WO2018078911A1 - アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線 - Google Patents

アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線 Download PDF

Info

Publication number
WO2018078911A1
WO2018078911A1 PCT/JP2017/014044 JP2017014044W WO2018078911A1 WO 2018078911 A1 WO2018078911 A1 WO 2018078911A1 JP 2017014044 W JP2017014044 W JP 2017014044W WO 2018078911 A1 WO2018078911 A1 WO 2018078911A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
aluminum alloy
less
alloy wire
alloy
Prior art date
Application number
PCT/JP2017/014044
Other languages
English (en)
French (fr)
Inventor
美里 草刈
鉄也 桑原
中井 由弘
西川 太一郎
大塚 保之
勇人 大井
Original Assignee
住友電気工業株式会社
株式会社オートネットワーク技術研究所
住友電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 株式会社オートネットワーク技術研究所, 住友電装株式会社 filed Critical 住友電気工業株式会社
Priority to CN201780067939.1A priority Critical patent/CN109906281B/zh
Priority to US16/346,420 priority patent/US10910126B2/en
Priority to DE112017005492.3T priority patent/DE112017005492T5/de
Priority to KR1020197012426A priority patent/KR102301263B1/ko
Publication of WO2018078911A1 publication Critical patent/WO2018078911A1/ja
Priority to US17/128,712 priority patent/US11342094B2/en
Priority to US17/728,721 priority patent/US11594346B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/183Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section
    • H01R4/184Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion
    • H01R4/185Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion combined with a U-shaped insulation-receiving portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve

Definitions

  • the present invention relates to an aluminum alloy wire, an aluminum alloy twisted wire, a covered electric wire, and a terminal-attached electric wire.
  • Patent Document 1 discloses that an aluminum alloy has a specific composition and is softened so that it has high strength and high toughness, high electrical conductivity, and excellent adhesion to a terminal portion.
  • An aluminum alloy wire is disclosed.
  • the aluminum alloy wire of the present disclosure is An aluminum alloy wire composed of an aluminum alloy,
  • the aluminum alloy contains 0.005 mass% or more and 2.2 mass% or less of Fe, with the balance consisting of Al and inevitable impurities,
  • In the cross section of the aluminum alloy wire from the surface layer region from the surface to the depth direction of 30 ⁇ m, take a rectangular surface layer bubble measurement region having a short side length of 30 ⁇ m and a long side length of 50 ⁇ m, The total cross-sectional area of the bubbles present in the surface bubble measurement region is 2 ⁇ m 2 or less,
  • the aluminum alloy wire has a wire diameter of 0.2 mm to 3.6 mm, Tensile strength is 110 MPa or more and 200 MPa or less, 0.2% proof stress is 40 MPa or more, The elongation at break is 10% or more, Conductivity is 55% IACS or higher.
  • the aluminum alloy twisted wire of the present disclosure is A plurality of the aluminum alloy wires of the present disclosure are twisted together.
  • the covered wire of the present disclosure is A covered electric wire comprising a conductor and an insulating coating covering the outer periphery of the conductor,
  • the conductor includes the aluminum alloy twisted wire of the present disclosure described above.
  • the electric wire with terminal of the present disclosure is The covered electric wire according to the present disclosure described above and a terminal portion attached to an end of the covered electric wire.
  • Wires for various applications such as wiring of various electrical devices such as wire harnesses, industrial robots, etc. mounted on equipment such as automobiles and airplanes, and wiring of buildings, etc. are impacted when the equipment is used or installed. Or repeated bends.
  • Specific examples include (1) to (3) below.
  • An electric wire wired to an industrial robot may be repeatedly bent or twisted.
  • an object is to provide an aluminum alloy wire having excellent impact resistance and fatigue characteristics. Another object is to provide an aluminum alloy stranded wire, a coated electric wire, and a terminal-attached electric wire having excellent impact resistance and fatigue characteristics.
  • the aluminum alloy wire of the present disclosure, the aluminum alloy twisted wire of the present disclosure, the covered electric wire of the present disclosure, and the electric wire with a terminal of the present disclosure are excellent in impact resistance and fatigue characteristics.
  • the inventors of the present invention manufactured an aluminum alloy wire under various conditions, and studied an aluminum alloy wire excellent in impact resistance and fatigue characteristics (difficult to break against repeated bending).
  • a wire made of an aluminum alloy having a specific composition containing Fe in a specific range and subjected to a softening treatment has high strength (for example, high tensile strength and high 0.2% proof stress) and high toughness (for example, In addition to excellent impact resistance, the conductivity is high and the conductivity is excellent. In this wire, it was found that particularly when there are few bubbles in the surface layer, it is excellent in impact resistance and is not easily broken even by repeated bending.
  • An aluminum alloy wire according to an aspect of the present invention is: An aluminum alloy wire composed of an aluminum alloy, The aluminum alloy contains 0.005 mass% or more and 2.2 mass% or less of Fe, with the balance consisting of Al and inevitable impurities,
  • the cross section of the aluminum alloy wire from the surface layer region from the surface to the depth direction of 30 ⁇ m, take a rectangular surface layer bubble measurement region having a short side length of 30 ⁇ m and a long side length of 50 ⁇ m, The total cross-sectional area of the bubbles present in the surface bubble measurement region is 2 ⁇ m 2 or less,
  • the aluminum alloy wire has a wire diameter of 0.2 mm to 3.6 mm, Tensile strength is 110 MPa or more and 200 MPa or less, 0.2% proof stress is 40 MPa or more, The elongation at break is 10% or more, Conductivity is 55% IACS or higher.
  • the cross section of the aluminum alloy wire refers to a cross section cut along a plane orthogonal to the aluminum alloy wire
  • the aluminum alloy wire (hereinafter sometimes referred to as an Al alloy wire) is made of an aluminum alloy having a specific composition (hereinafter sometimes referred to as an Al alloy), and is subjected to softening treatment during the manufacturing process. As a result, it has high strength, high toughness, and excellent impact resistance. Due to its high strength and high toughness, it can be bent smoothly, and even when subjected to repeated bending, it is hard to break and has excellent fatigue characteristics. In particular, the Al alloy wire described above has few bubbles present in the surface layer. For this reason, even when subjected to impact or repeated bending, the bubbles are unlikely to become the starting point of cracking, and cracks due to the bubbles are unlikely to occur.
  • the Al alloy wire Since it is difficult for surface cracks to occur, it is also possible to reduce the occurrence of cracks from the surface of the wire to the inside and the breakage. Therefore, the Al alloy wire is excellent in impact resistance and fatigue characteristics. In addition, since the above Al alloy wire is less likely to be cracked due to bubbles, depending on the composition and heat treatment conditions, the tensile strength, 0.2% proof stress, and elongation at break when a tensile test is performed. At least one selected from the group tends to be higher and has excellent mechanical properties.
  • the above-mentioned form since the ratio of the above-mentioned total cross-sectional area is 1.1 or more, there are many bubbles present inside compared to the surface layer of the Al alloy wire, but the above-mentioned total cross-sectional area ratio is within a specific range. In order to satisfy, it can be said that there are few bubbles inside. Therefore, the above-described form is more excellent in impact resistance and fatigue characteristics because cracks are less likely to propagate from the surface of the wire through the air bubbles, even when subjected to impacts or repeated bending, and is less likely to break.
  • the aluminum alloy further contains one or more elements selected from Mg, Si, Cu, Mn, Ni, Zr, Ag, Cr, and Zn in the following ranges, respectively, and 1.0% by mass or less in total.
  • Mg 0.05 mass% or more and 0.5 mass% or less Si: 0.03 mass% or more and 0.3 mass% or less
  • Cu 0.05 mass% or more and 0.5 mass% or less
  • Ni, Zr, Ag, Cr and Zn 0.005 mass% or more and 0.2 mass% or less in total
  • the above-mentioned form can be expected to further improve the strength by containing the above-mentioned elements in a specific range in addition to Fe.
  • the aluminum alloy further includes a form containing at least one of 0% by mass or more and 0.05% by mass or less of Ti and 0% by mass or more and 0.005% by mass or less of B.
  • Ti and B are easy to make crystal grains fine at the time of casting.
  • an Al alloy wire having a fine crystal structure is likely to result.
  • the above form has a fine crystal structure, is not easily broken when subjected to impact or repeated bending, and is excellent in impact resistance and fatigue characteristics.
  • the above-mentioned form is excellent in impact resistance and fatigue characteristics because the crystal grains are fine and flexibility is excellent in addition to few bubbles.
  • the work hardening index satisfies a specific range, when the terminal part is attached by pressure bonding or the like, an improvement in the fixing force of the terminal part by work hardening can be expected. Therefore, the said form can be utilized suitably for the conductor to which terminal parts, such as an electric wire with a terminal, are attached.
  • the said form when the thickness of the surface oxide film satisfies a specific range, when the terminal portion is attached, there are few oxides (what constitutes the surface oxide film) interposed between the terminal portion and the excessive amount. In addition to preventing an increase in connection resistance due to the inclusion of oxides, it is excellent in corrosion resistance. Therefore, the said form can be utilized suitably for the conductor to which terminal parts, such as an electric wire with a terminal, are attached. In this case, it is possible to construct a connection structure that is excellent in impact resistance and fatigue characteristics, and also has low resistance and excellent corrosion resistance.
  • Examples include a hydrogen content of 4.0 ml / 100 g or less.
  • the present inventors examined the contained gas component for the Al alloy wire containing bubbles, and obtained the knowledge that it contained hydrogen. Therefore, it is considered that one factor of bubbles in the Al alloy wire is hydrogen. In the above-described embodiment, it can be said that the number of bubbles is small because the hydrogen content is small, and disconnection due to the bubbles is difficult to occur, and the impact resistance and fatigue characteristics are excellent.
  • the aluminum alloy twisted wire according to one aspect of the present invention is A plurality of the aluminum alloy wires according to any one of (1) to (8) above are twisted together.
  • Each strand constituting the aluminum alloy stranded wire (hereinafter sometimes referred to as an Al alloy stranded wire) is composed of an Al alloy having a specific composition as described above, and there are few bubbles present on the surface layer. Therefore, it is excellent in impact resistance and fatigue characteristics.
  • a stranded wire is generally more flexible than a single wire having the same conductor cross-sectional area, and even when subjected to impact or repeated bending, each strand is difficult to break, impact resistance and fatigue Excellent characteristics. From these points, the Al alloy stranded wire is excellent in impact resistance and fatigue characteristics. Since each strand is excellent in mechanical properties as described above, the Al alloy twisted wire tends to have at least one selected from tensile strength, 0.2% yield strength, and elongation at break, Excellent mechanical properties.
  • the layer core diameter means the diameter of a circle connecting the centers of all the strands included in each layer when the stranded wire has a multilayer structure.
  • the twisting pitch satisfies a specific range, and when bending or the like, the strands are not easily twisted so that they are not easily broken. Easy to install. Therefore, in addition to being excellent in fatigue characteristics, the above form can be suitably used for a conductor to which a terminal portion such as a terminal-attached electric wire is attached.
  • the covered electric wire according to one aspect of the present invention is A covered electric wire comprising a conductor and an insulating coating covering the outer periphery of the conductor,
  • the conductor includes the aluminum alloy twisted wire according to the above (9) or (10).
  • the above-mentioned covered electric wire includes a conductor constituted by the above-described Al alloy stranded wire excellent in impact resistance and fatigue characteristics, it is excellent in impact resistance and fatigue characteristics.
  • the electric wire with terminal according to one aspect of the present invention is: The covered electric wire according to (11) above and a terminal portion attached to an end of the covered electric wire.
  • the above-mentioned electric wire with a terminal is excellent in impact resistance and fatigue characteristics because it is composed of a covered electric wire provided with a conductor constituted by the above-described Al alloy wire or Al alloy twisted wire excellent in impact resistance and fatigue properties.
  • the aluminum alloy wire (Al alloy wire) 22 of the embodiment is a wire made of an aluminum alloy (Al alloy), and is typically used for a conductor 2 of an electric wire (FIG. 1).
  • the Al alloy wire 22 is a single wire, a stranded wire formed by twisting a plurality of Al alloy wires 22 (the Al alloy stranded wire 20 of the embodiment), or a compression formed by compressing a stranded wire into a predetermined shape. It is used in the state of a stranded wire (another example of the Al alloy stranded wire 20 of the embodiment).
  • FIG. 1 illustrates an Al alloy twisted wire 20 in which seven Al alloy wires 22 are twisted together.
  • the Al alloy wire 22 of the embodiment has a specific composition in which the Al alloy contains Fe in a specific range, and has a specific structure in which there are few bubbles present in the surface layer of the Al alloy wire 22.
  • the Al alloy constituting the Al alloy wire 22 of the embodiment is an Al—Fe alloy containing Fe in an amount of 0.005% to 2.2% and the balance being Al and inevitable impurities.
  • the Al alloy wire 22 of the embodiment has a total cross-sectional area of bubbles existing in the following region (referred to as a surface bubble measurement region) taken from a surface layer region up to 30 ⁇ m in the depth direction from the surface in the transverse section. Is 2 ⁇ m 2 or less.
  • the surface bubble measurement region is a rectangular region having a short side length of 30 ⁇ m and a long side length of 50 ⁇ m.
  • the Al alloy wire 22 of the embodiment having the above-mentioned specific composition and having a specific structure has high strength, high toughness, and excellent impact resistance by receiving a softening treatment in the manufacturing process. Since breakage due to air bubbles can also be reduced, the impact resistance is excellent and the fatigue characteristics are also excellent. This will be described in more detail below. The details of the measurement method of each parameter such as the bubble size and the details of the above-described effects will be described in test examples.
  • the Al alloy wire 22 of the embodiment is made of an Al alloy containing 0.005% or more of Fe, the strength can be increased without causing much decrease in conductivity.
  • the higher the content of Fe the higher the strength of the Al alloy.
  • the Al alloy wire 22 is made of an Al alloy containing Fe in a range of 2.2% or less, so that it is difficult to cause a decrease in conductivity and toughness due to the inclusion of Fe, and high conductivity and high toughness. Etc., and it is difficult to break at the time of wire drawing and is excellent in manufacturability.
  • the Fe content is 0.1% to 2.0%, further 0.3% to 2.0%, 0.9% to 2.0% It can be as follows.
  • the Al alloy constituting the Al alloy wire 22 of the embodiment can be expected to improve mechanical properties such as strength and toughness when it contains the following additive elements in a specific range described below, in addition to Fe, and impact resistance. It is more excellent in property and fatigue characteristics.
  • the additive element include one or more elements selected from Mg, Si, Cu, Mn, Ni, Zr, Ag, Cr, and Zn. Although Mg, Mn, Ni, Zr, and Cr have a large decrease in conductivity, the effect of improving the strength is high. In particular, when Mg and Si are contained simultaneously, the strength can be further improved. Cu has little decrease in conductivity and can improve strength. Ag and Zn have little decrease in electrical conductivity and have a certain degree of strength improvement effect.
  • each enumerated element Due to the improvement in strength, even after heat treatment such as softening treatment, it can have high elongation at break while having high tensile strength and the like, which contributes to improvement in impact resistance and fatigue characteristics.
  • the content of each enumerated element is 0% to 0.5%, and the total content of the enumerated elements is 0% to 1.0%. In particular, when the total content of the enumerated elements is 0.005% or more and 1.0% or less, it is easy to obtain the above-described effects of improving strength, impact resistance, fatigue characteristics, and the like. Examples of the content of each element include the following.
  • the amount of each element added so that the content of these elements becomes a desired amount It is good to adjust. That is, the content in each additive element such as Fe is the total amount including the elements contained in the aluminum ingot used as a raw material, and does not necessarily mean the amount added.
  • the Al alloy constituting the Al alloy wire 22 of the embodiment can contain at least one element of Ti and B in addition to Fe.
  • Ti and B have the effect of making the Al alloy crystal finer during casting.
  • a cast material having a fine crystal structure as a raw material, crystal grains are likely to become fine even when subjected to heat treatment including processing such as rolling and wire drawing or softening after casting.
  • the Al alloy wire 22 having a fine crystal structure is less likely to break when subjected to impact or repeated bending as compared with a coarse crystal structure, and is excellent in impact resistance and fatigue characteristics.
  • the refinement effect tends to increase in the order of the inclusion of B alone, the inclusion of Ti alone, and the inclusion of both Ti and B.
  • the content When Ti is contained, the content is 0% or more and 0.05% or less, and further 0.005% or more and 0.05% or less.
  • B When B is contained, the content is 0% or more and 0.005% or less. Furthermore, when it is 0.001% or more and 0.005% or less, a crystal refining effect can be obtained, and a decrease in conductivity due to the inclusion of Ti or B can be reduced. Considering the balance between the crystal refinement effect and the conductivity, the Ti content is 0.01% or more and 0.04% or less, further 0.03% or less, and the B content is 0.002% or more and 0.0. 004% or less.
  • compositions containing the above elements in addition to Fe are shown below.
  • Fe is contained in an amount of 0.01% to 2.2%, Mg is contained in an amount of 0.05% to 0.5%, and the balance is Al and inevitable impurities.
  • Fe is 0.01% to 2.2%, Mg is 0.05% to 0.5%, Si is 0.03% to 0.3%, the balance being Al and inevitable impurities .
  • Fe is contained in an amount of 0.1% to 2.2%, Cu is contained in an amount of 0.05% to 0.5%, and the balance is Al and inevitable impurities.
  • (6) In any one of the above (1) to (5), containing at least one element of 0.005% to 0.05% Ti and 0.001% to 0.005% B To do.
  • the Al alloy wire 22 of the embodiment has few bubbles present on the surface layer.
  • a surface layer region 220 having a depth of 30 ⁇ m from the surface thereof, that is, an annular region having a thickness of 30 ⁇ m is taken.
  • a rectangular surface layer bubble measurement region 222 (shown by a broken line in FIG. 3) having a short side length S of 30 ⁇ m and a long side length L of 50 ⁇ m is taken.
  • the short side length S corresponds to the thickness of the surface layer region 220.
  • a tangent line T is taken for an arbitrary point (contact point P) on the surface of the Al alloy wire 22.
  • a straight line C having a length of 30 ⁇ m in the normal direction of the surface is taken from the contact P toward the inside of the Al alloy wire 22. If the Al alloy wire 22 is a round wire, a straight line C is taken toward the center of this circle.
  • a straight line parallel to the straight line C and having a length of 30 ⁇ m is defined as a short side 22S.
  • a straight line passing through the contact point P and extending along the tangent line T and having a length of 50 ⁇ m so that the contact point P becomes an intermediate point is defined as a long side 22L.
  • the total cross-sectional area of bubbles present in the surface bubble measurement region 222 is 2 ⁇ m 2 or less. Since there are few air bubbles in the surface layer, it is easy to reduce cracks originating from air bubbles when subjected to impacts or repeated bending, and as a result, the progress of cracks from the surface layer to the inside can also be reduced, and breakage caused by air bubbles can be reduced. Can be reduced. Therefore, the Al alloy wire 22 of the embodiment is excellent in impact resistance and fatigue characteristics.
  • the total area of the bubbles is large, there may be coarse bubbles or a large number of fine bubbles, and the bubbles may become the starting point of cracks, or cracks may easily progress, and impact resistance It is inferior in property and fatigue characteristics.
  • the total cross-sectional area of the bubbles, as the bubbles is small small, because it is excellent in impact resistance and fatigue properties by reducing breakage caused by air bubbles, less than 1.5 [mu] m 2, further 1 [mu] m 2 or less, 0.95 .mu.m 2 It is preferable that it is below, and it is so preferable that it is close to 0.
  • the bubbles tend to decrease when the hot water temperature is lowered during the casting process.
  • the cooling rate at the time of casting especially the cooling rate in a specific temperature range to be described later is increased, it is less and tends to be smaller.
  • the measurement region of the bubbles in the surface layer can be a fan shape as shown in FIG.
  • the bubble measurement region 224 is indicated by a bold line so that it can be easily understood.
  • a surface layer region 220 having a depth of 30 ⁇ m from the surface thereof, that is, an annular region having a thickness t of 30 ⁇ m is taken.
  • a fan-shaped region (referred to as a bubble measurement region 224) having an area of 1500 ⁇ m 2 is taken.
  • the central angle ⁇ of the fan-shaped region having an area of 1500 ⁇ m 2 is obtained.
