WO2018078901A1 - 高次酢酸塩化合物、及びこれを用いた固形状透析用剤 - Google Patents

高次酢酸塩化合物、及びこれを用いた固形状透析用剤 Download PDF

Info

Publication number
WO2018078901A1
WO2018078901A1 PCT/JP2017/007248 JP2017007248W WO2018078901A1 WO 2018078901 A1 WO2018078901 A1 WO 2018078901A1 JP 2017007248 W JP2017007248 W JP 2017007248W WO 2018078901 A1 WO2018078901 A1 WO 2018078901A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetate compound
dialysis agent
acetic acid
agent
sodium
Prior art date
Application number
PCT/JP2017/007248
Other languages
English (en)
French (fr)
Inventor
由典 吉本
純也 菊石
Original Assignee
富田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富田製薬株式会社 filed Critical 富田製薬株式会社
Priority to JP2017527389A priority Critical patent/JP6195330B1/ja
Priority to KR1020197011847A priority patent/KR20190077354A/ko
Priority to MYPI2019002364A priority patent/MY196043A/en
Priority to EP17863627.0A priority patent/EP3533777B1/en
Priority to CN201780064830.2A priority patent/CN109843845B/zh
Priority to PCT/JP2017/029775 priority patent/WO2018079022A1/ja
Priority to JP2018507053A priority patent/JP6312957B1/ja
Priority to CN201780064845.9A priority patent/CN109890370B/zh
Publication of WO2018078901A1 publication Critical patent/WO2018078901A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • C07C53/10Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a higher-order acetate compound containing an acetic acid-sodium acetate mixed crystal. More specifically, the present invention relates to a higher-order acetate compound that contains an acetic acid-sodium acetate mixed crystal, can reduce the odor of acetic acid, and can suppress the degradation of glucose even when it coexists with glucose. Furthermore, the present invention relates to a solid dialysis agent using the higher order acetate compound.
  • bicarbonate dialysis fluids using sodium bicarbonate are the mainstream for correcting acid-base balance, and it is also essential to add acid to neutralize the dialysis fluid. .
  • the electrolyte components contained in bicarbonate dialysate coexist in the same container, carbon dioxide is generated in the container and becomes very unstable.
  • the A agent for dialysis has the liquid A agent containing the electrolyte component in the form of a concentrated liquid and the solid A agent containing the electrolyte component in a solid form.
  • the liquid A agent is a transportation cost, storage space in a hospital or the like.
  • it has been regarded as a problem in terms of workability in hospitals, disposal of containers after use, etc.
  • solid dialysis agents A have become mainstream in Japan.
  • a three-part dialysis agent comprising an S agent mainly containing sodium chloride and a B agent mainly containing sodium bicarbonate has also been proposed (see Patent Document 1). Since acetic acid is metabolized in a short period of time because it is metabolized in a short time, such dialysis agents are widely used as an acid or alkaline agent for neutralizing the dialysate, and acetic acid and sodium acetate are widely used. Has been done.
  • acetic acid and sodium acetate are widely used in various pharmaceuticals as well as dialysis agents, and are also widely used in the fields of cosmetics and foods.
  • acetic acid is volatile and has the disadvantage of producing an acetic acid odor. Therefore, a product containing acetic acid or sodium acetate has a problem of deteriorating the environment at the production site or the use site due to the generation of acetic acid odor.
  • dialysate preparation is generally performed by clinical engineers in clinical practice. There is a problem that it is lowered or the clinical environment is deteriorated.
  • Patent Document 2 in the dialysis agent A, at least a part of acetic acid and acetate, including acetic acid and acetate, is an alkali metal diacetate, and the molar ratio of acetic acid: acetate is 1: 0. It is disclosed that the odor of acetic acid can be reduced in dialysis agent A by setting to .5 to 2.
  • Patent Document 3 discloses that in the dialysis agent A, volatilization of acetic acid can be suppressed by substantially using sodium diacetate as the acetic acid contained therein.
  • Patent Document 2 is a method for reducing acetic acid odor from a pharmaceutical viewpoint, and does not disclose an acetate compound with reduced acetic acid odor. Moreover, although the technique of patent document 3 and 4 is aiming at reduction of an acetic acid odor by using the acetate compound which has a specific structure, the room for improvement is left from the viewpoint of the long-term storage property of a formulation. .
  • An object of the present invention is to provide a higher-order acetate compound that can reduce the odor of acetic acid and further suppress the degradation of glucose even when it coexists with glucose. Furthermore, another object of the present invention is to provide a solid dialysis agent using the higher acetate compound.
  • the ratio Ia / of the integrated intensity Ia of the diffraction peak A and the integrated intensity Ib of the diffraction peak B It has been found that a compound having an Ib of less than 1.447 can effectively suppress the volatilization of acetic acid, reduce the odor of acetic acid, and can suppress the decomposition of glucose even when coexisting with glucose. Further, in the solid dialysis agent containing the higher order acetate compound, in addition to reducing the odor of acetic acid and suppressing the decomposition of glucose, solidification by storage, coloring, pH fluctuation when dissolved in water, etc. are suppressed. And found to have excellent formulation stability. The present invention has been completed by further studies based on such knowledge.
  • this invention provides the invention of the aspect hung up below.
  • the ratio Ia / Ib between the integrated intensity Ia of the diffraction peak A and the integrated intensity Ib of the diffraction peak B is less than 1.447. Higher order acetate compound containing acetic acid-sodium acetate mixed crystal.
  • Item 2. Item 5. The higher-order acetate compound according to Item 1, wherein the ratio Ia / Ib is 0.001 to 1.140.
  • a solid dialysis agent comprising the higher-order acetate compound according to Item 1 or 2.
  • Item 4. Item 3. A solid dialysis agent A comprising the higher acetate compound according to any one of Items 1 to 2 and sodium chloride.
  • Item 5. Item 5. The solid dialysis agent A according to Item 4, further comprising glucose.
  • Item 6. Item 6.
  • a two-agent type bicarbonate dialysis agent comprising the solid dialysis agent A according to Item 4 or 5, and a dialysis agent B containing sodium bicarbonate.
  • Item 7. Item 3. A solid dialysis agent A comprising the higher acetate compound according to any one of Items 1 to 2 and substantially free from sodium chloride.
  • Item 8. Item 8. The solid dialysis agent A according to Item 7, further comprising glucose.
  • Item 9. A three-agent type bicarbonate dialysis agent comprising the solid dialysis agent A according to Item 7 or 8, a dialysis agent S containing sodium chloride, and a dialysis agent B containing sodium bicarbonate.
  • Item 10. A method for producing a higher order acetate compound comprising an acetic acid-sodium acetate mixed crystal, Step 1 in which acetic acid, sodium acetate and an aqueous solvent are mixed to obtain a mixed solution, and a higher-order acetate compound in which the peaks A and B are observed and the ratio Ia / Ib satisfies the above range is generated.
  • Step 2 of drying the mixture obtained in Step 1 under reduced pressure The manufacturing method of the said higher-order acetate compound containing this.
  • Item 11. The production method according to Item 10, wherein the drying under reduced pressure in the step 2 is performed under a pressure condition of ⁇ 30 to ⁇ 100 kPa.
  • the higher-order acetate compound of the present invention can effectively suppress the volatilization of acetic acid and can reduce the odor of acetic acid. Therefore, in various fields such as pharmaceuticals, foods, and cosmetics, acetic acid can be used in products and production sites. The generation of unpleasant odor due to volatilization can be suppressed. Moreover, since the higher-order acetate compound of the present invention can suppress the degradation of glucose even when it coexists with glucose, it can be suitably used as an additive to products containing glucose.
  • the solid dialysis agent containing the higher order acetate compound of the present invention in addition to reducing the odor of acetic acid and inhibiting the decomposition of glucose, solidifies by storage, is colored, changes in pH when dissolved in water, etc. Since it can suppress, it can be equipped with the outstanding formulation stability.
  • FIG. 1 is a diagram showing a powder X-ray diffraction pattern of a higher order acetate compound obtained in Example 1.
  • FIG. 2 is a diagram showing a powder X-ray diffraction pattern of a higher order acetate compound obtained in Example 2.
  • FIG. 4 is a graph showing a powder X-ray diffraction pattern of the higher order acetate compound obtained in Example 3.
  • FIG. 4 is a graph showing a powder X-ray diffraction pattern of the higher order acetate compound obtained in Example 4.
  • 6 is a graph showing a powder X-ray diffraction pattern of the higher order acetate compound obtained in Example 5.
  • FIG. 4 is a graph showing a powder X-ray diffraction pattern of the higher order acetate compound obtained in Example 6.
  • 6 is a diagram showing a powder X-ray diffraction pattern of a higher order acetate compound obtained in Example 7.
  • FIG. 6 is a diagram showing a powder X-ray diffraction pattern of a higher order acetate compound obtained in Example 8.
  • FIG. 4 is a graph showing a powder X-ray diffraction pattern of the higher order acetate compound obtained in Example 9.
  • FIG. 4 is a graph showing a powder X-ray diffraction pattern of the higher order acetate compound obtained in Example 10.
  • FIG. 4 is a diagram showing a powder X-ray diffraction pattern of a higher order acetate compound obtained in Comparative Example 1.
  • FIG. 4 is a diagram showing a powder X-ray diffraction pattern of a higher order acetate compound obtained in Comparative Example 2.
  • FIG. 3 is a photograph of the crystal shape of the higher order acetate compound obtained in Example 2 observed with a scanning electron microscope. It is a figure which shows the powder X-ray-diffraction pattern of anhydrous sodium acetate.
  • the ratio Ia / Ib is less than 1.447.
  • the higher order acetate compound of the present invention is a higher order acetate compound containing an acetic acid-sodium acetate mixed crystal.
  • acetic acid-sodium acetate mixed crystal refers to a crystal formed by mixing acetic acid and sodium acetate.
  • the “higher-order acetate compound” refers to a compound formed by combining acetic acid (primary compound) and sodium acetate (primary compound) with each other. That is, in the present invention, the “higher-order acetate compound containing an acetic acid-sodium acetate mixed crystal” is a compound formed by combining acetic acid and sodium acetate, and formed by mixing these substances.
  • the “higher-order acetate compound containing an acetic acid-sodium acetate mixed crystal” in the present invention may contain water, acetic acid, and other components of sodium acetate that do not adversely affect the effects of the present invention.
  • the molar ratio of acetic acid and sodium acetate constituting the higher-order acetate compound of the present invention is not particularly limited as long as it has a powder X-ray diffraction pattern described later. Specifically, the molar ratio of acetic acid: sodium acetate The ratio is usually 1: 0.5 to 10, preferably 1: 0.5 to 3.0, more preferably 1: 0.7 to 2.0. In the higher order acetate compound of the present invention, although the molar ratio of acetic acid among the constituent components is high as described above, the odor of acetic acid, decomposition of glucose, destabilization of solid dialysis preparation ( It has become possible to overcome the disadvantages of acetic acid, such as solidification, coloration, pH fluctuation when dissolved in water).
  • the ratio Ia / Ib in the higher order acetate compound of the present invention is preferably 0.001 to 1.440, more preferably 0. 0.006 to 1.440, particularly preferably 0.060 to 0.760.
  • the integrated intensity Ia and the integrated intensity Ic of the diffraction peak C are used. In which the ratio Ia / Ic satisfies 1.000 to 45.000 or 1.00 to 350.000.
  • the powder X-ray diffraction pattern can be obtained by a powder X-ray diffraction method under the following conditions.
  • Pretreatment of the measurement sample crush in an agate mortar
  • the particle size of the higher-order acetate compound of the present invention may vary depending on the production conditions, but the median diameter (D50) is usually 50 to 1500 ⁇ m, preferably 100 to 1000 ⁇ m, more preferably 150 to 800 ⁇ m. Can be mentioned.
  • the median diameter of the higher order acetate compound is 75 mm JIS standard sieve, and is in accordance with “General Test Method 3.04 Particle Size Measurement Method 2. Second Method Screening Method” described in the 17th revised Japanese Pharmacopoeia.
  • the particle size is a cumulative 50% weight calculated from the measured results.
  • the median diameter (D50) is calculated according to the following formula from the result of the particle size distribution measured by the sieving method.
  • the higher-order acetate compound of the present invention can be used as a pH adjuster, an acetic acid supply source, a sodium supply source and the like in the fields of medicine, food, cosmetics and the like.
  • the higher-order acetate compound of the present invention can suppress the degradation of glucose in the presence of glucose, it can be suitably used for various solid compositions containing glucose.
  • the solid dialysis agent is a preparation that is strongly required to reduce the odor of acetic acid because it is dissolved in water to prepare a dialysis solution at the clinical site.
  • glucose is often added to the solid dialysis agent, and the formulation is required to maintain the stability of glucose.
  • the higher-order acetate compound of the present invention can satisfy the required characteristics of such a solid dialysis agent, it can be particularly suitably used as an additive to be blended with the solid dialysis agent.
  • the solid dialysis agent containing the higher-order acetate compound of the present invention can suppress solidification, coloring, and pH variation after dissolution in water, and can also improve formulation stability.
  • the specific aspect of the solid dialysis agent containing the higher order acetate compound of this invention is mentioned later.
  • the method for producing the higher-order acetate compound of the present invention is not particularly limited as long as a higher-order acetate compound having the above-mentioned powder X-ray diffraction pattern and containing an acetic acid-sodium acetate mixed crystal is obtained.
  • a production method including the following steps 1 and 2 can be mentioned.
  • Step 1 Step of mixing acetic acid, sodium acetate, and aqueous solvent to obtain a mixed solution
  • Step 2 A step of drying the mixed solution obtained in Step 1 under reduced pressure until a high-order acetate compound in which the peaks A and B are observed and the ratio Ia / Ib satisfies the above range is generated.
  • step 1 acetic acid, sodium acetate, and an aqueous solvent are used as raw materials to obtain a mixed solution.
  • the acetic acid used in Step 1 may be acetic acid generally used in the fields of pharmaceuticals, foods, cosmetics, etc., and glacial acetic acid is preferable.
  • the sodium acetate used in Step 1 may be any one commonly used in the fields of pharmaceuticals, foods, cosmetics, etc., and may be either water-containing or anhydrous. Preferably, anhydrous sodium acetate is used.
  • the aqueous solvent used in Step 1 is water or a mixed solvent of water and an organic solvent that is compatible with water.
  • the aqueous solvent is a mixed solvent
  • the type of the organic solvent used in the mixed solvent has compatibility with water (solubility in water), can dissolve acetic acid and sodium acetate, and is described later. Although it does not restrict
  • the organic solvent may be included singly or in combination of two or more.
  • aqueous solvent used in Step 1 water is preferable.
  • Step 1 the ratio of acetic acid and sodium acetate mixed as a raw material is the same as the ratio shown in the above [Composition] column.
  • the ratio of the aqueous solvent to be used with respect to the total amount of acetic acid and sodium acetate is not particularly limited.
  • the aqueous solvent is 5 to 100 parts by weight with respect to 100 parts by weight of the total amount of acetic acid and sodium acetate. About 300 parts by weight can be mentioned.
