG. 1 Micronucleus cell fusion and isolation of drug-resistant clones As described in Example 6 [A.1], using the same method as the micronucleus cell fusion method to mouse ES cells, rat ES cells were obtained. IGHL-MAC will be introduced. Donor cells use CHO K1 IGHL-MAC. After fusion, incubate overnight, add G418 to 150 ⁇ g / mL, and select culture for 3-4 weeks. Results GFP positive and drug resistant clones are used for further analysis.
  • LA taq (Takara) was used, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions. Temperature and cycle conditions were heat denaturation at 98 ° C for 1 minute, followed by 30 cycles of 94 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 3 minutes.
  • PCR For PCR using these primers, Ampli Taq Gold (Applied Biosystems) is used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions. Temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation, and 35 cycles of 95 ° C for 30 seconds, 63, 62, 60, 56, 55, 50 ° C for 30 seconds and 72 ° C for 1 minute.
  • buffers and dNTPs dATP, dCTP, DGTP, dTTP
  • Human chromosome 14 region confirmation primer MTA1-F3 (above) MTA1-R3 (above) ELK2P2-F (supra) ELK2P2-R (supra) g1 (g2) -F (above) g1 (g2) -R (above) VH3-F (above) VH3-R (above) CH3F3 (Previous) CH4R2 (Previous)
  • PCR-positive cell lines For PCR using these primers, Ampli® Taq® Gold (Applied® Biosystems) is used for Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) are used according to the recommended conditions.
  • the temperature and cycle conditions are 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds or 56 ° C for 30 seconds, 72 ° C for 1 minute. Perform the following analysis for PCR-positive cell lines.
  • Two-color FISH analysis FISH analysis was performed using Human cot-1 DNA and Mouse cot-1 DNA as probes, and 1 copy of IGHL-MAC was retained independently. Normal karyotype of rat ES Confirm that (42) is maintained.
  • Two-color FISH analysis was performed using a combination of BAC clones CH17-95F2 (IGL region) and CH17-262H11 (IGH region) and CH17-424L4 (IGL region) and CH17-212P11 (IGH region) as probes, and IGHL- Analyzing the MAC structure in more detail.
  • a cell line (named rESIGHL-MAC) in which signals indicating the presence of an IGL region and an IGH region are observed on the MAC is regarded as a positive cell line and used for injection.
  • Example 13 Production of mice and rats retaining IGHL-MAC and production of offspring transfer individuals Using mouse and rat ES cells retaining IGHL-MAC, (Example 7) -Progeny transmission mice and rats carrying MAC can be produced. Progeny transmission mice, rats and chimeric mice obtained in the process are also analyzed in the same manner as in (Example 7) and (Example 12) to confirm IGHL-MAC retention and antibody expression (including h ⁇ ). The produced IGHL-MAC-bearing mouse and rat strains are called mTC (IGHL-MAC) and rTC (IGHL-MAC), respectively.
  • Example 14 Production of human antibody-producing mouse Mouse having IGHK-MAC and IGHL-MAC, mouse Igh and Igk genes are disrupted, and have an Igl mutation (a mutation that reduces Igl expression) Mice) are crossed to produce human antibody-producing mice.
  • mice that are deficient or low-expressing mouse antibody genes are prepared.
  • [A.1] Generation of Igh and Igk gene deficient and Igl low expression mice Mouse strains obtained from HKD31 (disrupted mouse Igh and Igk gene disruptions) mouse ES and mouse Igl low expression mutations CD-1 (ICR, purchased from Charles River) is bred to produce Igh and Igk gene-deficient, Igl low-expressing mice. Mouse Iglc mutation from CD-1 is confirmed by PCR-RFLP analysis.
  • PCR was performed using the following primers.
  • mIglc1VnC L 5'-CCTCAGGTTGGGCAGGAAGA-3 '(SEQ ID NO: 94)
  • J3C1 5'-GACCTAGGAACAGTCAGCACGGG-3 '(SEQ ID NO: 95)
  • Ampli Taq Gold (Applied Biosystems) was used as Taq polymerase, and buffers and dNTPs (dATP, dCTP, DGTP, dTTP) were used according to the recommended conditions.
  • the temperature and cycle conditions were 95 ° C for 10 minutes after heat denaturation and 35 cycles of 95 ° C for 30 seconds, 60 ° C for 30 seconds and 72 ° C for 1 minute.
  • the PCR product was treated with KpnI-HF (NEB), and after electrophoresis, a product in which the PCR product was not cleaved was determined to be a mutant allele.
  • Results Mice (referred to as LD strain) in which Ig ⁇ mutation was observed in both alleles were obtained.
  • Example 7 As described in Example 7 [A.3], the Igh gene has been disrupted, and when Ig ⁇ expression is lost, B cells cannot be produced. By determining the presence or absence of B cells, the Igh gene deficiency can be evaluated. . FCM analysis was performed in the same manner as the previous report (Proc Natl Acad Sci U S A. 2000 Jan 18; 97 (2): 722-7.), And individuals with B cell deletion were determined to be mouse Igh deficient. As a result of FCM analysis of peripheral blood lymphocytes of mice (referred to as HKD strains) that are considered to have destroyed mouse Igh and Ig ⁇ , Bgh was negative for B cell marker. It was shown that. Furthermore, as a result of proceeding with mating with Ig ⁇ mutant mice, mice having Igh and Ig ⁇ disrupted and having Ig ⁇ mutations in both alleles (referred to as HKLD strain) were obtained.
  • HKD strains peripheral blood lymphocytes of mice
  • mice In addition to the mouse Igh, the obtained mice also expressed Igk and Igl, as in the previous report (Proc Natl Acad Sci U S A. 2000 Jan 18; 97 (2): 722-7.). And confirmed that expression was lost and expression was low.
  • the sample was centrifuged at 2000 rpm for 3 minutes at 4 ° C., washed with 5% FBS / PBS, then suspended in 500 ⁇ l of 5% FBS / PBS, and analyzed with a flow cytometer.
  • IGHK-MAC flow cytometric analysis of HKD mTC mice
  • the presence of B220 and GFP-positive cells in peripheral blood lymphocytes was confirmed. It was suggested that at least IGHK-MAC functions and human IGH, especially IgM, is expressed.
  • Example 7 Similar to the method described in [A.4], mouse antibody (m ⁇ , m ⁇ , m ⁇ , m ⁇ ), human antibody (h ⁇ , h ⁇ , h ⁇ , h ⁇ , h ⁇ 1), including confirmation of the presence or absence of mouse antibody expression , H ⁇ 2, h ⁇ 3, h ⁇ 4, h ⁇ , h ⁇ , h ⁇ ) expression and serum concentration.
  • Example 7 Immunization with human serum albumin is performed in the same manner as described in [A.6], and the increase in antibody titer is analyzed.
  • Example 15 Production of human antibody-producing rat A rat carrying IGHK-MAC and IGHL-MAC is crossed with a KO rat in which rats Igh, Igk, and Igl are disrupted to produce a human antibody-producing rat.
  • a human antibody-producing rat can be produced by crossing a rat strain carrying IGHK-MAC or IGHL-MAC with a rat strain in which the rat Igh, Ig ⁇ , or Ig ⁇ gene has been disrupted. .
  • human antibodies can be produced using non-human animals including rodents such as rats, and thus are useful in the production of pharmaceutical antibodies.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

この出願は、ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及び/又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座とを含むマウス人工染色体を含み、かつ少なくとも2つのヒト抗体遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされていることを特徴とする、後代にわたり安定に保持され、かつヒト抗体を産生することができる非ヒト動物、この非ヒト動物の作製方法、並びに、この非ヒト動物を用いてヒト抗体を製造する方法を提供する。