  • the bubble measurement area 224 can be extracted. If the total cross-sectional area of the bubbles present in the fan-shaped bubble measurement region 224 is 2 ⁇ m 2 or less, the Al alloy wire 22 having excellent impact resistance and fatigue characteristics can be obtained for the reasons described above. Taking both the above-mentioned rectangular surface bubble measurement area and fan-shaped bubble measurement area, and the total area of the bubbles present in both is 2 ⁇ m 2 or less, the wire material is excellent in impact resistance and fatigue characteristics. It is expected to improve the reliability of
  • the Al alloy wire 22 of the embodiment there may be mentioned one having few air bubbles in the inside in addition to the surface layer.
  • a rectangular region referred to as an internal bubble measurement region
  • This internal bubble measurement region is taken such that the center of this rectangle overlaps the center of the Al alloy wire 22.
  • the center of the inscribed circle is the center of the Al alloy wire 22 (the same applies hereinafter).
  • the ratio of the total cross-sectional area Sib of the bubbles existing in the internal bubble measurement region to the total cross-sectional area Sfb of bubbles existing in the measurement region (Sib / Sfb) is 1.1 or more and 44 or less.
  • solidification generally proceeds from the surface of the metal toward the inside. Therefore, when the gas in the atmosphere is dissolved in the molten metal, the gas tends to escape to the outside of the metal on the metal surface layer, but the gas is easily trapped and remains inside the metal.
  • the ratio Sib / Sfb is more preferably 40 or less, more preferably 30 or less, 20 or less, or 15 or less because the smaller the ratio Sib / Sfb, the smaller the number of bubbles present inside, and the better the impact resistance and fatigue characteristics. If the ratio Sib / Sfb is 1.1 or more, it is considered that the Al alloy wire 22 with few bubbles can be manufactured without excessively reducing the hot water temperature and is suitable for mass production. It is considered that mass production is easy when the ratio Sib / Sfb is about 1.3 to 6.0.
  • the Al alloy wire 22 of the embodiment an Al alloy having an average crystal grain size of 50 ⁇ m or less can be cited.
  • the Al alloy wire 22 having a fine crystal structure is easy to bend, is excellent in flexibility, and hardly breaks when subjected to impact or repeated bending.
  • the Al alloy wire 22 of the embodiment is excellent in impact resistance and fatigue characteristics in combination with the fact that the surface layer has few bubbles.
  • the average crystal grain size is preferably 45 ⁇ m or less, more preferably 40 ⁇ m or less, and 30 ⁇ m or less because the smaller the average crystal grain size, the easier the bending and the like, and the better the impact resistance and fatigue characteristics.
  • the crystal grain size depends on the composition and production conditions, for example, if Ti or B is contained as described above, it tends to be fine.
  • the Al alloy wire 22 of the embodiment one having a hydrogen content of 4.0 ml / 100 g or less can be cited.
  • One factor of bubbles is considered to be hydrogen as described above. If the Al content of the Al alloy wire 22 is 4.0 ml or less per 100 g of mass, the Al alloy wire 22 has few bubbles and can reduce breakage due to the bubbles as described above. Since it is considered that the smaller the hydrogen content is, the smaller the bubbles are, and therefore, it is preferably 3.8 ml / 100 g or less, more preferably 3.6 ml / 100 g or less, and 3 ml / 100 g or less.
  • the hydrogen in the Al alloy wire 22 is cast in an atmosphere containing water vapor such as an air atmosphere, so that the water vapor in the atmosphere is dissolved in the molten metal, and this dissolved hydrogen remains. Therefore, the hydrogen content tends to decrease when, for example, the hot water temperature is lowered to reduce the dissolution of gas from the atmosphere. Further, the hydrogen content tends to decrease when at least one of Cu and Si is contained.
  • the thickness of the surface oxide film of the Al alloy wire 22 is 1 nm or more and 120 nm or less can be given.
  • an oxide film may be present on the surface of the Al alloy wire 22. Since the surface oxide film is as thin as 120 nm or less, it is interposed between the conductor 2 and the terminal portion 4 when the terminal portion 4 (FIG. 2) is attached to the end portion of the conductor 2 composed of the Al alloy wire 22. Less oxide.
  • the corrosion resistance of the Al alloy wire 22 can be enhanced.
  • the thinner the above range the more the increase in the connection resistance can be reduced, and the thicker the corrosion resistance can be enhanced.
  • the surface oxide film can be 2 nm to 115 nm, further 5 nm to 110 nm, and further 100 nm.
  • the thickness of the surface oxide film can be adjusted by, for example, heat treatment conditions. For example, if the oxygen concentration in the atmosphere is high (for example, an air atmosphere), the surface oxide film is easily thickened. If the oxygen concentration is low (for example, an inert gas atmosphere, a reducing gas atmosphere), the surface oxide film is easily thinned.
  • Al alloy wire 22 of the embodiment one having a work hardening index of 0.05 or more can be given.
  • the work hardening index is as large as 0.05 or more, for example, a compression twisted wire obtained by compression-molding a twisted wire obtained by twisting a plurality of Al alloy wires 22 or a conductor 2 (single wire, twisted wire) composed of the Al alloy wire 22 is used.
  • the Al alloy wire 22 is easy to work harden when it is subjected to plastic working such as crimping the terminal portion 4 to the end of the wire or the compression stranded wire.
  • the strength can be increased by work hardening, and the terminal portion 4 can be firmly fixed to the conductor 2.
  • the Al alloy wire 22 having a large work hardening index can constitute the conductor 2 excellent in the fixing property of the terminal portion 4.
  • the larger the work hardening index the higher the strength due to work hardening can be expected, so 0.08 or more, and more preferably 0.1 or more.
  • the work hardening index tends to increase as the elongation at break increases. Therefore, to increase the work hardening index, for example, the kind and content of additive elements, heat treatment conditions, etc. are adjusted to increase the elongation at break.
  • the Al alloy wire 22 having a specific structure in which a crystallized substance (described later) is fine and an average crystal grain size satisfies the above specific range easily has a work hardening index of 0.05 or more. Therefore, the work hardening index can also be adjusted by adjusting the type and content of additive elements, heat treatment conditions, and the like using the structure of the Al alloy as an index.
  • the Al alloy wire 22 of the embodiment is composed of the Al alloy having the specific composition described above, and is typically subjected to a heat treatment such as a softening treatment, so 2% yield strength is high and strength is high, elongation at break is high and toughness is high, and conductivity is also high and conductivity is excellent.
  • the Al alloy wire 22 has a tensile strength of 110 MPa or more and 200 MPa or less, a 0.2% proof stress of 40 MPa or more, a breaking elongation of 10% or more, and an electrical conductivity of 55%. Those satisfying one or more selected from being IACS or more can be mentioned.
  • Al alloy wire 22 that satisfies two of the listed items, three more, especially all four, is excellent in mechanical properties, shock resistance and fatigue properties, impact resistance and fatigue. It is preferable because of its excellent characteristics and excellent conductivity.
  • Such an Al alloy wire 22 can be suitably used as a conductor of an electric wire.
  • the said tensile strength can be made 110 MPa or more and 180 MPa or less, and further 115 MPa or more and 150 MPa or less.
  • the breaking elongation at break is 10% or more, the flexibility and toughness are excellent, and the impact resistance is excellent.
  • the Al alloy wire 22 is typically used for the conductor 2. If conductivity is 55% IACS or more, it is excellent in electroconductivity and can be utilized suitably for the conductor of various electric wires.
  • the electrical conductivity is more preferably 56% IACS or more, further 57% IACS or more, and 58% IACS or more.
  • the Al alloy wire 22 preferably has a high 0.2% proof stress. This is because when the tensile strength is the same, the higher the 0.2% proof stress, the better the adhesion to the terminal portion 4.
  • the 0.2% proof stress is 40 MPa or more, particularly when the terminal part is attached by pressure bonding or the like, it is more excellent in adhesion to the terminal part.
  • the 0.2% proof stress can be 45 MPa or more, further 50 MPa or more, 55 MPa or more.
  • the Al alloy wire 22 has a sufficiently large 0.2% yield strength, high strength and is not easily broken, and the terminal portion as described above. Excellent adherence to 4.
  • Tensile strength, 0.2% proof stress, elongation at break, and conductivity can be changed by adjusting, for example, the type and content of additive elements and manufacturing conditions (such as wire drawing conditions and heat treatment conditions). For example, if there are many additive elements, the tensile strength and 0.2% proof stress tend to increase, and if there are few additive elements, the conductivity tends to increase. If the heating temperature during heat treatment is increased, the elongation at break increases. There is a tendency.
  • the cross-sectional shape of the Al alloy wire 22 of the embodiment can be appropriately selected depending on the application.
  • the round line whose cross-sectional shape is circular is mentioned (refer FIG. 1).
  • a square line whose cross-sectional shape is a quadrangle such as a rectangle may be used.
  • the Al alloy wire 22 constitutes a strand of the above-described compression stranded wire, it is typically an irregular shape in which a circular shape is crushed.
  • the Al alloy wire 22 is a square line or the like, a rectangular area is easy to use, and if the Al alloy wire 22 is a round line or the like, the rectangular area is also a fan-shaped area. But you can use either one.
  • the shape of the wire drawing die, the shape of the die for compression molding, and the like may be selected so that the cross-sectional shape of the Al alloy wire 22 becomes a desired shape.
  • the size (cross-sectional area, wire diameter (diameter) or the like in the case of a round wire) of the Al alloy wire 22 of the embodiment can be appropriately selected according to the application.
  • the wire diameter of Al alloy wire 22 is 0.2 mm or more and 1.5 mm or less.
  • the wire diameter of Al alloy wire 22 is 0.2 mm or more and 3.6 mm or less.
  • the Al alloy wire 22 of the embodiment can be used as a strand of stranded wire as shown in FIG.
  • the Al alloy twisted wire 20 of the embodiment is formed by twisting a plurality of Al alloy wires 22 together. Since the Al alloy twisted wire 20 is formed by twisting a plurality of strands (Al alloy wire 22) having a small cross-sectional area compared to a single Al alloy wire having the same conductor cross-sectional area, it is excellent in flexibility. Easy to bend. Moreover, even if the Al alloy wire 22 which is each strand is thin by being twisted together, it is excellent in intensity
  • the Al alloy twisted wire 20 of the embodiment uses an Al alloy wire 22 having a specific structure that there are few bubbles as a strand.
  • the Al alloy stranded wire 20 is excellent in impact resistance and fatigue characteristics because the Al alloy wire 22 which is each element wire is not easily broken even when subjected to impact or repeated bending.
  • the Al alloy wire 22 that is each element wire is further excellent in impact resistance and fatigue characteristics when the above-described hydrogen content, crystal grain size, and the like satisfy the specific ranges described above.
  • the number of twisted Al alloy twisted wires 20 can be appropriately selected, and examples thereof include 7, 11, 16, 19, 37, and the like.
  • the twist pitch of the Al alloy twisted wire 20 can be selected as appropriate, when the twist pitch is 10 times or more the layer core diameter of the Al alloy twisted wire 20, a terminal portion is formed at the end of the conductor 2 composed of the Al alloy twisted wire 20. It is difficult to disperse when attaching 4, and the workability of attaching the terminal portion 4 is excellent.
  • the twist pitch is 40 times or less of the above layer core diameter, the strands are not easily twisted when bent or the like, so that they are difficult to break and have excellent fatigue characteristics.
  • the twisting pitch can be 15 to 35 times, more preferably 20 to 30 times the layer core diameter.
  • the Al alloy twisted wire 20 can be a compression twisted wire that has been further subjected to compression molding. In this case, it is possible to make the wire diameter smaller than in a state where the wires are simply twisted together, or to change the outer shape to a desired shape (for example, a circle).
  • a desired shape for example, a circle.
  • each Al alloy wire 22 constituting the Al alloy twisted wire 20 is the same as those used before twisting.
  • the specification of line 22 is substantially maintained.
  • the thickness, mechanical characteristics and electrical characteristics of the surface oxide film may change.
  • the twisting conditions may be adjusted so that the specification of the Al alloy twisted wire 20 has a desired value.
  • the Al alloy wire 22 of the embodiment and the Al alloy twisted wire 20 (which may be a compression stranded wire) of the embodiment can be suitably used as a conductor for electric wires. It can be used for either a bare conductor not provided with an insulating coating and a conductor of a covered electric wire provided with an insulating coating.
  • the covered electric wire 1 of the embodiment includes a conductor 2 and an insulating coating 3 that covers the outer periphery of the conductor 2, and the conductor 2 includes the Al alloy wire 22 of the embodiment or the Al alloy twisted wire 20 of the embodiment.
  • this covered electric wire 1 includes the conductor 2 composed of the Al alloy wire 22 and the Al alloy twisted wire 20 that are excellent in impact resistance and fatigue characteristics, it is excellent in impact resistance and fatigue characteristics.
  • the insulating material constituting the insulating coating 3 can be selected as appropriate. Examples of the insulating material include polyvinyl chloride (PVC), a non-halogen resin, a material excellent in flame retardancy, and the like, and known materials can be used.
  • the thickness of the insulating coating 3 can be appropriately selected within a range having a predetermined insulating strength.
  • the covered electric wire 1 according to the embodiment can be used for electric wires for various purposes such as wiring of various electric devices such as wire harnesses and industrial robots mounted on devices such as automobiles and airplanes, and wiring of buildings.
  • the terminal portion 4 is typically attached to the end portion of the covered electric wire 1.
  • the electric wire with terminal 10 according to the embodiment includes the covered electric wire 1 according to the embodiment and a terminal portion 4 attached to an end of the covered electric wire 1. Since the electric wire with terminal 10 includes the covered electric wire 1 that is excellent in impact resistance and fatigue characteristics, it is excellent in impact resistance and fatigue characteristics.
  • the terminal portion 4 includes a female or male fitting portion 42 at one end, an insulation barrel portion 44 that grips the insulating coating 3 at the other end, and a wire that grips the conductor 2 at the intermediate portion.
  • the crimp terminal provided with the barrel part 40 is illustrated. Examples of the other terminal portions 4 include a melted type in which the conductor 2 is melted and connected.
  • the crimp terminal is crimped to the end portion of the conductor 2 exposed by removing the insulating coating 3 at the end portion of the covered electric wire 1, and is electrically and mechanically connected to the conductor 2.
  • the Al alloy wire 22 or the Al alloy twisted wire 20 constituting the conductor 2 has a high work hardening index as described above, the cross-sectional area of the attachment portion of the crimp terminal in the conductor 2 is locally reduced. However, it is excellent in strength by work hardening. Therefore, for example, the conductor 2 is less likely to break in the vicinity of the terminal portion 4 even when subjected to an impact when the terminal portion 4 is connected to the connection target of the covered electric wire 1 or further subjected to repeated bending after the connection.
  • This terminal-attached electric wire 10 is excellent in impact resistance and fatigue characteristics.
  • the terminal-attached electric wire 10 includes one terminal portion (not shown) for the plurality of covered electric wires 1 in addition to a form in which one terminal portion 4 is attached to each covered electric wire 1.
  • a form is mentioned.
  • the electric wire with terminal 10 is easy to handle.
  • the Al alloy wire 22 of the embodiment can be typically manufactured by performing heat treatment (including softening treatment) at an appropriate time in addition to basic steps such as casting, (hot) rolling, extrusion, and wire drawing. .
  • heat treatment including softening treatment
  • the Al alloy twisted wire 20 of the embodiment can be manufactured by twisting a plurality of Al alloy wires 22 together.
  • Known conditions can be referred to for the twisting conditions and the like.
  • the Al alloy wire 22 according to the embodiment having few bubbles in the surface layer is easy to manufacture if, for example, the hot water temperature is lowered in the casting process. It is possible to reduce the dissolution of gas in the atmosphere in the molten metal, and it is possible to produce a cast material with a molten metal with a small amount of dissolved gas.
  • the dissolved gas include hydrogen as described above, and it is considered that this hydrogen was decomposed and contained in the atmosphere.
  • the air bubbles existing in the surface layer or inside of the Al alloy wire 22 having the final wire diameter can be within the specific range described above.
  • the Al alloy wire 22 having a low hydrogen content can be manufactured.
  • the position of the bubbles trapped inside the Al alloy changes or the size of the bubbles Is considered to be small to some extent.
  • the total content of bubbles present in the cast material is large, the total content of bubbles present in the surface layer and inside the Al alloy wire of the final wire diameter, hydrogen, It is considered that the content of sucrose tends to increase (it remains substantially maintained). Therefore, it is proposed that the hot water temperature be lowered to sufficiently reduce bubbles contained in the cast material itself.
  • a specific hot water temperature for example, a liquidus temperature of Al alloy or higher and lower than 750 ° C. may be mentioned. Since the dissolved gas can be reduced and the bubbles of the cast material can be reduced as the hot water temperature is lower, it is preferably 748 ° C. or lower, and more preferably 745 ° C. or lower. On the other hand, when the hot water temperature is high to some extent, the additive element is easily dissolved, so that the hot water temperature can be set to 670 ° C. or higher, and further to 675 ° C. or higher, and an Al alloy wire excellent in strength and toughness can be easily obtained.
  • the cooling rate in the casting process can easily prevent an increase in dissolved gas from the atmosphere.
  • the specific temperature range is mainly a liquid phase range, where hydrogen and the like are easily dissolved and dissolved gas is likely to increase.
  • the cooling rate is preferably 1 ° C./second or more, more preferably 2 ° C./second or more, and 4 ° C./second or more.
  • the cooling rate is 30 ° C./second or less, further less than 25 ° C./second, 20 ° C./second or less, 20 ° C./second or less, 15 ° C./second or less, 10 It can be set to ° C./second or less. Since the cooling rate is not too fast, it is suitable for mass production.
  • the specific temperature region is mainly a liquid phase region, and if the cooling rate in the liquid phase region is increased, the crystallization product generated during solidification can be easily reduced.
  • the hot water temperature is lowered as described above, if the cooling rate is too high, particularly when it is 25 ° C./second or more, a crystallized product is not easily generated, and the amount of solid solution of the additive element increases. It is considered that the conductivity is lowered and it becomes difficult to obtain the pinning effect of the crystal grains due to the crystallized product.
  • the cooling rate is preferably more than 1 ° C./second, more preferably 2 ° C./second or more, although it depends on the content of additive elements such as Fe.
  • the hot water temperature is 670 ° C. or higher and lower than 750 ° C.
  • the cooling rate from the hot water temperature to 650 ° C. is lower than 20 ° C./second.
  • the cooling rate of the casting process is increased within the above-mentioned range, it is easy to obtain a cast material having a fine crystal structure, it is easy to dissolve the additive element to some extent, and DAS (Dendrite Arm Spacing) can be easily reduced (for example, The effect of 50 ⁇ m or less, and further 40 ⁇ m or less) can be expected.
  • DAS Digitalendrite Arm Spacing
  • Continuous casting enables continuous production of long cast materials and facilitates faster cooling rates.
  • reduction of bubbles, suppression of coarse crystals, refinement of crystal grains and DAS, addition of added elements Effects such as solid solution can be expected.
  • the cast material is typically subjected to wire drawing with an intermediate processed material subjected to plastic processing (intermediate processing) such as (hot) rolling or extrusion. It is also possible to subject the continuous cast rolled material (an example of an intermediate processed material) to wire drawing by performing hot rolling continuously after continuous casting. Skinning and heat treatment can be performed before and after the plastic working. By skinning, the surface layer where bubbles or surface scratches may exist can be removed. Examples of the heat treatment here include those for the purpose of homogenizing an Al alloy.