  • the ratio of the aqueous solvent to the total amount of acetic acid and sodium acetate of 100 parts by weight is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight. Is mentioned.
  • Step 1 a mixed solution is obtained by mixing acetic acid, sodium acetate, and an aqueous solvent.
  • the mixed solution contains acetic acid and It is preferable that sodium acetate is dissolved in an aqueous solvent.
  • heat treatment may be performed on the mixture of acetic acid, sodium acetate, and the aqueous solvent.
  • the temperature conditions for the heat treatment are not particularly limited, and examples include 20 to 200 ° C., preferably 30 to 150 ° C., and more preferably 40 to 125 ° C.
  • conditions for acetic acid and sodium acetate dissolving in an aqueous solvent may be set as appropriate.
  • the heating time in is about 1 to 60 minutes, preferably about 10 to 50 minutes, more preferably about 20 to 30 minutes.
  • a part of the aqueous solvent may be volatilized so that acetic acid and sodium acetate in the mixed solution are concentrated. Further, in the heat treatment, stirring may be performed, or bubbling may be performed by supplying air.
  • the mixed solution thus obtained is subjected to Step 2 described later.
  • it may be cooled to about 10 to 70 ° C. as necessary and used for Step 2 described later.
  • step 2 the mixture obtained in step 1 is dried under reduced pressure until a high-order acetate compound in which the peaks A and B are observed and the ratio Ia / Ib satisfies the range is generated.
  • a mixed crystal of acetic acid-sodium acetate is precipitated, and the higher order acetate compound of the present invention can be produced.
  • step 2 the mixed solution obtained in step 1 may be subjected to vacuum drying as it is. However, if necessary, the mixed solution obtained in step 1 may be added to a seed comprising the higher-order acetate compound of the present invention. You may use for drying under reduced pressure after adding a crystal
  • the pressure conditions for drying under reduced pressure in step 2 may be set as appropriate according to the temperature conditions, the amount of the mixed solution, and the like, and are usually ⁇ 30 to ⁇ 100 kPa. From the viewpoint of efficiently producing the higher-order acetate compound of the present invention, the pressure condition for drying under reduced pressure is preferably ⁇ 40 to ⁇ 100 kPa, more preferably ⁇ 50 to ⁇ 100 kPa.
  • the temperature condition of the reduced-pressure drying in the step 2 may be appropriately set according to the production scale to be used, the pressure condition, the amount of the mixed liquid, etc., and usually 30 to 190 ° C. or 30 to 150 ° C. can be mentioned.
  • the temperature conditions for drying under reduced pressure in Step 2 from the viewpoint of efficiently producing the higher-order acetate compound of the present invention, it is more preferably 35 to 120 ° C., still more preferably 40 Up to 110 ° C.
  • the temperature condition of the reduced pressure drying in the step 2 it is more preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., at the same rate as the boiling point increase width that occurs as the reduced pressure drying proceeds.
  • the aspect which operates temperature conditions so that heating temperature may be raised in steps is mentioned.
  • the temperature condition for drying under reduced pressure in Step 2 from the viewpoint of efficiently producing the higher-order acetate compound of the present invention, it is more preferably 50 to 190 ° C., still more preferably 50 to 150. ° C.
  • the temperature condition of the reduced pressure drying in the step 2 it is more preferably 55 ° C. to 145 ° C., particularly preferably 60 ° C. to 135 ° C.
  • a mode in which the temperature condition is manipulated so as to increase the heating temperature stepwise at the same speed can be mentioned.
  • outside air, clean air, or dry air may be vented as necessary within a range that satisfies the pressure conditions described above.
  • the aeration method is not particularly limited, and examples thereof include a method of bubbling into the mixed solution at the time of drying under reduced pressure, a method of venting so as to touch the liquid surface of the mixed solution, and the like.
  • aeration When aeration is performed at the time of drying under reduced pressure, there are no particular restrictions on the air discharge site, but examples include a bottom of a can body, a stirring blade, a can body wall, and the like. Drying is promoted by aeration, which enables production in a shorter time.
  • bubbling is performed at the time of drying under reduced pressure, in order to prevent the contents from entering the vent, aeration is started before the raw materials are charged, and the same apparatus is used in step 1, step 2, and if necessary after step 2. In that case, it is desirable not to stop the ventilation.
  • the amount of gas to be aerated may be appropriately set according to the production scale to be used, the pressure condition, the amount of the liquid mixture, etc., but is usually 5 to 300 L / min at 1 atm and 25 ° C. air volume per 100 kg of raw material. Preferably 10 to 150 L / min, more preferably 15 to 100 L / min.
  • the mixed solution obtained in Step 1 is dried under reduced pressure to precipitate a higher order acetate compound containing a mixed crystal of acetic acid-sodium acetate.
  • Peak A is not recognized in the compound, and the higher order acetate compound of the present invention cannot be obtained.
  • the peaks A and B appear in the precipitated high-order acetate compound.
  • crystals of higher order acetate compounds in which the ratio Ia / Ib satisfies the above range are formed.
  • the time for drying under reduced pressure in step 2 is set to a condition in which the peaks A and B are observed and the crystals of the higher-order acetate compound in which the ratio Ia / Ib satisfies the above range are precipitated.
  • the time for drying under reduced pressure in step 2 is appropriately set so that crystals of the higher-order acetate compound of the present invention are precipitated according to pressure conditions, temperature conditions, the amount of the liquid mixture, and the like. In the state where the above-mentioned conditions are satisfied, for example, when the product temperature (the temperature of the precipitated higher-order acetate compound) reaches 45 ° C. to 95 ° C., preferably 60 ° C.
  • the drying under reduced pressure can be terminated. That's fine.
  • the time for drying under reduced pressure until reaching the product temperature is, for example, 0.5 to 24 hours, preferably 1 to 15 hours, more preferably 2 to 9 hours, or 1 to 3 hours. .
  • the higher-order acetate compound of the present invention precipitated in Step 2 may be recovered after cooling to about room temperature as necessary.
  • the higher-order acetate compound precipitated in Step 2 may be further subjected to a drying treatment such as a shelf dryer or a fluidized bed dryer, if necessary.
  • the recovered higher-order acetate compound of the present invention may be adjusted in particle size using a sieve or the like, if necessary.
  • Steps 1 and 2 may be performed in different apparatuses, but may be performed in one pot using an apparatus including a mixing unit, a heating unit, and a vacuum drying unit.
  • the solid dialysis agent “solid dialysis agent” is a solid raw material used for preparing a dialysis solution.
  • the solid dialysis agent of the present invention contains the higher order acetate compound. Since the higher-order acetate compound has a reduced acetic acid odor, it is possible to suppress deterioration of the working environment during preparation of dialysate in the clinical field. In addition, since the higher-order acetate compound can also suppress the decomposition of glucose, when the solid dialysis agent of the present invention contains glucose, the glucose can be stabilized. Furthermore, since the solid dialysis agent of the present invention contains the higher-order acetate compound, it can suppress fluctuations in pH after solidification, coloring, and dissolution in water caused by storage, so that it has excellent formulation stability. Can also be provided.
  • the solid dialysis agent of the present invention may be used for preparation of either hemodialysis solution or peritoneal dialysis solution, but is preferably used for preparation of hemodialysis solution.
  • the solid dialysis agent of the present invention is suitable as a dialysis agent used for preparing a bicarbonate dialysis solution containing bicarbonate ions, that is, a bicarbonate dialysis agent.
  • composition of bicarbonate dialysis agent contains the higher order acetate compound as a supply source of acetate ions, and sodium bicarbonate as a supply source of bicarbonate ions.
  • Other physiologically available electrolytes used are included. Examples of such electrolytes can be sources of magnesium ions, calcium ions, sodium ions, potassium ions, chloride ions, citrate ions, lactate ions, gluconate ions, succinate ions, malate ions, and the like. Is mentioned. Among these, it is preferable that at least sodium ion, chloride ion, magnesium ion and calcium ion source are included, and in addition to these, potassium ion source is further included. It is more preferable.
  • magnesium salts can be mentioned.
  • the magnesium salt used in the dialysis agent of the present invention is not particularly limited as long as it is acceptable as a component of the dialysate.
  • magnesium chloride, magnesium lactate, magnesium citrate, magnesium gluconate, succinate Examples include magnesium acid and magnesium malate.
  • magnesium chloride is preferably used as a magnesium supply source because of its high solubility in water.
  • These magnesium salts may be in the form of hydrates.
  • these magnesium salts may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Calcium salts are examples of components that serve as a source of calcium ions.
  • the calcium salt used in the dialysis agent of the present invention is not particularly limited as long as it is acceptable as a component of the dialysate, and examples thereof include calcium chloride, calcium lactate, calcium citrate, calcium gluconate, and succinate. Examples include calcium acid and calcium malate.
  • calcium chloride is preferably used as a calcium supply source because of its high solubility in water.
  • These calcium salts may be in the form of hydrates.
  • these calcium salts may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Sodium salt is mentioned as a component which becomes a supply source of sodium ions.
  • the higher-order acetate compound is also a source of sodium ions, but by using sodium salts other than the higher-order acetate compound, sodium ions are replenished and the dialysate is provided with a desired sodium ion concentration. Can do.
  • the sodium salt is not particularly limited as long as it is acceptable as a component of the dialysate, and examples thereof include sodium chloride, sodium lactate, sodium citrate, sodium gluconate, sodium succinate, and sodium malate.
  • sodium chloride is the most physiological substance and is therefore preferably used as a sodium source.
  • These sodium salts may be in the form of hydrates.
  • these sodium salts may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Potassium salt is mentioned as a component used as a supply source of potassium ions.
  • the potassium salt blended in the dialysis agent of the present invention is not particularly limited as long as it is acceptable as a component of the dialysis solution.
  • potassium chloride, potassium lactate, potassium citrate, potassium gluconate, succinate Examples include potassium acid and potassium malate.
  • potassium chloride is suitably used as a potassium source because chloride ions are the most physiological substance.
  • These potassium salts may be in the form of hydrates.
  • these potassium salts may be used individually by 1 type, and may be used in combination of 2 or more type.
  • chloride salts can be cited.
  • the chloride salt blended in the dialysis agent of the present invention is not particularly limited as long as it is acceptable as a component of the dialysate, and examples thereof include sodium chloride, calcium chloride, magnesium chloride, potassium chloride and the like. These chloride salts are preferably used because they have a high solubility in water and can also serve as a source of sodium, potassium, magnesium, or potassium. These chloride salts may be in the form of hydrates. Moreover, these chloride salts may be used individually by 1 type, and may be used in combination of 2 or more type. Hydrochloric acid, which also serves as a pH regulator, can also be used as a chloride ion source.
  • the types and combinations of electrolytes other than the higher acetate compound and sodium bicarbonate are used in the dialysate finally prepared.
  • preferred examples of electrolytes (other than the above-mentioned higher acetate compound and sodium bicarbonate) included in the solid dialysis agent include sodium chloride, magnesium chloride, chloride The combination of calcium and potassium chloride is mentioned.
  • organic acid salt other than acetate
  • organic acid salts include sodium lactate, sodium gluconate, sodium citrate, sodium malate, and sodium succinate. These organic acid salts may be used alone or in combination of two or more.
  • glucose may be contained in order to suppress hypoglycemia during dialysis treatment. Even if the higher-order acetate compound coexists with glucose, the degradation of glucose can be suppressed. Therefore, when glucose is contained, it can be blended in the same preparation as the higher-order acetate compound.
  • a bicarbonate dialysis solution containing acetate ions is usually formulated to have the composition and concentration shown in Table 1 below. Therefore, when the solid dialysis agent of the present invention is used as a bicarbonate dialysis agent, the higher-order acetic acid is used so that the composition and concentration of the bicarbonate dialysis solution to be finally prepared satisfy the following range. What is necessary is just to mix
  • the concentration of each ion contained in the dialysate is adjusted.
  • the ratio of magnesium chloride, calcium chloride and potassium chloride in the dialysis agent is set to acetic acid constituting the higher acetate compound with respect to 0.5 mol of magnesium chloride.
  • the total number of moles of sodium acetate is 2 to 12 moles, preferably 3 to 10 moles
  • calcium chloride is 0.75 to 2.25 moles, preferably 1.0 to 1.75 moles
  • potassium chloride is 0 to 3 moles.
  • the amount of sodium bicarbonate is preferably set to 1.5 to 2.5 mol, and sodium bicarbonate to 20 to 40 mol, preferably 25 to 35 mol.
  • the solid dialysis agent of the present invention can be adjusted so that the pH of the bicarbonate dialysis solution has an appropriate range by the higher order acetate compound, but additionally contains a pH adjusting agent as necessary. Also good.
  • the pH adjuster usable in the dialysis agent of the present invention is not particularly limited as long as it is acceptable as a component of the dialysis solution.
  • liquid acids such as hydrochloric acid, lactic acid, and gluconic acid, citric acid
  • solid acids such as succinic acid, fumaric acid, malic acid, and glucono delta lactone, and their sodium, potassium, calcium, and magnesium salts.
  • organic acids are preferably used.
  • a pH regulator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the bicarbonate dialysis agent is a one-drug type in which all components contained in the bicarbonate dialysis solution are mixed in one preparation; an electrolyte component other than sodium bicarbonate, and if necessary, a dialysis agent A containing glucose A dialysis agent B containing sodium bicarbonate; a dialysis agent A-1 containing an electrolyte component other than sodium bicarbonate; a dialysis agent A-2 containing glucose; and sodium bicarbonate.
  • dialysis agent B containing: dialysis agent S containing sodium chloride, dialysis agent B containing sodium bicarbonate, electrolyte components other than sodium chloride and sodium bicarbonate, and glucose as necessary
  • a three-drug type comprising a dialysis agent A containing is known.
  • the solid dialysis agent of the present invention is used as a bicarbonate dialysis agent, any of these types of bicarbonate dialysis agents may be used.
  • the bicarbonate dialysis agent of the present invention is a single-agent bicarbonate dialysis agent
  • the bicarbonate dialysis agent includes the higher-order acetate compound, sodium bicarbonate, other electrolytes, and as necessary. Then, it may be formulated using glucose.
  • the solid dialysis agent of the present invention is a two-agent bicarbonate dialysis agent consisting of dialysis agent A and dialysis agent B