Description

ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法
 本発明は、ヒト抗体遺伝子を含むマウス人工染色体(Mouse Artificial Chromosome (MAC))、並びに、該MACを含む、かつヒト抗体を産生可能とする非ヒト動物に関する。
 本発明はまた、上記非ヒト動物の作製方法に関する。
 本発明はさらに、上記非ヒト動物を用いてヒト抗体を製造する方法に関する。
 抗体は、癌、関節リウマチなどの治療薬として医療分野で使用されている。例えばトラスツズマブは、癌細胞表面のHER2(もしくはErbB2)に対する分子標的抗体医薬として乳癌の治療に使用されている。また、トシリズマブは、ヒト化抗IL-6受容体抗体であり、関節リウマチの治療薬に使用されている。
 抗体は、ヒトに投与する際に治療効果及び安全性を高めるために、ヒト化抗体又はヒト抗体であることが望ましい。ヒト化抗体は、マウス等の異種動物由来の抗体の重鎖及び軽鎖の相補性決定領域のアミノ酸配列を、ヒト抗体の対応する相補性決定領域(CDR1,CDR2及びCDR3)に置換して得られる抗体であり、モノクローナル抗体作製技術とDNA組換え技術を組み合わせて作製可能である。これに対して、ヒト抗体は、抗体のアミノ酸配列が完全にヒト由来である抗体であり、ヒト抗体遺伝子を保持するヒト抗体産生マウス(例えばKMマウス(協和発酵キリン))を利用する技術、ScFVなどの抗体を組換え抗体の形で繊維状ファージ表面に提示するファージディスプレイ法などによって作製可能である。
 本発明と関連する技術は、ヒト抗体を産生可能であるマウス等の非ヒト動物を作製する技術であり、そのような動物は、ヒト抗体遺伝子を保持している。ヒト抗体遺伝子は、それを構成する重鎖遺伝子、軽鎖κ遺伝子、軽鎖λ遺伝子がそれぞれ異なる染色体上に存在し、かつ約0.9Mb以上のサイズを有するため、ヒト抗体産生非ヒト動物を作製するには人工染色体ベクターなどの染色体工学技術を必要とする。
 特許文献1には、ヒト抗体遺伝子を含むヒト人工染色体を用いてヒト抗体を産生可能とするマウス等の非ヒト動物及びヒト抗体の製造法が開示されている。
 特許文献2には、再配列を経て1つ以上のヒト免疫グロブリン分子を発現するヒト免疫グロブリン遺伝子の全体、またはその一部、をコードする1つ以上の核酸を含み、かつウシ、ヒツジおよびヤギからなる群より選択されることを特徴とするトランスジェニック有蹄動物が開示されている。
 特許文献3には、ヒト抗体重鎖遺伝子、ヒト抗体軽鎖遺伝子及びヒト抗体代替軽鎖遺伝子を含むヒト人工染色体ベクター、該ヒト人工染色体ベクターを有する動物、並びにヒト抗体を生産する方法が開示されている。
 特許文献4には、マウス人工染色体が開示されている。
 非特許文献1には、トランスジェニック動物によるヒト抗体生産に関して総説されている。この文献では、従来のトランスジェニック動物においてヒト抗体の生産効率の低さを課題として挙げている。そのための解決手段として、内在抗体遺伝子をノックアウトするともに、ヒト可変領域のV、D及びJセグメントと内在C遺伝子を結合させることを提案している。
日本国特許第4082740号公報 日本国特許第3797974号公報 国際公開WO2011/062206 日本国第特許5557217号公報
M. Bruggemann et al., Arc. Immunol. Ther. Exp. (2015) 63:101-108
 本発明の目的は、安定に保持され、かつ子孫伝達可能であるヒト抗体産生非ヒト動物(例えばマウス、ラットなど)及び該動物を用いるヒト抗体の製造法を提供することである。
 本発明は、要約すると、次の特徴を包含する。
(1)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHK-MAC」という。)を含む非ヒト動物。
(2)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHL-MAC」という。)を含む非ヒト動物。
(3)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(以下、「hIGHK-MAC」という。)及びヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHL-MAC」という。)を含む非ヒト動物。
(4)ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHKL-MAC」という。)を含む非ヒト動物。
(5)哺乳動物である、上記(1)~(4)のいずれかに記載の非ヒト動物。
(6)哺乳動物がげっ歯類である、上記(5)に記載の非ヒト動物。
(7)げっ歯類がマウス又はラットである、上記(6)に記載の非ヒト動物。
(8)非ヒト動物の少なくとも2つの内在抗体遺伝子もしくは遺伝子座がノックアウトされている、上記(1)~(7)のいずれかに記載の非ヒト動物。
(9)上記(1)記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(10)上記(2)記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(11)上記(1)記載の非ヒト動物と上記(2)記載の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含む非ヒト動物を作製するステップ、作製された非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(12)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)を含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)を含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(13) 上記(4)記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子がノックアウトされた同種の非ヒト動物を交配し、hIGHKL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(14) 上記(1)~(8)のいずれかに記載の非ヒト動物に抗原物質を投与するステップ、該ヒト動物から該抗原物質と結合する産生されたヒト抗体を回収するステップを含む、ヒト抗体を製造する方法。
(15)抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、上記(14)に記載の方法。
(16) 上記(1)~(8)のいずれかに記載の非ヒト動物に抗原物質を投与するステップ、該非ヒト動物から脾臓細胞を取り出すステップ、該脾臓細胞とミエローマとを融合させてハイブリドーマを作製するステップ、該ハイブリドーマから該抗原物質と結合する抗体を回収するステップを含む、ヒトモノクローナル抗体を製造する方法。
(17)抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、上記(16)に記載の方法。
(18)ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及び/又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座とを含むマウス人工染色体ベクター。
 本発明の非ヒト動物は、内在抗体重鎖及び軽鎖遺伝子もしくは遺伝子座がノックアウトされた、かつヒト抗体重鎖及び軽鎖遺伝子もしくは遺伝子座を保持するヒト抗体を産生する非ヒト動物であり、この動物は、後代においてさえヒト抗体遺伝子もしくは遺伝子座(すなわち、重鎖遺伝子もしくは遺伝子座、軽鎖κ遺伝子もしくは遺伝子座、及び軽鎖λ遺伝子もしくは遺伝子座)が安定に保持され、かつヒト抗体が産生可能であるという利点を有する。ここで、マウス人工染色体は、ほとんどマウス由来の遺伝子を含まないこと、ヒト抗体遺伝子を保持すること、並びにマウス、ラットなどのげっ歯類で安定に子孫伝達されることの特徴を有している。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2016-213844号の開示内容を包含する。
マウス人工染色体(MAC)を利用したヒト抗体産生マウス及びラットの作製手順の概要を示す。 ヒト2番染色体上の軽鎖κ遺伝子のセントロメア(cen)側にloxP配列を、並びに該遺伝子のテロメア(Tel)側にFRT配列を挿入することを含むヒト2番染色体の改変を示す。 ヒト2番染色体アレルを表示のターゲティングベクターによる相同組換え法を用いて改変して得たloxP搭載組換えアレルの作製を示す。 ヒト2番染色体に部位特異的にPGKhygloxP5’HPRT(矢印)が挿入されたことを示すtwo-color FISH解析図である。 ヒト2番染色体アレルへFRTサイトを表示のターゲティングベクターによる相同組換え法を用いて挿入する手順を示す。 ヒト2番染色体が1コピー保持され、さらにPGK5’HPRTFRTBsd(矢印)が挿入されたことを示すtwo-color FISH解析図である。 Cre/loxPシステムを用いてヒト2番染色体上のIGK領域をMACへ転座クローニングするIGK-MACの作製を示す。 CHO細胞においてMAC(下側の矢印)と改変ヒト2番染色体(上側の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGK領域がMACに搭載されたIGK-MAC(下側の矢印)と副産物(上側の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGK-MACにIGH領域を搭載するためのFRT配列が挿入された改変ヒト14番染色体を示す。 ヒト14番染色体アレルを表示のターゲティングベクターによる相同組換え法を用いて改変して得たFRT搭載組換えアレルの作製を示す。 ヒト14番染色体が1コピー保持され、さらにPGKhyg3’FRTHPRT(矢印)が挿入されたことを示すtwo-color FISH解析図である。 CHO細胞においてPGKhygFRT3’HPRT由来のシグナルを示すヒト14番染色体が1コピー保持されていることを示すtwo-color FISH解析図である。 IGH領域をIGK-MACに搭載するIGHK-MACの作製手順を示す。 IGK-MAC(下側の矢印)と改変ヒト14番染色体(上側の矢印)が独立して1コピーずつ保持されているクローンを確認したtwo-color FISH解析図である。 IGHK-MAC(上側の矢印)が1コピーで独立して存在していることが確認されたことを示すtwo-color FISH解析図である。下側の矢印は、FRT/FLP組換えにより形成された副産物を示す。 CHO IGHK-MACクローンについて、プローブとしてBACクローンCH17-405H5(IGK領域)とCH17-262H11(IGH領域)を用いてtwo-color FISH解析を行い、該クローン内のMAC上にそれぞれ、IGK領域とIGH領域の存在を示すシグナルが観察され、IGHK-MAC(矢印)が構築されていることが確認されたことを示す図である。左パネル:シグナルを重ねあわせた図。中パネル:CH17-405H5(IGK領域)のシグナルのみ示した図。右パネル:CH17-262H11(IGH領域)のシグナルのみを示した図。 CHO IGHK-MACクローンについて、プローブとしてBACクローンCH17-216K2(IGK領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、該クローン内のMAC上にそれぞれ、IGK領域とIGH領域の存在を示すシグナルが観察され、IGHK-MAC(矢印)が構築されていることが確認されたことを示す図である。左パネル:シグナルを重ねあわせた図。中パネル:CH17-216K2(IGK領域)のシグナルのみ示した図。右パネル:CH17-212P11(IGH領域)のシグナルのみを示した図。 IGHK-MAC(矢印)がCHO K1細胞株に移入されていること示すtwo-color FISH解析図である。 CHO K1細胞株中のIGHK-MAC(矢印)についてBAC クローンCH17-216K2(IGK領域)とCH17-212P11(IGH領域)をプローブとして用いたtwo-color FISH解析図である。 CHO K1細胞株中のIGHK-MAC(矢印)についてBACクローンCH17-405H5(IGK領域)とRP11-731F5(IGH領域)をプローブとして用いたtwo-color FISH解析図である。 IGHK-MAC(矢印)を保持するMouse ES のFISH解析図である。 IGHK-MAC(矢印)を保持するRat ESのFISH解析図である。 IGHK-MACを保持するマウスIgh、Igkが破壊されたES細胞由来のキメラマウスにおけるフローサイトメトリー解析の結果である。 IGHK-MACを保持するマウスHKD31 6TG-9細胞由来で、IGHK-MACが子孫伝達してかつIgh,Igkが破壊されたマウスにおけるフローサイトメトリー解析の結果である IGHK-MACを保持するマウスXO ES9細胞由来で、IGHK-MACが子孫伝達してかつIgh,Igkが破壊されたマウスにおけるフローサイトメトリー解析の結果である。 IGHK-MACを保持するES細胞由来キメララット(雄と雌)の画像である。 IGHK-MAC子孫伝達ラットについて血清中のヒト抗体産生をELISAで評価した結果である。 ヒト22番染色体上の軽鎖λ遺伝子のセントメア側にloxP配列を、並びに該遺伝子のテロメア側にFRT配列を挿入することを含むヒト22番染色体の改変を示す。 ヒト22番染色体アレルを表示のターゲティングベクターによる相同組換え法を用いて改変して得たloxP搭載組換えアレルの作製を示す。 ヒト22番染色体に部位特異的にPGKhygloxP5’HPRT(矢印)が挿入されたことを示すtwo-color FISH解析図である。 ヒト22番染色体アレルへFRTサイトを表示のターゲティングベクターによる相同組換え法を用いて挿入する手順を示す。 ヒト22番染色体に部位特異的にPGK5’HPRTFRTBsd(矢印)が挿入されたことを示すtwo-color FISH解析図である。 Cre/loxPシステムを用いてヒト22番染色体上のIGL領域をMACへ転座クローニングするIGL-MACの作製を示す。 CHO細胞においてMAC(左の矢印)と改変ヒト22番染色体(右の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGL領域がMACに搭載されたIGL-MAC(右の矢印)と副産物(左の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGH領域をIGL-MACに搭載するIGHL-MACの作製手順を示す。
 本発明は、ヒト抗体重鎖及び軽鎖遺伝子もしくは遺伝子座を含むマウス人工染色体(Mouse Artificial Chromosome (MAC))を含み、ヒト抗体の産生が可能であることを特徴とする非ヒト動物、並びに、該非ヒト動物を用いてヒト抗体を製造する方法を提供する。
 以下において本発明をさらに詳細に説明する。
1.ヒト抗体産生非ヒト動物
1.1 マウス人工染色体(MAC)
 本明細書におけるマウス人工染色体(「マウス人工染色体ベクター」ともいう。)は、トップダウンアプローチで構築された人工染色体であり、マウス染色体から遺伝子領域を染色体改変により完全もしくはほぼ完全に削除して得られる天然セントロメアの他に、両末端にテロメア配列を含み、さらにDNA配列挿入部位等の外来エレメントを含むことができる、人工染色体ベクターであるそのようなベクターの作製例としては、本発明者らにより開発されたマウス人工染色体ベクターの作製手順が例示される(再表2011/083870号公報及び特許第5557217号)。
 マウス人工染色体は、導入すべき細胞本来の染色体から独立した染色体として安定に複製及び分配が可能である。マウス由来の染色体断片は、マウスの1~19番、X及びY染色体のうちの任意の染色体、好ましくは1番~19番染色体のいずれかの断片(長腕の全内在遺伝子数の少なくとも99.5%、好ましくはほぼ100%が削除された長腕断片)であり、該断片には、セントロメア近傍のマウス染色体長腕の部位から長腕遠位が削除された長腕断片が含まれる。
  マウスの染色体の配列情報は、DDBJ/EMBL/GenBank、Santa  Cruz  Biotechnology,Inc.などのChromosome  Databasesから入手可能である。
  染色体の「長腕」とはマウス染色体のセントロメア側から遺伝子領域を含む染色体領域を指す。一方、マウス染色体には、短腕がほとんど存在しない。
  「遠位」とは、セントロメアから遠い領域(すなわち、テロメア側)を意味する。反対に、セントロメアに近い領域(すなわち、セントロメア側)は「近位」と称する。長腕遠位は、長腕の特定部位よりもテロメア側に位置する領域を意味し、長腕近位は、長腕の特定部位よりもセントロメア側に位置する領域を意味する。
 マウス人工染色体ベクターは、マウス染色体由来の天然型セントロメア、セントロメア近傍のマウス染色体長腕の部位から長腕遠位を削除したマウス染色体由来の長腕断片、及びテロメア配列を含むこと、ならびに、哺乳類の細胞及び個体組織において安定に保持されることを特徴とする。
  「マウス染色体由来の天然型セントロメア」という用語は、いずれか1つのマウス染色体のセントロメア全体(完全なセントロメア)を指す。したがって、このようなセントロメアには、マウス染色体のセントロメア配列の一部を用いて偶発的又は人工的に得られたセントロメア機能を有する構造体、及び、他の動物種の染色体のセントロメアは含まれない。
  「セントロメア近傍のマウス染色体長腕の部位から長腕遠位を削除したマウス染色体由来の長腕断片」は、本発明のベクターがマウス、ラット等のげっ歯類の細胞又は組織において安定に保持されるように、かつマウスの個体発生と子孫伝達の妨げにならないように、可能な限り内在遺伝子の影響を排除することが望ましく、そのために、マウス染色体の長腕中の内在遺伝子を除去するようにセントロメアに近い長腕部位で削除して得られる長腕断片を指す。これは全内在遺伝子(数)の少なくとも99.5%、好ましくは少なくとも99.7%、より好ましくは少なくとも99.8%、最も好ましくは99.9~100%が除去されるようにセントロメアに近い長腕部位で削除して得られる長腕断片を指す。
  本明細書中で使用する「保持率」とは、マウス、ラット等のげっ歯類などの哺乳動物の培養細胞又は組織細胞中で人工染色体が存在している細胞の割合を指す。
  本発明の染色体ベクターが「安定に保持される」とは、細胞分裂の際に該染色体ベクターの脱落を起こし難く、すなわち、分裂後であっても細胞内で安定に保持されること、それゆえに、該染色体ベクターが娘細胞や子孫マウスに効率よく子孫伝達されることを意味する。
  例えばマウス11番染色体断片由来の人工染色体ベクターの場合には、前記長腕断片は、非限定的に例えば、該11番染色体の長腕のAL671968、或いはBX572640(AL671968よりセントロメア側に位置する。)、CR954170(AL671968及びBX572640よりセントロメア側に位置する。)又はAL713875(AL671968よりセントロメア側に位置する。)、よりも遠位の領域が削除された長腕断片からなる。その他、例えばマウス15番染色体断片由来の人工染色体ベクターの場合、前記長腕断片は、非限定的に例えば、AC121307、AC161799などの位置よりも遠位の領域が削除された長腕断片からなる。マウス16番染色体断片由来の人工染色体ベクターの場合、前記長腕断片は、非限定的に例えば、AC127687、AC140982などの位置よりも遠位の領域が削除された長腕断片からなる。これらの基本構造には、ヒト抗体遺伝子配列を挿入するためのloxPなどのDNA配列挿入部位をさらに含むことができる。
  このベクターは、マウス、ラット、ハムスターなどのげっ歯類を含む哺乳類の細胞又は個体組織において保持率が向上し、これによって細胞内で安定に保持され、したがって目的のヒト抗体遺伝子(群)を長期間安定に保持することができ、げっ歯類の個体間又は組織間において導入遺伝子量にバラつきがなく長期間発現させることができる。ヒト人工染色体(HAC)と比較される興味深い特性として、HACの保持率が20%未満と非常に低い血液系組織を含めて、組織間のばらつきが極端に少なく、保持率は、試験したどの組織(例えば、肝臓、腸、腎臓、脾臓、肺、心臓、骨格筋、脳又は骨髄由来の組織)でも90%以上である。
  本明細書中の「DNA配列挿入部位」とは、人工染色体における、目的DNA(遺伝子を含む)配列を挿入できる部位、例えば、部位特異的組換え酵素の認識部位等を意味する。このような認識部位には、非限定的に、例えばloxP(Creリコンビナーゼ認識部位)、FRT(Flpリコンビナーゼ認識部位)、φC31attB及びφC31attP(φC31リコンビナーゼ認識部位)、R4attB及びR4attP(R4リコンビナーゼ認識部位)、TP901-1attB及びTP901-1attP(TP901-1リコンビナーゼ認識部位)、或いはBxb1attB及びBxb1attP(Bxb1リコンビナーゼ認識部位)などが含まれる。
  本明細書中の「部位特異的組換え酵素」とは、これら酵素の認識部位で特異的に目的のDNA配列と組換えを起こすための酵素である。その例は、Creインテグレース(Creリコンビナーゼとも称する。)、Flpリコンビナーゼ、φC31インテグレース、R4インテグレース、TP901-1インテグレース、Bxb1インテグレースなどである。
  本明細書中の「テロメア配列」は、同種又は異種の天然テロメア配列、或いは、人工テロメア配列である。ここで、同種とは、人工染色体ベクターの染色体断片が由来するマウスと同種の動物を意味し、一方、異種とは、該マウス以外の哺乳動物(これには、ヒトを含む)を意味する。また、人工テロメア配列は、(TTAGGG)n配列(nは、繰り返しを意味する。)などの人工的に作製されたテロメア機能を有する配列を指す。人工染色体へのテロメア配列の導入は、例えば国際公開WO 00/10383に記載されるようなテロメアトランケーション(テロメア配列の置換)によって行うことができる。テロメアトランケーションは、本発明の人工染色体の作製において染色体の短縮のために使用することができる。
  本明細書中の「胚性幹細胞」又は「ES細胞」は、哺乳動物由来の受精卵の胚盤胞の内部細胞塊から樹立された分化多能性と半永久的増殖能とを備えた幹細胞である(M.J.Evans  and  M.H.Kaufman(1981)Nature  292:154-156;J.A.Thomson  et  al.(1999)Science  282:1145-1147;J.A.Thomson  et  al.(1995)Proc.Natl.Acad.Sci.USA  92:7844-7848;J.A.Thomson  et  al.(1996)Biol.Reprod.55:254-259;J.A.Thomson  and  V.S.Marshall(1998)Curr.Top.Dev.Biol.38:133-165)。この細胞と同等の性質をもつ、体細胞の再プログラミングによって人工的に誘導された細胞が「人工多能性幹細胞」又は「iPS細胞」である(K.Takahashi  and  S.Yamanaka(2006)Cell  126:663-676;K.Takahashi  et  al.(2007)Cell  131:861-872;J.Yu  et  al.(2007)Science  318:1917-1920)。
  以下に、マウス人工染色体ベクターの作製及びその用途について説明する。
  本発明の人工染色体ベクターは、以下の工程(a)~(c):
  (a)マウス染色体を保持する細胞を得る工程、
  (b)内在遺伝子(数)の大部分(99.5%~100%、好ましくは100%)を含まないようにマウス染色体の長腕遠位を削除する工程、及び
  (c)長腕近位に1つ以上のDNA配列挿入部位を挿入する工程
を含む方法によって作製することができる。ここで、工程(b)及び(c)の順序は逆であってもよい。
工程(a):
  本発明の人工染色体ベクターを作製するには、まず、マウス染色体を保持する細胞を作製する。例えば、薬剤耐性遺伝子(例えば、blasticidin  S  registance  gene(BSr))で標識されたマウス染色体を保持するマウス線維芽細胞であるmouse  embryonic  fibroblast(mChr11-BSr)とG418耐性遺伝子であるneo遺伝子を導入したマウスA9細胞(ATCC  VA20110-2209)であるmouse  A9(neo)と細胞融合し、薬剤耐性遺伝子で標識されたマウス染色体を保持するマウスA9雑種細胞であるmouse  A9x  mouse  embryonic  fibroblast(neo;mChr11-BSr)から、その染色体を相同組換え率の高い細胞に移入することにより作製することができる。マウス繊維芽細胞は、文献記載の方法に基づいて入手することが可能であり、例えば、マウス繊維芽細胞は日本クレアより入手可能なC57B6系統のマウスより樹立可能である。相同組換え率の高い細胞としては、例えば、ニワトリDT40細胞(Dieken  et  al., Nature  Genetics,12:174-182,1996)を利用できる。さらにまた、上記移入は、公知の染色体移入法、例えば、微小核細胞融合法(Koi  et  al., Jpn. J. Cancer Res.,80:413-418,1973)によって行うことができる。
工程(b):
  マウス由来の単一の染色体を保持する細胞において、該マウス染色体の長腕遠位を削除する。このとき、重要なことは、長腕上に存在する内在遺伝子の大部分を削除(又は、除去もしくは欠失)し、マウスセントロメアを保持する人工染色体を構築することである。これは長腕上に存在する全内在遺伝子(数)の少なくとも99.5%、好ましくは少なくとも99.7%、より好ましくは少なくとも99.8%、最も好ましくは99.9~100%を削除(又は、除去もしくは欠失)するように切断位置を決定することである。そうすることによって、人工染色体が導入された、哺乳動物由来の、好ましくはマウス、ラットなどのげっ歯類由来の、細胞、組織又は個体において安定かつ高保持率で保持され、目的遺伝子(群)の正確な解析、物質生産などに用いることができる。上記内在遺伝子の削除は、例えば、テロメアトランケーションにより行うことができる。具体的には、マウス染色体を保持する細胞において、人工テロメア配列を保持するターゲティングベクターを構築し、相同組換えにより染色体上の所望の位置に人工もしくは天然テロメア配列が挿入されたクローンを取得し、これによってテロメアトランケーションにより欠失変異体が得られる。すなわち、所望の位置(又は、部位)が削除すべき長腕遠位の切断位置であり、この位置に人工テロメア配列が相同組換えにより置換、挿入されて長腕遠位が削除される。この位置は、ターゲティングベクターを構築する際の標的配列の設計により、適宜設定できる。例えば、マウス染色体長腕のDNA配列に基づいて標的配列を設計し、その標的配列よりもテロメア側でテロメトランケーションが起こるように設定される。これにより、内在遺伝子の大部分が削除されたマウス11番染色体断片が得られる。他の染色体の場合にも同様にテロメアトランケーションを実施できる。
工程(c):
  DNA配列挿入部位として、好ましくは部位特異的組換え酵素の認識部位を挿入することができる。すなわち、ある種の酵素が特定の認識部位を認識して特異的にその認識部位でDNAの組換えを起こす現象が知られており、本発明におけるマウス人工染色体ベクターでは、このような酵素とその酵素の認識部位からなる系を利用して、目的とする遺伝子又はDNA配列を挿入、搭載できる。このような系として、例えば、バクテリオファージP1由来のCre酵素と、その認識部位であるloxP配列の系(Cre/loxP系;B.Sauer  in  Methods  of  Enzymology;1993,225:890-900)や、出芽酵母由来のFlp酵素と、その認識部位であるFRT(Flp  Recombination  Target)配列の系(Flp/FRT系)や、ストレプトミセスファージ由来のφC31インテグレースと、その認識部位であるφC31attB/attP配列の系、R4インテグレースと、その認識部位であるR4attB/attP配列の系、TP901-1インテグレースと、その認識部位であるTP901-1attB/attP配列の系、Bxb1インテグレースと、その認識部位であるBxb1attB/attP配列の系、などを挙げることができるが、DNA配列挿入部位として機能しうるのであれば、上記の系に限定されないものとする。
  このような部位特異的組換え酵素の認識部位の挿入のためには、公知の方法、例えば、相同組換え法が利用でき、挿入位置及び数は、長腕近位及び短腕近位内に適宜設定することができる。
  マウス人工染色体ベクターには、1つの種類の認識部位又は異なる種類の認識部位を挿入することができる。認識部位の設定により、目的とする遺伝子もしくは遺伝子座又はDNA配列(すなわち、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座)の挿入位置を特定することができるので、挿入位置が一定となり、想定外の位置効果(position  effect)を受けることもなくなる。
  DNA配列挿入部位を有するウス人工染色体ベクターには、好ましくは、目的とする遺伝子又はDNA配列の挿入部位を残して、レポーター遺伝子をあらかじめ挿入しておいてもよい。レポーター遺伝子としては、特に限定するものではないが、例えば、蛍光タンパク質(例えば、緑色蛍光タンパク質(GFP又はEGFP)、黄色蛍光タンパク質(YFP)、等)遺伝子、タグタンパク質コードDNA、β-ガラクトシダーゼ遺伝子、ルシフェラーゼ遺伝子などが挙げられるが、GFP又はEGFPが好ましい。
  マウス人工染色体ベクターにはさらに、選択マーカー遺伝子を含んでもよい。選択マーカーは、該ベクターで形質転換された細胞を選別する際に有効である。選択マーカー遺伝子としては、ポジティブ選択マーカー遺伝子及びネガティブ選択マーカー遺伝子のいずれか、又はその両方が例示される。ポジティブ選択マーカー遺伝子には、薬剤耐性遺伝子、例えばネオマイシン耐性遺伝子、アンピシリン耐性遺伝子、ブラストサイジンS(BS)耐性遺伝子、ピューロマイシン耐性遺伝子、ジェネティシン(G418)耐性遺伝子、ハイグロマイシン耐性遺伝子などが含まれる。また、ネガティブ選択マーカー遺伝子には、例えば単純ヘルペスチミジンキナーゼ(HSV-TK)遺伝子、ジフテリアトキシンA断片(DT-A)遺伝子などが包含される。一般に、HSV-TKは、ガンシクロビル又はアシクロビルと組み合わせて使用される。
  マウス人工染色体ベクターに、レポーター遺伝子又は目的の外来遺伝子もしくはDNAを挿入する手法としては、相同組換え法を好ましく使用できる。相同組換えは、マウス染色体上の挿入位置の5’側領域及び3’側領域の塩基配列(各々約1~4kb、好ましくは約2~4kb)と相同な両配列(5’arm及び3’arm)の間に、挿入すべきDNAカセットを連結して得られたターゲティングベクターを用いて行うことができる。この目的で使用されるベクターとしては、例えばプラスミド、ファージ、コスミド、ウイルスなどが挙げられ、好ましくはプラスミドである。ターゲティングベクター構築のための基本プラスミドの例は、V907又はV913(Lexicon  Genetics)などであるが、これらに限定されない。基本ベクターには、プロモーター、エンハンサー、選択マーカー遺伝子、複製開始点などの、ベクター構築において一般的に挿入される1つ又は2つ以上の配列又はエレメントが含まれていてもよい。
  上記の手法で作製されたマウス人工染色体ベクターは、マウス由来の染色体断片(これには、天然型セントロメア、少なくとも99%、好ましくは少なくとも99.5~100%、の内在遺伝子が削除された長腕断片、及び(存在する場合の)短腕が含まれる。)と、人工テロメア配列とを含む。また、上記セントロメアは、人工染色体の作製のために利用されたマウスの染色体のセントロメア構造の全体である。このベクターのDNA構造中に以下のようなDNA配列挿入部位、選択マーカー遺伝子、外来遺伝子(又は、DNA)などを挿入することができる。
  上記マウス人工染色体ベクターには、好ましくは、1つ又は複数のDNA配列挿入部位、例えば部位特異的組換え酵素の認識部位(例えばCre酵素認識部位であるloxP配列)を含む。ここで、部位特異的組換え酵素の認識部位は、例えばGFP-PGKneo-loxP-3’HPRTタイプのloxP配列であるか、或いは、5’HPRT-loxP-hygタイプであるか、或いはPGKneo-loxP-3’HPRTタイプのloxP配列或いはGFP-5’HPRT-loxP-PGKhygタイプのloxP配列であるが、これらに限定されない。ここで、GFPは、緑色蛍光タンパク質遺伝子であり、PGKneoは、ホスホグリセリン酸キナーゼプロモーター/ネオマイシン耐性遺伝子カセットであり、HPRTは、ヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ遺伝子であり、hygはハイグロマイシン耐性遺伝子である。
  上記マウス人工染色体ベクターにはさらに、レポーター遺伝子、選択マーカー遺伝子(ポジティブ選択マーカー遺伝子、ネガティブ選択マーカー遺伝子など)を含むことができる。該ベクターにはさらに、目的の外来遺伝子又はDNA配列を含んでもよい。
