WO2018078840A1 - 駆動装置、空気調和機および電動機の駆動方法 - Google Patents

駆動装置、空気調和機および電動機の駆動方法 Download PDF

Info

Publication number
WO2018078840A1
WO2018078840A1 PCT/JP2016/082208 JP2016082208W WO2018078840A1 WO 2018078840 A1 WO2018078840 A1 WO 2018078840A1 JP 2016082208 W JP2016082208 W JP 2016082208W WO 2018078840 A1 WO2018078840 A1 WO 2018078840A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
coil
connection state
electric motor
rotation speed
Prior art date
Application number
PCT/JP2016/082208
Other languages
English (en)
French (fr)
Inventor
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16920396.5A priority Critical patent/EP3534534B1/en
Priority to JP2018547067A priority patent/JP6625762B2/ja
Priority to CN201680089717.5A priority patent/CN109863686B/zh
Priority to PCT/JP2016/082208 priority patent/WO2018078840A1/ja
Priority to AU2016428282A priority patent/AU2016428282B2/en
Priority to US16/335,899 priority patent/US10763773B2/en
Priority to KR1020197009311A priority patent/KR102278116B1/ko
Publication of WO2018078840A1 publication Critical patent/WO2018078840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • H02P1/32Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor by star/delta switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/184Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a drive device for driving an electric motor, an air conditioner having an electric motor, and a method for driving the electric motor.
  • connection state of the motor coil is Y connection (star connection) and delta connection (also called triangle connection or ⁇ connection).
  • Y connection star connection
  • delta connection also called triangle connection or ⁇ connection
  • the rotation speed of the electric motor is compared with a threshold value, and when the rotation speed is larger or smaller than the threshold value for a certain time, control is performed to switch from Y connection to delta connection (for example, , See Patent Document 2).
  • JP 2009-216324 A Japanese Patent No. 4619826
  • the present invention has been made to solve the above-described problems, and an object thereof is to sufficiently improve the efficiency of an electric motor.
  • the drive device of the present invention is a drive device for driving an electric motor having a coil, which converts a bus voltage to a converter, an inverter that converts the bus voltage to an AC voltage, and supplies the coil to the coil. And a connection switching unit. The bus voltage generated by the converter is switched according to the connection state of the coils.
  • the motor efficiency can be sufficiently improved.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an electric motor according to a first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a configuration of the rotary compressor according to the first embodiment.
  • 1 is a block diagram illustrating a configuration of an air conditioner according to Embodiment 1.
  • FIG. 2 is a conceptual diagram illustrating a basic configuration of a control system of the air conditioner according to Embodiment 1.
  • FIG. It is a block diagram (A) which shows the control system of the air conditioner of Embodiment 1, and a block diagram (B) which shows the part which controls the electric motor of a compressor based on room temperature.
  • FIG. 2 is a block diagram illustrating a configuration of the drive device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the drive device according to the first embodiment.
  • FIG. 4 is a schematic diagram (A) and (B) illustrating a switching operation of a coil connection state according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a connection state of a coil according to the first embodiment. 3 is a flowchart showing a basic operation of the air conditioner of the first embodiment. 3 is a flowchart illustrating connection switching operation of the air conditioner according to the first embodiment. 3 is a flowchart illustrating connection switching operation of the air conditioner according to the first embodiment. It is the flowcharts (A) and (B) which show the other example of the connection switching operation
  • FIG. 3 is a timing chart illustrating an example of an operation of the air conditioner according to the first embodiment.
  • an electric motor it is a graph which shows the relationship between the line voltage at the time of connecting a coil by Y connection, and rotation speed.