  • the dialysis agent A includes the higher acetate compound, other electrolytes. What is necessary is just to formulate using glucose (other than the said high order acetate compound and sodium bicarbonate) and glucose as needed.
  • the dialysis agent B of the two-agent type bicarbonate dialysis agent may be formulated using sodium bicarbonate, but it is desirable that no electrolyte component other than sodium bicarbonate is contained. Those consisting essentially of sodium bicarbonate are preferred.
  • dialysis agent A-1 When the solid dialysis agent of the present invention is a three-agent bicarbonate dialysis agent comprising dialysis agent A-1, dialysis agent A-2, and dialysis agent B, dialysis agent A-1 May be formulated using the higher-order acetate compound and other electrolytes (other than the higher-order acetate compound and sodium bicarbonate).
  • the dialysis A-2 agent of the three-agent type bicarbonate dialysis agent may be formulated using glucose, and it is desirable that components other than glucose are not contained, and the contained components are substantially composed only of glucose. Is preferred.
  • the dialysis agent B of the three-agent type bicarbonate dialysis agent may be formulated using sodium bicarbonate, but it is desirable that no electrolyte component other than sodium bicarbonate is contained, Those consisting essentially of sodium bicarbonate are preferred.
  • the solid dialysis agent of the present invention is a three-agent bicarbonate dialysis agent consisting of dialysis agent A, dialysis agent S, and dialysis agent B
  • the solid A agent is the higher acetic acid. What is necessary is just to formulate using a salt compound, other electrolytes (other than the said high order acetate compound and sodium bicarbonate), and glucose as needed.
  • the solid S agent of the three-agent type bicarbonate dialysis agent may be formulated using sodium chloride, but it is desirable that no electrolyte component other than sodium chloride is contained, and the contained component is substantially chlorinated. What consists only of sodium is suitable.
  • the solid B agent of the three-agent type bicarbonate dialysis agent may be formulated using sodium bicarbonate, but it is desirable that no electrolyte component other than sodium bicarbonate is contained. Those consisting essentially of sodium bicarbonate are preferred.
  • bicarbonate dialysis agents from the viewpoint of ease of preparation of bicarbonate dialysis solution in clinical settings, formulation stability, etc., preferably a two-component bicarbonate comprising dialysis agent A and dialysis agent B
  • examples include a dialysis agent, and a three-agent bicarbonate dialysis agent comprising a dialysis agent A, a dialysis agent S, and a dialysis agent B.
  • the suitable aspect of these 2 agent type bicarbonate dialysis agents and 3 agent type bicarbonate dialysis agents includes the embodiment in which glucose is contained in the dialysis agent A.
  • the higher-order acetate compound can stabilize glucose by suppressing the degradation of glucose, the formulation can be stabilized even if glucose is contained in the dialysis agent A. .
  • an agent containing the higher acetate compound (that is, the one-agent bicarbonate dialysis agent, the dialysis agent A, the dialysis) A-1 agent) may be solid.
  • Specific examples of the shape of the agent containing the higher order acetate compound include powder and granules.
  • Each agent constituting each type of bicarbonate dialysis agent is the amount of each component so that the composition and concentration of the bicarbonate dialysis solution to be finally prepared satisfy the above-mentioned range depending on the type of the agent. And can be prepared according to a conventional dialysis preparation formulation method.
  • a preferred method for producing a solid dialysis agent A having long-term storage stability sodium chloride, calcium chloride, magnesium chloride and water are granulated to obtain an electrolyte granulated product, and obtained in the above step.
  • a method of obtaining a solid dialysis agent A through a step of mixing the obtained electrolyte granulated product, potassium chloride, the higher acetate compound and glucose is mentioned.
  • the bicarbonate dialysis solution is prepared by mixing and diluting each agent constituting the bicarbonate dialysis agent with a predetermined amount of water (preferably purified water).
  • Production example Production of higher-order acetate compounds
  • Example 1 20.0 kg of glacial acetic acid, 24.6 kg of anhydrous sodium acetate, and 18.3 kg of purified water are placed in a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., model number: TR25F) and heated until the product temperature reaches 105 ° C. The mixture was stirred to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. By continuing stirring while maintaining the temperature, about 9 kg of the mixed solution was evaporated and concentrated, and then the heating was stopped. Thereafter, cooling was continued until the product temperature reached 42 ° C.
  • the drying time under reduced pressure is 150 minutes in total.
  • the temperature of the jacket heating medium is maintained at 50 to 55 ° C. for 60 minutes from the start of the drying under reduced pressure, and then the temperature of the jacket heating medium is changed from 60 to 80 ° C. for 90 minutes. Control in stages.
  • the time of drying under reduced pressure the amount of crystals of the higher-order acetate compound increased.
  • the mixture was sieved with a sieve having an opening of 1.7 mm to obtain 37.2 kg of a high-order acetate compound having good fluidity.
  • Example 2 20.0 kg of glacial acetic acid, 24.6 kg of anhydrous sodium acetate, and 18.3 kg of purified water are placed in a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., model number: TR25F) and heated until the product temperature reaches 105 ° C. The mixture was stirred to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. By continuing stirring while maintaining the temperature, about 9 kg of the mixed solution was evaporated and concentrated, and then the heating was stopped. Thereafter, the product was cooled until the product temperature reached 43 ° C. while stirring was continued, and then dried under reduced pressure at ⁇ 92 to ⁇ 94 kPa until the product temperature exceeded 65 ° C. with stirring.
  • the drying time under reduced pressure was 160 minutes in total, and the temperature of the jacket heating medium was kept at 90 ° C. As the time of drying under reduced pressure, the amount of crystals of the higher-order acetate compound increased. Thereafter, the mixture was sieved with a sieve having a mesh opening of 1.7 mm to obtain 27.0 kg of a high order acetate compound having good fluidity.
  • Example 3 20.0 kg of glacial acetic acid, 24.6 kg of anhydrous sodium acetate, and 18.3 kg of purified water are put into a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., model number: TR25F) and heated until the product temperature reaches 82 ° C. The mixture was stirred to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. After that, the air vent valve at the top of the can body is opened, and the temperature of the jacket heat transfer medium is controlled at 80 to 85 ° C while allowing the room air to pass through the inside of the can body, and the pressure is dried while maintaining the pressure at -50 to -52 kPa. Went.
  • Example 4 20.0 kg of glacial acetic acid, 24.6 kg of anhydrous sodium acetate, and 18.3 kg of purified water are put into a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., model number: TR25F) while heating until the product temperature reaches 90 ° C. The mixture was stirred to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. Thereafter, 1.5 kg of the higher order acetate compound obtained in Example 2 was added.
  • a filter dryer manufactured by Tanabe Wiltech Co., Ltd., model number: TR25F
  • the air vent valve at the top of the can body is opened, the temperature of the jacket heating medium is controlled to 80 to 90 ° C., and the pressure is controlled stepwise from ⁇ 40 to ⁇ 55 kPa while allowing room air to flow inside the can body. Then, drying under reduced pressure was performed. As the time of drying under reduced pressure, the amount of crystals of the higher-order acetate compound increased. When the product temperature exceeds 74 ° C. by drying under reduced pressure, the pressure is returned to atmospheric pressure, tap water is passed through the jacket, and when the product temperature reaches 50 ° C., the sieve is sieved with a 1.7 mm sieve. 30.8 kg of a high order acetate compound having good fluidity was obtained. The total time for drying under reduced pressure was 195 minutes.
  • Example 5 20.0 kg of glacial acetic acid, 24.6 kg of anhydrous sodium acetate, and 18.3 kg of purified water are placed in a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., model number: TR25F) while heating until the product temperature reaches 78 ° C. The mixture was stirred to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. Thereafter, the air vent valve at the top of the can body is opened, the temperature of the jacket heating medium is controlled to 80 to 90 ° C., and the pressure is controlled in steps from ⁇ 30 to ⁇ 90 kPa while allowing room air to pass through the inside of the can body. Then, drying under reduced pressure was performed.
  • a filter dryer manufactured by Tanabe Wiltech Co., Ltd., model number: TR25F
  • Example 6 20.0 kg of glacial acetic acid, 24.6 kg of anhydrous sodium acetate, and 18.3 kg of purified water are put into a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., model number: TR25F) while heating until the product temperature reaches 81 ° C. The mixture was stirred to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. Thereafter, the air vent valve at the top of the can body is opened, the temperature of the jacket heating medium is controlled to 80 to 90 ° C., and the pressure is controlled in steps from ⁇ 30 to ⁇ 90 kPa while allowing room air to pass through the inside of the can body. Then, drying under reduced pressure was performed.
  • a filter dryer manufactured by Tanabe Wiltech Co., Ltd., model number: TR25F
  • Example 7 About 100 g of the high-order acetate compound intermediate product obtained in the production process of Example 6 was collected, put on a metal pad and placed in a blast dryer set at 80 ° C., and heated for 12 hours. A compound was obtained.
  • Example 8 Production process of Example 6 About 100 g of a high-order acetate compound intermediate product was collected, put on a metal pad and placed in a blast dryer set at 80 ° C. and heated for 14 hours to obtain a high-order acetate compound. .
  • Example 9 Production process of Example 6 About 100 g of a high-order acetate compound intermediate product was collected, put on a metal pad and placed in a blow dryer set at 80 ° C. and heated for 18 hours to obtain a high-order acetate compound. .
  • Example 10 Put 30.0 kg of glacial acetic acid, 37.4 kg of anhydrous sodium acetate, and 33.6 kg of purified water into a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., Model: TR25F) while bubbling compressed air at 25 L / min. The mixture was stirred while heating until the temperature reached 73 ° C. to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. Thereafter, the temperature of the jacket heating medium was kept at around 115 ° C. with the valve at the upper part of the can closed, and the pressure was dried under reduced pressure for 97 minutes while controlling the pressure stepwise from ⁇ 75 to ⁇ 86 kPa.
  • the temperature of the jacket heat medium was 85 ° C., and drying was performed under reduced pressure for 18 minutes. As the time of drying under reduced pressure, the amount of crystals of the higher-order acetate compound increased. Thereafter, the pressure is returned to atmospheric pressure, tap water is passed through the jacket, and when the product temperature is 45 ° C. or less, the sieve is sieved with a sieve having a mesh opening of 1.7 mm. 0.0 kg was obtained. The total time for drying under reduced pressure was 115 minutes.
  • Comparative Example 1 20.0 kg of glacial acetic acid, 24.6 kg of anhydrous sodium acetate, and 18.3 kg of purified water are put into a filter dryer (manufacturer: Tanabe Wiltech Co., Ltd., model: TR25F) and heated until the product temperature reaches 100 to 105 ° C. The mixture was stirred to obtain a mixed solution in which glacial acetic acid and anhydrous sodium acetate were dissolved. Subsequently, stirring was continued for 113 minutes while maintaining the temperature to volatilize a part of the purified water and concentrate, and then the heating was stopped. Thereafter, it was dried under reduced pressure at ⁇ 95 to ⁇ 97 kPa for 80 minutes under stirring.
  • the temperature of the jacket heating medium was controlled at 57-60 ° C. During that time, the product temperature gradually increased to 42 to 46 ° C., and the amount of crystals of the higher acetate compound increased with time. Thereafter, the mixture was sieved with a sieve having an opening of 1.7 mm to obtain a high-order acetate compound having good fluidity.
  • Comparative Example 2 42.3 g of glacial acetic acid and 57.8 g of anhydrous sodium acetate were placed in a plastic bag and mixed well to obtain a higher order acetate compound.
  • FIG. 1 to 12 show powder X-ray diffraction patterns of the higher order acetate compounds of Examples 1 to 10 and Comparative Examples 1 and 2, respectively.
  • the integrated intensity (Ia) of diffraction peak at 2 ⁇ 8.8 ° ⁇ 0.2 ° of each higher-order acetate compound (Ia)
  • integrated intensity (Ib) of diffraction peak at 2 ⁇ 22.3 ° ⁇ 0.2 °
  • Table 3 shows the peaks observed by powder X-ray diffraction of each higher order acetate compound and the integrated intensity of each peak.
  • FIG. 13 shows the results of observation of the higher order acetate compound of Example 2 with a scanning electron microscope. As a result, it was confirmed that the higher order acetate compound of Example 2 was mainly a cubic crystal.
  • Test Example 2 Stability evaluation of dialysis agent A containing higher order acetate compound (1) Production of electrolyte granulated product First, 40.2 kg of sodium chloride, 1.339 kg of calcium chloride hydrate, and hydrated magnesium chloride 0.911 kg of the product is heated and mixed, and further purified water is added and mixed (manufacturer: Hosokawa Micron Corporation, model number: NX-2J), and then fluidized bed dryer (manufacturer: Nagato Electric Co., Ltd. model number: 10F). Dry at 150 ° C. for 10 minutes. The dried product was sieved with a sieve having an opening of 1.7 mm to obtain an electrolyte granulated product.
  • the concentration of volatile acetic acid, pH, 5-HMF, degree of solidification, and coloration were measured by the following methods for the A-dialysis agent 5 days after storage and 15 days after storage.
  • ⁇ Volatile acetic acid concentration> Open the laminate bag containing the dialysis agent A containing each higher-order acetate compound, set the acetic acid detector tube in the detector tube type gas measuring instrument (manufacturer: GASTEC, model number: GV-100S), A certain amount of sample gas was bubbled to measure the concentration of volatile acetic acid.
  • ⁇ 5-Hydroxymethylfurfural Opening the laminating bag containing the dialysis agent A containing each higher order acetate compound, dissolving the entire contents in purified water to a total volume of 500 mL, and filtering through a 0.2 ⁇ m pore size filter.
  • a 35-fold concentrated agent A solution was obtained.
  • the amount of 5-hydroxymethylfurfural (hereinafter referred to as 5-HMF) in the 35-fold concentrated agent A solution is measured by measuring the absorbance at a wavelength of 284 nm using a spectrophotometer. It was measured.
  • 5-HMF is a compound produced by the degradation of glucose. The lower the absorbance, the more stable the glucose is.
  • Tables 5 to 10 show the results obtained.
  • the dialysis agent A containing the higher order acetate compounds of Examples 1 to 10 has a low concentration of volatile acetic acid even after 15 days of storage at 50 ° C., and can sufficiently suppress the degradation of glucose. Also, solidification and coloring were not observed, and the preparation had excellent stability. Moreover, even after 2 months of storage at 40 ° C., no degradation of glucose, pH change, solidification, or coloring was observed, and the product had excellent long-term storage stability. On the other hand, the dialysis agent A containing the higher order acetate compound of Comparative Example 1 was stored at 50 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • External Artificial Organs (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の目的は、酢酸臭を低減でき、更にブドウ糖と共存させてもブドウ糖の分解を抑制できる酢酸塩化合物を提供することである。 酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物であって、粉末X線回折測定において、2θ=8.8°±0.2°に回折ピークA、及び2θ=22.3°±0.2°に回折ピークBが認められ、当該回折ピークAの積分強度Iaと当該回折ピークBの積分強度Ibの比率Ia/Ibが1.447未満である化合物は、酢酸の揮発を効果的に抑制でき、酢酸臭の低減が可能であり、しかもブドウ糖と共存させてもブドウ糖の分解を抑制できる。