  本発明のマウス人工染色体ベクターの利点としては従来の人工染色体ベクターの利点である、1)宿主染色体に挿入されず独立して維持されることから、宿主遺伝子を破壊しない、2)一定のコピー数(複数(多)コピー可能)で安定に保持され、宿主細胞の生理的発現制御を受けることから、挿入された遺伝子の過剰発現や発現消失が起きない、3)導入可能なDNAサイズに制約がないことから、発現調節領域を含む遺伝子や複数遺伝子/アイソフォームの導入が可能となることに加え、4)げっ歯類細胞或いはげっ歯類個体中における保持率が従来の人工染色体に比べて向上する、5)導入遺伝子の長期間における安定発現を実現し、かつ子孫伝達率が向上することで遺伝子導入マウスの作製効率が向上する、6)ベクター導入後の組織間のばらつきが少なく、すなわち保持率はどの組織でも90%以上であり、HACの場合20%未満の保持率である血液系組織でさえも90%以上の保持率である、などの利点が挙げられる。
 上記のマウス人工染色体ベクターは、以下で説明するように、ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及び/又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座とを含むことができる。すなわち、それらは、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)、並びにヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHKL-MAC)のいずれかを含む。
1.2 ヒト抗体遺伝子
  本発明のマウス人工染色体ベクターには、ヒト抗体遺伝子を導入することができる。
 本明細書中で使用する「ヒト抗体遺伝子もしくは遺伝子座」は、特に断らない限り、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及び/又はヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を指す。具体的には、ヒト抗体遺伝子もしくは遺伝子座は、例えばヒト14番染色体のimmunoglobulin heavy locus (human) NC_000014.9((塩基番号105586437..106879844)あるいは(塩基番号105264221.. 107043718))、ヒト2番染色体のimmunoglobulin kappa locus (human) NC_000002.12((塩基番号88857361..90235368)あるいは(塩基番号88560086..90265666))、及びヒト22番染色体のimmunoglobulin lambda locus (human) NC_000022.11((塩基番号22026076..22922913)あるいは(塩基番号21620362.. 23823654))に記載される塩基配列よって表される。ヒト抗体重鎖遺伝子もしくは遺伝子座は、約1,3Mbの塩基長であり、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座は、約1.4Mbの塩基長であり、ヒト抗体軽鎖λ遺伝子もしくは遺伝子座は、約0.9Mbの塩基長である。
 因みに、マウスの抗体重鎖遺伝子もしくは遺伝子座は、マウス第12番染色体上にあり、マウスの抗体軽鎖κ遺伝子もしくは遺伝子座は、マウス第6番染色体上にあり、マウス抗体軽鎖λ遺伝子もしくは遺伝子座は、マウス第16番染色体上にある。具体的には、マウス抗体重鎖遺伝子もしくは遺伝子座は、例えばChromosome 12, NC_000078.6 (113258768..116009954, complement)、マウス抗体軽鎖κ遺伝子もしくは遺伝子座は、 Chromosome 6, NC_000072.6 (67555636..70726754)、マウス抗体軽鎖λ遺伝子もしくは遺伝子座は、 Chromosome 16, NC_000082.6 (19026858..19260844, complement)に記載される塩基配列よって表される。
 また、ラットの抗体重鎖遺伝子もしくは遺伝子座は、ラット第6番染色体上にあり、ラットの抗体軽鎖κ遺伝子もしくは遺伝子座は、ラット第4番染色体上にあり、ラット抗体軽鎖λ遺伝子もしくは遺伝子座は、ラット第11番染色体上にある。同様に、これらの遺伝子もしくは遺伝子座の塩基配列は、米国NCBI(GenBank等)、公知文献などから入手可能である。
 本発明において上記のヒト抗体遺伝子を含む上記のマウス人工染色体ベクターは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座のすべてを含むマウス人工染色体ベクター(hIGHKL-MAC)である。これらのベクターは、本明細書に記載の染色体工学技術を用いることによって作製可能である。
 以下で記載する本発明の非ヒト動物は、上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター及びヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物である。これによって上記の非ヒト動物は、抗原物質を投与されたとき、その物質に対するヒト抗体を産生することが可能になる。
 本明細書におけるヒト抗体は、ヒト免疫グロブリン(Ig)のいずれのクラス及びサブクラスでもよい。そのようなクラスには、IgG、IgA、IgM、IgD及びIgEが含まれ、サブクラスには、IgG1、IgG2、IgG3、IgG4、IgA1及びIgA2が含まれる。これらのクラス及びサブクラスは、重鎖の違いによって分けることが可能であり、IgG鎖は、γ鎖と称し、IgG1~IgG4に対応してγ1、γ2、γ3及びγ4鎖と称し、IgA、IgM、IgD、IgEはそれぞれα鎖(α1及びα2)、μ鎖、δ鎖、ε鎖と称する。いずれの抗体の軽鎖にもκ鎖とλ鎖があり、免疫グロブリン遺伝子の再配列の過程でκ鎖遺伝子の再構成が不成功に終わるとλ鎖遺伝子の再構成が起こることが知られている。また、ヒト抗体重鎖遺伝子座は、5'から3'に向けて、VH1, VH2, ..VHm(ここで、mは、例えば38~46である。)を含むV(variable)領域遺伝子、DH1,DH2..DHn(ここで、nは、例えば23である。)を含むD(diversity)領域遺伝子、JH1,JH2..JHr(ここで、rは6である。)を含むJ(joining)領域遺伝子、Cμ,Cδ,Cγ3,Cγ1,Cα1,Cγ2,Cγ4,Cε,Cα2を含むC(constant)領域遺伝子を含む。免疫システムにおいて上記のヒト免疫グロブリン遺伝子の再配列を介して産生される抗体が、ヒト抗体である。
 ヒト抗体分子は、2本のヒト抗体重鎖と2本のヒト抗体軽鎖からなり、各重鎖と各軽鎖は2つのジスルフィド結合によって結合されており、並びに、2本の重鎖は定常(C)領域で2つのジスルフィド結合によって結合された構造を有する。また、抗体分子の可変(V)領域には、とりわけ変異の大きい部分が3か所あり、相補性決定領域(complementarity-determining region (CDR))と呼ばれており、N末端側からCDR1、CDR2及びCDR3という。このCDR領域の配列の違いにより抗体の抗原に対する結合特性が変化する。免疫グロブリン遺伝子の再構成によって抗体の多様性が生じることが知られている。
1.3 非ヒト動物の作製
 本発明の非ヒト動物は、上記のとおり、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物である。
 具体的には、例えば図1に示された手順によって、ヒト抗体を産生可能な本発明の非ヒト動物(マウス及びラット)を作製することができる。
 以下において、マウス人工染色体を利用する非ヒト動物の作製例について説明する。
 部位特異的組換え酵素の認識部位(例えばloxP及びFRT)を導入して改変された、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を保持する動物細胞(例えばDT40)、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を保持する動物細胞(例えばDT40)(図1のSTEP1,2)のそれぞれを、細胞融合法によりマウス人工染色体(MAC)を保持するげっ歯類細胞(例えばCHO)に移入したのち(図1のSTEP3)、部位特異的組換え酵素(例えばCre)発現を誘導することにより、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、並びにヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞を作製する(図1のSTEP4)。
 動物細胞(例えばDT40)に保持されるヒト14番染色体上のヒト抗体重鎖遺伝子もしくは遺伝子座の近傍に部位特異的組換え酵素の認識部位(例えばFRT)を導入したのち(図1のSTEP5)、改変されたヒト抗体重鎖遺伝子もしくは遺伝子座を保持する動物細胞を、細胞融合法によりMACを保持するげっ歯類細胞(例えばCHO)に移入して、ヒト抗体重鎖遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞を作製する(図1のSTEP6)。
 上記のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞のそれぞれと、上記のヒト抗体重鎖遺伝子もしくは遺伝子座を保持するげっ歯類細胞とを融合することによって、ヒト抗体重鎖遺伝子もしくは遺伝子座を保持するげっ歯類細胞内に、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMAC、又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを移入したのち(図1のSTEP7)、部位特異的組換え酵素(例えばFLP)発現を誘導することにより、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞のそれぞれを作製する(図1のSTEP8)。
 上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞のそれぞれを、微小核細胞融合法により、非ヒト動物(例えばマウス又はラット)分化多能性幹細胞(例えばES細胞又はiPS細胞)と融合して、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞を作製する(図1のSTEP9)。
 上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞のそれぞれを、非ヒト動物の初期胚(例えば8細胞期胚又は胚盤胞期胚)に移植して、上記MACのそれぞれを保持するキメラ動物を作製し、さらに子孫動物を作製する(図1のSTEP10)。さらに子孫動物同士の交配により上記MACのそれぞれを保持する子孫動物を作製する。
 同様の手法を用いることによって、上記のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHKL-MAC)を含む非ヒト動物を作製することができる。
 上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物、又は、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物との間での交配を行い、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物を作製する。
 あるいは、上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物との間での交配を行い、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつ対応するヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物を作製する。
 あるいは、上記のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHKL-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHKL-MACを含み、かつ該動物の該内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物を作製する。
 上記の手法について、さらに詳細に説明する。
 本明細書において「非ヒト動物」は、ヒトを除く哺乳動物、例えばげっ歯類(例えばマウス、ラット、ハムスター等)、有蹄類(例えばウシ、ヤギ等)などであり、好ましくはげっ歯類、さらに好ましくはラットである。
  本発明におけるヒト抗体遺伝子を含むマウス人工染色体ベクターは、任意の細胞に移入又は導入することができる。そのための手法には、例えば、微小核細胞融合法、リポフェクション、リン酸カルシウム法、マイクロインジェクション、エレクトロポレーションなどが含まれるが、好ましい手法は微小核細胞融合法である。
  微小核細胞融合法は、マウス人工染色体ベクターを含有する微小核形成能を有する供与細胞(例えばマウスA9細胞、CHO細胞)と、所望の受容細胞との微小核融合によって該ベクターを該他の細胞に移入する方法である。微小核形成能を有する細胞は、倍数体誘発剤(例えばコルセミド、コルヒチンなど)で処理して微小核多核細胞を形成し、サイトカラシン処理により微小核体を形成する処理を行ったのちに、所望の受容細胞との細胞融合を行う。
  上記のマウス人工染色体ベクターを導入可能な受容細胞は、動物細胞、好ましくはヒト細胞を含む哺乳動物細胞、例えば卵母細胞、精子細胞などの生殖系列細胞、胚性幹(ES)細胞、精子幹(GS)細胞、体性幹細胞などの幹細胞、体細胞、胎児細胞、成体細胞、正常細胞、疾患細胞、初代培養細胞、継代細胞又は株化細胞など、を包含する。幹細胞には、例えばES細胞、胚性生殖(EG)細胞、胚性癌腫(EC)細胞、mGS細胞、ヒト間葉系幹細胞などの多能性幹細胞、人工多能性幹(iPS)細胞、核移植クローン胚由来胚性幹(ntES)細胞などが含まれる。好ましい細胞は、哺乳動物(好ましくは、マウス、ラットを含むげっ歯類)由来の体細胞、非ヒト生殖系列細胞、幹細胞及び前駆細胞からなる群から選択される。細胞がげっ歯類などの哺乳類由来の細胞である場合、本発明のベクターが導入された哺乳類(例えばマウス、ラットなどのげっ歯類)の細胞又は組織において、ベクターがより安定に保持される、すなわち細胞からのベクターの脱落が有意に低下する、又は脱落が起こらない。
  細胞は、例えば、肝細胞、腸細胞、腎細胞、脾細胞、肺細胞、心臓細胞、骨格筋細胞、脳細胞、骨髄細胞、リンパ球細胞、巨核球細胞、精子、卵子などである。
  組織は、例えば肝臓、腸、腎臓、脾臓、肺、心臓、骨格筋、脳、骨髄、精巣、卵巣などの組織である。
  ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、マイトマイシンC処理マウス胎仔線維芽細胞をフィーダーにして樹立し維持することができる(M.J.EvansとM.H.Kaufman(1981)Nature  292:154-156)。
  iPS細胞は、体細胞(体性幹細胞を含む)に、ある特定の再プログラム化因子(DNA又はタンパク質)を導入し、適当な培地にて培養、継代培養することによって約3~5週間でコロニーを生成する。再プログラム化因子は、例えばOct3/4、Sox2、Klf4及びc-Mycからなる組み合わせ;Oct3/4、Sox2及びKlf4からなる組み合わせ;Oct4、Sox2、Nanog及びLin28からなる組み合わせ;あるいは、Oct3/4、Sox2、Klf4、c-Myc、Nanog及びLin28からなる組み合わせなどが知られている(K.Takahashi  and  S.Yamanaka,Cell  126:663-676(2006);WO  2007/069666;M.Nakagawa  et  al.,Nat.Biotechnol.26:101-106(2008);K.Takahashi  et  al.,Cell  131:861-872(2007);J.Yu  et  al.,Science  318:1917-1920(2007);J.Liao  et  al.,Cell  Res.18,600-603(2008))。培養例は、マイトマイシンC処理したマウス胎仔線維芽細胞株(例えばSTO)をフィーダー細胞とし、このフィーダー細胞層上でES細胞用培地を用いて、ベクター導入体細胞(約104~105細胞/cm2)を約37℃の温度で培養することを含む。フィーダー細胞は必ずしも必要ではない(Takahashi,K.et  al.,Cell  131:861-872(2007))。基本培地は、例えばダルベッコ改変イーグル培地(DMEM)、ハムF-12培地、それらの混合培地などであり、ES細胞用培地は、マウスES細胞用培地、霊長類ES細胞用培地(リプロセル社)などを使用することができる。
  ES細胞及びiPS細胞は、生殖系列に寄与することが知られているので、目的のヒト抗体遺伝子もしくは遺伝子座を含む本発明のマウス人工染色体ベクターを導入したこれらの細胞を、該細胞が由来する同種の哺乳動物の胚の胚盤胞に注入し、この胚を仮親の子宮に移植し、出産させることを含む手法によって、非ヒト動物(又は、トランスジェニック動物(ヒトを除く))を作製することができる。さらにまた、得られた雌雄のトランスジェニック動物を交配することによって、ホモ接合性動物、さらにその子孫動物を作出することができる。
  本発明のマウス人工染色体ベクターを介してES細胞やiPS細胞などの分化多能性細胞、その他の上記細胞類に、上記のヒト抗体遺伝子もしくは遺伝子座を導入することによって、ヒト抗体を産生可能にする非ヒト動物を作製することができる。
  そのような非ヒト動物では、マウス人工染色体ベクターに含まれるヒト抗体遺伝子もしくは遺伝子座に関して、ヒト抗体重鎖及び軽鎖(κ及びλ)遺伝子もしくは遺伝子座に対応する内在遺伝子もしくは遺伝子座がノックアウト(破壊もしくは欠損)されていることが好ましい。ノックアウトの方法には、ジーンターゲティング法、CRISPR/Cas9システムによるゲノム編集法(M. Jinek et al., Science 337:816-821(2012)等)などを使用することができる。内在遺伝子がノックアウトされた、かつヒト抗体遺伝子もしくは遺伝子座を保持する非ヒト動物は、ヒト抗体遺伝子(遺伝子座)を含むマウス人工染色体ベクターを保持するキメラ非ヒト動物若しくはその子孫と、対応する内在遺伝子をクラスターごと欠失させたキメラ動物若しくは子孫とを交配させて得られた該内在遺伝子がヘテロに欠失した動物同士をさらに交配させることによって作製することができる。
  上記の手法によって、1)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、2)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、3)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、あるいは4)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、を作製することができる。具体的な非ヒト動物の例は、マウス人工染色体ベクターを保持する、マウスやラットなどのげっ歯類である。
 次に、ヒト抗体が産生可能であるトランスジェニックラットの作製は、上記の方法によって成功しないことがある。以下の(A)、(B)及び(C)に記載する方法は、上記方法の代替法である。
(A)ラットES細胞(雄系統)の作製
 ラットのES細胞は、マウスES細胞の場合と同様に(M.J. Evans and M.H. Kaufman, Nature 1981; 292(5819): 154-156)、ラット胚盤胞期胚又は8細胞期胚の内部細胞塊から樹立される、多分化能と自己複製能をもつ細胞株である。例えば、卵透明帯を溶解したラット胚盤胞を、白血病抑制因子(LIF)を含有する培地を用いてマウス胚性線維芽細胞(MEFF)フィーダー上で培養し、7~10日後に胚盤胞から形成されるアウトグロウス(outgrowth)を分散し、これをMEFフィーダー上に移して培養し、約7日後、ES細胞が出現する。ラットES細胞の作製については、例えばK. Kawaharada et al., World J Stem Cells 2015; 7(7): 1054-1063に記載されている。
 ES細胞には雌系統と雄系統があるが、本発明では雄系統のラットES細胞、より好ましくは雑種のラットから作製した雄系統のラットES細胞、を使用することがよく、そのようなES細胞とROSI法及び蛍光選別法とを用いることによって子孫伝達可能なモデルラットを得ることができる。雄系統のES細胞は、作製されたES細胞株についてXY核型をXY染色体プローブ(例えばChromosome Science Labo Inc.などから入手可能)を用いて分析することによって選別することができる。本明細書における「雄系統のES細胞」又は「ES細胞(雄系統)」とは、XY核型を有するES細胞をいう。
 ES細胞と類似した幹細胞として上記の人工多能性幹(iPS)細胞が知られており、ES細胞の代替としてラットiPS細胞(W. Li et al., Cell Stem Cell 2009; 4: 16-19; S. Hamanaka et al., PLoS One 2011; 6: e22008)を使用することも可能である。
(B)微小核細胞融合(MMCT)
 微小核細胞融合法は、上記のとおり、例えば単一もしくは少数の染色体又はその断片などの約0.9Mb以上の巨大核酸(ここでは、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含む染色体又はその断片)を供与細胞から受容細胞へ移入可能にする技術である。この方法は、供与細胞を微小核化する第1工程、微小核化細胞を脱核する第2工程、ミクロセルを単離する第3工程、ミクロセルと受容細胞を融合する第4工程、及び、生存するミクロセルハイブリッドクローンを選択する第5工程を包含する。
 上の説明に加えて、MMCTについてさらに詳しく説明する。
 供与細胞の微小核化は、動物細胞を、コルセミドなどの微小核細胞誘導剤を含有する培地中で長時間培養することによって行うことができる。ここで微小核細胞誘導剤は、染色体の脱凝縮と核膜の再形成を誘起する能力をもつ。微小核細胞誘導剤の濃度は、微小核化が起こるならば制限されないが、例えばコルセミドの場合、受容細胞約5×106個あたり約0.01μg/ml~約1μg/ml、好ましくは0.05~0.5μg/mlである。微小核化によって、供与細胞から、少量の細胞質と1個又は少数の染色体を含む微小核を含有する細胞、すなわちミクロセルが形成される。培養は、供与細胞の培養条件を使用するものとし、培地として一般に動物細胞用培地が使用される。動物細胞用培地には、例えばイーグル培地(MEM)、イーグル最小必須培地(EMEM)、ダルベッコ変法イーグル培地(DMEM)、ハムF12培地などが含まれる。培地には、牛胎仔血清(FBS)、代替血清(Stem Sure(R) Serum Replacement、等)などを添加してもよい。温度は、室温~約37℃であり、また培養時間は、約40~80時間が適当である。
 微小核化細胞の脱核は、サイトカラシンBを用いて行う。微小核化した細胞を含む培養液を遠心管に入れ、サイトカラシンBを約10μg/mlの濃度で添加し、34℃で約11,900×gで遠心分離を行う。沈降したミクロセルを無血清培地に懸濁して回収する。ミクロセルの精製は、限外ろ過によって行うことができる。孔径8μm、5μm及び3μmの3種類のメンブレンを用意し、順番にろ過する。
 ミクロセルと受容細胞との融合は、完全にコンフルエントになる前で培養を終了した受容細胞に精製ミクロセルを重層して培養する。ミクロセル融合細胞は、薬剤耐性株を選択するなどの手法で行うことができる。
 当該融合は、ポリエチレングリコール(PEG)法、レトロ法など(T. Suzuki et al., PLOS ONE, DOI:10.1371/journal.pone.0157187 (2016))の方法、MV法(M. Katoh et al., BMC Biotechnology 2010, 10:37)などを用いて行うことができる。レトロ法は、同種指向性(ecotropic)もしくは両指向性(amphotropic)MLV由来のR-peptide-deleted Env (EnvΔR)を使用してミクロセルと受容細胞の融合を行う方法であり、最もげっ歯類細胞で効率のよい方法である。また、MV法は、はしかウイルス・フソゲン(measles virus fusogen)であるヘマグルチニンタンパク質(MV-H)とフージョンタンパク質(MV-F)を用いてミクロセル融合を促進する方法であり、予めMV-HプラスミドとMV-Fプラスミドによって形質転換された供与細胞から作製されたミクロセルは、細胞膜表面に発現されたフソゲンの存在のために受容細胞との細胞-細胞融合が起こりやすくなる。
 好適には、供与細胞に予め外来核酸として上記のヒト染色体もしくはその断片を導入しておく。この場合、該ヒト染色体はミクロセルに移動し、ミクロセル融合によって受容細胞内に導入される。その結果、該受容細胞はヒト染色体によって形質転換される。
(C)卵子内円形精子注入(ROSI)
 ROSI(Round Spermatid Injection)法は、上記キメララット(雄)の精巣から取り出した精細管を切り刻み懸濁液を作製した中から円形精子細胞をピペット内に吸引し、ピペット内で核と細胞質をバラバラにしたのち、これをラット卵子に注入し顕微授精する方法である(C. Tsurumaki et al., J. Mamm. Ova Res. 2009; 26: 86-93 (Jp))。さらに、受精した卵子を仮親の子宮に移植し、キメララットを出産させたのち、上記のヒト抗体遺伝子もしくは遺伝子座を保持する雌ラット(もしくは雄ラット)を用いて純系又は雑種、好ましくは雑種の雄ラット(もしくは雌ラット)と交配し、ラットの各種組織内でヒト抗体遺伝子もしくは遺伝子座を保持するラットを得ることができる。
 ROSI法に代えて、卵細胞質内精子注入法(ICSI)によって卵子と精子を顕微授精することも可能である。
 まとめると、本発明の非ヒト動物は、以下の動物を含む。
 1)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含むことを特徴とする非ヒト動物。
 2)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含むことを特徴とする非ヒト動物。
 3)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)、並びに、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含むことを特徴とする非ヒト動物。
 4) ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHKL-MAC)を含むことを特徴とする非ヒト動物。
 5)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされていることを特徴とする非ヒト動物。
 6)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされていることを特徴とする非ヒト動物。
 7)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)、並びに、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされていることを特徴とする非ヒト動物。
 8)ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHKL-MAC)、かつヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子がノックアウトされていることを特徴とするラット。
 上記の非ヒト動物は、げっ歯類、有蹄類などの哺乳動物、鳥類などである。げっ歯類には、マウス、ラット、ハムスターなどが含まれる。有蹄類には、ウシ、ヤギなどが含まれる。鳥類には、家鶏(例えばニワトリ)などが含まれる。好ましい非ヒト動物は、マウス、ラット及びウシであり、ラットがより好ましい。
 ヒト抗体を産生可能である非ヒト動物の作製方法は、以下のものを含む。
 1)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MACを含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
 2)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
 3)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含む非ヒト動物を作製するステップ、作製された非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
 4)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物と、ヒト抗体重鎖遺伝子及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含み、かつヒト抗体重鎖遺伝子及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
 5)ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHKL-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子がノックアウトされた同種の非ヒト動物を交配し、hIGHKL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体が産生可能である非ヒト動物の作製方法。
2.ヒト抗体の製造
 本発明は、上記の非ヒト動物に抗原物質を投与し、該抗原物質と結合する産生されたヒト抗体を回収することを含む、ヒト抗体を製造する方法を提供する。
 この方法によって回収される抗体は、該抗体を含む抗血清を、抗原物質を結合した担体(例えばアガロースゲル、シリカゲル、等)を充填したカラムにアプライし、ついで、該担体に結合したヒト抗体を担体から溶出することを含むカラムクロマトグラフィー法によって回収することができる。
 本発明はまた、上記の非ヒト動物に抗原物質を投与するステップ、該非ヒト動物から脾臓細胞を取り出すステップ、該脾臓細胞とミエローマとを融合させてハイブリドーマを作製するステップ、該ハイブリドーマから該抗原物質と結合する抗体を回収するステップを含む、ヒトモノクローナル抗体を製造する方法を提供する。
 ヒトモノクローナル抗体の精製は、上記のカラムクロマトグラフィー法を使用して行うことができる。
 抗原物質は、一般に、細胞、タンパク質、ポリペプチド又はペプチドである。ヒト抗体は、現在、癌、骨粗しょう症、関節リウマチなどの治療薬として使用されているし、また、多くのその他のヒト抗体が、高コレステロール血漿、自己免疫疾患、炎症性疾患、腫瘍、アレルギー性疾患、疼痛、心血管病、代謝障害などの治療薬として臨床試験にかけられている。そのような抗原物質については、上記の非特許文献1に例示されている。また、抗原物質としての上記細胞の例は、腫瘍細胞などである。本発明では、そのような抗原物質を含む多くの抗原物質に適用可能である。
 以下の実施例を参照しながら本発明をさらに具体的に説明するが、本発明の範囲はそれらの実施例によって制限されないものとする。ヒト抗体産生マウス、ラット作製の概要を示す(図1)。
 [実施例1]ヒト2番染色体の改変
 マウス人工染色体ベクター(MAC)にIGK、IGH領域を転座クローニングするため、ヒト2番染色体に組換え配列であるloxP配列、FRT配列を挿入する。(図2)
[A]ヒト2番染色体へのloxP配列挿入
 マウス人工染色体ベクターMACにヒト2番染色体上IGK領域をCre/LoxPシステムを用いた相互転座により転座クローニングするため、相同組換え頻度の高いニワトリDT40細胞内において、ヒト2番染色体にloxP配列を挿入する。
[A.1] ヒト2番染色体へのloxP挿入ベクター作製
 ヒト2番染色体を保持した細胞DT40 521D4(#2)にloxP配列を挿入するための基本プラスミドにはv901(Lexicon genetics)を用いた。loxP挿入部位であるヒト2番染色体のDNA配列はGenBankデータベース(NC_000002.12)より得た。
 DT40(#2)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
cos138-F6B:5’-TCGAGGATCCCACATAGACATTCAACCGCAAAGCAG-3’(配列番号1)
cos138-R6B:5’-TCGAGGATCCAGGCCCTACACATCAAAAAGTGAAGCA-3’(配列番号2)
 PCRは、サーマルサイクラーとしてTakara社(京都、日本国)製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。このPCR産物をBamHI(NEB) で消化して、アガロースゲルにより分離し精製後、v901のBamHIサイトにクローニングした。(ベクター名:v901-cos138)。この際、目的の標的配列がクローニングされているか確認するために、EcoRV(NEB)、BglII(NEB)、AvrII(NEB)各制限酵素による消化を行い、電気泳動で確認後、シークエンス解析を行った。