  • the conditions for the homogenization treatment include a heating temperature of about 450 ° C. to 600 ° C. and a holding time of about 0.5 hours to 5 hours.
  • the homogenization is performed under these conditions, the nonuniform and coarse crystallized product due to segregation or the like is likely to be fine to some extent and uniform in size.
  • the material (intermediate work material) that has undergone plastic working such as rolling as described above is subjected to wire drawing (cold) until a predetermined final wire diameter is obtained, thereby forming a wire drawing material.
  • the wire drawing is typically performed using a wire drawing die.
  • the wire drawing degree may be appropriately selected according to the final wire diameter.
  • twisting process In the case of manufacturing the Al alloy twisted wire 20, a plurality of wires (drawn wire or heat treated material that has been heat-treated after drawing) are prepared, and these are prepared at a predetermined twist pitch (for example, 10 times the layer core diameter). 40 times).
  • a predetermined twist pitch for example, 10 times the layer core diameter. 40 times.
  • Heat treatment can be performed on a wire drawing material or the like at any time during or after the wire drawing step.
  • a softening treatment is performed for the purpose of improving toughness such as elongation at break
  • an Al alloy wire 22 or an Al alloy twisted wire 20 having high strength and high toughness and excellent in impact resistance and fatigue characteristics can be produced.
  • the time for performing the heat treatment includes at least one time during drawing, after drawing (before twisting), after twisting (before compression molding), and after compression molding. Heat treatment may be performed at a plurality of times.
  • the heat treatment may be performed by adjusting the heat treatment conditions so that the Al alloy wire 22 or the Al alloy twisted wire 20 that is the final product satisfies desired characteristics, for example, the elongation at break satisfies 10% or more.
  • desired characteristics for example, the elongation at break satisfies 10% or more.
  • the Al alloy wire 22 having a work hardening index satisfying the specific range described above can be manufactured.
  • heat processing is performed in the middle of wire drawing or before twisting, workability is improved and it is easy to perform wire drawing processing or twisting.
  • Either heat treatment can be performed continuously by supplying the heat treatment target to a heating vessel such as a pipe furnace or electric furnace, or batch processing in which the heat treatment target is enclosed in a heating vessel such as an atmospheric furnace. it can.
  • the batch processing conditions include a heating temperature of about 250 ° C. to 500 ° C. and a holding time of about 0.5 hours to 6 hours.
  • the control parameters may be adjusted so that the wire after the heat treatment satisfies desired characteristics. If the correlation data between the characteristic and the parameter value is created in advance so as to satisfy the desired characteristic according to the size of the heat treatment target (wire diameter, cross-sectional area, etc.) (see Patent Document 1), Easy to adjust conditions.
  • Examples of the atmosphere during the heat treatment include an atmosphere having a relatively high oxygen content such as an air atmosphere, or a low oxygen atmosphere having a lower oxygen content than the air.
  • the atmosphere control is unnecessary, but the surface oxide film is easily formed thick (for example, 50 nm or more). For this reason, in the case of an air atmosphere, if the continuous treatment is performed to easily shorten the holding time, it is easy to manufacture the Al alloy wire 22 in which the thickness of the surface oxide film satisfies the specific range described above.
  • Examples of the low oxygen atmosphere include a vacuum atmosphere (reduced pressure atmosphere), an inert gas atmosphere, and a reducing gas atmosphere.
  • Examples of the inert gas include nitrogen and argon.
  • the reducing gas examples include hydrogen gas, a hydrogen mixed gas containing hydrogen and an inert gas, and a mixed gas of carbon monoxide and carbon dioxide.
  • the atmosphere control is required in a low oxygen atmosphere, the surface oxide film can be easily thinned (for example, less than 50 nm). Therefore, in the case of a low oxygen atmosphere, when the batch process is easy to control the atmosphere, the Al alloy wire 22 in which the thickness of the surface oxide film satisfies the specific range described above, preferably the thickness of the surface oxide film is more It is easy to manufacture a thin Al alloy wire 22.
  • the Al alloy wire satisfying the above range of crystal grain size 22 is easy to manufacture.
  • the degree of wire drawing from a material obtained by subjecting a continuously cast material to plastic processing such as rolling or a continuous cast rolled material to a wire drawing material of the final wire diameter is 80% or more, and the wire drawing material of the final wire diameter or twisted
  • heat treatment softening treatment
  • the Al alloy wire 22 having a crystal grain size of 50 ⁇ m or less can be easily produced.
  • heat treatment may be performed during the wire drawing.
  • Other methods for adjusting the thickness of the surface oxide film include exposing the drawn wire with the final wire diameter in the presence of high-temperature and high-pressure hot water, applying water to the drawn wire with the final wire diameter, and continuous treatment in the atmosphere.
  • a drying step may be provided after water cooling.
  • the surface oxide film tends to be thickened by exposure to hot water or application of water. By drying after the above-described water cooling, formation of a boehmite layer due to water cooling is prevented, and the surface oxide film tends to be thin.
  • the coated electric wire 1 of the embodiment prepares the Al alloy wire 22 or the Al alloy stranded wire 20 (which may be a compression stranded wire) of the embodiment constituting the conductor 2, and forms the insulating coating 3 on the outer periphery of the conductor 2 by extrusion or the like Can be manufactured.
  • Known conditions can be referred to for the extrusion conditions and the like.
  • the electric wire with terminal 10 of the embodiment can be manufactured by removing the insulating coating 3 at the end portion of the covered electric wire 1 to expose the conductor 2 and attaching the terminal portion 4.
  • the Al alloy wire is produced as follows. Pure aluminum (99.7 mass% or more Al) is prepared and melted as a base, and the contents of additive elements shown in Tables 1 to 4 are shown in Tables 1 to 4 in the obtained molten metal (molten aluminum).
  • the molten aluminum alloy is prepared by adding the amount (mass%).
  • the continuously cast rolled material is produced by continuously performing casting and hot rolling using a belt-wheel type continuous casting rolling machine and a prepared molten Al alloy to obtain a wire rod having a diameter of 9.5 mm.
  • the billet cast material is produced by pouring a molten Al alloy into a predetermined fixed mold and cooling it. After homogenizing the billet cast material, hot rolling is performed to produce a ⁇ 9.5 mm wire rod (rolled material).
  • Tables 5 to 8 show the type of casting method (continuous cast rolled material is indicated as “continuous” and billet cast material is indicated as “billet”), molten metal temperature (° C.), cooling rate during casting process (from hot water temperature to 650 ° C.) The average cooling rate of [deg.] C./sec. The cooling rate was changed by adjusting the cooling state using a water cooling mechanism or the like.
  • the wire rod is subjected to cold wire drawing to produce a wire drawing material having a wire diameter of ⁇ 0.3 mm, a wire drawing material having a wire diameter of ⁇ 0.37 mm, and a wire drawing material having a wire diameter of ⁇ 0.39 mm.
  • the soft wire (Al alloy wire) is manufactured by subjecting the obtained wire with a diameter of 0.3 mm to softening treatment in the methods, temperatures (° C), and atmosphere shown in Tables 5 to 8.
  • the method shown in Tables 5 to 8 is “bright softening” is a batch process using a box furnace, and the holding time is 3 hours in all cases.
  • the method shown in Tables 5 to 8 is “continuous softening” is a continuous treatment of a high-frequency induction heating method or a direct energization method, and the temperatures shown in Tables 5 to 8 (measured with a non-contact infrared thermometer). ) To control the energization conditions.
  • the linear velocity is selected from the range of 50 m / min to 3,000 m / min.
  • Sample No. No. 2-202 has not been softened.
  • Sample No. In the case of 2-203, the heat treatment conditions are high temperature and long time as compared with other samples: 550 ° C. ⁇ 8 hours (in Table 8, “* 1” is added to the temperature column).
  • Sample No. No. 2-205 is subjected to a boehmite treatment (100 ° C. ⁇ 15 minutes) after the softening treatment in the air atmosphere (in Table 8, “* 2” is added to the atmosphere column).
  • a stranded wire is prepared using the obtained wire drawing material having a wire diameter of ⁇ 0.37 mm or a wire diameter of ⁇ 0.39 mm (not subjected to the softening treatment described above).
  • a stranded wire using seven wires having a wire diameter of ⁇ 0.37 mm is produced.
  • the compression twisted wire which further compression-molded the twisted wire using seven wires with a wire diameter of ⁇ 0.39 mm is produced.
  • the cross-sectional area of the stranded wire and the cross-sectional area of the compression stranded wire are both 0.75 mm 2 (0.75 sq).
  • the twist pitch is 25 mm (about 33 times the layer core diameter).
  • the obtained stranded wire and compression stranded wire are subjected to softening treatment in the methods, temperatures (° C.), and atmosphere shown in Tables 5 to 8 (* 1, * 2 of Sample No. 2-203 and No. 2-205). See above).
  • the obtained softened stranded wire is used as a conductor, and an insulating coating (thickness 0.2 mm) is formed on the outer periphery of the conductor with an insulating material (here, a halogen-free insulating material) to produce a coated electric wire.
  • Sample No. In No. 2-202 neither the wire drawing material nor the stranded wire is softened.
  • Tables 13 to 16 show the total area A ( ⁇ m 2 ) as a value obtained by averaging the total cross-sectional areas of the bubbles in the total seven measurement regions.
  • a fan-shaped bubble measurement region having an area of 1500 ⁇ m 2 is taken from an annular surface layer region having a thickness of 30 ⁇ m, and evaluation is performed using the above-described rectangular surface bubble measurement region.
  • the total area B ( ⁇ m 2 ) of the bubbles in the fan-shaped bubble measurement region was determined. The results are shown in Tables 13 to 16.
  • the measurement of the total cross-sectional area of the bubbles can be easily performed by performing image processing such as binarization processing on the observed image and extracting the bubbles from the processed image.
  • a rectangular internal bubble measurement region having a short side length of 30 ⁇ m and a long side length of 50 ⁇ m is taken.
  • the internal bubble measurement region is taken so that the center of the rectangle overlaps the center of each Al alloy wire.
  • the ratio “internal / surface layer” of the total cross-sectional area of the bubbles existing in the internal bubble measurement region to the total cross-sectional area of the bubbles existing in the surface layer bubble measurement region is obtained.
  • a total of seven surface bubble measurement areas and internal bubble measurement areas are taken to determine the ratio “internal / surface layer”.
  • Tables 13 to 16 show values obtained by averaging the ratio “inside / surface layer” in the seven measurement regions in total as the ratio “inside / surface layer A”.
  • the ratio “internal / surface layer B” in the above-described fan-shaped bubble measurement region was determined in the same manner as in the case of evaluation in the rectangular surface bubble measurement region described above, and the results are shown in Tables 13 to 16 .
  • Crystal grain size in accordance with JIS G 0551 (steel-microscopic test method of grain size, 2013), a test line is drawn on the SEM observation image, and the test line is divided at each crystal grain.
  • the length to be used is defined as the crystal grain size (cutting method).
  • the length of the test line is such that ten or more crystal grains are divided by the test line.
  • Three test lines are drawn on one cross section to obtain each crystal grain size, and the average value of these crystal grain sizes is shown in Table 13 to Table 16 as the average crystal grain size ( ⁇ m). .
  • the hydrogen content is measured by an inert gas melting method. Specifically, a sample is put into a graphite crucible in an argon stream, and heated and melted to extract hydrogen together with other gases. The extracted gas is passed through a separation column to separate hydrogen from other gases, measured with a thermal conductivity detector, and the hydrogen content is determined by quantifying the hydrogen concentration.
  • the thickness is measured using this SEM observation image.
  • the analysis in the depth direction is separately performed by X-ray photoelectron spectroscopy (ESCA). Repeat to measure.
  • Terminal fixing force About the obtained electric wire with a terminal of each sample, with reference to patent documents 1, terminal fixation power (N) was evaluated.
  • N terminal fixation power
  • a terminal portion attached to one end of a terminal-attached electric wire is held by a terminal chuck, the insulating coating at the other end of the covered electric wire is removed, and the conductor portion is held by the conductor chuck.
  • the maximum load (N) at break was measured using a general-purpose tensile testing machine, and this maximum load (N) was evaluated as the terminal fixing force (N).
  • N As a conductor cross-sectional area of the maximum load obtained terminal fixing force per unit area divided by (here 0.75 mm 2 are) (N / mm 2), shown in Table 13 to Table 16.
  • Sample No. composed of an Al—Fe-based alloy having a specific composition including Fe in a specific range and appropriately including a specific element (Mg, Si, Cu, element ⁇ ) in a specific range and subjected to softening treatment . 1-1 to No. 1-23, No. 1 2-1. 2-23, no. 3-1.
  • the Al alloy wire of No. 3-12 (hereinafter sometimes collectively referred to as a soft material sample group) is a sample No. 3 having a specific composition outside. No. 1-101 1-104, no. 2-201, no.
  • the impact resistance evaluation parameter value is high as compared with the Al alloy wire of 3-301 (hereinafter sometimes referred to collectively as a comparative sample group), and is 10 J / m or more. is there.
  • the Al alloy wires of the soft material sample group are excellent in strength and have a high number of bendings as shown in Table 9 to Table 11. From this, it can be seen that the Al alloy wire of the soft material sample group has excellent impact resistance and excellent fatigue characteristics in a balanced manner as compared with the Al alloy wire of the comparative sample group.
  • the Al alloy wire of the soft material sample group is excellent in mechanical characteristics and electrical characteristics, that is, has high tensile strength and elongation at break.
  • the Al alloy wire of the soft material sample group has a tensile strength of 110 MPa or more and 200 MPa or less, a 0.2% proof stress of 40 MPa or more (here 45 MPa or more, many samples of 50 MPa or more), and a breaking elongation of 10 % Or more (here, 11% or more, many samples are 15% or more, further 20% or more), and conductivity is 55% IACS or more (many samples are 57% IACS or more, further 58% IACS or more).
  • the Al alloy wire of the soft material sample group has a high ratio of “strength / tensile” between the tensile strength and the 0.2% yield strength, which is 0.4 or more. Furthermore, it can be seen that the Al alloy wires of the soft material sample group are also excellent in adhesion to the terminal portion as shown in Tables 13 to 15 (40 N or more). One reason for this is that the Al alloy wire of the soft material sample group has a large work hardening index of 0.05 or more (many samples are 0.07 or more, further 0.10 or more, Tables 9 to 11). This is probably because the effect of improving the strength by work hardening when crimping the crimp terminal was obtained satisfactorily.
  • the evaluation results using the rectangular measurement area A and the evaluation results using the fan-shaped measurement area B are referred to.
  • the Al alloy wire of the soft material sample group has a total area of bubbles of 2.0 ⁇ m 2 or less in the surface layer.
  • 1-105, no. 1-106, no. 2-204, no. Less than 3-303 Al alloy wire are compared.
  • the Al alloy wire of the soft material sample group has not only a surface layer but also a small number of bubbles present inside. Quantitatively, the ratio of the total area of bubbles “inside / surface layer” is 44 or less, here 20 or less, and further 15 or less, and many samples are 10 or less. It is smaller than 2-204 (Table 16). Sample No. having the same composition. 1-4 and Sample No. 1-106, sample No. 1 with a small ratio “internal / surface layer” was obtained. 1-4 is more bent (Tables 9 and 12) and has higher impact resistance parameter values (Tables 13 and 16). One reason for this is that sample No. 1 has a large number of bubbles inside.
  • the hot water temperature is lowered during the casting process, and the cooling rate in the temperature range up to 650 ° C. is increased to some extent (here, over 0.5 ° C./second, further 1 C./second or more and 30.degree. C./second or less, preferably less than 25.degree. C./second, and more preferably less than 20.degree. C./second).
  • the Al alloy wire of the soft material sample group has a small crystal grain size. Quantitatively, the average crystal grain size is 50 ⁇ m or less, many samples are 35 ⁇ m or less, and further 30 ⁇ m or less. It is smaller than 2-203 (Table 16). Sample No. having the same composition. 2-5 and sample no. Compared with 2-203, sample no. In the case of 2-5, the evaluation parameter value for impact resistance is larger (Tables 14 and 16), and the number of bendings is larger (Tables 10 and 12). Therefore, it is considered that a small crystal grain size contributes to improvement of impact resistance and fatigue characteristics. In addition, from this test, it can be said that if the heat treatment temperature is lowered or the holding time is shortened, the crystal grain size can be easily reduced.
  • the Al alloy wire of the soft material sample group has a surface oxide film, but is thin (compare with Sample No. 2-205 in Table 16) and is 120 nm or less. Therefore, it is considered that these Al alloy wires can reduce an increase in connection resistance with the terminal portion and can construct a low resistance connection structure.
  • the insulation coating is removed to make only the conductor, the stranded wire or the compression stranded wire constituting the conductor is unwound and separated into strands, and any single strand is used as a sample.
  • a salt spray test was conducted and the presence or absence of corrosion was examined by visual confirmation. As a result, there was no corrosion.
  • the condition of the salt spray test is that a 5 mass% NaCl aqueous solution is used and the test time is 96 hours. From this, it is considered that providing the surface oxide film with an appropriate thickness (here, 1 nm or more) contributes to improvement of corrosion resistance. In addition, from this test, it can be said that the surface oxide film is likely to be thick when the heat treatment such as the softening treatment is performed in the air atmosphere or the conditions under which the boehmite layer can be formed, and thin when the atmosphere is low in oxygen.
  • an Al alloy wire made of an Al—Fe-based alloy having a specific composition and subjected to softening treatment, which has few bubbles in the surface layer, has high strength, high toughness, and high conductivity. In addition to excellent connection strength with the terminal, it also has excellent impact resistance and fatigue characteristics.
  • Such an Al alloy wire is expected to be suitably used as a conductor of a covered electric wire, particularly a conductor of a terminal-attached electric wire to which a terminal portion is attached.
  • the present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
  • the composition of the alloy of Test Example 1 the cross-sectional area of the wire, the number of twisted strands, and the production conditions (hot water temperature, cooling rate during casting, heat treatment time, heat treatment conditions, etc.) can be changed as appropriate.
  • a 1500- ⁇ m 2 fan-shaped bubble measurement region is taken from the annular surface layer region in the depth direction from the surface to 30 ⁇ m, and the total number of bubbles present in the fan-shaped bubble measurement region
  • the aluminum alloy wire described in [Appendix 1] at least one of the mechanical properties such as tensile strength, 0.2% proof stress, elongation at break, crystal grain size, work hardening index, and hydrogen content is further described above. When the specific range is satisfied, the impact resistance and fatigue characteristics are more excellent.
  • the aluminum alloy wire described in [Appendix 1] has excellent conductivity when the electrical conductivity satisfies the above-described specific range, and excellent corrosion resistance when the surface oxide film satisfies the above-mentioned specific range.
  • the aluminum alloy wire described in [Appendix 1] can be used for the above-described aluminum alloy twisted wire, covered electric wire, or electric wire with terminal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