Description

高次酢酸塩化合物、及びこれを用いた固形状透析用剤
 本発明は、酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物に関する。より具体的には、本発明は、酢酸-酢酸ナトリウム混晶体を含み、酢酸臭を低減でき、更にブドウ糖と共存させてもブドウ糖の分解を抑制できる高次酢酸塩化合物に関する。更に、本発明は、当該高次酢酸塩化合物を用いた固形状透析用剤に関する。
 血液透析液では、酸塩基平衡の是正のために炭酸水素ナトリウムを用いた重炭酸透析液が主流になっており、透析液を中性にするために酸を配合することも必須となっている。また、重炭酸透析液に含まれる電解質成分を同一の容器に共存して流通させると、容器内で炭酸ガスを発生して非常に不安定になるため、透析液の調製に使用される透析用剤として、重炭酸ナトリウム以外の電解質成分を主として含むA剤と重炭酸ナトリウムを主として含むB剤の2剤に分けて製造し、使用時に混合することが一般的となっている。従来、透析用A剤は、電解質成分を濃縮液形態で含む液状A剤、電解質成分を固形状で含む固形状A剤があったが、液状A剤は、輸送コスト、病院等での保管スペース、病院内での作業性、使用後の容器の廃棄等の点で問題視されており、最近では、固体状の透析用A剤が国内では主流となっている。また、近年、透析処置中に、患者の病態に応じて、重炭酸イオン濃度やナトリウムイオン濃度を変化させることを可能とする、電解質成分(重炭酸ナトリウム及び塩化ナトリウム以外)を主として含むA剤、塩化ナトリウムを主として含むS剤、及び重炭酸ナトリウムを主として含むB剤からなる3剤型の透析用剤も提案されている(特許文献1参照)。酢酸は、短時間で代謝されるために生体への蓄積が少ないため、このような透析用剤では、透析液を中性にするための酸やアルカリ剤として、酢酸及び酢酸ナトリウムの配合が広く行われている。
 また、酢酸及び酢酸ナトリウムは、透析用剤に限らず、様々な医薬品でも広く利用されており、更に、化粧料、食品等の分野でも汎用されている。
 一方、酢酸は、揮発し易く、酢酸臭を生じさせるという欠点がある。そのため、酢酸や酢酸ナトリウムを含む製品では、酢酸臭の発生によって、製造現場や使用現場における環境を悪化させるという問題点がある。例えば、透析医療の分野では、透析液調製は一般に臨床工学技士が臨床現場にて行っているが、酢酸を含む透析液の調製時には、酢酸臭による刺激臭に伴う不快感が生じ、作業性が低下したり、臨床現場の環境が悪化したりするという問題点がある。
 そこで、従来、酢酸の揮発に起因する酢酸臭を低減させる手法について種々提案されている。例えば、特許文献2には、透析用A剤において、酢酸及び酢酸塩を含む、酢酸及び酢酸塩の少なくとも一部が二酢酸アルカリ金属塩であり、且つ酢酸:酢酸塩のモル比を1:0.5~2に設定することにより、透析用A剤において酢酸臭を低減できることが開示されている。また、特許文献3には、透析用剤Aにおいて、含有する酢酸を実質的にナトリウムジアセテートにすることによって、酢酸の揮発を抑制できることが開示されている。更に、特許文献4には、300~3000μmのメジアン径を有し、回折角2θ=4.0~40.0°の範囲内に特定の回折ピークの組み合わせを有する二酢酸ナトリウム結晶が、酢酸の揮発を抑制できることが報告されている。
 特許文献2の技術は、製剤学的観点から酢酸臭を低減する方法であり、酢酸臭が低減された酢酸塩化合物を開示するものではない。また、特許文献3及び4の技術は、特定の構造を有する酢酸塩化合物を使用することによって酢酸臭の低減を図っているが、製剤の長期保存性の観点から改善の余地が残されている。
 一方、一般的な透析液には、透析処置中の低血糖を抑制するためにブドウ糖が含まれている。酢酸はブドウ糖の分解要因にもなるため、酢酸を使用し且つブドウ糖を含む固形状透析用剤では、ブドウ糖の安定性に十分に配慮することが求められる。前述した特許文献2の技術では、製剤学的な手法によって透析用A剤中のブドウ糖の安定性も図ることができている。しかしながら、製剤学的な手法によらず、ブドウ糖の分解を抑制できる酢酸塩化合物自体は、従来報告されていない。また、酢酸を含む固形状透析用剤では、保存によって、固化、着色、水に溶解した際のpHの変動等が生じ、製剤安定性に乏しいという欠点もある。従来、このような製剤安定性を向上させる作用がある酢酸塩化合物については報告されていない。
特許第5099464号公報 特許第5517321号公報 特開平7-59846号公報 国際公開第2015/72494号
 本発明の目的は、酢酸臭を低減でき、更にブドウ糖と共存させてもブドウ糖の分解を抑制できる高次酢酸塩化合物を提供することである。更に、本発明の他の目的は、当該高次酢酸塩化合物を用いた固形状透析用剤を提供することである。
 本発明者等は、前記課題を解決すべく鋭意検討を行ったところ、酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物であって、粉末X線回折測定において、2θ=8.8°±0.2°に回折ピークA、及び2θ=22.3°±0.2°に回折ピークBが認められ、当該回折ピークAの積分強度Iaと当該回折ピークBの積分強度Ibの比率Ia/Ibが1.447未満である化合物は、酢酸の揮発を効果的に抑制でき、酢酸臭の低減が可能であり、しかもブドウ糖と共存させてもブドウ糖の分解を抑制できることを見出した。更に、前記高次酢酸塩化合物を含む固形状透析用剤では、酢酸臭の低減、及びブドウ糖の分解抑制に加えて、保存による固化、着色、水に溶解した際のpHの変動等が抑制され、優れた製剤安定性を備えることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 粉末X線回折測定において、2θ=8.8°±0.2°に回折ピークA、及び2θ=22.3°±0.2°に回折ピークBが認められ、
 前記回折ピークAの積分強度Iaと前記回折ピークBの積分強度Ibの比率Ia/Ibが1.447未満である、
 酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物。
項2. 前記比率Ia/Ibが0.001~1.140である、項1に記載の高次酢酸塩化合物。
項3. 項1又は2に記載の高次酢酸塩化合物を含む固形状透析用剤。
項4. 項1~2のいずれかに記載の高次酢酸塩化合物、及び塩化ナトリウムを含む固形状透析用A剤。
項5. 更にブドウ糖を含む、項4に記載の固形状透析用A剤。
項6. 項4又は5に記載の固形状透析用A剤と、炭酸水素ナトリウムを含む透析用B剤とを含む、2剤型重炭酸透析用剤。
項7. 項1~2のいずれかに記載の高次酢酸塩化合物を含み、塩化ナトリウムを実質的に含まない固形状透析用A剤。
項8. 更にブドウ糖を含む、項7に記載の固形状透析用A剤。
項9. 項7又は8に記載の固形状透析用A剤と、塩化ナトリウムを含む透析用S剤と、炭酸水素ナトリウムを含む透析用B剤とを含む、3剤型重炭酸透析用剤。
項10. 酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物を製造する方法であって、
 酢酸、酢酸ナトリウム、及び水性溶媒を混合して、混合液を得る工程1、及び
 前記ピークA及びBが認められ、且つ比率Ia/Ibが前記範囲を充足する高次酢酸塩化合物が生成するまで、前記工程1で得られた混合液を減圧乾燥する工程2
を含む、前記高次酢酸塩化合物の製造方法。
項11. 前記工程2における減圧乾燥が、-30~-100kPaの圧力条件で行われる、項10に記載の製造方法。
 本発明の高次酢酸塩化合物は、酢酸の揮発を効果的に抑制でき、酢酸臭の低減が可能であるので、医薬、食品、化粧料等の様々な分野において、製品や製造現場で酢酸の揮発による不快臭が生じるのを抑制することができる。また、本発明の高次酢酸塩化合物は、ブドウ糖と共存しても、ブドウ糖の分解を抑制できるので、ブドウ糖を含む製品への添加剤として好適に使用することができる。
 また、本発明の高次酢酸塩化合物を含む固形状透析用剤は、酢酸臭の低減、及びブドウ糖の分解抑制に加えて、保存による固化、着色、水に溶解した際のpHの変動等を抑制できるので、優れた製剤安定性を備えることができる。
実施例1で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例2で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例3で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例4で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例5で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例6で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例7で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例8で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例9で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例10で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 比較例1で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 比較例2で得られた高次酢酸塩化合物の粉末X線回折パターンを示す図である。 実施例2で得られた高次酢酸塩化合物の結晶形状を走査型電子顕微鏡にて観察した写真である。 無水酢酸ナトリウムの粉末X線回折パターンを示す図である。
1.高次酢酸塩化合物
 本発明の高次酢酸塩化合物は、酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物であって、粉末X線回折測定において、2θ=8.8°±0.2°に回折ピーク(回折ピークA)、及び2θ=22.3°±0.2°に回折ピーク(回折ピークB)が認められ、当該回折ピークAの積分強度Iaと当該回折ピークBの積分強度Ibの比率Ia/Ibが1.447未満であることを特徴とする。以下、本発明の高次酢酸塩化合物について、詳述する。
[組成]
 本発明の高次酢酸塩化合物は、酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物である。本発明において、「酢酸-酢酸ナトリウム混晶体」とは、酢酸と酢酸ナトリウムが互いに混合して形成された結晶を指す。また、本発明において、「高次酢酸塩化合物」とは、酢酸(一次化合物)と酢酸ナトリウム(一次化合物)が互いに結合して生成された化合物を指す。即ち、本発明において、「酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物」とは、酢酸と酢酸ナトリウムが互いに結合して生成された化合物であって、これら物質が混じり合って形成された結晶を含むものを意味する。本発明における「酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物」には、水、酢酸、酢酸ナトリウムの他の成分が本発明の効果に悪影響を及ぼさない程度含まれていてもよい。
 本発明の高次酢酸塩化合物を構成する酢酸と酢酸ナトリウムのモル比については、後述する粉末X線回折パターンを有することを限度として特に制限されないが、具体的には、酢酸:酢酸ナトリウムのモル比として、通常1:0.5~10、好ましくは1:0.5~3.0、更に好ましくは1:0.7~2.0が挙げられる。本発明の高次酢酸塩化合物には、構成成分の内、酢酸が占めるモル比が前記のように高いにも拘わらず、酢酸臭、ブドウ糖の分解、固形状透析用剤の製剤不安定化(固化、着色、水に溶解した際のpHの変動)等、酢酸が有する欠点を克服することが可能になっている。
[粉末X線回折パターンの特徴]
 本発明の高次酢酸塩化合物は、粉末X線回折測定において、2θ=8.8°±0.2°に回折ピークA、及び2θ=22.3°±0.2°に回折ピークBが認められる。本発明の高次酢酸塩化合物では、前記回折ピークAの積分強度Iaと前記回折ピークBの積分強度Ibの比率Ia/Ibが1.447未満を充足する。なお、本発明の高次酢酸塩化合物は、前記回折ピークAが認められるので、前記比率Ia/Ibは0超の値になる。このような比率を充足することによって、酢酸の揮発を効果的に抑制して酢酸臭を低減でき、且つブドウ糖と共存させてもブドウ糖の分解を抑制する作用を備えることが可能になる。酢酸の揮発抑制作用及びブドウ糖の分解抑制作用をより一層向上させるという観点から、本発明の高次酢酸塩化合物における当該比率Ia/Ibとして、好ましくは0.001~1.440、更に好ましくは0.006~1.440、特に好ましくは0.060~0.760が挙げられる。
 また、本発明の高次酢酸塩化合物の粉末X線回折パターンの好適な特徴の一つとして、前記ピークA及びB以外に、粉末X線回折測定において、2θ=5~50°の走査範囲内に、17.0°±0.2°のピーク(回折ピークC)が認められることが挙げられる。更に、酢酸の揮発抑制作用及びブドウ糖の分解抑制作用をより一層向上させるという観点から、本発明の高次酢酸塩化合物の好適な一態様として、前記積分強度Iaと前記回折ピークCの積分強度Icの比率Ia/Icが、1.000~45.000を満たすもの又は1.000~350.000を満たすものが挙げられる。
 また、本発明の高次酢酸塩化合物の粉末X線回折パターンの他の特徴として、粉末X線回折測定において、2θ=5~50°の走査範囲内に、11.1°±0.2°、13.6°±0.2°、15.8°±0.2°、17.0°±0.2°、19.2°±0.2°、20.9°±0.2°、23.8°±0.2°、25.1°±0.2°、30.8°±0.2°、34.8°±0.2°、36.6°±0.2°、38.4°±0.2°、40.9°±0.2°、42.5°±0.2°、45.6°±0.2°、46.4°±0.2°及び47.1°±0.2のピークの組み合わせを有することが挙げられる。これらのピークは無水酢酸ナトリウムでは認められないピークである。なお、無水酢酸ナトリウムの粉末X線回折パターンは、図14に示すとおりである。