 PGKhygroおよびloxP、PGK HPRT exon1-2を含むカセットの基本プラスミドにはv913(Lexicon genetics)を用いた。5’HPRT-loxPはV820(Lexicon genetics)のXbaIサイトにオリゴ合成したloxP配列をクローニングした。5’HPRT-loxPをV907(Lexicon genetics)のClaIとAscIにクローニングし、PGKhygroをClaIとKpnIサイトにクローニングした(ベクター名:pX6.1)。
 pX6.1のPGKhygro-loxP-PGK HPRT exon1-2をKpnI(NEB)とAscI(NEB)で消化し、Blunting high kit(TOYOBO)で平滑末端にし、v901-cos138のSpeIサイトをBlunting high kitで平滑末端にした後、ライゲーションした。(ベクター名:v901-cos138 hygloxP5’HPRT)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図3に示した。
[A.2]ニワトリDT40細胞におけるヒト2番染色体へのloxP挿入
 ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下FBSで記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40 (#2)の約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターv901-cos138 hygloxP5’HPRTを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。1.5mg/ml Hygromycin(Wako(大阪、日本国))を含む培地に交換し、約2週間の選択培養を行った。5回の反応で191の薬剤耐性株を獲得し、ランダムに選んだ44クローンを以降の解析に用いた。
[A.3]相同組換え体の選別
 Hygromycin耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
cos138 sp L:5’-CTGAGAAGAGTCATTGTTTATGGTAGACT-3’ (配列番号3)
cos138 sp R:5’- ATCCCCATGTGTATCACTGGCAAACTGT-3’ (配列番号4)
x6.1cosRa L:5’-GGGGAATAAACACCCTTTCCAAATCCTC-3’(配列番号5)
x6.1cosRa R:5’- ACCAAGTAACCGATCAAACCAACCCTTG-3’ (配列番号6)
 cos138 sp L, cos138 sp Rのプライマーについては、Accuprime Taq DNA polymerase(Thermo Fisher Scientific)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は94℃2分の熱変性後、94℃15秒、60℃15秒、68℃5分を35サイクル行った。
 x6.1cosRa L, x6.1cosRa Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。
 加えて、ヒト2番染色体上のプライマーを用い領域が保持されているかを確認した。そのプライマー配列を以下に示す。
D2S177 F:5’-AGCTCAGAGACACCTCTCCA-3’ (配列番号7)
D2S177 R:5’-CTGTATTAGGATACTTGGCTATTGA-3’ (配列番号8)
FABP1-F:5’-TATCAAGGGGGTGTCGGAAATCGTG-3’ (配列番号9)
FABP1-R:5’-ACTGGGCCTGGGAGAACCTGAGACT-3’ (配列番号10)
EIF2AK3-F:5’-AGGTGCTGCTGGGTGGTCAAGT-3’ (配列番号11)
EIF2AK3-R:5’-GCTCCTGCAAATGTCTCCTGTCA-3’ (配列番号12)
RPIA-F:5’-CTTACCCAGGCTCCAGGCTCTATT-3’ (配列番号13)
RPIA-R:5’-CTCTACCTCCCTACCCCATCATCAC-3’ (配列番号14)
IGKC-F:5’-TGGAAGGTGGATAACGCCCT-3’ (配列番号15)
IGKC-R:5’-TCATTCTCCTCCAACATTAGCA-3’ (配列番号16)
IGKV-F:5’-AGTCAGGGCATTAGCAGTGC-3’ (配列番号17)
IGKV-R:5’-GCTGCTGATGGTGAGAGTGA-3’ (配列番号18)
Vk3-2 F:5’-CTCTCCTGCAGGGCCAGTCA-3’ (配列番号19)
Vk3-2 R:5’-TGCTGATGGTGAGAGTGAACTC-3’ (配列番号20)
D2S159_1 F:5’-CTCTAACTGAATCAAGGGAATGAAC-3’ (配列番号21)
D2S159_1 R:5’-AGCAGTTTGAGTTTAGGATGAAGG-3’ (配列番号22)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 PCRの結果、3クローンが陽性であり、これらについて以降の解析を行った。
[A.4] two-color FISH解析
 上記の結果から3クローンにおいて、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行った。Human cot-1 DNAおよびpX6.1をプローブにしてFISH解析を行ったところ、全3クローンにおいて100%でヒト2番染色体が1コピー保持され、さらにPGKhygloxP5’HPRT由来のシグナルが現れ、ネガティブコントロールであるPGKhygloxP5’HPRTを部位特異的挿入する前のヒト2番染色体上にはシグナルが検出されなかったことから、部位特異的にPGKhygloxP5’HPRTが挿入されたことが確かめられた(図4)。3クローンの内、521D4 loxP1-28, 521D4 loxP4-6の2クローンを選択し、以降の実験を行った。
[B]loxPを搭載したヒト2番染色体上へのFRTサイトの挿入
 MAC上にloxPでヒト2番染色体上IGK領域を、さらにヒト14番染色体上IGH領域を転座クローニングするために、loxPを挿入したヒト2番染色体へFRTサイトを挿入する。
[B.1] ヒト2番染色体へのFRT挿入ベクター作製
 DT40(#2)にFRT配列を挿入するための基本プラスミドにはpMA-RQ(Life technologies)を用いた。このベクターに人工遺伝子合成配列PGK5’HPRTFRT (Life technologies)をクローニングした(ベクター名:pMA-kD9FRT)。まず、pCMV/Bsd(Invitrogen)をXhoIとEcoRIで消化し、泳動後CMVBsd配列をゲル抽出したものを、pMA-kD9FRTをEcoRIとXhoI消化後にできた突出末端にライゲーションした(ベクター名:pMA-kD9FRTBsd)。
 FRT挿入部位であるヒト2番染色体のDNA配列はGenBankデータベース(NC_000002.12)より得た。DT40(#2)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
kD-R9La L:5’-TCGAGCGGCCGCAGGATCTTTGGGGGACTGAATGGGGTGTGCT-3’ (配列番号23)
kD-R9La R:5’-TCGAACGCGTTGGAACCCTCATACGTTGCTGGTGGAATGT-3’ (配列番号24)
KD-F9Ra L:5’-CGAGGATCCATTTCTCCACATCCTAGCCAACACTTGACATTTCCT-3’ (配列番号25)
KD-F9Ra R:5’-TCGAGGATCCGCCAGGGAGACAGATGCCAAGTACGGTTTAG-3’ (配列番号26)
 kD-R9La LとkD-R9La Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃2.5分を30サイクル行った。得られたPCRプロダクトをNotI(NEB)とMluI(NEB)で消化し、泳動後ゲル抽出を行い、pMA-kD9FRTBsdをNotIとMluIで消化してできた突出末端にライゲーションした。(ベクター名:pMA-kD9FRTL)
 KD-F9Ra LとKD-F9Ra Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃2.5分を30サイクル行った。得られたPCRプロダクトをBamHIで消化し、pMA-kD9FRTLのBamHIサイトへクローニングした。(ベクター名:pMA-kD9FRTLR)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図5に示した。
[B.2]ニワトリDT40細胞におけるloxP保持ヒト2番染色体へのFRT挿入
 ニワトリDT40細胞の培養は10%FBS、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40 (#2)、521D4 loxP1-28および521D4 loxP4-6約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpMA-kD9FRTLRを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。薬剤選択は15μg/mL Blasticidin(フナコシ)で行い、各3回の反応において、521D4 loxP1-28、521D4 loxP4-6から、86クローン、82クローンの薬剤耐性株を獲得し、それぞれランダムに24クローンを選択し、ゲノムDNAを抽出した。それを鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
kD9 tcLa L:5’-TGAGAACACAGGGGTCTCCATTCTGACT-3’ (配列番号27)
kD9 tcLa R:5’-ACAATCAACAGCATCCCCATCTCTGAAG-3’ (配列番号28)
kD9 tcRa L:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’ (配列番号29)
kD9 tcRa R:5’-TGGTCACTGAAGCTTTCCATCTGCTCTT-3’ (配列番号30)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 加えて、loxP配列およびヒト2番染色体領域確認のPCRも行った。プライマーを以下に示す。
 ヒト2番染色体上loxP配列確認プライマー:
cos138 sp L (前出)
cos138 sp R (前出)
x6.1cosRa L (前出)
x6.1cosRa R (前出)
 cos138 sp L, cos138 sp Rのプライマーについては、Accuprime Taq DNA polymerase(Thermo Fisher Scientific)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は94℃2分の熱変性後、94℃15秒、60℃15秒、68℃5分を35サイクル行った。
 x6.1cosRa L, x6.1cosRa Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。さらに、ヒト2番染色体領域確認のためのPCR解析を行った。そのプライマー配列を以下に示す。
D2S177 F (前出)
D2S177 R (前出)
FABP1-F (前出)
FABP1-R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
D2S159_1 F (前出)
D2S159_1 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 その結果、それぞれ521D4 loxP1-28, 521D4 loxP4-6から7および3クローンの陽性クローンを獲得した。
[B.3] two-color FISH解析
 上記の結果から7クローンおよび3クローンにおいて、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社(東京、日本国)、1994)に従い行った。Human cot-1 DNAおよびpMA-kD9FRTBsdをプローブにしてFISH解析を行ったところ、全クローンにおいて87%以上でヒト2番染色体が1コピー保持され、さらにPGK5’HPRTFRTBsd由来のシグナルが現れ、ネガティブコントロールであるPGK5’HPRTFRTBsdを部位特異的挿入する前のヒト2番染色体上にはシグナルが検出されなかったことから、部位特異的にPGK5’HPRTFRTBsdが挿入されたことが確かめられた(図6)。この内、521D4 loxP1-28 FRT1-23と521D4 loxP4-6 FRT1-15の2クローンを選択し、以降の実験を行った。
[実施例2]転座クローニングによるヒト2番染色体IGK領域のマウス人工染色体ベクター(MAC)への搭載
 MACを保持するCHO細胞において、ヒト2番染色体上IGK領域をMACへ転座クローニングする。転座クローニングにはCre/loxPシステムを用い、ヒト2番染色体とMACを相互転座させることで、IGK領域をMACに搭載する。(図7)
[A]改変ヒト2番染色体のMAC保持 CHO細胞(CHO MAC)への染色体導入
 CHO内でCre/LoxPシステムを用いて、ヒト2番染色体領域をMACに転座クローニングするため、MACを保持するCHO細胞へ改変ヒト2番染色体を移入する。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるDT40 521D4 loxP1-28 FRT1-23と521D4 loxP4-6 FRT1-15を用いて、MACベクターを保持するCHO hprt欠損細胞(ヒューマンサイエンス研究資源バンクより入手、登録番号JCRB0218)であるCHO(HPRT-)に微小核細胞融合法を行った。
 ドナー細胞がコンフルエントになった時点で、20%FBS、0.025μg/mlコルセミドを添加した状態で、12時間インキュベートして微小核を形成させた後、細胞を回収し無血清DMEM培地に懸濁した後、Poly-L Lysine(Wako)でコートした遠心用フラスコに注ぎ、30分間インキュベートして、細胞をフラスコへ張り付けた。無血清DMEMを除き、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。ミクロセルを無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製したミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO MAC細胞に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418(Promega)、6μg/mL Blasticidinを添加し、10日選択培養を行った。それぞれ2回の反応を行い、ドナーDT40 521D4 loxP1-28 FRT1-23と521D4 loxP4-6 FRT1-15由来それぞれ26クローン、49クローンの薬剤耐性株を獲得し、その中から21クローン、24クローンをランダムに選択し、以降の解析を行った。MACにはEGFP発現カセットが搭載されており、薬剤選択クローンにおいてMACが保持されていることを蛍光で確認した。
[A.2]PCR解析による薬剤耐性クローンの選別
 薬剤耐性クローンのDNAを抽出し、それらを鋳型として、CHO MAC細胞に改変ヒト2番染色体が移入されたかPCRを行った。プライマーを以下に示す。
 改変ヒト2番染色体上loxP配列確認プライマー:
cos138 sp L (前出)
cos138 sp R (前出)
x6.1cosRa L (前出)
x6.1cosRa R (前出)
 cos138 sp L, cos138 sp Rのプライマーについては、Accuprime Taq DNA polymerase(Thermo Fisher Scientific)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は94℃2分の熱変性後、94℃15秒、60℃15秒、68℃5分を35サイクル行った。
 x6.1cosRa L, x6.1cosRa Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。
 ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
FABP1-F (前出)
FABP1-R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
D2S159_1 F (前出)
D2S159_1 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 改変ヒト2番染色体上FRT配列確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 結果、3クローンおよび4クローンの陽性細胞を獲得した。
[A.3] two-color FISH解析
 3クローンおよび4クローンについてHuman cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、MACと改変ヒト2番染色体が独立して保持されている陽性細胞(図8)、CHO(MAC)hChr.2 LF1-15 #9 およびCHO(MAC)hChr.2 LF1-15 #16を獲得した。
[B]ヒト2番染色体領域のMACへの転座クローニング
 Cre/LoxPシステムを用いてIGK領域を含むヒト2番染色体断片をMACへ転座させる。
[B.1]Cre発現によるHAT耐性染色体組換え体の取得
 MACにはloxPサイトが搭載されており、Cre組換え酵素存在下で改変ヒト2番染色体のloxPサイトと組換えが起こるようになっている。また、組換えが起こると副産物となるMACに載らないヒト2番染色体領域の5’HPRTと副産物となるMAC末端の3’HPRTが連結して、HPRT遺伝子の再構成が起こり、CHO(hprt-/-)はHAT耐性を獲得する。
 CHO(MAC)hChr.2 LF1-15 #9 およびCHO(MAC)hChr.2 LF1-15 #16について、10cm細胞培養皿においてコンフルエントになった時に、18μgのCre発現プラスミド(ベクター名:pBS185)をLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加えた。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT (シグマ)、4μg/mL Blasticidinで薬剤選択を行った。
 得られたHAT耐性クローン各23、24クローンを以降の解析に用いた。
[B.2]PCR解析による薬剤耐性クローンの選別
 HAT耐性株のゲノムDNAを抽出して鋳型として相互転座クローンを選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体断片とMAC上で染色体相互転座が起こっているかを確認した。そのプライマー配列を以下に示す。
TRANS L1:5'-TGGAGGCCATAAACAAGAAGAC-3'(配列番号31)
TRANS R1:5'-CCCCTTGACCCAGAAATTCCA-3'(配列番号32)
KJneo:5'-CATCGCCTTCTATCGCCTTCTTGACG-3’(配列番号33)
PGKr-2:5'-ATCTGCACGAGACTAGTGAGACGTGCTA-3’(配列番号34)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 加えて、ヒト2番染色体領域とFRT配列が維持されているかどうかPCRを行った。プライマーを以下に示す。
 ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
FABP1-F (前出)
FABP1-R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
D2S159_1 F (前出)
D2S159_1 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 ヒト2番染色体上FRT配列確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 その結果、23クローンおよび24クローンがPCR陽性であった。
[B.3] two-color FISH解析
 ランダムに選択した各6クローンについてHuman cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、5クローンと1クローンについてMACと改変ヒト2番染色体が相互転座をおこしかつ、IGK領域がMACに搭載されたIGK-MAC、副産物が独立して保持されていることを確認した(図9)。CHO IGK-MAC #9-3、CHO IGK-MAC #16-1の2クローンを選択して以降の実験を行った。
[実施例3]ヒト14番染色体の改変およびCHO(hprt-/-)細胞への移入
 ヒト14番染色体を改変し、IGK-MACにIGH領域を搭載するための宿主細胞であるCHO(hprt-/-)へ改変ヒト14番染色体を移入した(図10)。
[A] ヒト14番染色体の改変
 転座クローニングにより、ヒト14番染色体IGH領域をIGK-MACに搭載するために、組換え配列であるFRT配列をヒト14番染色体に挿入した。
[A.1]ヒト14番染色体へのFRT挿入ベクター作製
 DT40(#14)にFRT配列を挿入するための基本プラスミドにはpMA-RQ(Life technologies)を用いた。このベクターに人工遺伝子合成配列FRTサイト (Life technologies)をクローニングした(ベクター名:pMA-14SC355)。まず、pX6.1ベクターをKpnIとClaIで消化し、泳動後PGKhyg配列をゲル抽出したものを、pMA-14SC355をKpnIとClaI消化後にできた突出末端にライゲーションした(ベクター名:pMA-14SC355hyg)。さらに、プラスミドv907(Lexicon genetics)にloxP配列および3’HPRTを挿入したプラスミド(ベクター名:pX3.1)をXbaIおよびAscIで消化し得られた3’HPRT配列を、pMA-SC355hygのNheI(NEB)およびMluI(NEB)サイト消化後にできた突出末端にライゲーションした(ベクター名:pMA-SC355hyg3’HPRT)。
 FRT挿入部位であるヒト14番染色体のDNA配列はGenBankデータベース(NC_000014.9)より得た。DT40(#14)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
NotISC355-F:5’-TCGAGCGGCCGCGTACAATCTTGGATCACTACAACCTCTGCCTA-3’(配列番号35)
AscISC355-R:5’-TCGAGGCGCGCCAGGATTATAGATGTGAGCCATCACTAAGACTCCT-3’(配列番号36)
SalISC355-F4:5’-TCGAGTCGACAGCACGTTGGGAGGCCAAGGCAGGAGAATA-3’(配列番号37)
BamHISC355-R4:5’-TCGAGGATCCTGGCTGACACAGCCAGTCCCGGATT-3’(配列番号38)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 SalISC355-F4 とBamHISC355-R4のプライマーを用いたPCRで得られたプロダクトをSalIとBamHIで消化し、pMA-SC355hyg3’HPRTをSalIとBamHIで消化してできた突出末端にライゲーションした(pMA-SC355hyg3’HPRTR)。次に、NotISC355-FとAscISC355-Rのプライマーを用いたPCRで得られたプロダクトをNotIとAscIで消化し、pMA-SC355hyg3’HPRTRをNotIとAscIで消化してできた突出末端にライゲーションした(ベクター名:pMA-SC355hyg3’HPRTRL)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図11に示した。
[A.2]ニワトリDT40細胞におけるヒト14番染色体へのFRT挿入
 ニワトリDT40細胞の培養は10%FBS、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40(#14)約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpMA-SC355hyg3’HPRTRLを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。薬剤選択は1.5mg/mL Hygromycinで行い、3反応行った結果、73クローンの薬剤耐性株を獲得した。そのうちランダムに23クローンを選択し、ゲノムDNAを抽出した。それを鋳型としてヒト14番染色体上で部位特異的に組換えが起こっているかをPCRで確認した。そのプライマー配列を以下に示す。
14TarC_La F:5’-AGCAATTAGGGCCTGTGCATCTCACTTT-3’(配列番号39)
14TarC_La R:5’-CCAGCTCATTCCTCCCACTCATGATCTA-3’(配列番号40)
14TarC_Ra F:5’-CATCTGGAGTCCTATTGACATCGCCAGT-3’(配列番号41)
14TarC_Ra R:5’-CTTATTCCTCCTTCTGCCCACCCTTCAT-3’(配列番号42)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行った。
 加えて14番染色体領域確認のためのPCR解析も行った。そのプライマー配列を以下に示す。
MTA1-F3:5’-AGCACTTTACGCATCCCAGCATGT-3’(配列番号43)
MTA1-R3:5’-CCAAGAGAGTAGTCGTGCCCCTCA-3’(配列番号44)
ELK2P2-F:5’-CCCACTTTACCGTGCTCATT-3’(配列番号45)
ELK2P2-R:5’-ATGAAGGTCCGTGACTTTGG-3’(配列番号46)
g1(g2)-F:5’-ACCCCAAAGGCCAAACTCTCCACTC-3’(配列番号47)
g1(g2)-R:5’-CACTTGTACTCCTTGCCATTCAGC-3’(配列番号48)
VH3-F:5’-AGTGAGATAAGCAGTGGATG-3’(配列番号49)
VH3-R:5’-CTTGTGCTACTCCCATCACT-3’(配列番号50)
CH3F3:5’-AGGCCAGCATCTGCGAGGAT-3’(配列番号51)
CH4R2:5’-GTGGCAGCAAGTAGACATCG-3’(配列番号52)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
 PCRの結果、10クローンが陽性であり、これらについて以降の解析を行った。
[A.3] two-color FISH解析
 ランダムに選択した6クローンにおいて、Human cot-1 DNAおよびpMA-SC355hyg3’HPRTをプローブにしてFISH解析を行ったところ、全クローンにおいて90%以上でヒト14番染色体が1コピー保持され、さらにPGKhyg3’FRTHPRT由来のシグナルが現れ、ネガティブコントロールであるPGKhyg3’FRTHPRTを部位特異的挿入する前のヒト14番染色体上にはシグナルが検出されなかったことから、部位特異的にPGKhygFRT3’HPRTが挿入されたことが確かめられた(図12)。この内、14DT40#2-4_FRT 3-17と3-19の2クローンを選択し、以降の実験を行った。
[B]CHO(hprt-/-)株への改変ヒト14番染色体移入
 CHO(hprt-/-)細胞株において14番染色体のIGH領域をIGK-MACに搭載するため、改変ヒト14番染色体をCHO(hprt-/-)細胞株へ移入した。
[B.1] 微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞である14DT40#2-4_FRT 3-17と3-19を用いて、CHO(HPRT-)に微小核細胞融合法を行った。
 ドナー細胞がコンフルエントになった時点で、20%FBS、0.025μg/mlコルセミドを添加した状態で、12時間インキュベートして微小核を形成させた後、細胞を回収し無血清DMEM培地に懸濁した後、Poly-L Lysine(Wako)でコートした遠心用フラスコに注ぎ、30分間インキュベートして、細胞をフラスコへ張り付けた。無血清DMEMを除き、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。ミクロセルを無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製したミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO(hprt-/-)細胞株に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、400μg/mL G418を添加し、10日選択培養を行った。それぞれ2回ずつ反応を行い、得られた薬剤耐性株15クローン、2クローンについて以降の解析を行った。
[B.2] PCR解析による薬剤耐性クローンの選別
 改変ヒト14番染色体がCHO(hprt-/-)細胞株に移入されたかを確認するため、PCR解析を行った。プライマーを以下に示す。
改変ヒト14番染色体上FRT配列確認プライマー:
14TarC_La F (前出)
14TarC_La R (前出)
14TarC_Ra F (前出)
14TarC_Ra R (前出)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
 結果、14クローンと2クローンのPCR陽性クローンを獲得した。
[B.3] two-color FISH解析
 ランダムに選んだ6クローンおよび2クローンについて、Human cot-1 DNAおよびpMA-SC355hyg3’HPRTをプローブにしてFISH解析を行ったところ、PGKhygFRT3’HPRT由来のシグナルを示す14番染色体が1コピー保持されている陽性細胞を確認した(図13)。CHO hprt-/- 14FRT #3-17_8とCHO hprt-/- 14FRT #3-17_14を以降の実験に用いた。
[実施例4]相互転座を用いた、ヒト14番染色体上IGH領域のIGK-MACへの搭載
 作製したIGK-MACを、改変ヒト14番染色体を保持するCHO(hprt-/-)細胞株へ移入し、FRT/Flpシステムによる組換えを起こさせIGH領域をIGK-MACに搭載し、IGHK-MACを作製した(図14)。
[A]IGK-MACの改変ヒト14番染色体保持CHO CHO(hprt-/-)細胞株への移入
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるCHO IGK-MAC #9-3を細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させた。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO hprt-/- 14FRT #3-17_8およびCHO hprt-/- 14FRT #3-17_14に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、600μg/mL G418と6μg/mL Blasticidinを添加し、10日選択培養を行った。得られた薬剤耐性株18クローン、15クローンについて以降の解析を行った。
[A.2] PCR解析による薬剤耐性クローンの選別
 IGK-MACが改変ヒト14番染色体を保持するCHO(hprt-/-)株に移入されているか、改変ヒト14番染色体は維持されているかを確認するためにPCR解析を行った。以下に用いたプライマーを示す。
 IGK-MACの確認プライマー
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 IGK-MAC上のFRT挿入部位確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 改変ヒト14番染色体上のFRT挿入部位確認プライマー:
14TarC_La F (前出)
14TarC_La R (前出)
14TarC_Ra F (前出)
14TarC_Ra R (前出)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
 その結果、12クローンと15クローンがPCR陽性であった。
[A.3] two-color FISH解析
ランダムに選択した6および5クローンについて、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、IGK-MACと改変ヒト14番染色体が独立して、1コピーずつ維持されているクローンを確認した(図15)。CHO Igk-MAC #9-3 8-5とCHO Igk-MAC #9-3 14-9の2クローンを選択し以降の実験を行った。