アルミニウム合金から構成されるアルミニウム合金線であって、前記アルミニウム合金は、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不可避不純物からなり、前記アルミニウム合金線の横断面において、その表面から深さ方向に30μmまでの表層領域から、短辺長さが30μmであり、長辺長さが50μmである長方形の表層気泡測定領域をとり、前記表層気泡測定領域に存在する気泡の合計断面積が2μm以下であり、前記アルミニウム合金線の線径が0.2mm以上3.6mm以下であり、引張強さが110MPa以上200MPa以下であり、0.2%耐力が40MPa以上であり、破断伸びが10%以上であり、導電率が55%IACS以上であるアルミニウム合金線。

Description

アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
 本発明は、アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線に関する。
 本出願は、2016年10月31日付の日本国出願の特願2016-213156に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 電線用導体に適した線材として、特許文献1は、アルミニウム合金を特定の組成とすると共に軟化することで、高強度で高靭性であり、導電率も高く、端子部との固着性にも優れるアルミニウム合金線を開示する。
特開2010-067591号公報
 本開示のアルミニウム合金線は、
 アルミニウム合金から構成されるアルミニウム合金線であって、
 前記アルミニウム合金は、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不可避不純物からなり、
 前記アルミニウム合金線の横断面において、その表面から深さ方向に30μmまでの表層領域から、短辺長さが30μmであり、長辺長さが50μmである長方形の表層気泡測定領域をとり、前記表層気泡測定領域に存在する気泡の合計断面積が2μm以下であり、
 前記アルミニウム合金線の線径が0.2mm以上3.6mm以下であり、
 引張強さが110MPa以上200MPa以下であり、
 0.2%耐力が40MPa以上であり、
 破断伸びが10%以上であり、
 導電率が55%IACS以上である。
 本開示のアルミニウム合金撚線は、
 上記の本開示のアルミニウム合金線を複数撚り合わせてなる。
 本開示の被覆電線は、
 導体と、前記導体の外周を覆う絶縁被覆とを備える被覆電線であって、
 前記導体は、上記の本開示のアルミニウム合金撚線を備える。
 本開示の端子付き電線は、
 上記の本開示の被覆電線と、前記被覆電線の端部に装着された端子部とを備える。
実施形態のアルミニウム合金線を導体に含む被覆電線を示す概略斜視図である。 実施形態の端子付き電線について、端子部近傍を示す概略側面図である。 気泡の測定方法を説明する説明図である。 気泡の測定方法を説明する別の説明図である。
[本開示が解決しようとする課題]
 電線に備える導体などに利用される線材として、耐衝撃性に優れる上に、疲労特性にも優れるアルミニウム合金線が望まれている。
 自動車や飛行機などの機器に載置されるワイヤーハーネス、産業用ロボットなどといった各種の電気機器の配線、建築物などの配線といった各種の用途の電線には、機器の使用時や布設時などに衝撃や繰り返しの曲げなどが与えられることがある。具体的には以下の(1)から(3)などが挙げられる。
(1)自動車用ワイヤーハーネスに備える電線では、電線を接続対象に取り付ける際などで端子部近傍に衝撃が与えられること(特許文献1)、その他、自動車の走行状態によって突発的な衝撃が与えられること、自動車の走行時の振動によって繰り返しの曲げが与えられることなどが考えられる。
(2)産業用ロボットに配線される電線では、繰り返しの曲げや捻回などが与えられることなどが考えられる。
(3)建築物に配線される電線では、布設時に作業者が突発的に強く引っ張ったり、誤って落下させたりして衝撃が与えられること、コイル状に巻き取られた線材から巻き癖を除去するために波打つように振ることで繰り返しの曲げが与えられることなどが考えられる。
 従って、電線に備える導体などに利用されるアルミニウム合金線には、衝撃だけでなく、繰り返しの曲げが与えられた場合でも、断線し難いことが望まれる。
 そこで、耐衝撃性及び疲労特性に優れるアルミニウム合金線を提供することを目的の一つとする。また、耐衝撃性及び疲労特性に優れるアルミニウム合金撚線、被覆電線、端子付き電線を提供することを別の目的の一つとする。
[本開示の効果]
 本開示のアルミニウム合金線、本開示のアルミニウム合金撚線、本開示の被覆電線、本開示の端子付き電線は、耐衝撃性及び疲労特性に優れる。
 本発明者らは、種々の条件でアルミニウム合金線を製造して、耐衝撃性、疲労特性(繰り返しの曲げに対する断線し難さ)に優れるアルミニウム合金線を検討した。Feを特定の範囲で含むという特定の組成のアルミニウム合金から構成され、軟化処理が施された線材は、高強度(例えば、引張強さや0.2%耐力が高い)かつ高靭性であり(例えば、破断伸びが高い)、耐衝撃性にも優れる上に、導電率が高く導電性にも優れる。この線材において、特に表層に気泡が少ないと、耐衝撃性により優れる上に、繰り返しの曲げによっても断線し難いとの知見を得た。表層に気泡が少ないアルミニウム合金線は、例えば鋳造に供するアルミニウム合金の溶湯温度を特定の範囲に制御することで製造できる、との知見を得た。本願発明は、これらの知見に基づくものである。最初に本願発明の実施形態の内容を列記して説明する。
[本願発明の実施形態の説明]
(1)本願発明の一態様に係るアルミニウム合金線は、
 アルミニウム合金から構成されるアルミニウム合金線であって、
 前記アルミニウム合金は、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不可避不純物からなり、
 前記アルミニウム合金線の横断面において、その表面から深さ方向に30μmまでの表層領域から、短辺長さが30μmであり、長辺長さが50μmである長方形の表層気泡測定領域をとり、前記表層気泡測定領域に存在する気泡の合計断面積が2μm以下であり、
 前記アルミニウム合金線の線径が0.2mm以上3.6mm以下であり、
 引張強さが110MPa以上200MPa以下であり、
 0.2%耐力が40MPa以上であり、
 破断伸びが10%以上であり、
 導電率が55%IACS以上である。
 アルミニウム合金線の横断面とは、アルミニウム合金線の軸方向(長手方向)に直交する面で切断した断面をいう。
 上記のアルミニウム合金線(以下、Al合金線と呼ぶことがある)は、特定の組成のアルミニウム合金(以下、Al合金と呼ぶことがある)から構成されており、製造過程で軟化処理などが施されることで、高強度、高靭性であり、耐衝撃性にも優れる。高強度、高靭性であるため、曲げなども滑らかに行える上に、繰り返しの曲げが与えられた場合でも断線し難く、疲労特性にも優れる。特に、上記のAl合金線は、表層に存在する気泡が少ない。そのため、衝撃や繰り返しの曲げを受けた場合などでも、気泡が割れの起点になり難く、気泡に起因する割れが生じ難い。表面割れが生じ難いことで、線材の表面から内部に割れが進展したり、破断に至ったりすることも低減できる。従って、上記のAl合金線は、耐衝撃性及び疲労特性に優れる。また、上記のAl合金線は、気泡に起因する割れが生じ難いことから、組成や熱処理条件などにもよるが、引張試験を行った場合に引張強さ、0.2%耐力、及び破断伸びから選択される少なくとも一つがより高い傾向にあり、機械的特性にも優れる。
(2)上記のAl合金線の一例として、
 前記アルミニウム合金線の横断面において、短辺長さが30μmであり、長辺長さが50μmである長方形の内部気泡測定領域をこの長方形の中心が前記アルミニウム合金線の中心に重なるようにとり、前記表層気泡測定領域に存在する気泡の合計断面積に対する前記内部気泡測定領域に存在する気泡の合計断面積の比が1.1以上44以下である形態が挙げられる。
 上記形態は、上述の合計断面積の比が1.1以上であるため、Al合金線の表層に比較して内部に存在する気泡が多いものの、上述の合計断面積の比が特定の範囲を満たすため、内部も気泡が少ないといえる。従って、上記形態は、衝撃や繰り返しの曲げを受けた場合などでも、気泡を介して線材の表面から内部に割れが進展し難く、より破断し難いため、耐衝撃性及び疲労特性により優れる。
(3)上記のAl合金線の一例として、
 前記アルミニウム合金は、更に、Mg、Si、Cu、Mn、Ni、Zr、Ag、Cr、及びZnから選択される1種以上の元素をそれぞれ以下の範囲で、合計で1.0質量%以下含有する形態が挙げられる。
 Mg:0.05質量%以上0.5質量%以下
 Si:0.03質量%以上0.3質量%以下
 Cu:0.05質量%以上0.5質量%以下
 Mn,Ni,Zr,Ag,Cr,及びZn:合計で0.005質量%以上0.2質量%以下
 上記形態は、Feに加えて上述の元素を特定の範囲で含有することで、更なる強度の向上などが期待できる。
(4)上記のAl合金線の一例として、
 前記アルミニウム合金は、更に、0質量%以上0.05質量%以下のTi及び0質量%以上0.005質量%以下のBの少なくとも一方を含有する形態が挙げられる。
 TiやBは鋳造時に結晶粒を微細にし易い。微細な結晶組織を有する鋳造材を素材に利用することで、結果として微細な結晶組織を有するAl合金線となり易い。上記形態は、微細な結晶組織を有しており、衝撃や繰り返しの曲げを受けた場合などに破断し難く、耐衝撃性や疲労特性に優れる。
(5)上記のAl合金線の一例として、
 前記アルミニウム合金の平均結晶粒径が50μm以下である形態が挙げられる。
 上記形態は、気泡が少ないことに加えて、結晶粒が微細であり柔軟性に優れるため、耐衝撃性及び疲労特性により優れる。
(6)上記のAl合金線の一例として、
 加工硬化指数が0.05以上である形態が挙げられる。
 上記形態は、加工硬化指数が特定の範囲を満たすため、端子部を圧着などして取り付けた場合に加工硬化による端子部の固着力の向上が期待できる。従って、上記形態は、端子付き電線などの端子部が取り付けられる導体に好適に利用できる。
(7)上記のAl合金線の一例として、
 前記アルミニウム合金線の表面酸化膜の厚さが1nm以上120nm以下である形態が挙げられる。
 上記形態は、表面酸化膜の厚さが特定の範囲を満たすことで、端子部を取り付けた場合に端子部との間に介在する酸化物(表面酸化膜を構成するもの)が少なく、過度の酸化物の介在による接続抵抗の増大を防止できる上に、耐食性にも優れる。従って、上記形態は、端子付き電線などの端子部が取り付けられる導体に好適に利用できる。この場合、耐衝撃性及び疲労特性に優れる上に、低抵抗で耐食性にも優れる接続構造を構築できる。
(8)上記のAl合金線の一例として、
 水素の含有量が4.0ml/100g以下である形態が挙げられる。
 本発明者らは、気泡を含有するAl合金線について含有ガス成分を調べたところ、水素を含むとの知見を得た。従って、Al合金線内の気泡の一要因は、水素であると考えられる。上記形態は、水素の含有量が少ないことからも気泡が少ないといえ、気泡に起因する断線が生じ難く、耐衝撃性及び疲労特性に優れる。
(9)本願発明の一態様に係るアルミニウム合金撚線は、
 上記(1)から(8)のいずれか一つに記載のアルミニウム合金線を複数撚り合わせてなる。
 上記のアルミニウム合金撚線(以下、Al合金撚線と呼ぶことがある)を構成する各素線は、上述のように特定の組成のAl合金で構成されると共に、表層に存在する気泡が少ないことで、耐衝撃性及び疲労特性に優れる。また、撚線は、一般に、同じ導体断面積を有する単線と比較して可撓性に優れ、衝撃や繰り返しの曲げを受けた場合などでも、各素線が破断し難く、耐衝撃性及び疲労特性に優れる。これらの点から、上記のAl合金撚線は、耐衝撃性及び疲労特性に優れる。各素線が上述のように機械的特性に優れることから、上記のAl合金撚線は、引張強さ、0.2%耐力、及び破断伸びから選択される少なくとも一つがより高い傾向にあり、機械的特性にも優れる。
(10)上記のAl合金撚線の一例として、
 撚りピッチが前記アルミニウム合金撚線の層心径の10倍以上40倍以下である形態が挙げられる。
 層心径とは、撚線が多層構造である場合、各層に含まれる全ての素線の中心を連ねる円の直径をいう。
 上記形態は、撚りピッチが特定の範囲を満たすことで、曲げなどを行った際に素線同士が捻じれ難いため破断し難い上に、端子部を取り付ける場合にはばらけ難いため端子部を取り付け易い。従って、上記形態は、特に疲労特性に優れる上に、端子付き電線などの端子部が取り付けられる導体に好適に利用できる。
(11)本願発明の一態様に係る被覆電線は、
 導体と、前記導体の外周を覆う絶縁被覆とを備える被覆電線であって、
 前記導体は、上記(9)又は(10)に記載のアルミニウム合金撚線を備える。
 上記の被覆電線は、上述の耐衝撃性及び疲労特性に優れるAl合金撚線によって構成される導体を備えるため、耐衝撃性及び疲労特性に優れる。
(12)本願発明の一態様に係る端子付き電線は、
 上記(11)に記載の被覆電線と、前記被覆電線の端部に装着された端子部とを備える。
 上記の端子付き電線は、上述の耐衝撃性及び疲労特性に優れるAl合金線やAl合金撚線によって構成される導体を備える被覆電線を構成要素とするため、耐衝撃性及び疲労特性に優れる。
[本願発明の実施形態の詳細]
 以下、適宜、図面を参照して、本願発明の実施の形態を詳細に説明する。図中、同一符号は同一名称物を示す。以下の説明において元素の含有量は、質量%を示す。
[アルミニウム合金線]
(概要)
 実施形態のアルミニウム合金線(Al合金線)22は、アルミニウム合金(Al合金)から構成される線材であり、代表的には、電線の導体2などに利用される(図1)。この場合、Al合金線22は、単線、又は複数のAl合金線22が撚り合わされてなる撚線(実施形態のAl合金撚線20)、又は撚線が所定の形状に圧縮成形されてなる圧縮撚線(実施形態のAl合金撚線20の別例)の状態で利用される。図1では7本のAl合金線22が撚り合わされたAl合金撚線20を例示する。実施形態のAl合金線22は、Al合金がFeを特定の範囲で含むという特定の組成を有すると共に、Al合金線22の表層に存在する気泡が少ないという特定の組織を有する。詳しくは、実施形態のAl合金線22を構成するAl合金は、Feを0.005%以上2.2%以下含有し、残部がAl及び不可避不純物からなるAl-Fe系合金である。また、実施形態のAl合金線22は、その横断面において、その表面から深さ方向に30μmまでの表層領域からとった以下の領域(表層気泡測定領域と呼ぶ)に存在する気泡の合計断面積が2μm以下である。表面気泡測定領域は、短辺長さが30μmであり、長辺長さが50μmである長方形の領域とする。上述の特定の組成を有すると共に特定の組織を有する実施形態のAl合金線22は、製造過程で軟化処理などを受けることで、高強度、高靭性であり、耐衝撃性にも優れる上に、気泡に起因する破断も低減できるため、耐衝撃性により優れ、疲労特性にも優れる。
 以下、より詳細に説明する。なお、気泡の大きさなどといった各パラメータの測定方法の詳細、上述の効果の詳細は試験例で説明する。
(組成)
 実施形態のAl合金線22は、Feを0.005%以上含有するAl合金から構成されることで、導電率の低下をあまり招くことなく強度を高められる。Feの含有量が高いほど、Al合金の強度を高められる。また、Al合金線22は、Feを2.2%以下の範囲で含むAl合金から構成されることで、Feの含有に起因する導電率や靭性の低下を招き難く、高い導電率や高い靭性などを有したり、伸線加工時に断線し難く、製造性にも優れたりする。強度、靭性、導電率のバランスを考慮して、Feの含有量を0.1%以上2.0%以下、更に0.3%以上2.0%以下、0.9%以上2.0%以下とすることができる。
 実施形態のAl合金線22を構成するAl合金は、Feに加えて、以下の添加元素を好ましくは後述する特定の範囲で含むと、強度や靭性といった機械的特性の向上が期待でき、耐衝撃性及び疲労特性により優れる。添加元素は、Mg、Si、Cu、Mn、Ni、Zr、Ag、Cr、及びZnから選択される1種以上の元素が挙げられる。Mg,Mn,Ni,Zr,Crは、導電率の低下が大きいものの、強度の向上効果が高い。特にMgとSiとを同時に含有すると、強度をより向上できる。Cuは、導電率の低下が少なく、強度を向上できる。Ag,Znは、導電率の低下が少なく、強度の向上効果をある程度有する。強度の向上により、軟化処理などの熱処理を施した後でも、高い引張強さなどを有しながら、高い破断伸びなどを有することができ、耐衝撃性、疲労特性の向上にも寄与する。列挙した各元素の含有量は0%以上0.5%以下、列挙した元素の合計含有量は0%以上1.0%以下が挙げられる。特に、列挙した元素の合計含有量が0.005%以上1.0%以下であると、上述の強度の向上効果、耐衝撃性、疲労特性の向上効果などを得易い。各元素の含有量は、例えば以下が挙げられる。上記の合計含有量の範囲、及び以下の各元素の含有量の範囲において、多いほど強度を向上し易く、少ないほど導電率を高め易い傾向にある。
(Mg)0%超0.5%以下、更に0.05%以上0.5%未満、0.05%以上0.4%以下、0.1%以上0.4%以下
(Si)0%超0.3%以下、更に0.03%以上0.3%未満、更に0.05%以上0.2%以下
(Cu)0.05%以上0.5%以下、更に0.05%以上0.4%以下
(Mn,Ni,Zr,Ag,Cr,及びZn、以下、まとめて元素αと呼ぶことがある)合計で0.005%以上0.2%以下、更に合計で0.005%以上0.15%以下
 なお、原料に用いる純アルミニウムの成分分析を行い、原料に不純物としてFe,上述のMgなどの添加元素などを含む場合、これらの元素の含有量が所望の量となるように各元素の添加量を調整するとよい。即ち、Feなどの各添加元素における含有量は、原料に用いるアルミニウム地金自体に含まれる元素を含む合計量であり、必ずしも、添加量を意味しない。
 実施形態のAl合金線22を構成するAl合金は、Feに加えて、Ti及びBの少なくとも一方の元素を含有することができる。TiやBは、鋳造時において、Al合金の結晶を微細にする効果がある。微細な結晶組織を有する鋳造材を素材にすることで、鋳造以降に圧延や伸線などの加工や軟化処理を含む熱処理などを受けても、結晶粒が微細になり易い。微細な結晶組織を有するAl合金線22は、粗大な結晶組織を有する場合に比較して、衝撃や繰り返しの曲げを受けた場合などに破断し難く、耐衝撃性や疲労特性に優れる。B単独の含有、Ti単独の含有、Ti及びBの双方の含有、という順に微細化効果が高い傾向にある。Tiを含む場合、その含有量が0%以上0.05%以下、更に0.005%以上0.05%以下であると、Bを含む場合、その含有量が0%以上0.005%以下、更に0.001%以上0.005%以下であると、結晶微細化効果が得られると共に、TiやBの含有に起因する導電率の低下を低減できる。結晶微細化効果と導電率とのバランスを考慮して、Tiの含有量を0.01%以上0.04%以下、更に0.03%以下、Bの含有量を0.002%以上0.004%以下とすることができる。
 Feに加えて、上述の元素を含有する組成の具体例を以下に示す。
(1)Feを0.01%以上2.2%以下、Mgを0.05%以上0.5%以下含有し、残部がAl及び不可避不純物。
(2)Feを0.01%以上2.2%以下、Mgを0.05%以上0.5%以下、Siを0.03%以上0.3%以下含有し、残部がAl及び不可避不純物。
(3)Feを0.01%以上2.2%以下、Mgを0.05%以上0.5%以下、Mn,Ni,Zr,Ag,Cr,及びZnから選択される1種以上の元素を合計で0.005%以上0.2%以下含有し、残部がAl及び不可避不純物。
(4)Feを0.1%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、残部がAl及び不可避不純物。
(5)Feを0.1%以上2.2%以下、Cuを0.05%以上0.5%以下、0.05%以上0.5%以下のMg及び0.03%以上0.3%以下のSiの少なくとも一方の元素を含有し、残部がAl及び不可避不純物。
(6)上記(1)から(5)のいずれか一つにおいて、0.005%以上0.05%以下のTi及び0.001%以上0.005%以下のBの少なくとも一方の元素を含有する。
(組織)
・気泡
 実施形態のAl合金線22は、その表層に存在する気泡が少ない。具体的にはAl合金線22の横断面において、図3に示すようにその表面から深さ方向に30μmまでの表層領域220、即ち厚さ30μmの環状の領域をとる。この表層領域220から、短辺長さSが30μmであり、長辺長さLが50μmである長方形の表層気泡測定領域222(図3では破線で示す)をとる。短辺長さSは表層領域220の厚さに相当する。詳しくは、Al合金線22の表面の任意の点(接点P)について接線Tをとる。接点PからAl合金線22の内部に向かって、表面の法線方向に長さが30μmである直線Cをとる。Al合金線22が丸線であれば、この円の中心に向かって直線Cをとる。直線Cと平行な直線であって長さが30μmの直線を短辺22Sとする。接点Pを通り、接線Tに沿った直線であって、接点Pが中間点となるように長さが50μmである直線をとり、この直線を長辺22Lとする。表層気泡測定領域222にAl合金線22が存在しない微小な空隙(ハッチング部分)gが生じることを許容する。この表層気泡測定領域222に存在する気泡の合計断面積が2μm以下である。表層に気泡が少ないことで、衝撃や繰り返しの曲げを受けた場合などに気泡を起点とする割れを低減し易く、ひいては表層から内部への割れの進展も低減できて、気泡に起因する破断を低減できる。そのため、実施形態のAl合金線22は、耐衝撃性や疲労特性に優れる。一方、気泡の合計面積が大きければ、粗大な気泡が存在したり、微細な気泡が多数存在したりして、気泡が割れの起点となったり、割れが進展し易くなったりして、耐衝撃性や疲労特性に劣る。他方、気泡の合計断面積は、小さいほど気泡が少なく、気泡に起因する破断を低減して耐衝撃性や疲労特性に優れることから、1.5μm未満、更に1μm以下、0.95μm以下であることが好ましく、0に近いほど好ましい。気泡は、例えば、鋳造過程で湯温を低めにすると少なくなり易い。加えて鋳造時の冷却速度、特に後述する特定の温度域の冷却速度を速めるとより少なく、小さくなり易い。
 Al合金線22が丸線である場合や実質的に丸線と見做せる場合などでは、上述の表層における気泡の測定領域を図4に示すような扇型とすることができる。図4では気泡測定領域224が分かり易いように太線で示す。図4に示すようにAl合金線22の横断面において、その表面から深さ方向に30μmまでの表層領域220、即ち厚さtが30μmの環状の領域をとる。この表層領域220から、1500μmの面積を有する扇型の領域(気泡測定領域224と呼ぶ)をとる。環状の表層領域220の面積と、気泡測定領域224の面積1500μmとを利用して、面積1500μmである扇型の領域の中心角θを求めることで、環状の表層領域220から扇型の気泡測定領域224を抽出できる。この扇型の気泡測定領域224に存在する気泡の合計断面積が2μm以下であれば、上述した理由により、耐衝撃性や疲労特性に優れるAl合金線22とすることができる。上述の長方形の表層気泡測定領域と扇型の気泡測定領域との双方をとり、この双方に存在する気泡の合計面積がいずれも2μm以下であると、耐衝撃性や疲労特性に優れる線材としての信頼性を高められると期待される。