 更に、本発明の高次酢酸塩化合物の粉末X線回折パターンの一態様として、前記ピークA及びB以外に、粉末X線回折測定において、2θ=5~50°の走査範囲内に、11.1°±0.2°、13.6°±0.2°、15.8°±0.2°、17.0°±0.2°、19.2°±0.2°、20.9°±0.2°、23.8°±0.2°、25.1°±0.2°、26.3°±0.2°、30.8°±0.2°、33.8°±0.2°、34.8°±0.2°、35.7°±0.2°、36.6°±0.2°、38.4°±0.2°、40.9°±0.2°、41.7°±0.2°、42.5°±0.2°、45.6°±0.2°、46.4°±0.2°、47.1°±0.2°及び49.2°±0.2°のピークの組み合わせを有することが挙げられる。
 なお、前記粉末X線回折パターンは、以下の条件の粉末X線回折法によって求めることができる。
ターゲット:Cu
X線管電流:30mA
X線管電圧:40kV
走査範囲:2θ=5~90°
測定サンプルの前処理:メノウ乳鉢ですり潰す
[粒子径]
 本発明の高次酢酸塩化合物の粒子径については、製造条件等に応じて異なり得るが、中位径(D50)として、通常50~1500μm、好ましくは100~1000μm、更に好ましくは150~800μmが挙げられる。本発明において、高次酢酸塩化合物の中位径は、75mmJIS標準ふるいを使用し、第十七改正日本薬局方記載の「一般試験法 3.04 粒度測定法 2.第2法 ふるい分け法」に従って測定された結果から算出される重量累積50%の粒径である。
 なお、中位径(D50)は、ふるい分け法によって測定された粒度分布の結果から以下の式に従って算出される。
Figure JPOXMLDOC01-appb-M000001
y(50):中位径
y1、y2:重量累積分布が50%となる前後のふるいの目開き(μm)
x1、x2:重量累積分布が50%となる前後のふるい上の累積分布(%)
[用途]
 本発明の高次酢酸塩化合物は、pH調整剤、酢酸の供給源、ナトリウムの供給源等として、医薬、食品、化粧料等の分野で使用できる。特に、本発明の高次酢酸塩化合物は、ブドウ糖との共存下でブドウ糖の分解を抑制できるので、ブドウ糖を含む固形状各種組成物に対して好適に使用できる。
 固形状透析用剤は、臨床現場で水に溶解して透析液を調製するため、酢酸臭の低減が強く求められる製剤である。また、固形状透析用剤には、ブドウ糖が配合されていることが多く、ブドウ糖の安定性維持も要求される製剤である。本発明の高次酢酸塩化合物は、このような固形状透析用剤の要求特性を満足させることができるので、固形状透析用剤に配合される添加剤として特に好適に使用できる。また、本発明の高次酢酸塩化合物を含む固形状透析用剤は、保存による固化、着色、水に溶解後のpHの変動を抑制でき、製剤安定性を向上させることもできる。なお、本発明の高次酢酸塩化合物を含む固形状透析用剤の具体的態様については、後述する。
[製造方法]
 本発明の高次酢酸塩化合物の製造方法については、前述する粉末X線回折パターンを有し、酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物が得られることを限度として特に制限されないが、好適な例として、下記工程1及び2を含む製造方法が挙げられる。
工程1:酢酸、酢酸ナトリウム、及び水性溶媒を混合して、混合液を得る工程
工程2:前記ピークA及びBが認められ、且つ比率Ia/Ibが前記範囲を充足する高次酢酸塩化合物が生成するまで、前記工程1で得られた混合液を減圧乾燥する工程
 以下、前記工程1及び2について説明する。
(工程1)
 工程1では、原料として酢酸、酢酸ナトリウム、及び水性溶媒を使用し、混合液を得る。
 工程1で使用される酢酸は、医薬品、食品、化粧料等の分野で一般的に使用されている酢酸であればよいが、好ましくは氷酢酸が挙げられる。
 また、工程1で使用される酢酸ナトリウムについても、医薬品、食品、化粧料等の分野で一般的に使用されているものであればよく、含水状態又は無水物のいずれであってもよいが、好ましくは無水酢酸ナトリウムが挙げられる。
 工程1で使用される水性溶媒とは、水、又は水に相溶性を示す有機溶媒と水との混合溶媒である。
 水性溶媒が混合溶媒である場合、当該混合溶媒に使用される有機溶媒の種類については、水との相溶性(水に対する溶解性)があって、酢酸及び酢酸ナトリウムを溶解でき、且つ後述する工程2における減圧乾燥によって留去可能であることを限度として特に制限されないが、例えば、メタノール、エタノール、プロパノール、ブタノール等の低級アルコール等が挙げられる。前記混合溶媒において、有機溶媒は、1種単独で含まれていてもよく、また2種以上が組み合わされて含まれていてもよい。
 工程1で使用される水性溶媒として、好ましくは水が挙げられる。
 また、工程1において、原料として混合する酢酸と酢酸ナトリウムの比率については、前記[組成]の欄に示した比率と同様である。
 また、工程1において、酢酸と酢酸ナトリウムの総量に対して、使用する水性溶媒の比率については、特に制限されないが、例えば、酢酸と酢酸ナトリウムの総量100重量部に対して、水性溶媒が5~300重量部程度が挙げられる。本発明の高次酢酸塩化合物を効率的に製造するという観点から、酢酸と酢酸ナトリウムの総量100重量部に対する水性溶媒の比率として、好ましくは5~100重量部、更に好ましくは10~50重量部が挙げられる。
 工程1では、酢酸、酢酸ナトリウム、及び水性溶媒を混合することによって、混合液が得られるが、本発明の高次酢酸塩化合物を効率的に製造するという観点から、当該混合液は、酢酸及び酢酸ナトリウムが水性溶媒に溶解している状態であることが好ましい。
 酢酸及び酢酸ナトリウムが水性溶媒に溶解している状態の混合液を得るには、酢酸、酢酸ナトリウム、及び水性溶媒の混合物に対して加熱処理を行えばよい。当該加熱処理の温度条件については特に制限されないが、例えば20~200℃、好ましくは30~150℃、更に好ましくは40~125℃が挙げられる。また、当該加熱処理の加熱時間については、採用する製造スケール、温度条件等に応じて、酢酸及び酢酸ナトリウムが水性溶媒に溶解できる条件を適宜設定すればよいが、例えば、前記温度に到達した状態での加熱時間として、1~60分間程度、好ましくは10~50分間程度、更に好ましくは20~30分間程度が挙げられる。
 また、前記加熱処理の際に、水性溶媒の一部を揮発させて、混合液における酢酸及び酢酸ナトリウムを濃縮した状態にしてもよい。更に、前記加熱処理の際には、撹拌を行ってもよく、また空気を供給することによりバブリングを行ってもよい。
 斯くして得られた混合液は、後述する工程2に供される。なお、混合液の調製時に加熱を行った場合には、必要に応じて、10~70℃程度まで冷却し、後述する工程2に供すればよい。
(工程2)
 工程2では、前記ピークA及びBが認められ、且つ比率Ia/Ibが前記範囲を充足する高次酢酸塩化合物が生成するまで、前記工程1で得られた混合液を減圧乾燥する。このように、前記工程1で得られた混合液を減圧乾燥することにより、酢酸-酢酸ナトリウムの混晶体が析出し、本発明の高次酢酸塩化合物を生成させることができる。
 工程2では、前記工程1で得られた混合液をそのまま減圧乾燥に供してもよいが、必要に応じて、前記工程1で得られた混合液に本発明の高次酢酸塩化合物からなる種結晶を添加した後に減圧乾燥に供してもよい。
 工程2における減圧乾燥の圧力条件については、温度条件、混合液の量等に応じて適宜設定すればよいが、通常-30~-100kPaが挙げられる。本発明の高次酢酸塩化合物を効率的に製造するという観点から、減圧乾燥の圧力条件として、好ましくは-40~-100kPa、更に好ましくは-50~-100kPaが挙げられる。
 工程2における減圧乾燥の温度条件については、採用する製造スケール、圧力条件、混合液の量等に応じて適宜設定すればよいが、通常30~190℃又は30~150℃が挙げられる。
 より具体的には、工程2における減圧乾燥の温度条件の好適な例として、本発明の高次酢酸塩化合物を効率的に製造するという観点から、より好ましくは35~120℃、更に好ましくは40~110℃が挙げられる。特に、工程2における減圧乾燥の温度条件のより好適な例として、より好ましくは40~100℃、特に好ましくは50~95℃であって、減圧乾燥の進行と共に起こる沸点上昇幅と同じ速度で、段階的に加熱温度を上昇させるように温度条件を操作する態様が挙げられる。
 また、工程2における減圧乾燥の温度条件の好適な他の例として、本発明の高次酢酸塩化合物を効率的に製造するという観点から、より好ましくは50~190℃、更に好ましくは50~150℃が挙げられる。特に、工程2における減圧乾燥の温度条件のより好適な他の例として、より好ましくは55℃~145℃、特に好ましくは60℃~135℃であって、減圧乾燥の進行と共に起こる沸点上昇幅と同じ速度で、段階的に加熱温度を上昇させるように温度条件を操作する態様が挙げられる。
 また、工程2における減圧乾燥において、必要に応じて、前述した圧力条件を満たす範囲内で、外気、清浄空気、又は乾燥空気を通気させてもよい。通気方法については、特に制限されないが、例えば、減圧乾燥時の混合液内にバブリングする方法、混合液の液面に触れるよう通気する方法等が挙げられる。
 減圧乾燥時に通気する場合、空気の吐出部位については特に制限はないが、例えば缶体底部、撹拌翼、缶体壁等が挙げられる。通気により乾燥が促進され,より短時間での製造が可能になる。減圧乾燥時にバブリングを行う場合、通気口への内容物侵入を防ぐため、原料の投入前から通気を開始し、工程1、工程2、必要に応じて工程2以降の工程で同一装置を使用する場合は通気を停止しないことが望ましい。通気する気体量は、採用する製造スケール、圧力条件、混合液の量等に応じて適宜設定すればよいが、通常、原料100kgあたり、1気圧、25℃の大気量で5~300L/分、好ましくは10~150L/分、更に好ましくは15~100L/分が挙げられる。
 前記工程1で得られた混合液を減圧乾燥することによって、酢酸-酢酸ナトリウムの混晶体を含む高次酢酸塩化合物が析出するが、減圧乾燥の時間が短い場合には析出した高次酢酸塩化合物にはピークAが認められず、本発明の高次酢酸塩化合物を得ることができない。一方、減圧乾燥によってピークAが認められない高次酢酸塩化合物の結晶が析出した後に、引き続き減圧乾燥を継続して行うと、析出した高次酢酸塩化合物に前記ピークA及びBが認められるようになり、比率Ia/Ibが前記範囲を充足する高次酢酸塩化合物の結晶が生成する。そのため、工程2における減圧乾燥の時間については、前記ピークA及びBが認められ、且つ比率Ia/Ibが前記範囲を充足する高次酢酸塩化合物の結晶が析出する条件に設定する。具体的には、工程2における減圧乾燥の時間は、圧力条件、温度条件、混合液の液量等に応じて、本発明の高次酢酸塩化合物の結晶が析出するように適宜設定されるが、前述する条件を満たした状態で、例えば、品温(析出した高次酢酸塩化合物の温度)が45℃~95℃、好ましくは60℃~90℃になった時点で減圧乾燥を終了させればよい。また、このような品温に到達するまでの減圧乾燥の時間としては、例えば、0.5~24時間、好ましくは1~15時間、更に好ましくは2~9時間又は1~3時間が挙げられる。
 工程2によって析出した本発明の高次酢酸塩化合物は、必要に応じて室温程度まで冷却した後に回収すればよい。また、工程2によって析出した高次酢酸塩化合物は、必要に応じて、更に棚段乾燥機や流動層乾燥機等の乾燥処理に供してもよい。
 また、回収された本発明の高次酢酸塩化合物は、必要に応じて、篩等を用いて粒度を調整してもよい。
 また、工程1及び2は、それぞれ異なる装置で行ってもよいが、混合手段、加熱手段、及び減圧乾燥手段を備える装置を用いてワンポットで行ってもよい。
2.固形状透析用剤
 「固形状透析用剤」とは、透析液の調製に使用される固形状の原料である。本発明の固形状透析用剤は、前記高次酢酸塩化合物を含むものである。前記高次酢酸塩化合物は、酢酸臭が低減されているので、臨床現場における透析液の調製の際の作業環境の悪化を抑制することができる。また、前記高次酢酸塩化合物は、ブドウ糖の分解を抑制することもできるので、本発明の固形状透析用剤にブドウ糖が含まれている場合には、ブドウ糖の安定化を図ることもできる。更に、本発明の固形状透析用剤は、前記高次酢酸塩化合物を含むことによって、保存により生じる、固化、着色、水への溶解後のpHの変動を抑制できるので、優れた製剤安定性を備えることもできる。
[固形状透析用剤の種類]
 本発明の固形状透析用剤は、血液透析液又は腹膜透析液のいずれの調製に使用されてもよいが、好ましくは血液透析液の調製に使用される。特に、本発明の固形状透析用剤は、重炭酸イオンを含む重炭酸透析液の調製に使用される透析用剤、即ち重炭酸透析用剤として好適である。
[重炭酸透析用剤とする場合の具体的態様]
(重炭酸透析用剤の組成)
 本発明の固形状透析用剤を重炭酸透析用剤とする場合、酢酸イオンの供給源として前記高次酢酸塩化合物、及び重炭酸イオンの供給源として重炭酸ナトリウムを含み、更に、透析液に使用される生理的に利用可能な他の電解質が含まれる。このような電解質としては、例えば、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、カリウムイオン、塩化物イオン、クエン酸イオン、乳酸イオン、グルコン酸イオン、コハク酸イオン、リンゴ酸イオン等の供給源となり得るものが挙げられる。これらの中でも、少なくともナトリウムイオン、塩化物イオン、マグネシウムイオン及びカルシウムイオンの供給源になるものが含まれていることが好ましく、これらに加えてカリウムイオンの供給源になるものが更に含まれていることがより好ましい。