[B]FRT/Flp組換えシステムを用いたIGHK-MACの構築
 IGK-MACと改変ヒト14番染色体をFRT/Flpシステムで相互転座させることで、IGK-MAC上にヒト14番染色体由来IGH領域を転座クローニングし、IGHK-MACを構築する。
[B.1] FLP発現によるHAT耐性染色体組換え体の取得
 IGK-MAC上のFRTサイトと改変ヒト14番染色体上のFRTサイトを用いて、FLP組換え酵素存在下で相互転座を起こさせる。また、組換えが起こるとIGHK-MAC上では、5’HPRTと3’HPRTが連結して、HPRT遺伝子の再構成が起こり、HAT耐性を獲得する。CHO Igk-MAC #9-3 8-5とCHO Igk-MAC #9-3 14-9について、10cm細胞培養皿においてコンフルエントになった時に18μgのFLP発現プラスミドをLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT、6μg/mL Blasticidinで薬剤選択を行った。
 得られたHAT耐性クローン各24クローンを以降の解析に用いた。
[B.2]PCR解析による薬剤耐性クローンの選別
 FRT/FLPシステムを用いて期待した相互転座が起こり、IGHK-MACが構築されているか確認するため、薬剤耐性クローンのDNAを抽出し、鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
 相互転座連結部位の確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1:5’- CCTATTGGCGTTACTATGGGAACATACG-3’(配列番号 53)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。その結果、各22、24クローンが陽性であった。
[B.3] two-color FISH解析
 それぞれ6クローンをランダムに選択し、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、副産物であるMACに載らない14番染色体に、余分な2番染色体領域が転座して染色体が長くなっており、相互転座が起こったことが示唆され、IGHK-MACと考えられる染色体が1コピーで独立して存在していることが確認できた(図16)。結果、CHO IGHK-MAC 8-1とCHO IGHK-MAC 14-7の2クローンを選択し、以降の解析を行った。
 この2クローンについて、プローブとしてBACクローンCH17-405H5(IGK領域:CHORI)とCH17-262H11(IGH領域:CHORI)およびCH17-216K2(IGK領域:CHORI)とCH17-212P11(IGH領域:CHORI)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHK-MACが構築されているか詳細に解析した。結果、2クローンともMAC上にそれぞれ、IGK領域とIGH領域の存在を示すシグナルが観察され、IGHK-MACが構築されていることを確認した(図17、図18)。
[実施例5]IGHK-MACのCHO K1細胞株への移入
 IGHK-MACおよびIGHK-MAC構築のための相互転座の際に形成された副産物の両方にNeo耐性遺伝子がのっており、微小核細胞融合法で目的の細胞に移入した際、G418で薬剤選択するとIGHK-MACもしくは副産物がそれぞれあるいは両方移入された細胞を取得することになる。MAC上にはEGFPが搭載されているので、目的の細胞にIGHK-MACが移入されているか確認することが可能であるが、染色体導入が効率的に行えるドナー細胞でかつIGHK-MACのみを保持する細胞を作製するため、IGHK-MACをCHO K1細胞株に移入した。
[A] 微小核細胞融合と薬剤耐性クローンの単離
 染色体移入により、IGHK-MACのみを保持する細胞株を作製した。
[A.1]IGHK-MACのCHO K1株への移入
 ドナー細胞であるCHO IGHK-MAC 8-1とCHO IGHK-MAC 14-7を細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させた。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO K1細胞株に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418を添加し、10日選択培養を行った。得られた薬剤耐性株20クローン、13クローンについて以降の解析を行った。得られたこれらのクローンについては、IGHK-MAC上GFPの蛍光タンパク発現を確認している。
[A.2] PCR解析による薬剤耐性クローンの選別
 IGHK-MACがCHO K1細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
 相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
 その結果、14クローンおよび10クローンの陽性クローンを確認した。
[A.3] two-color FISH解析
 それぞれ6クローンをランダムに選択し、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、各2クローンについて期待通りIGHK-MACのみを保持していることが確認できた(図19)。
 それら各2クローンを選別し、プローブとしてBACクローンCH17-216K2(IGK領域)とCH17-212P11(IGH領域)および CH17-405H5(IGK領域)とRP11-731F5(IGH領域)の組み合わせを用いてtwo-color FISH解析を行った結果、期待したIGHK-MAC構造を維持しているCHO K1 IGHK-MAC 8-1 #1、CHO K1 IGHK-MAC 14-7 #9を以降の実験に用いることとした(図20、図21)。
[実施例6]マウスES細胞およびラットES細胞へのIGHK-MACの移入
[A]マウスES細胞へのIGHK-MACの移入
 ヒト抗体産生マウスを作製するためにはIGHK-MACをマウスES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHK-MACを子孫伝達させることが必要である。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞は、CHO K1 IGHK-MAC 8-1-1、CHO K1 IGHK-MAC 14-7-9を用いた。ドナー細胞を細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させた。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製後、2000rpm,10分間遠心した。2000rpm,10分間遠心し、無血清DMEM培地5mlに懸濁した。さらに2000rpm,10分間遠心した。レシピエント細胞には、マウスES細胞HKD31 6TG-9(マウスのIghおよびIgk遺伝子が破壊されている。特許:国際公開番号WO98/37757に記載)およびXO ES9(抗体遺伝子は破壊されていない。)を用いた。培養には、DMEM(Dulbecco’s Modified Eagle’s Medium-high glucose:SIGMA)に、10%FCS、LIF(Murine Leukemia Inhibitory Factor)、1×10‐5M 2-ME(2-メルカプトエタノール:SIGMA)、L-グルタミン(3.5g/ml:GIBCO)、Sodium pyruvate溶液(3.5g/ml:GIBCO)、MEM 非必須アミノ酸 (0.125mM:GIBCO)を添加し、5% CO2、37℃にて培養をおこなった。10cm細胞培養皿でコンフルエントになったマウスES細胞をPBS(-)で細胞表面を2回洗浄後にトリプシン処理により細胞を分散させ、DMEM培地に10%FBSを添加した培養液で回収し、1500rpmで遠心し、上清を除去し、無血清培養液5mlに再度懸濁し、ミクロセルの遠心後のペレットを含む無血清培地に静かに添加し、さらに1200rpmで遠心した。上清を除去し、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地に完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を0.5mlで正確に1分30秒間融合した。13mlの無血清培養液(DMEM)を静かに添加し、1200rpmで遠心した。上清を除去し、通常のマウスES細胞の培養液を添加し、マイトマイシン処理したG418耐性マウス胎生線維芽細胞をフィーダー細胞として使用し、直径10cm細胞培養皿2枚に播種し、オーバーナイトでインキュベートした。G418を250μg/mLになるように加え、3~4週間選択培養した。それぞれ、4、4、6、6反応行った結果、EGFP陽性かつ薬剤耐性株それぞれ、6、4、7、4クローンを取得し、以降の解析を行った。
[A.2]PCR解析による薬剤耐性クローンの選別
 IGHK-MACがマウスES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
 相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
 その結果、HKD31 6TG-9について、CHO K1 IGHK-MAC 8-1-1由来4クローン、CHO K1 IGHK-MAC 14-7-9由来2クローン、XO ES9について、CHO K1 IGHK-MAC 8-1-1由来4クローン、CHO K1 IGHK-MAC 14-7-9由来2クローンがPCR陽性であり、、これらについて以降の解析を行った。
[A.3] two-color FISH解析
 Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、HKD31 6TG-9について、CHO K1 IGHK-MAC 8-1-1由来4クローン、CHO K1 IGHK-MAC 14-7-9由来1クローン、XO ES9について、CHO K1 IGHK-MAC 8-1-1由来3クローン、CHO K1 IGHK-MAC 14-7-9由来1クローンについて期待通りIGHK-MACのみを保持しており、マウスESの正常核型を維持していることが確認できた(図22)。
 これらのクローンを用いて以下の実験を行った。
[B] ラットES細胞へのIGHK-MACの移入
 ヒト抗体産生ラットを作製するためにはIGHK-MACをラットES細胞に移入し、8細胞期胚にインジェクションし、キメララットを作製し、IGHK-MACを子孫伝達させることが必要である。
[B.1] 微小核細胞融合と薬剤耐性クローンの単離
 上記A.1に記載のようにマウスES細胞への微小核細胞融合法と同様の手法を用いてラットES細胞へのIGHK-MACの導入を行った。ドナー細胞は、CHO IGHK-MAC 8-1、CHO IGHK-MAC 14-7、CHO K1 IGHK-MAC 8-1-1、CHO K1 IGHK-MAC 14-7-9を用いた。融合後、オーバーナイトでインキュベーションし、G418を150μg/mLになるように加え、3~4週間選択培養した。各2反応、K1株については8反応ずつ行った結果、GFP陽性かつ薬剤耐性のクローン、CHO IGHK-MAC 8-1由来9クローン、CHO IGHK-MAC 14-7由来12クローン、CHO K1 IGHK-MAC 8-1 #1由来90クローン、CHO K1 IGHK-MAC 14-7 #9由来34クローンを獲得した。以降の解析についてはCHO IGHK-MAC 8-1由来9クローン、CHO IGHK-MAC 14-7由来12クローンについて行った。
[B.2] PCR解析による薬剤耐性クローンの選別
 IGHK-MACがラットES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
 相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。得られた陽性クローン6クローンおよび9クローンについて以降の解析を行った。
[B.3] two-color FISH解析
 Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、rES14-7 #4, #6およびrES8-1 #3、#8の4クローンについて期待通りIGHK-MACのみを保持しており、ラットESの正常核型(42本)を維持していることが確認できた(図23)。この4クローンを用いて以降の実験を行うこととした。
[実施例7]マウスおよびラットのキメラ作製および子孫伝達
 IGHK-MACを保持したES細胞を用いて、キメラマウスおよびキメララットを作製し、子孫伝達させる。
[A]IGHK-MACを保持したマウスの作製
 IGHK-MACを保持したマウスの作製および、解析を行った。過程で得られたキメラについても解析を行った。
[A.1]キメラマウスの作製
 得られたIGHK-MACを保持するマウスES細胞を用いて(ジーンターゲティング、実験医学、1995)の手法に従い、キメラマウスを作製する。宿主としてはMCH(ICR)(白色、日本クレア社より購入)の雌雄交配により得られる桑実胚及び8細胞期胚を用いた。注入胚を仮親に移植した結果生まれる仔マウスは毛色によりキメラであるかどうかを判定できる。
 HKD31 6TG-9およびXO ES9マウスES(IGHK-MAC)雌クローンを注入した胚を仮親に移植することで、キメラマウス(毛色に濃茶色の部分の認められる)が得られる。キメラ作製には、HKD31 6TG-9 IGHK-MAC8-1-1 #1, 3, 5, 6、HKD31 6TG-9 IGHK-MAC 14-7-9 #1、XO ES9 IGHK-MAC 8-1-1 #1, 2のマウスES細胞を用いた。中でも、HKD31 6TG-9 IGHK-MAC 14-7-9 #1についてインジェクションした51の胚を3匹の仮親に移植した結果100%キメラ3匹、90%キメラ1匹(毛色による判定)が得られた。XO ES9 IGHK-MAC 8-1-1 #1については、インジェクションした140の胚を8匹の仮親に移植した結果、100%キメラマウス6匹、80-90%キメラマウス7匹が得られた。
[A.2]キメラマウスのIGHK-MAC保持解析
誕生後3週以上を経たキメラマウスから(勝木元也,発生工学実験マニュアル,講談社サイエンティフィク,1987)に記された方法に従い尻尾を取得し、Puregene DNA Isolation Kit (Qiagen)を用いてゲノムDNAを抽出する。実施例6記載のプライマー及びPCR条件により、PCR解析を行い、IGHK-MAC保持を確認した。
 さらに、キメラマウスから採血を行った後、細胞固定を行い標本作製し、Human Cot-1およびMouse minor satellite DNAをプローブとしてFISH解析を行うことで、IGHK-MACを保持した細胞を染色体レベルで確認する。
[A.3]IGHK-MACを保持するES細胞由来キメラマウスにおけるヒトIGM発現評価
  HKD31マウスES細胞はマウスIgh, Igk遺伝子が破壊されている。Bリンパ球の発生に必須な抗体μ鎖遺伝子ノックアウトマウスは体液性免疫を担う成熟Bリンパ球が欠損していることにより抗体を産生することができない。したがって、HKD31マウスES細胞は、キメラマウスにおいて成熟B細胞になれない。キメラマウス作製に用いるIGHK-MAC保持HKD31マウス細胞について、IGHK-MACからヒトIGMが発現すれば、この欠損を救済可能で、GFP陽性のB細胞を検出することができる。これにより、IGHK-MAC上のIGM遺伝子の機能的発現が間接的に検証できる。キメラマウスより血液を採取し、マウスCD45R(B220)に対する抗体染色を用い、マウスB細胞をフローサイトメーターにより検出する。CD45RとGFP共陽性の細胞が存在するか解析を行うことで、IGHK-MAC由来IGMの機能的発現を確認することができる。マウスCD45R(B220)に対する抗体を用いて、血液細胞を染色し、ヒトIGM、CD45R、GFP陽性の細胞を確認した。末梢血を採血し、ヘパリンPBSの入ったチューブに血液を移し、転倒混和して氷冷。遠心2000rpm、3分、4℃、の後、上清除去後、各種抗体を添加し、4℃で30分反応させ、5%牛胎仔血清を添加したPBS(5%FBS/PBS)により洗浄した。最後の遠心後、ペレットに1.2%Dextran/生理食塩水を加え、タッピング後、室温で45分静置し、赤血球を自然沈降させた。上清を新しいチューブに移し、2000rpm、3分、4℃で遠心後上清除去し、ペレットに室温の溶血剤(0.17M NH4Cl)を加え、5分静置した。2000rpm、3分、4℃で遠心し、5%FBS/PBSで洗浄した後500μlの5%FBS/PBSで懸濁したものを解析サンプルとし、フローサイトメーターにより解析した。HKD31 6TG-9 IGHK-MAC 14-7-9 #1由来のキメラマウスについて、末梢血リンパ球について上述の手段で解析を行った結果、GFPおよびB220共陽性の細胞が確認され、構築したIGHK-MACの機能性を示唆する結果を得た(図24)。
[A.4]キメラマウス血清中のヒト抗体検出
キメラマウスにおいて、ヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、血清中のヒト抗体濃度をエンザイムリンクドイムノソルベントアッセイ(ELISA)を用いて測定する。ELISAは以下に記載されている方法に従う。富山・安東、単クローン抗体実験マニュアル、講談社、1987;安東・千葉、単クローン抗体実験操作入門、講談社、1991;石川、超高感度酵素免疫測定法、学会出版センター、1993:Ed Harlow and David Lane,Antibodies A Laboratory Manual,Cold Spring Harbor Laboratory,1988;A.Doyle and J.B.Griffiths,Cell & Tissue Culture:Laboratory Procedures,John Wiley & Sons Ltd.,1996。これらの文献に記載の方法を参考にして、測定系によっては反応時間や温度を4℃で終夜行うなどの改良を行う。特定の抗体検出については、kitを用いて実施する。ヒト抗体(hγ、hμ、hκ、hγ1、hγ2、hγ3、hγ4、hα、hε、hδ)の発現および血清中の濃度を測定する。基本的な操作を以下に示す。
 測定しようとするヒト免疫グロブリンに対する抗体を希釈し、ELISAプレートを4℃で一晩コーティングする。血清試料の測定では、ブロッキング、試料および標識抗体の希釈に5%牛胎仔血清を添加したPBSを用いる。コーティングしたプレートを洗浄した後、ブロッキングを1時間以上行う。プレートを洗浄後、試料を加えて30分以上インキュベートするプレート洗浄後、希釈した酵素標識抗ヒトおよびマウス免疫グロブリン抗体を加えて、1時間以上インキュベートした後、プレートを洗浄し基質液を加えて発色させる。また測定系によって、基本的には同じ操作で、ビオチン標識した抗体を用い、プレート洗浄後これにアビジン-酵素複合体を加えてインキュベートした後洗浄し基質液を加える。マイクロプレートリーダーで吸光度を測定する。血清中の濃度の測定には濃度既知の標準を段階希釈してELISAをサンプルと同時に行い、検量線を引いて解析することで濃度を特定できる。
[A.5]ヒト抗体の発現解析および配列同定
 キメララット脾臓由来RNAからcDNAを合成し、ヒト抗体遺伝子可変領域クローニングと塩基配列決定を行う。方法は特許(国際公開番号WO98/37757)に記されている方法同様実施することで解析、評価できる。
[A.6] 抗原特異的ヒト抗体産生応答の評価
 キメラマウスについて、抗原特異的ヒト抗体価の増加が見られるかを評価する。方法は特許(国際公開番号WO98/37757)に記されている方法同様にヒト血清アルブミンで免疫し、抗体力価の上昇を解析する。 
[B]IGHK-MACを保持するキメラマウスからのIGHK-MACの子孫伝達
[B.1] IGHK-MAC子孫伝達
上記[A]で作製される雌キメラマウス(キメラ率約100%)をICR雄マウスと交配し、誕生した仔マウスについて、ES細胞由来のIGHK-MACの優性遺伝形質である、GFPの蛍光を観察した。GFPの蛍光が観察されれば、マウス個体においてIGHK-MACが子孫伝達し、安定に保持されていることが確認できる。IGHK-MACが子孫伝達されたマウス系統をmTC(IGHK-MAC)と呼ぶ。
 HKD31 6TG-9 IGHK-MAC 14-7-9 #1 由来キメラマウス(毛色判定で90%)1個体をマウスIgh,Igkが破壊されているマウス(HKD)と繰り返し交配した結果、12個体のマウスが得られ、内1個体についてGFPの蛍光が観察され、IGHK-MACの子孫伝達(F1)が確認された。このマウス系統をHKD mTC(IGHK-MAC)と呼ぶ。このF1マウスをHKLD(さらにマウスIgλ低発現の変異をもつ)マウスと交配させた結果、得られた8匹のマウスの内、3匹でIGHK-MACの子孫伝達(F2)が確認された。
 XO ES9 IGHK-MAC 8-1-1 #1由来キメラマウスについては、得られた高キメラマウス(毛色判定で>80%)計12匹を交配させた。10匹のキメラマウスとHKDマウスの交配から97匹のマウスが得られ、内32匹でGFPの蛍光が観察され、IGHK-MACの子孫伝達(F1)が確認された。さらに、2匹のキメラマウスとHKLDマウスの交配により、18匹のマウスが得られ、内3匹でGFPの蛍光が観察され、IGHK-MACの子孫伝達(F1)が確認された。F1個体について、3匹をHKDマウスと交配した結果、33匹の内10個体で子孫伝達(F2)が確認された。加えてF1個体4個体をHLKDマウスと交配した結果、40匹中21個体で子孫伝達(F2)が確認された。得られた子孫伝達F2個体の内12匹がHKDの遺伝子型すなわちHKD mTC(IGHK-MAC)であった。
[B.2] IGHK-MACを保持するマウスのIGHK-MAC保持確認
 mTC(IGHK-MAC)について(実施例7)[A.2]同様解析を行うことでIGHK-MACの子孫伝達を詳細に確認できる。XO ES9 IGHK-MAC 8-1-1 #1由来の子孫伝達個体について、尻尾のDNAを鋳型としたPCRおよび個体のGFP発現を確認した結果、共に陽性であり、IGHK-MACが子孫伝達し、安定に維持されていることが確認された。
[B.3] IGHK-MACを保持するマウスにおけるヒトIGM発現評価
(実施例7)[A.3]同様に解析を行うことで、HKD mTC(IGHK-MAC)におけるIGHK-MACの保持および機能性を間接的に評価できた。HKD31 6TG-9 IGHK-MAC 14-7-9 #1由来の子孫伝達個体HKD mTC(IGHK-MAC)について、尻尾のDNAを鋳型としたPCR解析で陽性が確認できた個体について、末梢血リンパ球についてGFP陽性およびB220/GFP共陽性細胞の存在を確認した結果、共に陽性であり、子孫伝達したIGHK-MACが安定に維持され、機能していることを示唆する結果を得た。フローサイトメトリー解析により評価した結果、末梢血リンパ球におけるGFP陽性細胞(MAC保持細胞)の割合は、98.45%と高頻度であり、B細胞の割合は7.9%であった。(図25)。また、XO ES9 IGHK-MAC8-1-1 #1由来の子孫伝達個体HKD mTC(IGHK-MAC)についても、尻尾のDNAを鋳型としたPCR解析で陽性が確認できた個体について、末梢血リンパ球についてGFP陽性およびB220/GFP共陽性細胞の存在を確認した。末梢血リンパ球におけるGFP陽性細胞(MAC保持細胞)の割合は、90.14%と高頻度であり、B細胞の割合は22.06%であった(図26)。
[B.4]IGHK-MACを保持するマウスのヒト抗体産生能評価
 mTC(IGHK-MAC)について(実施例7)[A.4][A.5][A.6]同様に評価する。
[C]IGHK-MACを保持するラットの作製
IGHK-MACを保持したラットの作製および、解析を行う。過程で得られたキメラについても解析を行う。
[C.1]キメララットの作製
 上記実施例6で得られたIGHK-MAC保持ラットES細胞クローンを用いてHirabayashiらの方法(Mol Reprod Dev. 2010 Feb;77(2):94.doi:10. 1002/mrd.21123.)でキメララットを作製した。宿主としてはCrlj:WIラット(白色、日本チャールスリバー社より購入)の雌雄交配により得られる胚盤胞期胚を用いた。注入胚を仮親に移植した結果生まれる仔ラットは毛色によりキメラであるかどうかを判定できる。
 IGHK-MAC保持ESクローンRat ES(IGHK-MAC)14-7 #4および8-1#3(上記実施例6で取得したもの)を注入した25及び18個の胚を仮親に移植した結果、8および4匹のキメララット(毛色に濃茶色の部分の認められる)が誕生した(図27)。ES細胞由来のIGHK-MACの優性遺伝形質である、GFPの蛍光も産まれて間もない時期に観察し、ES細胞の寄与を確認できた。
[C.2] IGHK-MACを保持するES細胞由来キメララットのIGHK-MAC保持確認
 上記[A.2]同様に解析を行い、IGHK-MAC保持をより詳細に確認する。血液細胞についてHuman Cot-1およびMouse Cot-1 DNAをプローブとして用い、FISH解析を実施する。
[C.3] キメララットのヒト抗体産生能評価
  キメララットについて(実施例7) [A.3][A.4][A.5][A.6]同様に評価する。
[D]IGHK-MACを保持するキメララットからのIGHK-MACの子孫伝達
[D.1]IGHK-MACを保持するキメララットからのIGHK-MACの子孫伝達
  上記[C]で作製されたキメララット(キメラ率約100%)とCrlj:WIラットを交配し、誕生した仔ラットについてES細胞由来のIGHK-MACの優性遺伝形質である、GFPの蛍光を観察した。GFPの蛍光が観察され、ラット個体においてIGHK-MACが子孫伝達し、安定に保持されていることが確認できた。IGHK-MACが子孫伝達されたラット系統をrTC(IGHK-MAC)と呼ぶ。rES8-1 #3由来、F1ラット3個体の末梢血リンパ球のGFP陽性率を評価した結果、98.23%、96.62%、95.79%と子孫伝達したIGHK-MACが高い保持率で維持されていることが確認された。
[D.2] IGHK-MACを保持するラットのIGHK-MAC保持確認
 rTC(IGHK-MAC)について[C.2]同様解析を行うことでIGHK-MACの子孫伝達を詳細に確認できる。
[D.3] IGHK-MACを保持するラットのヒト抗体産生能評価
rTC(IGHK-MAC)について(実施例7)[A.3][A.4][A.5][A.6]同様に評価する。
rTCについてヒト抗体IgMおよびIgGを検出するELISA解析を行った。野生型のラット血清を陰性コントロールにおいて解析を実施した結果、rTCの血清中にヒトIgMおよびIgGが存在していることが確認され、rTCがヒト抗体を産生していることが示された(図28)。
[実施例8]ヒト22番染色体の改変
 マウス人工染色体ベクターMACにIGL、IGH領域を転座クローニングするために、ヒト22番染色体にloxPサイト、FRTサイトを挿入する(図29)。
[A]ヒト22番染色体へのloxP配列挿入
[A.1]ヒト22番染色体へのloxP挿入ベクター作製
 ヒト22番染色体を保持した細胞DT40 52-18#22 (#22)にloxP配列を挿入するための基本プラスミドにはpX6.1(前出)を用いた。loxP挿入部位であるヒト22番染色体のDNA配列はGenBankデータベース(NC_000022.11)より得た。
 DT40(#22)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
HindIII553La L:5’-TGTAGCTGACTTTAGCCACCCACAAGTAC-3’(配列番号 54)
AscI553La R:5’-TCGAGGCGCGCCCTCAAACTCCTGGGTGTAAATGATCCTCCTGC-3’(配列番号 55)
KpnI553Ra L:5’-TGAGGGTACCGTGCAGTAAAGTATGATTGAGC-3’(配列番号 56)
SalI553Ra R:5’-TCGAGTCGACCTTGCTGATTATACCTCATCTCCTTCCCTC-3’(配列番号 57)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を30サイクル行った。HindIII553La L とAscI553La R のPCR産物をHindIII(NEB)とAscI(NEB)で消化して、アガロースゲルにより分離し精製後、pX6.1をHindIIIとAscIで消化してできた突出末端にライゲーションした。(ベクター名:pX6.1553L)。さらに、KpnI553Ra LとSalI553Ra RのPCR産物をKpnI(NEB)とSalI(NEB)で消化して、アガロースゲルにより分離し精製後、pX6.1553LをKpnIとSalIで消化してできた突出末端にライゲーションした(ベクター名:pX6.1553LR)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図30に示した。
[A.2]ニワトリDT40細胞におけるヒト22番染色体へのloxP挿入
 ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下FBSで記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40 (#22)の約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpX6.1553LRを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。1.0mg/ml Hygromycin(Wako)を含む培地に交換し、約2週間の選択培養を行い32クローンの薬剤耐性株を得た。
[A.3] 相同組換え体の選別
 Hygromycin耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト22番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
22CeT La L:5’-CCTGCCTTCTTGTTTCAGCTCTCAACTG-3’(配列番号 58)
22CeT La R:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’(配列番号 59)
22CeT Ra L:5’-ATCCCCATGTGTATCACTGGCAAACTGT-3’(配列番号 60)
22CeT Ra R:5’-ACACTTTAGTCCCTGTCCCCTCAACGAG-3’(配列番号 61)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 加えて、ヒト22番染色体領域も保持されているかどうか、確認のPCRを行った。そのプライマー配列を以下に示す。
553P-F:5’-AGATCTCTTGAGCCCAGCAGTTTGA-3’(配列番号 62)
553P-R:5’-TGAAGTTAGCCGGGGATACAGACG-3’(配列番号 63)
PPM1F L:5’-AACGGCAGCCAAACCAAAGA-3’(配列番号 64)
PPM1F R:5’-ACCAGGACTGGCTGGGCATA-3’(配列番号 65)
IGLVI-70 L:5’-AGTCTGCGCTGACCCAGGAA-3’(配列番号 66)
IGLVI-70 R:5’-TTGAGCCAGAGAAGCGGTCA-3’(配列番号 67)
GNAZ L:5’-TCCACTTGGGGGTCTGCATT-3’(配列番号 68)
GNAZ R:5’-TGGTGCTGAGCAGCTGTGTG-3’(配列番号 69)
LIF L:5’-TGGGACTTAGGTGGGCCAGA-3’(配列番号 70)
LIF R:5’-GCCTCCCCAAGAGCCTGAAT-3’(配列番号 71)
hVpreB1-F:5’-TGTCCTGGGCTCCTGTCCTGCTCAT-3’(配列番号 72)
hVpreB1-Rm:5’-GGCGGCGACTCCACCCTCTT-3’(配列番号 73)
hVpreB3-F:5’-CACTGCCTGCCCGCTGCTGGTA-3’(配列番号 74)
hVpreB3-R:5’-GGGCGGGGAAGTGGGGGAGAG-3’(配列番号 75)
hL5-F:5’-AGCCCCAAGAACCCAGCCGATGTGA-3’(配列番号 76)
hL5-R:5’-GGCAGAGGGAGTGTGGGGTGTTGTG-3’(配列番号 77)
344-F:5’-ATCATCTGCTCGCTCTCTCC-3’(配列番号 78)
344-R:5’-CACATCTGTAGTGGCTGTGG-3’(配列番号 79)
350P-F:5’-ACCAGCGCGTCATCATCAAG-3’(配列番号 80)
350P-R:5’-ATCGCCAGCCTCACCATTTC-3’(配列番号 81)
IgL-F:5’-GGAGACCACCAAACCCTCCAAA-3’(配列番号 82)