 実施形態のAl合金線22の一例として、表層に加えて内部に存在する気泡も少ないものが挙げられる。具体的にはAl合金線22の横断面において、短辺長さが30μmであり、長辺長さが50μmである長方形の領域(内部気泡測定領域と呼ぶ)をとる。この内部気泡測定領域は、この長方形の中心がAl合金線22の中心に重なるようにとる。Al合金線22が異形線の場合には、内接円の中心をAl合金線22の中心とする(以下同様)。長方形の表層気泡測定領域及び上述の扇型の気泡測定領域の少なくとも一方において、当該測定領域に存在する気泡の合計断面積Sfbに対する内部気泡測定領域に存在する気泡の合計断面積Sibの比(Sib/Sfb)が1.1以上44以下である。ここで、鋳造過程では、一般に、金属の表層から内部に向かって凝固が進む。そのため、溶湯に雰囲気中のガスが溶解すると、金属の表層ではガスが金属外部に逃げ易いものの、金属の内部ではガスが閉じ込められて残存し易い。このような鋳造材を素材に用いて製造された線材では、その表層に比較して内部に存在する気泡が多くなり易いと考えられる。上述のように表層の気泡の合計断面積Sfbが小さければ、上記比Sib/Sfbが小さい形態は、内部に存在する気泡も少ない。従って、この形態は、衝撃や繰り返しの曲げを受けた場合などに割れの発生や割れの進展などを低減し易く、気泡に起因する破断を低減して、耐衝撃性や疲労特性に優れる。上記比Sib/Sfbは、小さいほど内部に存在する気泡が少なく、耐衝撃性や疲労特性に優れることから、40以下、更に30以下、20以下、15以下であることがより好ましい。上記比Sib/Sfbが1.1以上であれば、湯温を過度に低くしなくても、気泡が少ないAl合金線22を製造でき、量産に適すると考えられる。上記比Sib/Sfbが1.3から6.0ぐらいであると、量産し易いと考えられる。
・結晶粒径
 実施形態のAl合金線22の一例として、Al合金の平均結晶粒径が50μm以下であるものが挙げられる。微細な結晶組織を有するAl合金線22は曲げなどを行い易く、柔軟性に優れて、衝撃や繰り返しの曲げを受けた場合などで破断し難い。実施形態のAl合金線22は、その表層に気泡が少ないことも相俟って、この形態は耐衝撃性、疲労特性に優れる。上記平均結晶粒径は、小さいほど曲げなどを行い易く、耐衝撃性、疲労特性に優れることから、45μm以下、更に40μm以下、30μm以下であることが好ましい。結晶粒径は、組成や製造条件にもよるが、例えば上述のようにTiやBを含むと、微細になり易い。
(水素含有量)
 実施形態のAl合金線22の一例として、水素の含有量が4.0ml/100g以下であるものが挙げられる。気泡の一要因は、上述のように水素であると考えられる。Al合金線22について質量100gあたりに対する水素の含有量が4.0ml以下であれば、このAl合金線22は気泡が少なく、上述のように気泡に起因する破断を低減できる。水素の含有量は少ないほど、気泡が少ないと考えられることから、3.8ml/100g以下、更に3.6ml/100g以下、3ml/100g以下であることが好ましく、0に近いほど好ましい。Al合金線22中の水素は、大気雰囲気などの水蒸気を含む雰囲気で鋳造を行うことで雰囲気中の水蒸気が溶湯に溶解し、この溶存水素が残存していると考えられる。そのため、水素の含有量は、例えば、湯温を低めにして雰囲気からのガスの溶解を低減すると少なくなり易い。また、水素の含有量は、Cu及びSiの少なくとも一方を含有すると少なくなる傾向にある。
(表面酸化膜)
 実施形態のAl合金線22の一例として、Al合金線22の表面酸化膜の厚さが1nm以上120nm以下であるものが挙げられる。軟化処理などの熱処理が施されると、Al合金線22の表面に酸化膜が存在し得る。表面酸化膜の厚さが120nm以下と薄いことで、Al合金線22から構成される導体2の端部に端子部4(図2)を取り付けた場合に導体2と端子部4間に介在される酸化物を少なくできる。導体2と端子部4間に電気絶縁物である酸化物の介在量が少ないことで、導体2と端子部4間の接続抵抗の増大を低減できる。一方、表面酸化膜が1nm以上であれば、Al合金線22の耐食性を高められる。上記範囲で薄いほど上記接続抵抗の増大を低減でき、厚いほど耐食性を高められる。接続抵抗の増大抑制と耐食性とを考慮すると、表面酸化膜は、2nm以上115nm以下、更に5nm以上110nm以下、更に100nm以下とすることができる。表面酸化膜の厚さは、例えば、熱処理条件によって調整できる。例えば、雰囲気中の酸素濃度が高いと(例えば大気雰囲気)表面酸化膜を厚くし易く、酸素濃度が低いと(例えば不活性ガス雰囲気、還元ガス雰囲気など)表面酸化膜を薄くし易い。
(特性)
・加工硬化指数
 実施形態のAl合金線22の一例として、加工硬化指数が0.05以上であるものが挙げられる。加工硬化指数が0.05以上と大きいことで、例えば複数のAl合金線22を撚り合わせた撚線を圧縮成形した圧縮撚線としたり、Al合金線22から構成される導体2(単線、撚線、圧縮撚線のいずれでもよい)の端部に端子部4を圧着したりするといった塑性加工を施した場合に、Al合金線22は加工硬化し易い。圧縮成形や圧着などの塑性加工によって断面積が減少した場合でも、加工硬化によって強度を高められ、導体2に端子部4を強固に固着できる。このように加工硬化指数が大きいAl合金線22は、端子部4の固着性に優れる導体2を構成できる。加工硬化指数は大きいほど、加工硬化による強度の向上が期待できることから、0.08以上、更に0.1以上が好ましい。加工硬化指数は、破断伸びが大きいほど大きくなり易い。そのため、加工硬化指数を大きくするには、例えば添加元素の種類や含有量、熱処理条件などを調整して破断伸びを高めることが挙げられる。晶出物(後述)が微細であり、平均結晶粒径が上述の特定の範囲を満たすという特定の組織を有するAl合金線22は、加工硬化指数が0.05以上を満たし易い。そのため、Al合金の組織を指標として、添加元素の種類や含有量、熱処理条件などを調整することでも、加工硬化指数を調整できる。
・機械的特性、電気的特性
 実施形態のAl合金線22は、上述した特定の組成のAl合金で構成され、代表的には軟化処理などの熱処理を施されることで、引張強さや0.2%耐力が高く強度に優れ、破断伸びが高く靭性に優れ、更に導電率が高く導電性にも優れる。定量的には、Al合金線22は、引張強さが110MPa以上200MPa以下であること、0.2%耐力が40MPa以上であること、破断伸びが10%以上であること、導電率が55%IACS以上であることから選択される一つ以上を満たすものが挙げられる。列挙する事項のうち二つの事項、更に三つの事項、特に四つ全ての事項を満たすAl合金線22は、機械的特性に優れて、耐衝撃性及び疲労特性により優れたり、耐衝撃性及び疲労特性に優れる上に導電性にも優れたりして好ましい。このようなAl合金線22は、電線の導体として好適に利用できる。
 引張強さが上記範囲で高いほど強度に優れ、疲労特性に優れる。引張強さが上記の範囲で低いほど破断伸びや導電率を高め易い。これらのことから、上記引張強さを110MPa以上180MPa以下、更に115MPa以上150MPa以下とすることができる。
 破断伸びが10%以上であれば可撓性、靭性に優れ、耐衝撃性に優れる。破断伸びが上記範囲で高いほど可撓性、靭性に優れて曲げなどを行い易いため、上記破断伸びを13%以上、更に15%以上、20%以上とすることができる。
 Al合金線22は、代表的には導体2に利用される。導電率が55%IACS以上であれば導電性に優れて、各種の電線の導体に好適に利用できる。導電率は56%IACS以上、更に57%IACS以上、58%IACS以上であることがより好ましい。
 Al合金線22は、0.2%耐力も高いことが好ましい。引張強さが同じである場合、0.2%耐力が高いほど端子部4との固着性に優れる傾向にあるからである。0.2%耐力が40MPa以上であれば、特に端子部を圧着などして取り付けた場合に端子部との固着性により優れる。0.2%耐力を45MPa以上、更に50MPa以上、55MPa以上とすることができる。
 Al合金線22は、引張強さに対する0.2%耐力の比が0.4以上であると、0.2%耐力が十分に大きく、高強度で破断し難い上に上述のように端子部4との固着性にも優れる。この比は大きいほど、高強度で、端子部4との固着性にも優れることから、0.42以上、更に0.45以上であることが好ましい。
 引張強さ、0.2%耐力、破断伸び、導電率は、例えば、添加元素の種類や含有量、製造条件(伸線条件、熱処理条件など)を調整することで変更できる。例えば、添加元素が多いと引張強さや0.2%耐力が高くなる傾向にあり、添加元素が少ないと導電率が高くなる傾向にあり、熱処理時の加熱温度を高くすると、破断伸びが高くなる傾向にある。
(形状)
 実施形態のAl合金線22の横断面形状は、用途などに応じて適宜選択できる。例えば、横断面形状が円形である丸線が挙げられる(図1参照)。その他、横断面形状が長方形などの四角形である角線などが挙げられる。Al合金線22が上述の圧縮撚線の素線を構成する場合には、代表的には円形が押し潰された異形状である。上述の気泡を評価するときの測定領域は、Al合金線22が角線などであれば長方形の領域が利用し易く、Al合金線22が丸線などであれば長方形の領域でも扇型の領域でもいずれを利用してもよい。Al合金線22の横断面形状が所望の形状となるように、伸線ダイスの形状、圧縮成形用のダイスの形状などを選択するとよい。
(大きさ)
 実施形態のAl合金線22の大きさ(横断面積、丸線の場合には線径(直径)など)は、用途などに応じて適宜選択できる。例えば、自動車用ワイヤーハーネスなどの各種のワイヤーハーネスに備えられる電線の導体に利用する場合、Al合金線22の線径は0.2mm以上1.5mm以下であることが挙げられる。例えば、建築物などの配線構造を構築する電線の導体に利用する場合、Al合金線22の線径は0.2mm以上3.6mm以下であることが挙げられる。
[Al合金撚線]
 実施形態のAl合金線22は、図1に示すように撚線の素線に利用できる。実施形態のAl合金撚線20は、複数のAl合金線22を撚り合わせてなる。Al合金撚線20は、同じ導体断面積を有する単線のAl合金線と比較して断面積が小さい複数の素線(Al合金線22)を撚り合わせて構成されるため、可撓性に優れ、曲げなどを行い易い。また、撚り合わせられることで、各素線であるAl合金線22が細くても、撚線全体として強度に優れる。更に、実施形態のAl合金撚線20は、気泡が少ないという特定の組織を有するAl合金線22を素線とする。これらのことからAl合金撚線20は、衝撃や繰り返しの曲げを受けた場合などでも、各素線であるAl合金線22が破断し難く、耐衝撃性及び疲労特性に優れる。各素線であるAl合金線22は、上述した水素の含有量、結晶粒径の大きさなどの事項が上述の特定の範囲を満たすと、耐衝撃性、疲労特性に更に優れる。
 Al合金撚線20の撚り合せ本数は適宜選択でき、例えば、7,11,16,19,37本などが挙げられる。Al合金撚線20の撚りピッチは適宜選択できるが、撚りピッチをAl合金撚線20の層心径の10倍以上とすると、Al合金撚線20から構成される導体2の端部に端子部4を取り付ける際にばらけ難く、端子部4の取付作業性に優れる。一方、撚りピッチを上記層心径の40倍以下とすると、曲げなどを行った際に素線同士が捻じれ難いため破断し難く、疲労特性に優れる。ばらけ防止と捻じれ防止とを考慮すると、撚りピッチは上記層心径の15倍以上35倍以下、更に20倍以上30倍以下とすることができる。
 Al合金撚線20は、更に圧縮成形が施された圧縮撚線とすることができる。この場合、単に撚り合わせた状態よりも線径を小さくしたり、外形を所望の形状(例えば円形)にしたりなどすることができる。各素線であるAl合金線22の加工硬化指数が上述のように大きい場合には、強度の向上、ひいては耐衝撃性、疲労特性の向上も期待できる。
 Al合金撚線20を構成する各Al合金線22の組成、組織、表面酸化膜の厚さ、水素の含有量、機械的特性及び電気的特性などの仕様は、撚り合せ前に用いたAl合金線22の仕様を実質的に維持する。撚り合せ後に熱処理を施すことなどによっては、表面酸化膜の厚さ、機械的特性及び電気的特性が変化する場合がある。Al合金撚線20の仕様が所望の値となるように、撚り合せ条件を調整するとよい。
[被覆電線]
 実施形態のAl合金線22や実施形態のAl合金撚線20(圧縮撚線でもよい)は、電線用導体に好適に利用できる。絶縁被覆を備えていない裸導体、絶縁被覆を備える被覆電線の導体のいずれにも利用できる。実施形態の被覆電線1は、導体2と、導体2の外周を覆う絶縁被覆3とを備え、導体2として、実施形態のAl合金線22、又は実施形態のAl合金撚線20を備える。この被覆電線1は、耐衝撃性、疲労特性に優れるAl合金線22やAl合金撚線20から構成される導体2を備えるため、耐衝撃性、疲労特性に優れる。絶縁被覆3を構成する絶縁材料は、適宜選択できる。上記絶縁材料は、例えば、ポリ塩化ビニル(PVC)やノンハロゲン樹脂、難燃性に優れる材料などが挙げられ、公知のものが利用できる。絶縁被覆3の厚さは所定の絶縁強度を有する範囲で適宜選択できる。
[端子付き電線]
 実施形態の被覆電線1は、自動車や飛行機などの機器に載置されるワイヤーハーネス、産業用ロボットなどといった各種の電気機器の配線、建築物などの配線など、各種の用途の電線に利用できる。ワイヤーハーネスなどに備えられる場合、代表的には、被覆電線1の端部には端子部4が取り付けられる。実施形態の端子付き電線10は、図2に示すように実施形態の被覆電線1と、被覆電線1の端部に装着された端子部4とを備える。この端子付き電線10は、耐衝撃性、疲労特性に優れる被覆電線1を備えるため、耐衝撃性、疲労特性に優れる。図2では、端子部4として、一端に雌型又は雄型の嵌合部42を備え、他端に絶縁被覆3を把持するインシュレーションバレル部44を備え、中間部に導体2を把持するワイヤバレル部40を備える圧着端子を例示する。その他の端子部4として、導体2を溶融して接続する溶融型のものなどが挙げられる。
 圧着端子は、被覆電線1の端部において絶縁被覆3が除去されて露出された導体2の端部に圧着されて、導体2と電気的及び機械的に接続される。導体2を構成するAl合金線22やAl合金撚線20が、上述のように加工硬化指数が高いものであると、導体2における圧着端子の取付箇所は、その断面積が局所的に小さくなっているものの、加工硬化によって強度に優れる。そのため、例えば端子部4と、被覆電線1の接続対象との接続時などに衝撃を受けても、更に接続後に繰り返しの曲げを受けても、導体2が端子部4近傍で破断することを低減でき、この端子付き電線10は耐衝撃性、疲労特性に優れる。
 導体2を構成するAl合金線22やAl合金撚線20について、上述のように表面酸化膜を薄くする等すると、導体2と端子部4間に介在される電気絶縁物(表面酸化膜を構成する酸化物など)を低減でき、導体2と端子部4間の接続抵抗を小さくできる。従って、この端子付き電線10は、耐衝撃性、疲労特性に優れる上に、接続抵抗も小さい。
 端子付き電線10は、図2に示すように、被覆電線1ごとに一つの端子部4が取り付けられた形態の他、複数の被覆電線1に対して一つの端子部(図示せず)を備える形態が挙げられる。複数の被覆電線1を結束具などによって束ねると、端子付き電線10を取り扱い易い。
[Al合金線の製造方法、Al合金撚線の製造方法]
(概要)
 実施形態のAl合金線22は、代表的には、鋳造、(熱間)圧延や押出、伸線という基本工程に加えて、適宜な時期に熱処理(軟化処理を含む)を行うことで製造できる。基本工程や軟化処理の条件などは公知の条件などを参照できる。実施形態のAl合金撚線20は、複数のAl合金線22を撚り合わせることで製造できる。撚り合せ条件などは公知の条件を参照できる。
(鋳造工程)
 特に、表層に気泡が少ない実施形態のAl合金線22は、例えば、鋳造過程において湯温を低めにすると製造し易い。溶湯に雰囲気中のガスが溶解することを低減でき、溶存ガスが少ない溶湯で鋳造材を製造できる。溶存ガスとしては、上述のように水素が挙げられ、この水素は雰囲気中の水蒸気が分解したもの、雰囲気中に含まれていたものと考えられる。溶存水素などの溶存ガスが少ない鋳造材を素材とすることで、圧延や伸線などの塑性加工、軟化処理などの熱処理を施しても、鋳造以降においてAl合金に溶存ガスに起因する気泡が少ない状態を維持し易い。その結果、最終線径のAl合金線22の表層や内部に存在する気泡を上述の特定の範囲にすることができる。また、上述のように水素の含有量が少ないAl合金線22を製造できる。鋳造過程以降の工程、例えば、皮剥ぎ、塑性変形を伴う加工(圧延、押出、伸線など)を行うことで、Al合金の内部に閉じ込められた気泡の位置が変化したり、気泡の大きさがある程度小さくなったりすると考えられる。しかし、鋳造材に存在する気泡の合計含有量が多ければ、位置変動や大きさ変動があっても、最終線径のAl合金線において、表層や内部に存在する気泡の合計含有量や、水素の含有量が多くなり易い(実質的に維持されたままである)と考えられる。そこで、湯温を低くして、鋳造材自体に含まれる気泡を十分に少なくすることを提案する。
 具体的な湯温として、例えばAl合金における液相線温度以上750℃未満が挙げられる。湯温が低いほど溶存ガスを低減でき、鋳造材の気泡を低減できることから、748℃以下、更に745℃以下が好ましい。一方、湯温がある程度高いと、添加元素を固溶し易いため、湯温を670℃以上、更に675℃以上とすることができ、強度や靭性などに優れるAl合金線を得易い。このように湯温を低くすることで、大気雰囲気などの水蒸気を含む雰囲気で鋳造を行っても、溶存ガスを少なくでき、ひいては溶存ガスに起因する気泡の合計含有量や、水素の含有量を低減できる。
 湯温を低くすることに加えて、鋳造過程の冷却速度、特に湯温から650℃までという特定の温度域の冷却速度をある程度速くすると、雰囲気中からの溶存ガスの増大を防止し易い。上記の特定の温度域は、主として液相域であり、水素などが溶解し易く、溶存ガスが増大し易いからである。一方、上記の特定の温度域における冷却速度が速過ぎないことで、凝固途中の金属内部の溶存ガスを外部である雰囲気中に排出し易いと考えられる。溶存ガスの増大抑制を考慮すると上記冷却速度は、1℃/秒以上、更に2℃/秒以上、4℃/秒以上が好ましい。上記金属内部の溶存ガスの排出促進を考慮すると、上記冷却速度は、30℃/秒以下、更に25℃/秒未満、20℃/秒以下、20℃/秒未満、15℃/秒以下、10℃/秒以下とすることができる。上記冷却速度が速過ぎないことで、量産にも適する。
 上述のように鋳造過程における特定の温度域の冷却速度をある程度速めにすると、微細な晶出物をある程度含むAl合金線22を製造できるとの知見を得た。ここで、上述のように上記の特定の温度域は、主として液相域であり、液相域での冷却速度を速くすれば、凝固時に生成される晶出物を小さくし易い。しかし、上述のように湯温を低くした場合に上記冷却速度が速過ぎると、特に25℃/秒以上であると、晶出物が生成され難くなり、添加元素の固溶量が多くなって導電率の低下を招いたり、晶出物による結晶粒のピン止め効果を得難くなったりすると考えられる。これに対し、上述のように湯温を低めにし、かつ上記温度域の冷却速度をある程度速めにすることで、粗大な晶出物を含み難く、微細で比較的均一的な大きさの晶出物をある程度の量含み易い。最終的に、表層に気泡が少なく、微細な晶出物をある程度含むAl合金線22を製造できる。晶出物の微細化を考慮すると、Feなどの添加元素の含有量などにもよるが、上記冷却速度は1℃/秒超、更に2℃/秒以上が好ましい。
 以上のことから、湯温を670℃以上750℃未満、かつ湯温から650℃までの冷却速度を20℃/秒未満とすることが好ましい。
 更に、鋳造過程の冷却速度を上述の範囲で速めにすると、微細な結晶組織を有する鋳造材を得易い、添加元素をある程度固溶させ易い、DAS(Dendrite Arm Spacing)を小さくし易い(例えば、50μm以下、更に40μm以下)、といった効果も期待できる。
 鋳造は、連続鋳造、金型鋳造(ビレット鋳造)のいずれも利用することができる。連続鋳造は、長尺な鋳造材を連続的に製造できる上に冷却速度を速め易く、上述のように気泡の低減、粗大な晶出物の抑制、結晶粒やDASの微細化、添加元素の固溶などの効果が期待できる。
(伸線までの工程)
 鋳造材に、代表的には(熱間)圧延や押出などの塑性加工(中間加工)を施した中間加工材を伸線に供することが挙げられる。連続鋳造に連続して熱間圧延を行って、連続鋳造圧延材(中間加工材の一例)を伸線に供することもできる。上記塑性加工の前後に皮剥ぎや熱処理を行うことができる。皮剥ぎを行うことで、気泡や表面キズなどが存在し得る表層を除去できる。ここでの熱処理は、例えばAl合金の均質化などを目的とするものが挙げられる。均質化処理の条件は、加熱温度を450℃以上600℃以下程度、保持時間を0.5時間以上5時間以下程度とすることが挙げられる。この条件で均質化処理を行うと、偏析などによる不均一で粗大な晶出物をある程度微細で、均一的な大きさにし易い。ビレット鋳造材を用いる場合、鋳造後に均質化処理を行うことが好ましい。
(伸線工程)
 上述の圧延などの塑性加工を経た素材(中間加工材)に、所定の最終線径になるまで(冷間)伸線加工を施し、伸線材を形成する。伸線加工は、代表的には伸線ダイスを用いて行う。伸線加工度は、最終線径に応じて適宜選択するとよい。
(撚合工程)
 Al合金撚線20を製造する場合には、複数の線材(伸線材、又は伸線後に熱処理を施した熱処理材)を用意し、これらを所定の撚りピッチ(例えば、層心径の10倍~40倍)で撚り合わせる。Al合金撚線20を圧縮撚線とする場合には、撚り合せ後に所定の形状に圧縮成形する。
(熱処理)
 伸線途中及び伸線工程以降の任意の時期の伸線材などに熱処理を行うことができる。特に、破断伸びなどの靭性の向上を目的とする軟化処理を施すと、高強度及び高靭性で、耐衝撃性、疲労特性にも優れるAl合金線22やAl合金撚線20を製造できる。熱処理を行う時期は、伸線途中、伸線後(撚線前)、撚線後(圧縮成形前)、圧縮成形後の少なくとも一つの時期が挙げられる。複数の時期に熱処理を行ってもよい。最終製品であるAl合金線22やAl合金撚線20が所望の特性を満たすように、例えば破断伸びが10%以上を満たすように熱処理条件を調整して、熱処理を行うことが挙げられる。破断伸びが10%以上を満たすように熱処理(軟化処理)を行うことで、加工硬化指数が上述の特定の範囲を満たすAl合金線22を製造することもできる。なお、伸線途中や撚線前に熱処理を行うと、加工性を高められて、伸線加工や撚り合せなどを行い易い。
 熱処理は、パイプ炉や通電炉などの加熱容器に熱処理対象を連続的に供給して加熱する連続処理でも、雰囲気炉などの加熱容器に熱処理対象を封入した状態で加熱するバッチ処理でもいずれも利用できる。バッチ処理の条件は、例えば加熱温度が250℃以上500℃以下程度、保持時間が0.5時間以上6時間以下程度とすることが挙げられる。連続処理では、熱処理後の線材が所望の特性を満たすように制御パラメータを調整するとよい。熱処理対象の大きさ(線径や断面積など)に応じて、所望の特性を満たすように、特性とパラメータ値との相関データを予め作成しておくと(特許文献1参照)、連続処理の条件を調整し易い。