 マグネシウムイオンの供給源となる成分としては、マグネシウム塩が挙げられる。本発明の透析用剤に使用されるマグネシウム塩については、透析液の成分として許容されるものである限り、特に制限されないが、例えば、塩化マグネシウム、乳酸マグネシウム、クエン酸マグネシウム、グルコン酸マグネシウム、コハク酸マグネシウム、リンゴ酸マグネシウム等が挙げられる。これらのマグネシウム塩の中でも、塩化マグネシウムは、水に対する溶解度が高いため、マグネシウムの供給源として好適に使用される。これらのマグネシウム塩は、水和物の形態であってもよい。また、これらのマグネシウム塩は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 カルシウムイオンの供給源となる成分としては、カルシウム塩が挙げられる。本発明の透析用剤に使用されるカルシウム塩としては、透析液の成分として許容されるものである限り、特に制限されないが、例えば、塩化カルシウム、乳酸カルシウム、クエン酸カルシウム、グルコン酸カルシウム、コハク酸カルシウム、リンゴ酸カルシウム等が挙げられる。これらのカルシウム塩の中でも、塩化カルシウムは、水に対する溶解度が高いため、カルシウムの供給源として好適に使用される。これらのカルシウム塩は、水和物の形態であってもよい。また、これらのカルシウム塩は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 ナトリウムイオンの供給源となる成分としては、ナトリウム塩が挙げられる。前記高次酢酸塩化合物もナトリウムイオンの供給源となるが、前記高次酢酸塩化合物以外のナトリウム塩も使用することによって、ナトリウムイオンを補充し、透析液に所望のナトリウムイオン濃度を備えさせることができる。ナトリウム塩は、透析液の成分として許容されるものである限り、特に制限されないが、例えば、塩化ナトリウム、乳酸ナトリウム、クエン酸ナトリウム、グルコン酸ナトリウム、コハク酸ナトリウム、リンゴ酸ナトリウム等が挙げられる。これらのナトリウム塩の中でも、塩化ナトリウムは、最も生理的な物質であるため、ナトリウムの供給源として好適に使用される。これらのナトリウム塩は、水和物の形態であってもよい。また、これらのナトリウム塩は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 カリウムイオンの供給源となる成分としては、カリウム塩が挙げられる。本発明の透析用剤に配合されるカリウム塩についても、透析液の成分として許容されるものである限り、特に制限されないが、例えば、塩化カリウム、乳酸カリウム、クエン酸カリウム、グルコン酸カリウム、コハク酸カリウム、リンゴ酸カリウム等が挙げられる。これらのカリウム塩の中でも、塩化カリウムは、塩化物イオンが最も生理的な物質であるため、カリウムの供給源として好適に使用される。これらのカリウム塩は、水和物の形態であってもよい。また、これらのカリウム塩は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 塩化物イオンの供給源となる成分としては、塩化物塩が挙げられる。本発明の透析用剤に配合される塩化物塩についても、透析液の成分として許容されるものである限り、特に制限されないが、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩化カリウム等が挙げられる。これらの塩化物塩は、水に対する溶解度が高く、しかもナトリウム、カリウム、マグネシウム、又はカリウムの供給源としての役割も果たし得るので、好適に使用される。これらの塩化物塩は、水和物の形態であってもよい。また、これらの塩化物塩は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、pH調節剤としての役割も果たす塩酸を塩化物イオンの供給源として用いることもできる。
 本発明の固形状透析用剤を重炭酸透析用剤とする場合、前記高次酢酸塩化合物及び重炭酸ナトリウム以外に配合される電解質の種類と組み合わせについては、最終的に調製される透析液に含有させる各イオンの組成に応じて適宜設定されるが、固形状透析用剤に含まれる電解質(前記高次酢酸塩化合物及び重炭酸ナトリウム以外)の好適な例として、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、及び塩化カリウムの組み合わせが挙げられる。また、電解質として、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、及び塩化カリウムを組み合わせて使用する場合、更に有機酸塩(酢酸塩以外)を含んでいてもよい。このような有機酸塩としては、例えば、乳酸ナトリウム、グルコン酸ナトリウム、クエン酸ナトリウム、リンゴ酸ナトリウム、コハク酸ナトリウム等が挙げられる。これらの有機酸塩は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 また、本発明の固形状透析用剤を重炭酸透析用剤とする場合、透析処置中の低血糖を抑制するためにブドウ糖が含まれていてもよい。前記高次酢酸塩化合物はブドウ糖と共存しても、ブドウ糖の分解を抑制することができるので、ブドウ糖を含有させる場合には、前記高次酢酸塩化合物と同一製剤に配合することができる。
 酢酸イオンを含む重炭酸透析液は、通常、以下の表1に示す組成及び濃度となるように処方されている。従って、本発明の固形状透析用剤を重炭酸透析用剤とする場合には、最終的に調製される重炭酸透析液の組成及び濃度が以下の範囲を充足するように、前記高次酢酸塩化合物、重炭酸ナトリウム、及び他の成分(他の電解質成分やブドウ糖)を配合すればよい。
Figure JPOXMLDOC01-appb-T000002
 例えば、本発明の固形状透析用剤において、前記高次酢酸塩化合物及び重炭酸ナトリウム以外に、電解質として、塩化マグネシウム、塩化カルシウム、及び塩化カリウムを用いる場合、透析液に含まれる各イオン濃度を前記表1に示す範囲を充足させるには、透析用剤中の塩化マグネシウム、塩化カルシウム、及び塩化カリウムの比率を、塩化マグネシウム0.5モルに対して、前記高次酢酸塩化合物を構成する酢酸及び酢酸ナトリウムの総モル数で2~12モル、好ましくは3~10モル、塩化カルシウムを0.75~2.25モル、好ましくは1.0~1.75モル、塩化カリウムを0~3モル、好ましくは1.5~2.5モル、重炭酸ナトリウムを20~40モル、好ましくは25~35モルに設定すればよい。
 本発明の固形状透析用剤は、前記高次酢酸塩化合物によって重炭酸透析液のpHを適度な範囲を備えるように調整できるが、更に必要に応じて、別途、pH調節剤を含んでいてもよい。本発明の透析用剤に使用可能なpH調節剤としては、透析液の成分として許容されるものである限り、特に制限されないが、例えば、塩酸、乳酸、グルコン酸等の液状の酸、クエン酸、コハク酸、フマル酸、リンゴ酸、グルコノデルタラクトン等の固形状の酸、及びこれらのナトリウム、カリウム、カルシウム、マグネシウム塩等が挙げられる。これらのpH調節剤の中でも、有機酸が好適に使用される。pH調節剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
(重炭酸透析用剤のタイプ)
 重炭酸透析用剤には、重炭酸透析液に含まれる全成分が1つの製剤に混合されている1剤型;重炭酸ナトリウム以外の電解質成分、及び必要に応じてブドウ糖を含む透析用A剤と、重炭酸ナトリウムを含む透析用B剤とからなる2剤型;重炭酸ナトリウム以外の電解質成分を含む透析用A-1剤と、ブドウ糖を含む透析用A-2剤と、重炭酸ナトリウムを含む透析用B剤とからなる3剤型;塩化ナトリウムを含む透析用S剤と、重炭酸ナトリウムを含む透析用B剤と、塩化ナトリウム及び重炭酸ナトリウム以外の電解質成分、並びに必要に応じてブドウ糖を含む透析用A剤とからなる3剤型が知られている。本発明の固形状透析用剤を重炭酸透析用剤とする場合には、これらのいずれのタイプの重炭酸透析用剤であってもよい。
 本発明の固形状透析用剤が1剤型重炭酸透析用剤である場合には、当該重炭酸透析用剤は、前記高次酢酸塩化合物、重炭酸ナトリウム、他の電解質、及び必要に応じてブドウ糖を用いて製剤化すればよい。
 本発明の固形状透析用剤が透析用A剤及び透析用B剤からなる2剤型重炭酸透析用剤である場合には、透析用A剤は、前記高次酢酸塩化合物、他の電解質(前記高次酢酸塩化合物及び重炭酸ナトリウム以外)、及び必要に応じてブドウ糖を用いて製剤化すればよい。また、当該2剤型重炭酸透析用剤の透析用B剤は、重炭酸ナトリウムを用いて製剤化すればよいが、重炭酸ナトリウム以外の電解質成分が含まれていないことが望ましく、含有成分が実質的に重炭酸ナトリウムのみからなるものが好適である。
 本発明の固形状透析用剤が透析用A-1剤、透析用A-2剤、及び透析用B剤からなる3剤型重炭酸透析用剤である場合には、透析用A-1剤は、前記高次酢酸塩化合物、及び他の電解質(前記高次酢酸塩化合物及び重炭酸ナトリウム以外)を用いて製剤化すればよい。当該3剤型重炭酸透析用剤の透析用A-2剤は、ブドウ糖を用いて製剤化すればよく、ブドウ糖以外の成分が含まれていないことが望ましく、含有成分が実質的にブドウ糖のみからなるものが好適である。また、当該3剤型重炭酸透析用剤の透析用B剤は、重炭酸ナトリウムを用いて製剤化すればよいが、重炭酸ナトリウム以外の電解質成分が含まれていないことが望ましく、含有成分が実質的に重炭酸ナトリウムのみからなるものが好適である。
 本発明の固形状透析用剤が透析用A剤、透析用S剤、及び透析用B剤からなる3剤型重炭酸透析用剤である場合には、固形状A剤は、前記高次酢酸塩化合物、他の電解質(前記高次酢酸塩化合物及び重炭酸ナトリウム以外)、及び必要に応じてブドウ糖を用いて製剤化すればよい。当該3剤型重炭酸透析用剤の固形状S剤は、塩化ナトリウムを用いて製剤化すればよいが、塩化ナトリウム以外の電解質成分が含まれていないことが望ましく、含有成分が実質的に塩化ナトリウムのみからなるものが好適である。また、当該3剤型重炭酸透析用剤の固形状B剤は、重炭酸ナトリウムを用いて製剤化すればよいが、重炭酸ナトリウム以外の電解質成分が含まれていないことが望ましく、含有成分が実質的に重炭酸ナトリウムのみからなるものが好適である。
 前記重炭酸透析用剤のタイプの中でも、臨床現場における重炭酸透析液の調製容易性、製剤安定性等の観点から、好ましくは、透析用A剤及び透析用B剤からなる2剤型重炭酸透析用剤、並びに透析用A剤、透析用S剤、及び透析用B剤からなる3剤型重炭酸透析用剤が挙げられる。また、これらの2剤型重炭酸透析用剤及び3剤型重炭酸透析用剤の好適な態様として、透析用A剤にブドウ糖が含まれている態様が挙げられる。前述するように、前記高次酢酸塩化合物は、ブドウ糖の分解を抑制してブドウ糖の安定化を図ることができるので、透析用A剤にブドウ糖が含まれていても、製剤安定化が図られる。
 また、透析用A剤、透析用S剤、及び透析用B剤からなる3剤型炭酸透析用剤の場合には、特許第5099464号公報に記載されているように、透析処置中に、患者の病態に応じて、重炭酸透析液のナトリウムイオン濃度及び/又は重炭酸イオン濃度を変化させることができるという利点もある。
 前記各タイプの重炭酸透析用剤を構成する各剤の内、前記高次酢酸塩化合物が含まれている剤(即ち、前記1剤型重炭酸透析用剤、前記透析用A剤、前記透析用A-1剤)は固形状であればよい。前記高次酢酸塩化合物が含まれている剤の形状として、具体的には、粉末状、顆粒状等が挙げられる。
 前記各タイプの重炭酸透析用剤を構成する各剤(1剤型重炭酸透析用剤、透析用A剤、透析用A-1剤、透析用A-2剤、透析用S剤、透析用B剤等)は、当該剤の種類に応じて、配合すべき成分を選択し、最終的に調製される重炭酸透析液の組成及び濃度が前述する範囲を充足するように各成分の配合量を定めて、従来の透析用剤の製剤化手法に従って製剤化することにより調製できる。特に、長期保存安定性を有する固形状透析用A剤の好適な製造方法としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム及び水を造粒し、電解質造粒物を得る工程、並びに前記工程で得られた電解質造粒物、塩化カリウム、前記高次酢酸塩化合物及びブドウ糖を混合する工程を経て固形状透析用A剤を得る方法が挙げられる。
(重炭酸透析液の調製)
 重炭酸透析液は、重炭酸透析用剤を構成する各剤を、所定量の水(好ましくは精製水)に混合し希釈させることによって調製される。
 以下、実施例を挙げて本発明を具体的に説明する。但し、本発明は、以下の実施例に限定して解釈されるものではない。
製造例:高次酢酸塩化合物の製造
実施例1
 氷酢酸20.0kg、無水酢酸ナトリウム24.6kg、及び精製水18.3kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に入れ、品温が105℃になるまで加熱しながら撹拌し、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。温度を維持したまま撹拌を継続することにより混合液約9kgを蒸発させて濃縮した後、加熱を停止した。その後、撹拌を継続しつつ品温が42℃になるまで冷却を行い、撹拌下で-96~-98kPaで品温が60℃を超えるまで減圧乾燥を行った。減圧乾燥の時間は合計150分間であり、減圧乾燥開始から60分間はジャケット熱媒の温度を50~55℃に保ち、その後90分間はジャケット熱媒の温度を60℃から80℃になるように段階的に制御した。減圧乾燥の時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。その後、目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物37.2kgを得た。
実施例2
 氷酢酸20.0kg、無水酢酸ナトリウム24.6kg、及び精製水18.3kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に入れ、品温が105℃になるまで加熱しながら撹拌し、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。温度を維持したまま撹拌を継続することにより混合液約9kgを蒸発させて濃縮した後、加熱を停止した。その後、撹拌を継続しつつ品温が43℃になるまで冷却を行い、次いで、撹拌下で-92~-94kPaで品温が65℃を超えるまで減圧乾燥を行った。減圧乾燥の時間は合計160分間であり、ジャケット熱媒の温度を90℃に保った。減圧乾燥の時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。その後、目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物27.0kgを得た。
実施例3