IgL-Rm:5’-GAGAGTTGGAGAAGGGGTGACT-3’(配列番号 83)
SERPIND1 L:5’-ACCTAGAGGGTCTCACCTCC-3’(配列番号 84)
SERPIND1 R:5’-CCCTGGACATCAAGAATGG-3’(配列番号 85)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。
 その結果、17クローンがPCR陽性であった。
[A.4] two-color FISH解析
上記の結果からランダムに選んだ10クローンにおいて、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行った。Human cot-1 DNAおよびpX6.1をプローブにしてFISH解析を行ったところ、9クローンにおいて70%以上ヒト2番染色体が1コピー保持され、さらにPGKhygloxP5’HPRT由来のシグナルが現れ、ネガティブコントロールであるPGKhygloxP5’HPRTを部位特異的挿入する前のヒト22番染色体上にはシグナルが検出されなかったことから、部位特異的にPGKhygloxP5’HPRTが挿入されたことが確かめられた(図31)。以降の実験には、22DT40 KloxP3 1-5, 2-1の2クローンを用いた。
[B]loxPを搭載したヒト22番染色体上へのFRTサイトの挿入
 MAC上にloxPでヒト22番染色体上IGL領域を、そこへさらにヒト14番染色体上IGH領域を転座クローニングするために、loxPを挿入したヒト2番染色体へFRTサイトを挿入する。
[B.1] ヒト22番染色体へのFRT挿入ベクター作製
 DT40(#22)にFRT配列を挿入するための基本プラスミドにはpMA-kD9FRTBsdを用いた。FRT挿入部位であるヒト22番染色体のDNA配列はGenBankデータベース(NC_000022.11)より得た。DT40(#22)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
BamHISL350La L:5’-TCGAGGATCCGGCCTCCCAAAGGATTATAGACGTGAGCCACTGT-3’(配列番号 86)
AscISL350La R:5’-TCGAGGCGCGCCGGCACCTCTCCTATTTTCTTCACAGCACTT-3’(配列番号 87)
AscISL350Ra L:5’-TCGAGGCGCGCCAGCATGGTGGCCCGCACGTATAGTCGCAGCTA-3’(配列番号 88)
NotISL350Ra R:5’-TCGAGCGGCCGCAAAGAAGGGGCCCGCCTCTGCCTCTAAATCCTGAC-3’(配列番号 89)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を30サイクル行った。BamHISL350La L とAscISL350La R のPCR産物をBamHI(NEB)とAscI(NEB)で消化して、アガロースゲルにより分離し精製後、pMA-kD9FRTBsdをBamHIとAscIで消化してできた突出末端にライゲーションした。(ベクター名pMA-kD9FRTBsd22L:)。さらに、AscISL350Ra LとNotISL350Ra RのPCR産物をMluI(NEB)とNotI(NEB)で消化して、アガロースゲルにより分離し精製後、pMA-kD9FRTBsd22LをAscIとNotIで消化してできた突出末端にライゲーションした(ベクター名:pMA-kD9FRTBsd22LR)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図32に示した。
[B.2]ニワトリDT40細胞におけるloxP保持ヒト22番染色体へのFRT挿入
 ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下FBSで記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。22DT40 KloxP3 1-5,および22DT40 KloxP3 2-1約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpMA-kD9FRTBsd22LRを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。
 薬剤選択は15μg/mL Blasticidin(フナコシ)で行い、Blasticidin耐性株のゲノムDNAを抽出する。それを鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト22番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
22TeT La L:5’-TGCAGGTATCTGTTGGTGTCCCTGTTTT-3’(配列番号 90)
22TeT La R:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’(配列番号 91)
22TeT Ra L:5’-AGCAGAGCTCGTTTAGTGAACCGTCAGA-3’(配列番号 92)
22TeT Ra R:5’-CTGTCCTATCCTTGCAGCTGTCTTCCAG-3’(配列番号 93)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行い、組換えを確認した。
 loxP挿入部位が維持されているか確認するためのプライマーを以下に示す。
22CeT La L (前出)
22CeT La R (前出)
22CeT Ra L (前出)
22CeT Ra R (前出)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 加えて、ヒト22番染色体領域も保持されているかどうか、確認のPCRを行った。そのプライマー配列を以下に示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。22DT40 KloxP3 1-5,および22DT40 KloxP3 2-1について薬剤耐性各24クローンのうちPCR陽性クローンは21および、16クローンであった。この結果を受けて各々5クローンを選択し以降の実験を進めた。
[B.3] two-color FISH解析
 Human cot-1 DNAおよびpMA-kD9FRTBsdをプローブにしてFISH解析を行う。高い割合で、ヒト22番染色体が1コピー保持され、さらにPGK5’HPRTFRTBsd由来のシグナルが現れ、ネガティブコントロールであるPGK5’HPRTFRTBsdを部位特異的挿入する前のヒト2番染色体上にはシグナルが検出されないことを確認し、部位特異的にPGK5’HPRTFRTBsdが挿入されたことを確認した(図33)。結果、22DT40 KL3F1-5#2-1、22DT40 KL3F2-1#1-2, #1-3の3クローンを以降の実験に用いた。
[実施例9]転座クローニングによるヒト22番染色体領域のマウス人工染色体ベクター  
(MAC)への搭載(図34)
[A]改変ヒト22番染色体のMAC保持 CHO細胞(CHO MAC)への染色体導入
 CHO内でCre/LoxPシステムを用いて、ヒト22番染色体領域をMACに転座クローニングする
ため、MACを保持するCHO細胞へ改変ヒト22番染色体を移入する。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞である改変ヒト22番染色体保持DT40を用いて、MACベクターを保持するCHO hprt欠損細胞(ヒューマンサイエンス研究資源バンクより入手、登録番号JCRB0218)であるCHO(HPRT-)に微小核細胞融合法を行った。
 ドナー細胞がコンフルエントになった時点で、20%FBS、0.025μg/mlコルセミドを添加した状態で、12時間インキュベートして微小核を形成させた後、細胞を回収し無血清DMEM培地に懸濁した後、Poly-L Lysine(Wako)でコートした遠心用フラスコに注ぎ、30分間インキュベートして、細胞をフラスコへ張り付けた。無血清DMEMを除き、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。ミクロセルを無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製したミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO MAC細胞に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418(Promega)、8μg/mL Blasticidinを添加し、10日選択培養を行った。各2反応を行い、ドナー細胞22DT40 KL3F 1-5 #2-1、22DT40 KL3F 2-1 #1-2、#1-3について得られた薬剤耐性細胞は2、10、12クローンであった。MACにはEGFP発現カセットが搭載されており、薬剤選択クローンにおいてMACが保持されていることを蛍光で確認した。
[A.2]PCR解析による薬剤耐性クローンの選別
 薬剤耐性クローンのDNAを抽出し、それらを鋳型として、CHO MAC細胞に改変ヒト22番染色体が移入されたかPCRを行った。
 loxP挿入部位が維持されているか確認するためのプライマーを以下に示す。
22CeT La L (前出)
22CeT La R (前出)
22CeT Ra L (前出)
22CeT Ra R (前出)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L  (前出)
22TeT La R  (前出)
22TeT Ra L  (前出)
22TeT Ra R  (前出)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
 加えて、ヒト22番染色体領域も保持されているかどうか、確認のPCRを行った。そのプライマー配列を以下に示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。結果、22DT40 KL3F 1-5 #2-1、22DT40 KL3F 2-1 #1-2、#1-3由来のクローン、2、9、12クローンがPCR陽性であった。この結果を受けて、PCR陽性6クローンを選別し、以降の実験を進めた。
[A.3] two-color FISH解析
 PCR解析陽性クローンについて、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、MACと改変ヒト22番染色体が独立して保持されている陽性細胞を選別した。解析の結果(図35)、CHO(MAC1)KL3F#2-2、CHO(MAC1)KL3F#3-1の2クローンを以降の実験に用いた。
[B]ヒト22番染色体領域のMACへの転座クローニング
 Cre/LoxPシステムを用いてIGL領域を含むヒト22番染色体断片をMACへ転座させる。
[B.1]Cre発現によるHAT耐性染色体組換え体の取得
 MACにはloxPサイトが搭載されており、Cre組換え酵素存在下で改変ヒト22番染色体のloxPサイトと組換えが起こるようになっている。また、組換えが起こると副産物となるMACに載らないヒト22番染色体領域の5’HPRTと副産物となるMAC末端の3’HPRTが連結して、HPRT遺伝子の再構成が起こり、CHO(hprt-/-)はHAT耐性を獲得する。
 改変ヒト22番染色体とMACを保持するCHO(hprt-/-)について、10cm細胞培養皿においてコンフルエントになった時に18μgのCre発現プラスミド(ベクター名:pBS185)をLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加えた。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT (シグマ)、8μg/mL Blasticidinで薬剤選択を行った。
 CHO(MAC1)KL3F#2-2、CHO(MAC1)KL3F#3-1について得られたHAT耐性クローン24、22クローンについて以下の解析を行った。
[B.2]PCR解析による薬剤耐性クローンの選別
 HAT耐性株のゲノムDNAを抽出して鋳型として相互転座クローンを選別するため、以下のプライマーを用いてPCRを行い、ヒト22番染色体断片とMAC上で染色体相互転座が起こっているかを確認した。そのプライマー配列を以下に示す。
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用る。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L  (前出)
22TeT La R  (前出)
22TeT Ra L  (前出)
22TeT Ra R  (前出)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
 また、ヒト22番染色体領域についてPCR解析を行った。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。CHO(MAC1)KL3F#2-2、CHO(MAC1)KL3F#3-1について17、7クローンが陽性であり、各6、4クローンを選別し、以降の実験に用いた。
[B.3] two-color FISH解析
 Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、MACと改変ヒト2番染色体が相互転座をおこしかつ、IGL領域がMACに搭載されたIGL-MAC、副産物が独立して保持されていることを確認した(図36)。結果、選別した2クローンの陽性細胞(CHO IGL-MACと命名する)について、以下の実験を行う。
[実施例10]相互転座を用いた、ヒト14番染色体上IGH領域のIGL-MACへの搭載
 作製したIGL-MACを、改変ヒト14番染色体を保持するCHO(hprt-/-)細胞株へ移入し、FRT/Flpシステムによる組換えを起こさせIGH領域をIGL-MACに搭載し、IGHL-MACを作製する(図37)。
[A]IGL-MACの改変ヒト14番染色体保持CHO CHO(hprt-/-)細胞株への移入
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞であるCHO IGL-MACを細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行う。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO hprt-/- 14FRT #3-17_8およびCHO hprt-/- 14FRT #3-17_14に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418と8μg/mL Blasticidinを添加し、10日選択培養を行い、得られた薬剤耐性株について以降の解析を行う。
[A.2] PCR解析による薬剤耐性クローンの選別
 IGL-MACが改変ヒト14番染色体を保持するCHO(hprt-/-)株に移入されているか、改変ヒト14番染色体は維持されているかを確認するためにPCR解析を行う。以下に用いるプライマーを示す。
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用る。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L  (前出)
22TeT La R  (前出)
22TeT Ra L  (前出)
22TeT Ra R  (前出)
 PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
 また、ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
 ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。
 改変ヒト14番染色体上FRT挿入部位の確認プライマー:
14TarC_La F (前出)
14TarC_La R (前出)
14TarC_Ra F (前出)
14TarC_Ra R (前出)
 これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行う。
 この結果を受けて、PCR陽性のクローンについて以降の実験を進める。
[A.3] two-color FISH解析
 Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGL-MACと改変ヒト14番染色体が独立して、1コピーずつ維持されているクローンを確認する。陽性細胞(CHO #14 IGL-MACと命名)を選択し以降の実験を行う。
[B]FRT/Flp組換えシステムを用いたIGHL-MACの構築
 IGL-MACと改変ヒト14番染色体をFRT/Flpシステムで相互転座させることで、IGL-MAC上にヒト14番染色体由来IGH領域を転座クローニングし、IGHL-MACを構築する。
[B.1] FLP発現によるHAT耐性染色体組換え体の取得
 IGL-MAC上のFRTサイトと改変ヒト14番染色体上のFRTサイトを用いて、FLPo組換え酵素存在下で相互転座を起こさせる。また、組換えが起こるとIGHL-MAC上では、5’HPRTと3’HPRTが連結して、HPRT遺伝子の再構成が起こり、HAT耐性を獲得する。CHO #14 IGL-MACについて、10cm細胞培養皿においてコンフルエントになった時に18μgのFLP発現プラスミドをLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT、8μg/mL Blasticidinで薬剤選択を行う。
 得られたHAT耐性クローンを以降の解析に用いる。
[B.2]PCR解析による薬剤耐性クローンの選別
 FRT/FLPシステムを用いて期待した相互転座が起こり、IGHK-MACが構築されているか確認するため、薬剤耐性クローンのDNAを抽出し、鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
 相互転座連結部位の確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
 ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。
[B.3] two-color FISH解析
 プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHL-MACが構築されているか詳細に解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが観察されたものを陽性とし、IGHL-MACが構築されていることを確認(CHO IGHL-MACと命名)しクローンを選別し以降の実験を行う。
[実施例11]IGHL-MACのCHO K1細胞株への移入
 IGHL-MACおよびIGHL-MAC構築のための相互転座の際に形成された副産物の両方にNeo耐性遺伝子がのっており、微小核細胞融合法で目的の細胞に移入した際、G418で薬剤選択するとIGHL-MACもしくは副産物がそれぞれあるいは両方移入された細胞を取得することになる。MAC上にはEGFPが搭載されているので、目的の細胞にIGHL-MACが移入されているか確認することが可能であるが、染色体導入が効率的に行えるドナー細胞でかつIGHL-MACのみを保持する細胞を作製するため。IGHL-MACをCHO K1細胞株に移入する。
[A] 微小核細胞融合と薬剤耐性クローンの単離
 染色体移入により、IGHL-MACのみを保持する細胞株を作製する。
[A.1]IGHL-MACのCHO K1株への移入
 ドナー細胞であるCHO IGHL-MACを細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO K1細胞株に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418を添加し、10日選択培養を行う。得られた薬剤耐性株について以降の解析を行う。
[A.2] PCR解析による薬剤耐性クローンの選別
 IGHL-MACがCHO K1細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
 相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
 ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[A.3] two-color FISH解析
 Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-MACを1コピー独立して保持していることを確認する。
さらに、プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、IGHL-MACの構造を詳細に解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが観察されたものを陽性(CHO K1 IGHL-MACと命名)として、以降の実験に用いる。
[実施例12]マウスES細胞およびラットES細胞へのIGHL-MACの移入
[A]マウスES細胞へのIGHL-MACの移入
 ヒト抗体産生マウスを作製するためにはIGHL-MACをマウスES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHL-MACを子孫伝達させることが必要である。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
 ドナー細胞は、CHO K1 IGHL-MACを用いる。実施例6[A.1]と同様の手法を用いて微小核細胞融合を行い、EGFP陽性かつ薬剤耐性株を取得し、以降の解析を行う。
[A.2]PCR解析による薬剤耐性クローンの選別
 IGHL-MACがマウスES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
 相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[A.3] two-color FISH解析
 Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-MACのみを保持しており、マウスESの正常核型を維持していることを確認する。
 プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHL-MACが構築されているか詳細に解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが期待した位置に観察されたものを陽性細胞株(HKD31 IGHL-MAC)とし、インジェクションに用いる。
[B] ラットES細胞へのIGHL-MACの移入
 ヒト抗体産生ラットを作製するためにはIGHL-MACをラットES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHL-MACを子孫伝達させることが必要である。
[B.1] 微小核細胞融合と薬剤耐性クローンの単離
 実施例6[A.1]に記載のようにマウスES細胞への微小核細胞融合法と同様の手法を用いてラットES細胞へのIGHL-MACの導入を行う。ドナー細胞は、CHO K1 IGHL-MACを用いる。融合後、オーバーナイトでインキュベーションし、G418を150μg/mLになるように加え、3~4週間選択培養する。結果GFP陽性かつ薬剤耐性のクローンを以降の解析に用いる。
[B.2] PCR解析による薬剤耐性クローンの選別
 IGHL-MACがラットES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いたプライマーを以下に示す。
 相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
 これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
 ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
 ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
 これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[B.3] two-color FISH解析
 Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-MACを1コピー独立して保持しており、ラットESの正常核型(42本)を維持していることを確認する。プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、IGHL-MACの構造をさらに詳しく解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが期待した位置に観察されたものを陽性細胞株(rESIGHL-MACと命名)とし、インジェクションに用いる。
[実施例13]IGHL-MACを保持するマウスおよびラットの作製と子孫伝達個体の作製
 IGHL-MACを保持するマウスおよびラットES細胞を用い、(実施例7)同様に操作を行うことで、IGHL-MACを保持した子孫伝達マウスおよび、ラットを作製することができる。子孫伝達マウス、ラットおよび過程で得られたキメラマウスについても、(実施例7)、(実施例12)同様に解析を行い、IGHL-MAC保持および抗体発現(hλも含む)を確認する。作製されたIGHL-MAC保持マウスおよびラット系統をそれぞれmTC(IGHL-MAC)、rTC(IGHL-MAC)と呼ぶ。
[実施例14]ヒト抗体産生マウスの作製
 IGHK-MACおよびIGHL-MACを保持するマウスと、マウスIgh,およびIgk遺伝子が破壊されており、かつIgl変異を持つ(Iglの発現が低くなる変異を持つ)マウスを交配させ、ヒト抗体産生マウスを作製する。
[A]IghおよびIgk遺伝子欠損、Igl低発現マウスの作製
 ヒト抗体産生マウスを作製するため、マウス抗体遺伝子を欠損または低発現しているマウスを作製する。
[A.1] IghおよびIgk遺伝子欠損、Igl低発現マウスの作製
 HKD31(マウスIgh、Igkの遺伝子破壊が破壊されている)マウスESより得られたマウス系統と、マウスIgl低発現の変異を持つCD-1(ICR、チャールズリバーより購入)を交配して、IghおよびIgk遺伝子欠損、Igl低発現マウスを作製する。
 CD-1由来のマウスIglc変異はPCR-RFLP解析により確認する。
 以下のプライマーを用いてPCRを行った。
mIglc1VnC L:5’-CCTCAGGTTGGGCAGGAAGA-3’(配列番号 94)
J3C1:5’-GACCTAGGAACAGTCAGCACGGG-3’(配列番号 95)
 TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
 PCRプロダクトをKpnI-HF(NEB)で処理し、電気泳動後、PCRプロダクトの切断が認められないものを変異アレル保持として判定した。結果Igλ変異が両アレルで認められるマウス(LD系統と呼ぶ。)が得られた。
[A.2]マウス抗体遺伝子の発現評価
 マウス抗体が発現消失およびほぼ発現していないことをフローサイトメトリー(FCM)解析およびELISAによって、評価する。
 実施例7[A.3]で述べたように、Igh遺伝子が破壊されており、Igμの発現がなくなるとB細胞ができず、B細胞の有無を判定することで、Igh遺伝子欠損が評価できる。FCM解析は以前の報告(Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):722-7.)同様行い、B細胞欠失が見られた個体について、マウスIgh欠損と判定した。マウスIgh、Igκが破壊されていると考えられるマウス(HKD系統と呼ぶ。)の末梢血リンパ球についてFCM解析した結果、B細胞のマーカーであるB220陰性を示したため、このマウスはIgh遺伝子が破壊されていることが示された。さらに、Igλ変異マウスとの交配を進めた結果、Igh、Igκが破壊されてかつIgλ変異を両アレルにもつマウス(HKLD系統と呼ぶ。)を得た。
 また、得られたマウスについて、マウスIghに加え、Igk, Iglの発現も以前の報告(Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):722-7.)と同様に、ELISAを行い、発現消失および低発現であることを確認した。
[A.3]ヒト抗体産生マウスの作製
 IGHK-MAC保持マウスもしくはIGHL-MAC保持マウスとマウスIghKO、IgkKO、Igl変異マウスを交配し、ヒト抗体産生マウスを作製する。
[B]ヒト抗体産生マウスの評価
[B.1] FACS解析
 IGHK-MACもしくはIGHL-MACを保持するB細胞の存在確認を目的としてフローサイトメトリー解析を行う。マウスCD45R(B220)に対する抗体を用いて、血液細胞を染色し、ヒトIGM、CD45R、GFP陽性の細胞を確認した。ヘパリンコートキャピラリ―を用いて、眼窩より採血し、ヘパリンPBSの入ったチューブに血液を移し、転倒混和して氷冷した。遠心2000rpm、3分、4℃、の後、上清除去後、各種抗体を添加し、4℃で30分反応させ、5%牛胎仔血清を添加したPBS(5%FBS/PBS)により洗浄した。最後の遠心後、ペレットに1.2%Dextran/生理食塩水を加え、タッピング後、室温で45分静置し、赤血球を自然沈降させた。上清を新しいチューブに移し、2000rpm、3分、4℃で遠心後上清除去し、ペレットに室温の溶血剤(0.17M NH4Cl)を加え、5分静置する。2000rpm、3分、4℃で遠心し、5%FBS/PBSで洗浄した後500μlの5%FBS/PBSで懸濁したものを解析サンプルとし、フローサイトメーターにより解析した。HKD mTC(IGHK-MAC)マウスについて、フローサイトメトリー解析を行った結果、末梢血リンパ球についてB220、GFP共陽性の細胞の存在が確認された。少なくともIGHK-MACが機能してヒトのIGH、特にIgMが発現していることが示唆された。
[B.2] ヒト抗体の発現解析
 ヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、ELISAにより測定する。(実施例7)[A.4]に記載した方法同様、マウスの抗体発現の有無確認も含め、マウス抗体(mγ、mμ、mκ、mλ)、ヒト抗体(hγ、hμ、hκ、hλ、hγ1、hγ2、hγ3、hγ4、hα、hε、hδ)の発現および血清中の濃度を測定する。
[B.3] ヒト抗体の発現解析および配列同定
 ヒト抗体産生マウス脾臓由来RNAからcDNAを合成し、ヒト抗体遺伝子可変領域クローニングと塩基配列決定を行う。(実施例7)[A.5]と同様に実施することで解析、評価できる。
[B.4]抗原特異的ヒト抗体産生応答の評価
 ヒト抗体産生マウスについて、抗原特異的ヒト抗体産生応答が見られるかを評価する。   
(実施例7)[A.6]に記載した方法同様にヒト血清アルブミンで免疫し、抗体力価の上昇を解析する。
[B.5]ヒト抗体産生マウスからのヒト抗体産生ハイブリドーマの取得
 特許(国際公開番号WO98/37757)に記載されている方法同様にヒト抗体産生ハイブリドーマの取得ができる。
[実施例15]ヒト抗体産生ラットの作製
 IGHK-MACおよびIGHL-MACを保持するラットと、ラットIgh, Igk, Iglが破壊されたKOラットを交配させ、ヒト抗体産生ラットを作製する。
[A]ヒト抗体産生ラットの作製および評価
[A.1]ヒト抗体産生ラットの作製
 IGHK-MACもしくはIGHL-MACを保持したラット系統とラットIgh、Igκ、Igλ遺伝子が破壊されたラット系統を交配することで、ヒト抗体産生ラットを作製できる。
[A.2]FACS解析
 IGHK-MACもしくはIGHL-MACを保持するB細胞の確認を行う。(実施例14)[B.1]と同様の方法で実施し、抗体は抗ラットCD45R(B220)抗体を用い、溶血剤は0.15M NH4Clを用いる。
[A.3] ヒトIgの発現解析
 ELISAによるヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、(実施例7)[A.4]]と同様に解析を行うことでヒト抗体産生を評価することができる。抗ラット免疫グロブリン抗体を用いてラット抗体(rγ、rμ、rκ、rλ)の発現も評価する。
[A.4] ヒト抗体の発現解析および遺伝子配列同定
 上記の(実施例7)[A.5]と同様の方法を用いて、抗体遺伝子配列決定、解析、評価を行うことができる。
[A.5]抗原特異的ヒト抗体産生応答の評価
 (実施例14)[A.6]の記載と同様に実施し、評価することができる。
[A.6]ヒト抗体産生ラットからのヒト抗体産生ハイブリドーマの取得
 (実施例14)[B.5]の記載と同様の方法で実施し、ヒト抗体産生ハイブリドーマの取得ができる。
 本発明により、例えばラットなどのげっ歯類を含む非ヒト動物を用いてヒト抗体を作製することができるため、医薬抗体の製造において有用である。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (18)