 熱処理中の雰囲気は、例えば、大気雰囲気といった酸素含有量が比較的多い雰囲気、又は酸素含有量が大気よりも少ない低酸素雰囲気が挙げられる。大気雰囲気とすると、雰囲気制御が不要であるものの、表面酸化膜が厚く形成され易い(例えば、50nm以上)。そのため、大気雰囲気とする場合には、保持時間を短くし易い連続処理とすると、表面酸化膜の厚さが上述の特定の範囲を満たすAl合金線22を製造し易い。低酸素雰囲気は、真空雰囲気(減圧雰囲気)、不活性ガス雰囲気、還元ガス雰囲気などが挙げられる。不活性ガスは、窒素やアルゴンなどが挙げられる。還元ガスは、水素ガス、水素と不活性ガスとを含む水素混合ガス、一酸化炭素と二酸化炭素との混合ガスなどが挙げられる。低酸素雰囲気では雰囲気制御が必要であるものの、表面酸化膜を薄くし易い(例えば、50nm未満)。そのため、低酸素雰囲気とする場合には、雰囲気制御を行い易いバッチ処理とすると、表面酸化膜の厚さが上述の特定の範囲を満たすAl合金線22、好ましくは表面酸化膜の厚さがより薄いAl合金線22を製造し易い。
 上述のようにAl合金の組成を調整すると共に(好ましくはTi及びBの双方を添加)、連続鋳造材又は連続鋳造圧延材を素材に用いると、結晶粒径が上述の範囲を満たすAl合金線22を製造し易い。特に、連続鋳造材に圧延などの塑性加工を施した素材又は連続鋳造圧延材から最終線径の伸線材となるまでの伸線加工度を80%以上とし、最終線径の伸線材、又は撚線、又は圧縮撚線に破断伸びが10%以上となるように熱処理(軟化処理)を行うと、結晶粒径が50μm以下であるAl合金線22を更に製造し易い。この場合に、伸線途中にも熱処理を行ってもよい。このような結晶組織の制御及び破断伸びの制御を行うことで、加工硬化指数が上述の特定の範囲を満たすAl合金線22を製造することもできる。
(その他の工程)
 その他、表面酸化膜の厚さの調整方法として、最終線径の伸線材を高温高圧の熱水の存在下に曝すこと、最終線径の伸線材に水を塗布すること、大気雰囲気の連続処理で熱処理後に水冷する場合に水冷後に乾燥工程を設けることなどが挙げられる。熱水に曝したり、水を塗布したりすることで表面酸化膜が厚くなる傾向にある。上記の水冷後に乾燥させることで、水冷に起因するベーマイト層の形成を防止して、表面酸化膜が薄くなる傾向にある。
[被覆電線の製造方法]
 実施形態の被覆電線1は、導体2を構成する実施形態のAl合金線22又はAl合金撚線20(圧縮撚線でもよい)を用意し、導体2の外周に絶縁被覆3を押出などによって形成することで製造できる。押出条件などは公知の条件を参照できる。
[端子付き電線の製造方法]
 実施形態の端子付き電線10は、被覆電線1の端部において、絶縁被覆3を除去して導体2を露出させ、端子部4を取り付けることで製造できる。
[試験例1]
 Al合金線を種々の条件で作製して特性を調べた。また、このAl合金線を用いてAl合金撚線を作製し、更にこのAl合金撚線を導体とする被覆電線を作製し、その端部に圧着端子を取り付けて得られた端子付き被覆電線の特性を調べた。
 Al合金線は、以下のようにして作製する。
 ベースとして純アルミニウム(99.7質量%以上Al)を用意して溶解し、得られた溶湯(溶融アルミニウム)に表1から表4に示す添加元素の含有量が、表1から表4に示す量(質量%)となるように投入して、Al合金の溶湯を作製する。成分調整を行ったAl合金の溶湯は、水素ガス除去処理や異物除去処理を行うと、水素の含有量を低減したり、異物を低減したりし易い。
 用意したAl合金の溶湯を用いて、連続鋳造圧延材、又はビレット鋳造材を作製する。連続鋳造圧延材は、ベルト-ホイール式の連続鋳造圧延機と、用意したAl合金の溶湯とを用いて鋳造及び熱間圧延を連続的に行って作製し、φ9.5mmのワイヤーロッドとする。ビレット鋳造材は、所定の固定鋳型にAl合金の溶湯を注湯して冷却して作製する。ビレット鋳造材に均質化処理を施した後、熱間圧延を行って、φ9.5mmのワイヤーロッド(圧延材)を作製する。表5から表8に、鋳造法の種別(連続鋳造圧延材は「連続」、ビレット鋳造材は「ビレット」と示す)、溶湯温度(℃)、鋳造過程の冷却速度(湯温から650℃までの平均冷却速度、℃/秒)を示す。冷却速度は、水冷機構などを用いて、冷却状態を調整することで変化させた。
 上記のワイヤーロッドに冷間伸線加工を施して、線径φ0.3mmの伸線材、線径φ0.37mmの伸線材、線径φ0.39mmの伸線材を作製する。
 得られた線径φ0.3mmの伸線材に、表5から表8に示す方法、温度(℃)、雰囲気で軟化処理を施して軟材(Al合金線)を作製する。表5から表8に示す方法が「光輝軟化」とは、箱型炉を用いたバッチ処理であり、いずれも保持時間は3時間とする。表5から表8に示す方法が「連続軟化」とは、高周波誘導加熱方式又は直接通電方式の連続処理であり、表5から表8に示す温度(非接触式の赤外温度計にて測定)となるように通電条件を制御する。線速は50m/minから3,000m/minの範囲から選択する。試料No.2-202は、軟化処理を施していない。試料No.2-203は他の試料に比較して高温、長時間の熱処理条件:550℃×8時間とする(表8では温度の欄に「*1」を付している)。試料No.2-205は大気雰囲気での軟化処理後にベーマイト処理(100℃×15分)を行う(表8では雰囲気の欄に「*2」を付している)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(機械的特性、電気的特性)
 得られた線径φ0.3mmの軟材及び非熱処理材(試料No.2-202)について、引張強さ(MPa)、0.2%耐力(MPa)、破断伸び(%)、加工硬化指数、導電率(%IACS)を測定した。また、引張強さに対する0.2%耐力の比「耐力/引張」を求めた。これらの結果を表9から表12に示す。
 引張強さ(MPa)、0.2%耐力(MPa)、破断伸び(%)は、JIS Z 2241(金属材料引張試験方法、1998年)に準拠して、汎用の引張試験機を用いて測定した。加工硬化指数とは、引張試験の試験力を単軸方向に適用したときの塑性ひずみ域における真応力σと真ひずみεとの式σ=C×εにおいて、真ひずみεの指数nとして定義される。上記式において、Cは強度定数である。上記の指数nは、上記の引張試験機を用いて引張試験を行ってS-S曲線を作成することで求められる(JIS G 2253、2011年も参照)。導電率(%IACS)は、ブリッジ法により測定した。
(疲労特性)
 得られた線径φ0.3mmの軟材及び非熱処理材(試料No.2-202)について、屈曲試験を行い、破断までの回数を測定した。屈曲試験は、市販の繰り返し曲げ試験機を用いて測定した。ここでは、各試料の線材に0.3%の曲げ歪みが加えられる治具を使用して、12.2MPaの負荷を印加した状態で繰り返しの曲げを行う。試料ごとに3本以上の屈曲試験を行い、その平均(回)を表9から表12に示す。破断までの回数が多いほど、繰り返しの曲げによって破断し難く、疲労特性に優れるといえる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 得られた線径φ0.37mm又は線径φ0.39mmの伸線材(上述の軟化処理を施してないもの)を用いて撚線を作製する。ここでは、線径φ0.37mmの線材を7本用いた撚線を作製する。また、線径φ0.39mmの線材を7本用いた撚線を更に圧縮成形した圧縮撚線を作製する。撚線の断面積、及び圧縮撚線の断面積はいずれも、0.75mm(0.75sq)である。撚りピッチは、25mm(層心径の約33倍)である。
 得られた撚線、圧縮撚線に、表5から表8に示す方法、温度(℃)、雰囲気で軟化処理を施す(試料No.2-203,No.2-205の*1,*2は上述参照)。得られた軟化撚線を導体とし、導体の外周に絶縁材料(ここでは、ハロゲンフリー絶縁材料)によって絶縁被覆(厚さ0.2mm)を形成して、被覆電線を作製する。試料No.2-202は、伸線材及び撚線のいずれにも軟化処理を施していない。
 得られた各試料の被覆電線、又はこの被覆電線に圧着端子を取り付けた端子付き電線について、以下の項目を調べた。以下の項目は、上記被覆電線の導体を撚線とするものと圧縮撚線とするものとの双方に対して調べた。表13から表16には、導体を撚線とする場合の結果を示すが、導体を圧縮撚線とする場合の結果と比較して、両者に大きな差が無いことを確認している。
(組織観察)
・気泡
 得られた各試料の被覆電線について、横断面をとり、導体(Al合金線から構成される撚線又は圧縮撚線、以下同様)を走査型電子顕微鏡(SEM)で観察して、表層及び内部の気泡、結晶粒径を調べた。ここでは、導体を構成する各Al合金線について、その表面から深さ方向に30μmまでの表層領域から、短辺長さ30μm×長辺長さ50μmである長方形の表層気泡測定領域をとる。つまり、一つの試料について、撚線を構成していた7本のAl合金線のそれぞれから、一つの表層気泡測定領域をとり、合計7個の表層気泡測定領域をとる。そして、各表層気泡測定領域に存在する気泡の合計断面積を求める。試料ごとに、合計7個の表層気泡測定領域における気泡の合計断面積を調べる。この合計7個の測定領域における気泡の合計断面積を平均した値を合計面積A(μm)として、表13から表16に示す。
 上述の長方形の表層気泡測定領域に代えて、厚さ30μmの環状の表層領域から、面積が1500μmである扇型の気泡測定領域をとり、上述の長方形の表層気泡測定領域で評価した場合と同様にして、扇型の気泡測定領域における気泡の合計面積B(μm)を求めた。その結果を表13から表16に示す。
 なお、気泡の合計断面積の測定は、観察像に二値化処理などの画像処理を施して、処理像から気泡を抽出すると容易に行える。
 上記横断面において、導体を構成する各Al合金線について、短辺長さ30μm×長辺長さ50μmである長方形の内部気泡測定領域をとる。内部気泡測定領域は、上記長方形の中心が各Al合金線の中心に重なるようにとる。そして、表層気泡測定領域に存在する気泡の合計断面積に対する内部気泡測定領域に存在する気泡の合計断面積の比「内部/表層」を求める。試料ごとに、合計7個の表層気泡測定領域及び内部気泡測定領域をとって比「内部/表層」を求める。この合計7個の測定領域における比「内部/表層」を平均した値を比「内部/表層A」として、表13から表16に示す。上述の長方形の表層気泡測定領域で評価した場合と同様にして、上述の扇型の気泡測定領域とした場合の上記比「内部/表層B」を求め、その結果を表13から表16に示す。
・結晶粒径
 また、上記横断面において、JIS G 0551(鋼-結晶粒度の顕微鏡試験方法、2013年)に準拠して、SEM観察像に試験線を引き、各結晶粒において、試験線を分断する長さを結晶粒径とする(切断法)。試験線の長さは、この試験線によって10個以上の結晶粒が分断される程度とする。一つの横断面に対して、3本の試験線を引いて、各結晶粒径を求め、これらの結晶粒径を平均した値を平均結晶粒径(μm)として、表13から表16に示す。
(水素含有量)
 得られた各試料の被覆電線について、絶縁被覆を除去して導体のみとし、導体100gあたりの水素の含有量(ml/100g)を測定した。その結果を表13から表16に示す。水素の含有量は、不活性ガス溶融法によって測定する。詳しくは、アルゴン気流中で黒鉛るつぼ中に試料を投入し、加熱溶融して水素を他のガスと共に抽出する。抽出したガスを分離カラムに通して水素を他のガスと分離して熱伝導度検出器で測定して、水素の濃度を定量することで水素の含有量を求める。
(表面酸化膜)
 得られた各試料の被覆電線について、絶縁被覆を除去して導体のみとし、導体を構成する撚線又は圧縮撚線を解いて、各素線の表面酸化膜を以下のようして測定した。ここでは、各素線(Al合金線)の表面酸化膜の厚さを調べる。試料ごとに合計7本の素線における表面酸化膜の厚さを調べ、この合計7本の素線における表面酸化膜の厚さを平均した値を表面酸化膜の厚さ(nm)として、表13から表16に示す。クロスセクションポリッシャー(CP)加工を施して、各素線の断面をとり、断面をSEM観察する。50nm程度を超える比較的厚い酸化膜については、このSEM観察像を用いて厚さを測定する。SEM観察において、50nm程度以下の比較的薄い酸化膜を有する場合には、別途、X線光電子分光分析(ESCA)によって深さ方向の分析(スパッタリングとエネルギー分散型X線分析(EDX)による分析とを繰り返す)を行って測定する。
(耐衝撃性)
 得られた各試料の被覆電線について、特許文献1を参照して、耐衝撃性(J/m)を評価した。概略を述べると、評点間距離が1mである試料の先端に錘を取り付け、この錘を1m上方に持ち上げた後、自由落下させ、試料が断線しない最大の錘の質量(kg)を測定する。この錘の質量に重力加速度(9.8m/s)と落下距離1mとをかけた積値を落下距離(1m)で除した値を耐衝撃性の評価パラメータ(J/m又は(N・m)/m)とする。求めた耐衝撃性の評価パラメータを導体断面積(ここでは0.75mm)で除した値を単位面積当たりの耐衝撃性の評価パラメータ(J/m・mm)として、表13から表16に示す。
(端子固着力)
 得られた各試料の端子付き電線について、特許文献1を参照して、端子固着力(N)を評価した。概略を述べると、端子付き電線の一端に取り付けられた端子部を端子チャックで挟持し、被覆電線の他端の絶縁被覆を除去して、導体部分を導体チャックで挟持する。両チャックで両端を挟持した各試料の端子付き電線について、汎用の引張試験機を用いて破断時の最大荷重(N)を測定し、この最大荷重(N)を端子固着力(N)として評価する。求めた最大荷重を導体断面積(ここでは0.75mm)で除した値を単位面積当たりの端子固着力(N/mm)として、表13から表16に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 Feを特定の範囲で含み、適宜特定の元素(Mg,Si,Cu,元素α)を特定の範囲で含むという特定の組成のAl-Fe系合金から構成され、軟化処理が施された試料No.1-1からNo.1-23,No.2-1からNo.2-23,No.3-1からNo.3-12(以下、まとめて、軟材試料群と呼ぶことがある)のAl合金線は、特定の組成外である試料No.1-101からNo.1-104、No.2-201、No.3-301(以下、まとめて比較試料群と呼ぶことがある)のAl合金線に比較して、表13から表15に示すように耐衝撃性の評価パラメータ値が高く、10J/m以上である。かつ、軟材試料群のAl合金線は、表9から表11に示すように強度にも優れて、屈曲回数も高い水準にある。このことから、軟材試料群のAl合金線は、比較試料群のAl合金線に比較して、優れた耐衝撃性と優れた疲労特性とをバランスよく有することが分かる。また、軟材試料群のAl合金線は、機械的特性や電気的特性に優れること、即ち引張強さも破断伸びも高く、ここでは0.2%耐力も高い上に、導電率も高い。定量的には、軟材試料群のAl合金線は、引張強さが110MPa以上200MPa以下、0.2%耐力が40MPa以上(ここでは45MPa以上、多くの試料は50MPa以上)、破断伸びが10%以上(ここでは11%以上、多くの試料は15%以上、更に20%以上)、導電率が55%IACS以上(多くの試料は57%IACS以上、更に58%IACS以上)を満たす。その上、軟材試料群のAl合金線は、引張強さと0.2%耐力との比「耐力/引張」も高く、0.4以上である。更に、軟材試料群のAl合金線は、表13から表15に示すように端子部との固着性にも優れることが分かる(40N以上)。この理由の一つとして、軟材試料群のAl合金線は、加工硬化指数が0.05以上と大きいため(多くの試料は0.07以上、更に0.10以上、表9から表11)、圧着端子を圧着した際の加工硬化による強度向上効果を良好に得られたためと考えられる。
 以下の気泡に関する事項については、長方形の測定領域Aを用いた評価結果、扇形の測定領域Bを用いた評価結果を参照する。
 特に、表13から表15に示すように軟材試料群のAl合金線は、表層に存在する気泡の合計面積が2.0μm以下であり、表16に示す試料No.1-105,No.1-106,No.2-204,No.3-303のAl合金線に比較して少ない。この表層の気泡に着目して、同じ組成である試料同士(No.1-5,No.1-105,No.1-106)、(No.2-5,No.2-204)、(No.3-3,No.3-303)を比較する。気泡が少ない試料No.1-5の方が、耐衝撃性に優れる上に(表13,表16)、屈曲回数が多く疲労特性にも優れることが分かる(表9,表12)。気泡が少ない試料No.2-5、No.3-3についても同様である。この理由の一つとして、表層に気泡が多い試料No.1-105,No.1-106,No.2-204,No.3-303のAl合金線では、衝撃や繰り返しの曲げを受けた場合に気泡が割れの起点となって破断し易くなったと考えられる。このことから、Al合金線の表層において、気泡を低減することで、耐衝撃性及び疲労特性を向上できるといえる。また、表13から表15に示すように軟材試料群のAl合金線は、水素の含有量が表16に示す試料No.1-105,No.1-106,No.2-204,No.3-303のAl合金線に比較して少ない。このことから、気泡の一要因は水素であると考えられる。試料No.1-105,No.1-106,No.2-204,No.3-303では湯温が高く、溶湯中の溶存ガスが多く存在し易いと考えられ、この溶存ガスに由来する水素が多くなったと考えられる。これらのことから、上記表層の気泡を低減するには、鋳造過程で湯温を低めにすること(ここでは750℃未満)が効果的であるといえる。
 その他、試料No.1-3と試料No.1-10との比較(表13)、試料No.1-5と試料No.3-3(表15)との比較によって、SiやCuを含有すると、水素を低減し易いことが分かる。
 更に、この試験から以下のことがいえる。
(1)表13から表15に示すように、軟材試料群のAl合金線は、表層だけでなく内部に存在する気泡も少ない。定量的には、気泡の合計面積の比「内部/表層」が44以下、ここでは20以下、更に15以下であり、多くの試料が10以下であり、試料No.2-204(表16)よりも小さい。同じ組成である試料No.1-4と試料No.1-106とを比較すると、比「内部/表層」が小さい試料No.1-4の方が屈曲回数が多く(表9,表12)、耐衝撃性のパラメータ値が高い(表13,表16)。この理由の一つとして、内部に気泡が多めである試料No.1-106のAl合金線では、衝撃や繰り返しの曲げを受けた場合に気泡を介して、表層から内部に割れが進展して破断し易くなったと考えられる。試料No.2-204の屈曲回数が少なく(表12)、耐衝撃性のパラメータ値が低い(表16)ことからも、比「内部/表層」が大きいと、内部に割れが進展して破断し易いといえる。このことから、Al合金線の表層及び内部において、気泡を低減することで、耐衝撃性及び疲労特性を向上できるといえる。また、この試験から、冷却速度が大きいほど比「内部/表層」が小さくなり易いといえる。従って、上記内部の気泡を低減するには、鋳造過程で湯温を低めにすると共に650℃までの温度域における冷却速度をある程度速めにすること(ここでは0.5℃/秒超、更に1℃/秒以上30℃/秒以下、好ましくは25℃/秒未満、更に20℃/秒未満)が効果的であるといえる。
(2)表13から表15に示すように軟材試料群のAl合金線は、結晶粒径が小さい。定量的には、平均結晶粒径が50μm以下であり、多くの試料は35μm以下、更に30μm以下であり、試料No.2-203(表16)よりも小さい。同じ組成である試料No.2-5と試料No.2-203とを比較すると、試料No.2-5の方が耐衝撃性の評価パラメータ値が大きい上に(表14,表16)、屈曲回数も多い(表10,表12)。従って、結晶粒径が小さいことは、耐衝撃性や疲労特性の向上に寄与すると考えられる。その他、この試験から、熱処理温度を低めにしたり、保持時間を短めにしたりすると、結晶粒径を小さくし易いといえる。
(3)表13から表15に示すように軟材試料群のAl合金線は、表面酸化膜を有するものの薄く(表16の試料No.2-205と比較参照)、120nm以下である。そのため、これらのAl合金線は、端子部との接続抵抗の増大を低減でき、低抵抗な接続構造を構築できると考えられる。また、軟材試料群の被覆電線について、絶縁被覆を除去して導体のみとし、導体を構成する撚線又は圧縮撚線を解いて素線にばらして、任意の1本の素線を試料として塩水噴霧試験を行って、腐食の有無を目視確認にて調べたところ、腐食が無かった。塩水噴霧試験の条件は、5質量%濃度のNaCl水溶液を用い、試験時間を96時間とする。このことから、表面酸化膜を適切な厚さで備えることで(ここでは1nm以上)、耐食性の向上に寄与すると考えられる。その他、この試験から、軟化処理などの熱処理を大気雰囲気としたり、ベーマイト層が形成され得る条件としたりすると表面酸化膜が厚くなり易く、低酸素雰囲気とすると薄くなり易いといえる。
 上述のように特定の組成のAl-Fe系合金からなり、軟化処理を施したAl合金線であって、表層に存在する気泡が少ないものは、高強度、高靭性、高導電率であり、端子部との接続強度にも優れる上に、耐衝撃性及び疲労特性にも優れる。このようなAl合金線は、被覆電線の導体、特に端子部が取り付けられる端子付き電線の導体に好適に利用できると期待される。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、試験例1の合金の組成、線材の断面積、撚線の撚り合せ数、製造条件(湯温、鋳造時の冷却速度、熱処理時期、熱処理条件など)を適宜変更できる。
[付記]
 耐衝撃性及び疲労特性に優れるアルミニウム合金線として、以下の構成とすることができる。
[付記1]
 アルミニウム合金から構成されるアルミニウム合金線であって、
 前記アルミニウム合金は、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不可避不純物からなり、
 前記アルミニウム合金線の横断面において、その表面から深さ方向に30μmまでの環状の表層領域から、1500μmの扇型の気泡測定領域をとり、前記扇型の気泡測定領域に存在する気泡の合計断面積が2μm以下であるアルミニウム合金線。
 上記[付記1]に記載のアルミニウム合金線は、更に、引張強さ・0.2%耐力・破断伸びといった機械的特性、結晶粒径、加工硬化指数、水素含有量の少なくとも一つの事項が上述の特定の範囲を満たすと、耐衝撃性及び疲労特性により優れる。また、上記[付記1]に記載のアルミニウム合金線は、導電率が上述の特定の範囲を満たすと導電性に優れ、表面酸化膜が上述の特定の範囲を満たすと耐食性に優れる。上記[付記1]に記載のアルミニウム合金線は、上述のアルミニウム合金撚線、被覆電線、又は端子付き電線に利用できる。
 1 被覆電線
 10 端子付き電線
 2 導体
 20 アルミニウム合金撚線
 22 アルミニウム合金線(素線)
 220 表層領域
 222 表層気泡測定領域
 224 気泡測定領域
 22S 短辺
 22L 長辺
 P 接点
 T 接線
 C 直線
 g 空隙
 3 絶縁被覆
 4 端子部
 40 ワイヤバレル部
 42 嵌合部
 44 インシュレーションバレル部