 氷酢酸20.0kg、無水酢酸ナトリウム24.6kg、及び精製水18.3kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に入れ、品温が82℃になるまで加熱しながら撹拌し、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。その後、缶体上部の空気抜きバルブを開放し、缶体内部に室内空気を通気させつつ、ジャケット熱媒の温度を80~85℃に制御し、圧力を-50~-52kPaを維持したまま減圧乾燥を行った。減圧乾燥の時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。減圧乾燥によって品温が77℃になった時点で、圧力を大気圧に戻し、ジャケットに水道水を流して品温が42℃になったところで目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物35.8kgを得た。なお、減圧乾燥の時間は合計330分間であった。
実施例4
 氷酢酸20.0kg、無水酢酸ナトリウム24.6kg、及び精製水18.3kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に入れ、品温が90℃になるまで加熱しながら撹拌し、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。その後、実施例2で得られた高次酢酸塩化合物1.5kgを添加した。次いで、缶体上部の空気抜きバルブを開放し、缶体内部に室内空気を通気させつつ、ジャケット熱媒の温度を80~90℃に制御し、圧力を-40から-55kPaに段階的に制御しつつ減圧乾燥を行った。減圧乾燥の時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。減圧乾燥によって品温が74℃を超えた時点で、圧力を大気圧に戻し、ジャケットに水道水を流して品温が50℃になったところで目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物30.8kgを得た。なお、減圧乾燥の時間は合計195分間であった。
実施例5
 氷酢酸20.0kg、無水酢酸ナトリウム24.6kg、及び精製水18.3kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に入れ、品温が78℃になるまで加熱しながら撹拌し、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。その後、缶体上部の空気抜きバルブを開放し、缶体内部に室内空気を通気させつつ、ジャケット熱媒の温度を80~90℃に制御し、圧力を-30から-90kPaに段階的に制御しつつ減圧乾燥を行った。減圧乾燥の時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。減圧乾燥によって品温が75℃を超えた時点で、圧力を大気圧に戻し、ジャケットに水道水を流して品温が45℃になったところで目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物41.9kgを得た。なお、減圧乾燥の時間は合計460分間であった。
実施例6
 氷酢酸20.0kg、無水酢酸ナトリウム24.6kg、及び精製水18.3kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に入れ、品温が81℃になるまで加熱しながら撹拌し、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。その後、缶体上部の空気抜きバルブを開放し、缶体内部に室内空気を通気させつつ、ジャケット熱媒の温度を80~90℃に制御し、圧力を-30から-90kPaに段階的に制御しつつ減圧乾燥を行った。減圧乾燥の時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。減圧乾燥によって品温が75℃を超えた時点で、圧力を大気圧に戻し、ジャケットに水道水を流して品温が49℃になったところで目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物中間品42.1kgを得た。減圧乾燥の時間は合計640分間であった。この高次酢酸塩化合物中間品を約100g採取し、金属製のパッドにのせ80℃に設定された送風乾燥機に入れて450分間加熱し、高次酢酸塩化合物を得た。
実施例7
 実施例6の製造工程で得られた高次酢酸塩化合物中間品を約100g採取し、金属製のパッドにのせ80℃に設定された送風乾燥機に入れて12時間加熱し、高次酢酸塩化合物を得た。
実施例8
 実施例6の製造工程高次酢酸塩化合物中間品を約100g採取し、金属製のパッドにのせ80℃に設定された送風乾燥機に入れて14時間加熱し、高次酢酸塩化合物を得た。
実施例9
 実施例6の製造工程高次酢酸塩化合物中間品を約100g採取し、金属製のパッドにのせ80℃に設定された送風乾燥機に入れて18時間加熱し、高次酢酸塩化合物を得た。
実施例10
 氷酢酸30.0kg、無水酢酸ナトリウム37.4kg、及び精製水33.6kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に25L/minで圧縮空気をバブリングさせながら入れ、品温が73℃になるまで加熱しながら撹拌し、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。その後、缶体上部のバルブを閉じたまま、ジャケット熱媒の温度を115℃付近で保ち、圧力を-75から-86kPaに段階的に制御しつつ97分間減圧乾燥した。次いで、品温が72℃を超えた時点で、ジャケット熱媒の温度を85℃として18分間減圧乾燥を行った。減圧乾燥の時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。その後、圧力を大気圧に戻し、ジャケットに水道水を流して品温が45℃以下になったところで目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物53.0kgを得た。なお、減圧乾燥の時間は合計115分間であった。
比較例1
 氷酢酸20.0kg、無水酢酸ナトリウム24.6kg、及び精製水18.3kgをろ過乾燥機(製造元:タナベウィルテック株式会社、型番:TR25F)に入れ、品温が100~105℃になるまで加熱しながら撹拌して、氷酢酸と無水酢酸ナトリウムが溶解した混合液を得た。次いで、温度を維持したまま撹拌を113分間継続することにより精製水の一部を揮発させて濃縮した後、加熱を停止した。その後、撹拌下で-95~-97kPaで80分間減圧乾燥を行った。減圧乾燥開始から、ジャケット熱媒の温度を57~60℃に制御した。その間、品温は42~46℃と徐々に上昇し、時間経過とともに高次酢酸塩化合物の結晶の析出量が増していった。その後、目開きが1.7mmの篩で篩過し、流動性の良好な高次酢酸塩化合物を得た。
比較例2
 氷酢酸42.3g、無水酢酸ナトリウム57.8gをポリ袋に入れ十分に混合し、高次酢酸塩化合物を得た。
試験例1:高次酢酸塩化合物の物性評価
(1)粉末X線回折
 X線回折装置「SmartLab」(製造元:株式会社リガク)によって2θ=5~90°の範囲で測定を行った(測定条件は、ターゲット:Cu、管電圧:40kV、管電流:30mA、走査範囲:5~90°、スキャンスピード:10.000°/分、スキャンステップ:0.02°、走査モード:連続)。測定結果を、Rigaku Data Analysis Software PDXL version2.0.3.0を用いて解析し、各ピークの積分強度を得た。
 実施例1~10及び比較例1~2の高次酢酸塩化合物の粉末X線回折パターンをそれぞれ図1~12に示す。また、各高次酢酸塩化合物の2θ=8.8°±0.2°の回折ピーク積分強度(Ia)、2θ=22.3°±0.2°の回折ピークの積分強度(Ib)、2θ=17.0°±0.2°の回折ピークの積分強度(Ic)、比率Ia/Ib及び比率Ia/Icを求めた結果を表2に示す。また、各高次酢酸塩化合物の粉末X線回折によって認められたピークと各ピークの積分強度を表3に示す。この結果、氷酢酸、無水酢酸ナトリウム、及び水の混合液に対して、十分な減圧乾燥を行った実施例1~10の高次酢酸塩化合物では、2θ=8.8°±0.2°の回折ピークが認められ、比率Ia/Ibが1.138以下になっていた。一方、氷酢酸、無水酢酸ナトリウム、及び水の混合液に対して、短時間で減圧乾燥を行った比較例1の高次酢酸塩化合物では、2θ=8.8°±0.2°の回折ピークは認められなかった。更に、氷酢酸と無水酢酸ナトリウムを混合することにより得られた比較例2の高次酢酸塩化合物は、実施例1~10及び比較例1の場合に比して、2θ=22.3°±0.2°の回折ピークの積分強度が小さく、比率Ia/Ibが1.447と高い値になっていた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(2)中位径
 実施例1~10及び比較例1~2の高次酢酸塩化合物の中位径を、目開き850μm、710μm、500μm、355μm、250μm、180μm、150μm、106μmの篩を使用し、ロボットシフター(製造元:株式会社セイシン企業、型番:RPS-105)を用いて、音波強度20、音波周波数51Hz、分級時間5分、スイープ時間0.3分、パルス間隔1秒の条件で測定した。測定結果から得られた中位径の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
(3)走査型電子顕微鏡による結晶形状の観察
 得られた各高次酢酸塩化合物の結晶形状を走査型電子顕微鏡(製造元:日本電子株式会社、型番:JSM-5500LV)にて観察した。
 実施例2の高次酢酸塩化合物を走査型電子顕微鏡にて観察した結果を図13に示す。この結果、実施例2の高次酢酸塩化合物は主に略立方状の結晶であることが確認された。
試験例2:高次酢酸塩化合物を含む透析用A剤の安定性評価
(1)電解質造粒物の製造
 先ず、塩化ナトリウム40.2kg、塩化カルシウム水和物1.339kg、及び塩化マグネシウム水和物0.911kgを加熱混合し、更に精製水を加えて混合(製造元:ホソカワミクロン株式会社、型番:NX-2J)後、流動層乾燥機(製造元:株式会社長門電機製作所、型番:10F)にて150℃、10分間乾燥した。その乾燥物を目開き1.7mmの篩で篩過することにより電解質造粒物を得た。
(2)透析用A剤の調製
 低温低湿度環境下(15℃、15%RH)で、前記電解質造粒物115.7g、塩化カリウム3.00g、ブドウ糖26.25g、並びに実施例1~10及び比較例1~2の各高次酢酸塩化合物5.27gを、ポリ袋内で各成分が均一に混ざるように混合し、その混合物を内層から外層に向けてポリエチレンテレフタレート製フィルムとアルミニウム箔とポリエチレン製フィルムが積層されている積層体で形成されたラミネート袋(透湿度は実質的に0g/m2・24h)に収容してヒートシールにて密封して透析用A剤を得た。
(3)透析用A剤の安定性の評価方法
 各高次酢酸塩化合物を含む透析用A剤を各々50℃で15日の間保存試験を実施した。50℃保存試験に加え、実施例1で得られた高次酢酸塩化合物を含む透析用A剤については、40℃で2ヶ月間の保存試験を、実施例10で得られた高次酢酸塩化合物を含む透析用A剤については、55℃で15日の間保存試験も実施した。50℃の保存試験では保存前、保存5日後、保存10日後、及び保存15日後の各透析用A剤について、40℃の保存試験では、2ヶ月後の透析用A剤について、55℃の保存試験では保存5日後、保存15日後の透析用A剤について、以下の方法で揮発酢酸濃度、pH、5-HMF、固化度合、着色を測定した。
<揮発酢酸濃度>
 各高次酢酸塩化合物を含む透析用A剤を収容しているラミネート袋を開封し、検知管式気体測定器(製造元:GASTEC株式会社、型番:GV-100S)に酢酸検知管をセットし、一定量の試料気体を通気させて揮発酢酸濃度を測定した。
<5-ヒドロキシメチルフルフラール(5-HMF)>
 各高次酢酸塩化合物を含む透析用A剤を収容しているラミネート袋を開封し、内容物全量を精製水に溶解させて全量を500mLとし、孔径0.2μmフィルターでろ過することにより、透析液の35倍濃縮A剤溶液を得た。得られた35倍濃縮A剤溶液について、分光光度計を用いて波長284nmにおける吸光度を測定することによって35倍濃縮A剤溶液中の5-ヒドロキシメチルフルフラール(以下、5-HMFと記載)量を測定した。なお、5-HMFはブドウ糖の分解によって生じる化合物であり、上記吸光度が低値である程、ブドウ糖が安定に維持されていることを示す。
<pH>
 前記5-HMF量の測定に用いた35倍濃縮A剤溶液について、pHメーター(製造元:株式会社堀場製作所、型番:F-73)を用いて液温25℃で測定した。
<固化と着色の有無>
 揮発酢酸濃度を測定した後、袋内の製剤の固化の有無を袋外部から手で触って確認した。さらに、袋内の製剤を目視にて観察し、着色の有無を確認した。ブドウ糖が劣化していない正常な透析用A剤は白色であり、劣化が進行すると黄色、又は茶色に着色する。
(4)評価結果
 得られた結果を表5~10に示す。この結果、実施例1~10の高次酢酸塩化合物を含む透析用A剤では、50℃保存15日後でも、揮発酢酸濃度が小さく、ブドウ糖の分解を十分に抑制できており、更に、pH変化、固化、及び着色も認められず、優れた製剤安定性を有していた。また、40℃保存2ヶ月後でも、ブドウ糖の分解、pH変化、固化、着色は認められず、優れた長期保存安定性を有していた。一方、比較例1の高次酢酸塩化合物を含む透析用A剤では、実施例1~5とほぼ同等の酢酸と酢酸ナトリウムのモル比を有しているにもかかわらず、50℃保存15日後には、揮発酢酸濃度が著しく高くなっており、ブドウ糖の顕著な分解も認められ、更に製剤が固化した状態になっていた。また、比較例2の高次酢酸塩化合物を含む透析用A剤では、実施例1~5とほぼ同等の酢酸と酢酸ナトリウムのモル比を有しているにも関わらず、保存開始時から揮発酢酸濃度が高く、50℃保存5日後以降は、著しいブドウ糖の分解も認められ、更に製剤の固化や着色が生じていた。
 以上の結果から、酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物において、2θ=8.8°±0.2°にピークA、及び2θ=22.3°±0.2°にピークBが認められ、ピークAの積分強度Iaと当該ピークBの積分強度Ibの比率Ia/Ibが1.447未満である場合には、酢酸臭を低減でき、更にブドウ糖と共存させてもブドウ糖の分解を抑制できることが明らかとなった。更に、当該特性を備える高次酢酸塩化合物は、透析用A剤に含有させると、製剤安定性を向上させ得ることも明らかとなった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011