  1.  ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)を含む非ヒト動物。
  2.  ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)を含む非ヒト動物。
  3.  ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)とを含む非ヒト動物。
  4.  ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHKL-MAC)を含む非ヒト動物。
  5.  哺乳動物である、請求項1~4のいずれか1項に記載の非ヒト動物。
  6.  哺乳動物がげっ歯類である、請求項5に記載の非ヒト動物。
  7.  げっ歯類がマウス又はラットである、請求項6に記載の非ヒト動物。
  8.  非ヒト動物の少なくとも2つの内在抗体遺伝子もしくは遺伝子座がノックアウトされている、請求項1~7のいずれか1項に記載の非ヒト動物。
  9.  請求項1記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
  10.  請求項2記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
  11.  請求項1記載の非ヒト動物と請求項2記載の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含む非ヒト動物を作製するステップ、作製された非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
  12.  ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)を含み、かつ前記ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)を含み、かつ前記ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
  13.  請求項4記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子がノックアウトされた同種の非ヒト動物を交配し、hIGHKL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
  14.  請求項1~8のいずれか1項に記載の非ヒト動物に抗原物質を投与するステップ、該ヒト動物から該抗原物質と結合する産生されたヒト抗体を回収するステップを含む、ヒト抗体を製造する方法。
  15.  抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、請求項14に記載の方法。
  16.  請求項1~8のいずれか1項に記載の非ヒト動物に抗原物質を投与するステップ、該非ヒト動物から脾臓細胞を取り出すステップ、該脾臓細胞とミエローマとを融合させてハイブリドーマを作製するステップ、該ハイブリドーマから該抗原物質と結合する抗体を回収するステップを含む、ヒトモノクローナル抗体を製造する方法。
  17.  抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、請求項16に記載の方法。
  18.  ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及び/又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座とを含むマウス人工染色体ベクター。
PCT/JP2017/039441 2016-10-31 2017-10-31 ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法 WO2018079857A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018547235A JP6868250B2 (ja) 2016-10-31 2017-10-31 ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法
EP17864055.3A EP3533867A4 (en) 2016-10-31 2017-10-31 NON-HUMAN ANIMAL PRODUCING HUMAN ANTIBODIES AND PROCESS FOR THE PREPARATION OF HUMAN ANTIBODIES USING IT
AU2017348743A AU2017348743C1 (en) 2016-10-31 2017-10-31 Human antibody–producing non-human animal and method for preparing human antibodies using same
CN201780068107.1A CN109906272A (zh) 2016-10-31 2017-10-31 产生人抗体的非人动物和使用该非人动物的人抗体制作方法
US16/346,077 US12063913B2 (en) 2016-10-31 2017-10-31 Human antibody-producing non-human animal and method for preparing human antibodies using same
CA3042171A CA3042171C (en) 2016-10-31 2017-10-31 Human antibody-producing non-human animal and method for preparing human antibody using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213844 2016-10-31
JP2016-213844 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079857A1 true WO2018079857A1 (ja) 2018-05-03