Claims (12)

  1.  アルミニウム合金から構成されるアルミニウム合金線であって、
     前記アルミニウム合金は、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不可避不純物からなり、
     前記アルミニウム合金線の横断面において、その表面から深さ方向に30μmまでの表層領域から、短辺長さが30μmであり、長辺長さが50μmである長方形の表層気泡測定領域をとり、前記表層気泡測定領域に存在する気泡の合計断面積が2μm以下であり、
     前記アルミニウム合金線の線径が0.2mm以上3.6mm以下であり、
     引張強さが110MPa以上200MPa以下であり、
     0.2%耐力が40MPa以上であり、
     破断伸びが10%以上であり、
     導電率が55%IACS以上であるアルミニウム合金線。
  2.  前記アルミニウム合金線の横断面において、短辺長さが30μmであり、長辺長さが50μmである長方形の内部気泡測定領域をこの長方形の中心が前記アルミニウム合金線の中心に重なるようにとり、前記表層気泡測定領域に存在する気泡の合計断面積に対する前記内部気泡測定領域に存在する気泡の合計断面積の比が1.1以上44以下である請求項1に記載のアルミニウム合金線。
  3.  前記アルミニウム合金は、更に、Mg、Si、Cu、Mn、Ni、Zr、Ag、Cr、及びZnから選択される1種以上の元素をそれぞれ以下の範囲で、合計で1.0質量%以下含有する請求項1又は請求項2に記載のアルミニウム合金線。
     Mg:0.05質量%以上0.5質量%以下
     Si:0.03質量%以上0.3質量%以下
     Cu:0.05質量%以上0.5質量%以下
     Mn,Ni,Zr,Ag,Cr,及びZn:合計で0.005質量%以上0.2質量%以下
  4.  前記アルミニウム合金は、更に、0質量%以上0.05質量%以下のTi及び0質量%以上0.005質量%以下のBの少なくとも一方を含有する請求項1から請求項3のいずれか1項に記載のアルミニウム合金線。
  5.  前記アルミニウム合金の平均結晶粒径が50μm以下である請求項1から請求項4のいずれか1項に記載のアルミニウム合金線。
  6.  加工硬化指数が0.05以上である請求項1から請求項5のいずれか1項に記載のアルミニウム合金線。
  7.  前記アルミニウム合金線の表面酸化膜の厚さが1nm以上120nm以下である請求項1から請求項6のいずれか1項に記載のアルミニウム合金線。
  8.  水素の含有量が4.0ml/100g以下である請求項1から請求項7のいずれか1項に記載のアルミニウム合金線。
  9.  請求項1から請求項8のいずれか1項に記載のアルミニウム合金線を複数撚り合わせてなるアルミニウム合金撚線。
  10.  撚りピッチが前記アルミニウム合金撚線の層心径の10倍以上40倍以下である請求項9に記載のアルミニウム合金撚線。
  11.  導体と、前記導体の外周を覆う絶縁被覆とを備える被覆電線であって、
     前記導体は、請求項9又は請求項10に記載のアルミニウム合金撚線を備える被覆電線。
  12.  請求項11に記載の被覆電線と、前記被覆電線の端部に装着された端子部とを備える端子付き電線。
PCT/JP2017/014044 2016-10-31 2017-04-04 アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線 WO2018078911A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780067939.1A CN109906281B (zh) 2016-10-31 2017-04-04 铝合金线、铝合金绞合线、包覆电线以及带端子电线
US16/346,420 US10910126B2 (en) 2016-10-31 2017-04-04 Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
DE112017005492.3T DE112017005492T5 (de) 2016-10-31 2017-04-04 Aluminiumlegierungsdraht, Aluminiumlegierungslitze, ummanteltes Stromkabel und mit einem Anschluss versehenes Stromkabel
KR1020197012426A KR102301263B1 (ko) 2016-10-31 2017-04-04 알루미늄 합금선, 알루미늄 합금 연선, 피복 전선, 및 단자부착 전선
US17/128,712 US11342094B2 (en) 2016-10-31 2020-12-21 Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
US17/728,721 US11594346B2 (en) 2016-10-31 2022-04-25 Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213156A JP6112438B1 (ja) 2016-10-31 2016-10-31 アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
JP2016-213156 2016-10-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/346,420 A-371-Of-International US10910126B2 (en) 2016-10-31 2017-04-04 Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
US17/128,712 Continuation US11342094B2 (en) 2016-10-31 2020-12-21 Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire

Publications (1)

Publication Number Publication Date
WO2018078911A1 true WO2018078911A1 (ja) 2018-05-03

Family

ID=58666704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014044 WO2018078911A1 (ja) 2016-10-31 2017-04-04 アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線

Country Status (6)

Country Link
US (3) US10910126B2 (ja)
JP (1) JP6112438B1 (ja)
KR (1) KR102301263B1 (ja)
CN (1) CN109906281B (ja)
DE (1) DE112017005492T5 (ja)
WO (1) WO2018078911A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019189002A1 (ja) * 2018-03-30 2021-04-08 住友電気工業株式会社 アルミニウム合金、及びアルミニウム合金線
JP7316838B2 (ja) * 2019-05-21 2023-07-28 古河電気工業株式会社 撚線導体および被覆電線
JP7180774B2 (ja) * 2019-06-28 2022-11-30 住友電気工業株式会社 銅被覆鋼線、撚線、絶縁電線およびケーブル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246480A (ja) * 1991-09-25 1994-09-06 Kobe Steel Ltd アルミ溶接用ワイヤ
JP2010067591A (ja) * 2008-08-11 2010-03-25 Sumitomo Electric Ind Ltd アルミニウム合金線
JP2015166480A (ja) * 2014-03-03 2015-09-24 住友電気工業株式会社 アルミニウム合金、アルミニウム合金線材、アルミニウム合金線材の製造方法、アルミニウム合金部材の製造方法、及びアルミニウム合金部材

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911530B1 (ja) 1970-12-07 1974-03-18
JPS58217665A (ja) 1982-06-10 1983-12-17 Furukawa Electric Co Ltd:The 耐クリ−プ性アルミニウム合金導体の製造方法
US4459364A (en) 1982-09-13 1984-07-10 North American Philips Corporation Low-fire ceramic dielectric compositions
JPS5964753A (ja) 1982-09-30 1984-04-12 Dainichi Nippon Cables Ltd 導電用耐熱アルミニウム合金線の製造方法
JPS6018256A (ja) 1983-07-12 1985-01-30 Furukawa Electric Co Ltd:The 耐クリ−プ性Al合金導体の製造法
US6441308B1 (en) * 1996-06-07 2002-08-27 Cable Design Technologies, Inc. Cable with dual layer jacket
US7154043B2 (en) * 1997-04-22 2006-12-26 Belden Technologies, Inc. Data cable with cross-twist cabled core profile
JP2003303517A (ja) 2002-04-10 2003-10-24 Furukawa Electric Co Ltd:The 自動車用アルミケーブルおよびその製造方法
US7803008B2 (en) * 2007-11-27 2010-09-28 Yazaki Corporation Press-clamping structure and press-clamping terminal
US7827678B2 (en) * 2008-06-12 2010-11-09 General Cable Technologies Corp. Longitudinal shield tape wrap applicator with edge folder to enclose drain wire
JP4777487B1 (ja) * 2008-08-11 2011-09-21 住友電気工業株式会社 アルミニウム合金線の製造方法
WO2010082670A1 (ja) 2009-01-19 2010-07-22 古河電気工業株式会社 アルミニウム合金線材
CN102264928B (zh) 2009-01-19 2013-10-23 古河电气工业株式会社 铝合金线材
US8204348B2 (en) * 2009-06-30 2012-06-19 Nexans Composite, optical fiber, power and signal tactical cable
US8480783B2 (en) * 2009-07-22 2013-07-09 Hitachi, Ltd. Sintered porous metal body and a method of manufacturing the same
WO2011052644A1 (ja) 2009-10-30 2011-05-05 住友電気工業株式会社 アルミニウム合金線
CA2825528A1 (en) 2011-01-27 2012-08-02 Nippon Light Metal Company, Ltd. High electric resistance aluminum alloy
JP5155464B2 (ja) * 2011-04-11 2013-03-06 住友電気工業株式会社 アルミニウム合金線、アルミニウム合金撚り線、被覆電線、及びワイヤーハーネス
JP5854626B2 (ja) 2011-04-22 2016-02-09 株式会社ハイレックスコーポレーション コントロールケーブル
US8676010B2 (en) * 2011-07-06 2014-03-18 Tyco Electronics Corporation Electrical cable with optical fiber
JP5712872B2 (ja) * 2011-08-31 2015-05-07 株式会社オートネットワーク技術研究所 アルミニウム基端子金具
JP6207252B2 (ja) 2013-06-24 2017-10-04 矢崎総業株式会社 高屈曲電線
JP6368087B2 (ja) * 2013-12-26 2018-08-01 住友電気工業株式会社 アルミニウム合金線材、アルミニウム合金線材の製造方法、及びアルミニウム合金部材
WO2016088889A1 (ja) * 2014-12-05 2016-06-09 古河電気工業株式会社 アルミニウム合金線材、アルミニウム合金撚線、被覆電線、ワイヤーハーネス、並びにアルミニウム合金線材の製造方法
JP6604030B2 (ja) 2015-05-13 2019-11-13 市光工業株式会社 車両用灯具
JP6112437B1 (ja) * 2016-10-31 2017-04-12 住友電気工業株式会社 アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
CN113409989B (zh) 2016-10-31 2023-02-21 住友电气工业株式会社 铝合金线、铝合金绞合线、包覆电线以及带端子电线
CN109983142B (zh) * 2016-10-31 2021-07-02 住友电气工业株式会社 铝合金线、铝合金绞合线、包覆电线以及带端子电线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246480A (ja) * 1991-09-25 1994-09-06 Kobe Steel Ltd アルミ溶接用ワイヤ
JP2010067591A (ja) * 2008-08-11 2010-03-25 Sumitomo Electric Ind Ltd アルミニウム合金線
JP2015166480A (ja) * 2014-03-03 2015-09-24 住友電気工業株式会社 アルミニウム合金、アルミニウム合金線材、アルミニウム合金線材の製造方法、アルミニウム合金部材の製造方法、及びアルミニウム合金部材

Also Published As

Publication number Publication date
JP6112438B1 (ja) 2017-04-12
US20200066420A1 (en) 2020-02-27
KR20190077364A (ko) 2019-07-03
US10910126B2 (en) 2021-02-02
CN109906281A (zh) 2019-06-18
US11594346B2 (en) 2023-02-28
US11342094B2 (en) 2022-05-24
DE112017005492T5 (de) 2019-08-08
US20210134475A1 (en) 2021-05-06
CN109906281B (zh) 2022-02-25
JP2018070961A (ja) 2018-05-10
KR102301263B1 (ko) 2021-09-10
US20220254539A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP6112437B1 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
WO2018079047A1 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
WO2018079048A1 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
US11594346B2 (en) Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
WO2018079050A1 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
JP6840348B2 (ja) アルミニウム合金線の製造方法
JP6840347B2 (ja) アルミニウム合金線の製造方法
JP7054077B2 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
JP7054076B2 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線
WO2018079049A1 (ja) アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012426

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17866002

Country of ref document: EP

Kind code of ref document: A1