Claims (11)

  1.  粉末X線回折測定において、2θ=8.8°±0.2°に回折ピークA、及び2θ=22.3°±0.2°に回折ピークBが認められ、
     前記回折ピークAの積分強度Iaと前記回折ピークBの積分強度Ibの比率Ia/Ibが1.447未満である、
     酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物。
  2.  前記比率Ia/Ibが0.001~1.140である、請求項1に記載の高次酢酸塩化合物。
  3.  請求項1又は2に記載の高次酢酸塩化合物を含む固形状透析用剤。
  4.  請求項1~2のいずれかに記載の高次酢酸塩化合物、及び塩化ナトリウムを含む固形状透析用A剤。
  5.  更にブドウ糖を含む、請求項4に記載の固形状透析用A剤。
  6.  請求項4又は5に記載の固形状透析用A剤と、炭酸水素ナトリウムを含む透析用B剤とを含む、2剤型重炭酸透析用剤。
  7.  請求項1~2のいずれかに記載の高次酢酸塩化合物を含み、塩化ナトリウムを実質的に含まない固形状透析用A剤。
  8.  更にブドウ糖を含む、請求項7に記載の固形状透析用A剤。
  9.  請求項7又は8に記載の固形状透析用A剤と、塩化ナトリウムを含む透析用S剤と、炭酸水素ナトリウムを含む透析用B剤とを含む、3剤型重炭酸透析用剤。
  10.  酢酸-酢酸ナトリウム混晶体を含む高次酢酸塩化合物を製造する方法であって、
     酢酸、酢酸ナトリウム、及び水性溶媒を混合して、混合液を得る工程1、及び
     前記ピークA及びBが認められ、且つ比率Ia/Ibが前記範囲を充足する高次酢酸塩化合物が生成するまで、前記工程1で得られた混合液を減圧乾燥する工程2
    を含む、前記高次酢酸塩化合物の製造方法。
  11.  前記工程2における減圧乾燥が、-30~-100kPaの圧力条件で行われる、請求項10に記載の製造方法。
PCT/JP2017/007248 2016-10-28 2017-02-24 高次酢酸塩化合物、及びこれを用いた固形状透析用剤 WO2018078901A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2017527389A JP6195330B1 (ja) 2016-10-28 2017-02-24 高次酢酸塩化合物、及びこれを用いた固形状透析用剤
KR1020197011847A KR20190077354A (ko) 2016-10-28 2017-02-24 고차 아세트산염 화합물, 및 이것을 사용한 고형상 투석용제
MYPI2019002364A MY196043A (en) 2016-10-28 2017-02-24 Higher-Order Acetate Compound, and Solid Dialysis Agent Using Same
EP17863627.0A EP3533777B1 (en) 2016-10-28 2017-02-24 Higher-order acetate compound, and solid dialysis agent using same
CN201780064830.2A CN109843845B (zh) 2016-10-28 2017-02-24 高级乙酸盐化合物、及使用其的固体状透析用剂
PCT/JP2017/029775 WO2018079022A1 (ja) 2016-10-28 2017-08-21 血液透析用a剤
JP2018507053A JP6312957B1 (ja) 2016-10-28 2017-08-21 血液透析用a剤
CN201780064845.9A CN109890370B (zh) 2016-10-28 2017-08-21 血液透析用a剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212312 2016-10-28
JP2016-212312 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018078901A1 true WO2018078901A1 (ja) 2018-05-03

Family

ID=62024547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007248 WO2018078901A1 (ja) 2016-10-28 2017-02-24 高次酢酸塩化合物、及びこれを用いた固形状透析用剤

Country Status (5)

Country Link
EP (1) EP3533777B1 (ja)
KR (1) KR20190077354A (ja)
CN (1) CN109843845B (ja)
MY (1) MY196043A (ja)
WO (1) WO2018078901A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517321B2 (ja) 1973-06-06 1980-05-10
JPH0759846A (ja) 1993-08-24 1995-03-07 Nikkiso Co Ltd 透析用剤及びその製造方法
JPH0782209A (ja) * 1993-09-10 1995-03-28 Oogaki Kasei Kogyo Kk 品質の改善された酢酸ナトリウム3水塩の製造方法
JP5099464B1 (ja) 2011-12-29 2012-12-19 富田製薬株式会社 重炭酸イオン濃度可変型の透析液の調製装置及び調製方法、重炭酸イオン濃度可変型の透析剤、並びに重炭酸イオン濃度可変型の透析システム
WO2015072494A1 (ja) 2013-11-12 2015-05-21 扶桑薬品工業株式会社 新規二酢酸ナトリウム結晶及び該結晶を含有する固形透析用製剤
JP2016153391A (ja) * 2015-02-16 2016-08-25 日本合成化学工業株式会社 無水酢酸ナトリウム結晶
JP2016216447A (ja) * 2015-05-18 2016-12-22 日本合成化学工業株式会社 無水酢酸ナトリウム結晶の製造方法及び無水酢酸ナトリウム結晶

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930181A (en) 1973-12-28 1975-12-30 Ibm Lens and deflection unit arrangement for electron beam columns
JPS5517321A (en) 1978-07-21 1980-02-06 Dainippon Pharmaceut Co Ltd 1,2-benzoisothiazole derivative
WO2004067014A1 (ja) * 2003-01-31 2004-08-12 Manac Inc. 透析用固形剤およびその製造方法
JP4989876B2 (ja) * 2005-11-09 2012-08-01 マナック株式会社 透析用固形剤およびその製造方法
US10022445B2 (en) * 2012-07-26 2018-07-17 Hisamitsu Pharmaceutical Co., Inc. Patch
JP5376480B1 (ja) * 2012-10-10 2013-12-25 富田製薬株式会社 酢酸及び酢酸塩を含む透析用a剤、及びそれを用いた2剤型透析用剤
CN104892397A (zh) * 2015-04-02 2015-09-09 秦健 制造双乙酸钠的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517321B2 (ja) 1973-06-06 1980-05-10
JPH0759846A (ja) 1993-08-24 1995-03-07 Nikkiso Co Ltd 透析用剤及びその製造方法
JPH0782209A (ja) * 1993-09-10 1995-03-28 Oogaki Kasei Kogyo Kk 品質の改善された酢酸ナトリウム3水塩の製造方法
JP5099464B1 (ja) 2011-12-29 2012-12-19 富田製薬株式会社 重炭酸イオン濃度可変型の透析液の調製装置及び調製方法、重炭酸イオン濃度可変型の透析剤、並びに重炭酸イオン濃度可変型の透析システム
WO2015072494A1 (ja) 2013-11-12 2015-05-21 扶桑薬品工業株式会社 新規二酢酸ナトリウム結晶及び該結晶を含有する固形透析用製剤
JP2016153391A (ja) * 2015-02-16 2016-08-25 日本合成化学工業株式会社 無水酢酸ナトリウム結晶
JP2016216447A (ja) * 2015-05-18 2016-12-22 日本合成化学工業株式会社 無水酢酸ナトリウム結晶の製造方法及び無水酢酸ナトリウム結晶

Also Published As

Publication number Publication date
KR20190077354A (ko) 2019-07-03
EP3533777A4 (en) 2020-06-17
CN109843845B (zh) 2022-02-18
CN109843845A (zh) 2019-06-04
EP3533777B1 (en) 2023-07-26
EP3533777A1 (en) 2019-09-04
MY196043A (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP3619921B2 (ja) 重炭酸固形透析用剤
JP5376480B1 (ja) 酢酸及び酢酸塩を含む透析用a剤、及びそれを用いた2剤型透析用剤
KR102363179B1 (ko) 아세트산 및 아세트산염을 포함하는 3제형 투석용제
JP6366214B6 (ja) 血液透析用a剤
CN107406455A (zh) 3,5‑二取代的苯炔基化合物晶体
KR102319863B1 (ko) 2아세트산 알칼리 금속염을 포함하는 고형 투석용 a제, 및 그것을 사용한 2제형의 저아세트산 투석용제
CA2656264C (en) Method for producing crystal polymorphs of 2-(3-cyano-4-isobutyloxyphenyl)-4-methyl-5-thiazolecarboxylic acid
JPH09506601A (ja) 結晶性n−アセチルノイラミン酸誘導体およびその製造法
JP6195330B1 (ja) 高次酢酸塩化合物、及びこれを用いた固形状透析用剤
WO2018078901A1 (ja) 高次酢酸塩化合物、及びこれを用いた固形状透析用剤
WO2003099799A1 (en) Isothiazolone composition and method for stabilizing isothiazolone
JP6562336B2 (ja) 透析用a剤に使用される造粒物の製造方法
JP3947995B2 (ja) 重炭酸固形透析用剤
JP5718811B2 (ja) 経口液剤
WO2020096041A1 (ja) (S)-2-アミノ-3-{4-[(5-アミノ-2-フェニルベンゾ[d]オキサゾール-7-イル)メトキシ]-3,5-ジクロロフェニル}プロパン酸・1塩酸塩、その1水和物、およびその結晶とその製造方法
JP2006218319A (ja) 重炭酸固形透析用剤
JP7450957B2 (ja) 血液透析用a剤及び血液透析用剤
JP7450976B2 (ja) 血液透析用a剤及び血液透析用剤
RU2536425C2 (ru) Фармацевтическая композиция, содержащая силденафил цитрат, и способ ее приготовления
WO2023195303A1 (ja) 血液透析用a剤及び血液透析用剤
RU2619738C2 (ru) Способ получения биологически активного фторида кальция и способы его применения для профилактики и лечения фтордефицитных состояний у детей и подростков
JPH06105906A (ja) 透析用剤
EP3981759A1 (en) New crystal form of treprostinil sodium salt and preparation method therefor
TWI772408B (zh) 血液透析用a劑
KR101404990B1 (ko) 코엔자임 q10 전분 복합체를 포함하는 기능성 음료 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017527389

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011847

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017863627

Country of ref document: EP

Effective date: 20190528