Family

ID=62023680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039441 WO2018079857A1 (ja) 2016-10-31 2017-10-31 ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法

Country Status (7)

Country Link
US (1) US12063913B2 (ja)
EP (1) EP3533867A4 (ja)
JP (1) JP6868250B2 (ja)
CN (1) CN109906272A (ja)
AU (1) AU2017348743C1 (ja)
CA (1) CA3042171C (ja)
WO (1) WO2018079857A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020075822A1 (ja) * 2018-10-10 2021-06-03 国立大学法人鳥取大学 外来染色体を含むヒト人工多能性幹細胞の製造方法
WO2022059801A1 (ja) 2020-09-16 2022-03-24 株式会社Trans Chromosomics コロナウイルスに対する抗体
JP2022526048A (ja) * 2019-04-12 2022-05-23 ヒューマブ カンパニー リミテッド 人工組換え染色体およびその使用
WO2023090361A1 (ja) * 2021-11-16 2023-05-25 国立大学法人鳥取大学 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115988960A (zh) * 2020-06-25 2023-04-18 株式会社湖美宝 杂合转基因动物
KR20230084157A (ko) 2020-10-08 2023-06-12 주식회사 휴맵 인간화 면역글로불린 유전자좌를 포함하는 게놈을 가지는 형질전환 비인간-동물 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037757A1 (fr) 1997-02-28 1998-09-03 Kirin Beer Kabushiki Kaisha Cellules multipotentes comprenant des genes intrinseques dissocies
WO2000010383A1 (en) 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
JP3797974B2 (ja) 2000-11-17 2006-07-19 ヘマテック,エルエルシー クローン化トランスジェニック有蹄動物における異種(ヒト)免疫グロブリンの発現
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
JP2007312792A (ja) * 1995-08-29 2007-12-06 Kirin Pharma Co Ltd キメラ動物およびその作製法
JP2008200042A (ja) * 1995-08-29 2008-09-04 Kirin Pharma Co Ltd ヒト抗体遺伝子を発現する非ヒト動物とその利用
JP2011083870A (ja) 2009-10-16 2011-04-28 Hitachi Koki Co Ltd インパクト工具
WO2011062206A1 (ja) 2009-11-17 2011-05-26 協和発酵キリン株式会社 ヒト人工染色体ベクター
WO2011083870A1 (ja) * 2010-01-06 2011-07-14 国立大学法人鳥取大学 マウス人工染色体ベクター
JP2013090631A (ja) * 2001-02-16 2013-05-16 Regeneron Pharmaceuticals Inc 真核生物細胞を改変する方法
JP2016504012A (ja) * 2012-08-03 2016-02-12 エスエービー,エルエルシー トランスジェニック動物におけるヒト抗体産生のための複合染色体工学
JP2016213844A (ja) 2012-09-27 2016-12-15 京セラ株式会社 管理方法、制御装置及び通信処理デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632976B1 (en) 1995-08-29 2003-10-14 Kirin Beer Kabushiki Kaisha Chimeric mice that are produced by microcell mediated chromosome transfer and that retain a human antibody gene
GB9823930D0 (en) * 1998-11-03 1998-12-30 Babraham Inst Murine expression of human ig\ locus
US20060130157A1 (en) 2004-10-22 2006-06-15 Kevin Wells Ungulates with genetically modified immune systems
JP6009441B2 (ja) 2010-06-22 2016-10-19 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. ハイブリッド軽鎖マウス
EP3252074A4 (en) 2015-01-30 2018-07-11 Saitama Medical University Anti-alk2 antibody

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312792A (ja) * 1995-08-29 2007-12-06 Kirin Pharma Co Ltd キメラ動物およびその作製法
JP2008200042A (ja) * 1995-08-29 2008-09-04 Kirin Pharma Co Ltd ヒト抗体遺伝子を発現する非ヒト動物とその利用
WO1998037757A1 (fr) 1997-02-28 1998-09-03 Kirin Beer Kabushiki Kaisha Cellules multipotentes comprenant des genes intrinseques dissocies
JP4082740B2 (ja) 1997-02-28 2008-04-30 キリンファーマ株式会社 内因性遺伝子が破壊されている分化多能性保持細胞
WO2000010383A1 (en) 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
JP3797974B2 (ja) 2000-11-17 2006-07-19 ヘマテック,エルエルシー クローン化トランスジェニック有蹄動物における異種(ヒト)免疫グロブリンの発現
JP2013090631A (ja) * 2001-02-16 2013-05-16 Regeneron Pharmaceuticals Inc 真核生物細胞を改変する方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
JP2011083870A (ja) 2009-10-16 2011-04-28 Hitachi Koki Co Ltd インパクト工具
WO2011062206A1 (ja) 2009-11-17 2011-05-26 協和発酵キリン株式会社 ヒト人工染色体ベクター
WO2011083870A1 (ja) * 2010-01-06 2011-07-14 国立大学法人鳥取大学 マウス人工染色体ベクター
JP5557217B2 (ja) 2010-01-06 2014-07-23 国立大学法人鳥取大学 マウス人工染色体ベクター
JP2016504012A (ja) * 2012-08-03 2016-02-12 エスエービー,エルエルシー トランスジェニック動物におけるヒト抗体産生のための複合染色体工学
JP2016213844A (ja) 2012-09-27 2016-12-15 京セラ株式会社 管理方法、制御装置及び通信処理デバイス

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
"Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"GenBank", Database accession no. NC_000022.11
A. DOYLEJ. B. GRIFFITHS: "Cell & Tissue Culture: Laboratory Procedures", 1996, JOHN WILEY & SONS LTD.
ANDOCHIBAKODANSHA, INTRODUCTION OF EXPERIMENT FOR MONOCLONAL ANTIBODY, 1991
C. TSURUMAKI ET AL., J. MAMM. OVA RES., vol. 26, 2009, pages 86 - 93
CRE/LOXP SYSTEMB. SAUER, METHODS OF ENZYMOLOGY, vol. 225, 1993, pages 890 - 900
DIEKEN ET AL., NATURE GENETICS, vol. 12, no. 1, 1996, pages 74 - 182
HIRABAYASHI ET AL., MOL. REPROD. DEV., vol. 77, no. 2, February 2010 (2010-02-01)
ISHIKAWA: "Ultrasensitive Enzyme Immunoassays", 1993, GAKKAI SHUPPAN CENTER
J. A. THOMSON ET AL., BIOL. REPROD., vol. 55, 1996, pages 254 - 259
J. A. THOMSON ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 92, 1995, pages 7844 - 7848
J. A. THOMSON ET AL., SCIENCE, vol. 282, 1999, pages 1145 - 1147
J. A. THOMSONV. S. MARSHALL, CURR. TOP. DEV. BIOL., vol. 38, 1998, pages 133 - 165
J. LIAO ET AL., CELL RES., vol. 18, 2008, pages 600 - 603
J. YU ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
K. KAWAHARADA ET AL., WORLD J. STEM CELLS, vol. 7, no. 7, 2015, pages 1054 - 1063
K. TAKAHASHI ET AL., CELL, vol. 131, 2007, pages 861 - 872
K. TAKAHASHIS. YAMANAKA, CELL, vol. 126, 2006, pages 663 - 676
KOI ET AL., JPN. J. CANCER RES., vol. 80, 1973, pages 413 - 418
M. BRUGGEMANN ET AL., ARC. IMMUNOL. THER. EXP., vol. 63, 2015, pages 101 - 108
M. J. EVANSM. H. KAUFMAN, NATURE, vol. 292, 1981, pages 154 - 156
M. J. EVANSM. H. KAUFMAN, NATURE, vol. 292, no. 5819, 1981, pages 154 - 156
M. JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821
M. KATOH ET AL., BMC BIOTECHNOLOGY, vol. 10, 2010, pages 37
M. NAKAGAWA ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 101 - 106
MATSUBARA ET AL.: "FISH experimental protocol", 1994, SHUJUNSHA CO., LTD.
MATSUBARASHUJUNSHA CO., LTD. ET AL.: "FISH experimental protocol", 1994
PROC. NATL. ACAD. SCI., U.S.A., vol. 97, no. 2, 18 January 2000 (2000-01-18), pages 722 - 7
S. HAMANAKA ET AL., PLOS ONE, vol. 6, 2011, pages e22008
See also references of EP3533867A4
T. SUZUKI ET AL., PLOS ONE, 2016
TAKAHASHI, K. ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKIGUCHI, MASATO ET AL.: "A Novel and Stable Mouse Artificial Chromosome Vector", ACS SYNTHETIC BIOLOGY, vol. 3, 2014, pages 903 - 914, XP055472980 *
TOYAMAANDOKODANSHA, EXPERIMENTAL MANUAL FOR MONOCLONAL ANTIBODY, 1987
W. LI ET AL., CELL STEM CELL, vol. 4, 2009, pages 16 - 19

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020075822A1 (ja) * 2018-10-10 2021-06-03 国立大学法人鳥取大学 外来染色体を含むヒト人工多能性幹細胞の製造方法
JP7079946B2 (ja) 2018-10-10 2022-06-03 国立大学法人鳥取大学 外来染色体を含むヒト人工多能性幹細胞の製造方法
JP2022526048A (ja) * 2019-04-12 2022-05-23 ヒューマブ カンパニー リミテッド 人工組換え染色体およびその使用
JP7302763B2 (ja) 2019-04-12 2023-07-04 ヒューマブ カンパニー リミテッド 人工組換え染色体およびその使用
WO2022059801A1 (ja) 2020-09-16 2022-03-24 株式会社Trans Chromosomics コロナウイルスに対する抗体
WO2023090361A1 (ja) * 2021-11-16 2023-05-25 国立大学法人鳥取大学 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物

Also Published As

Publication number Publication date
CN109906272A (zh) 2019-06-18
CA3042171C (en) 2021-07-20
AU2017348743A1 (en) 2019-06-13
AU2017348743C1 (en) 2022-03-03
AU2017348743B2 (en) 2021-10-07
CA3042171A1 (en) 2018-05-03
EP3533867A4 (en) 2020-07-22
JPWO2018079857A1 (ja) 2019-09-19
JP6868250B2 (ja) 2021-05-12
US12063913B2 (en) 2024-08-20
EP3533867A1 (en) 2019-09-04
US20190254264A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6868250B2 (ja) ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法
JP5557217B2 (ja) マウス人工染色体ベクター
JP4115281B2 (ja) ヒト抗体λ軽鎖遺伝子を含むヒト人工染色体、および子孫伝達可能な該ヒト人工染色体を含む非ヒト動物
JP4318736B2 (ja) ヒト抗体遺伝子を発現する非ヒト動物とその利用
JP3732407B2 (ja) 染色体の改変方法
US7420099B2 (en) Transgenic animals and uses thereof
KR20080005616A (ko) 클로닝된 트랜스제닉 유제류에서 이종 (사람)면역글로블린의 발현
JP6775224B2 (ja) マウス人工染色体ベクター及びその使用
US20210017253A1 (en) Nucleic acid molecules and applications thereof in preparing human single-domain antibody
KR20050000558A (ko) 인간 항체를 제조할 수 있는 트랜스제닉 유제동물
WO2023090361A1 (ja) 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物
WO2009111086A1 (en) Transgenic non-human mammals with kappa light chain of xenogenous immunoglobulin
JP2007312792A (ja) キメラ動物およびその作製法
WO2019088257A1 (ja) 哺乳類人工染色体ベクターを利用するタンパク質の高生産方法
JP2001231403A (ja) 改変された外来染色体あるいはその断片を保持する非ヒト動物
JPH11313576A (ja) キメラ動物およびその作製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547235

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3042171

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017348743

Country of ref document: AU

Date of ref document: 20171031

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017864055

Country of ref document: EP

Effective date: 20190531