  • an electric motor it is a graph which shows the relationship between the line voltage at the time of connecting a coil by Y connection and performing field-weakening control, and rotation speed. It is a graph which shows the relationship between the motor efficiency at the time of performing the field weakening control shown in FIG. 16, and rotation speed. It is a graph which shows the relationship between the motor torque at the time of performing the field weakening control shown in FIG. 16, and rotation speed.
  • FIG. 10 is a schematic diagram (A) and (B) for explaining the coil connection state switching operation of the third modification of the first embodiment.
  • 10 is a schematic diagram (A) and (B) for explaining another example of the coil connection state switching operation of the third modification of the first embodiment.
  • 10 is a flowchart showing a connection switching operation in a fourth modification of the first embodiment.
  • 10 is a flowchart showing a connection switching operation in a fifth modification of the first embodiment.
  • It is a block diagram which shows the structure of the air conditioner of Embodiment 2.
  • 6 is a block diagram illustrating a control system of an air conditioner according to Embodiment 2.
  • FIG. FIG. 6 is a block diagram illustrating a control system of a drive device according to a second embodiment. It is a flowchart which shows the basic operation
  • 6 is a flowchart showing a basic operation of an air conditioner according to a modification of the second embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration of an electric motor 1 according to Embodiment 1 of the present invention.
  • the electric motor 1 is a permanent magnet embedded electric motor, and is used, for example, in a rotary compressor.
  • the electric motor 1 includes a stator 10 and a rotor 20 that is rotatably provided inside the stator 10.
  • FIG. 1 is a cross-sectional view of a plane orthogonal to the rotation axis of the rotor 20.
  • axial direction of the rotor 20 (direction of the rotation axis) is simply referred to as “axial direction”.
  • the direction along the outer circumference (circumference) of the stator 10 and the rotor 20 is simply referred to as “circumferential direction”.
  • the radial direction of the stator 10 and the rotor 20 is simply referred to as “radial direction”.
  • the stator 10 includes a stator core 11 and a coil 3 wound around the stator core 11.
  • the stator core 11 is formed by laminating a plurality of electromagnetic steel plates having a thickness of 0.1 to 0.7 mm (here 0.35 mm) in the direction of the rotation axis and fastening them by caulking.
  • the stator core 11 has an annular yoke portion 13 and a plurality of (in this case, nine) tooth portions 12 projecting radially inward from the yoke portion 13.
  • a slot is formed between adjacent teeth portions 12.
  • Each tooth portion 12 has a tooth tip portion having a wide width (dimension in the circumferential direction of the stator core 11) at the radially inner tip.
  • the coils 3 that are stator windings are wound around the teeth portions 12 via insulators (insulators) 14.
  • the coil 3 is obtained by winding a magnet wire having a wire diameter (diameter) of 0.8 mm around each tooth portion 12 by 110 winding (110 turns) by concentrated winding.
  • the number of turns and the wire diameter of the coil 3 are determined in accordance with characteristics (rotation speed, torque, etc.) required for the electric motor 1, supply voltage, or cross-sectional area of the slot.
  • the coil 3 is composed of U-phase, V-phase, and W-phase three-phase windings (referred to as coils 3U, 3V, and 3W). Both terminals of the coil 3 of each phase are open. That is, the coil 3 has a total of six terminals.
  • the connection state of the coil 3 is configured to be switchable between a Y connection and a delta connection.
  • the insulator 14 is made of, for example, a film made of PET (polyethylene terephthalate) and has a thickness of 0.1 to 0.2 mm.
  • the stator core 11 has a configuration in which a plurality of (here, nine) blocks are connected via a thin portion. In a state where the stator core 11 is developed in a band shape, a magnet wire is wound around each tooth portion 12, and then the stator core 11 is bent in an annular shape and both ends are welded.
  • stator core 11 is not limited to one having a configuration in which a plurality of blocks (divided cores) are connected as described above.
  • the rotor 20 includes a rotor core 21 and a permanent magnet 25 attached to the rotor core 21.
  • the rotor core 21 is formed by laminating a plurality of electromagnetic steel plates having a thickness of 0.1 to 0.7 mm (here 0.35 mm) in the direction of the rotation axis and fastening them by caulking.
  • the rotor core 21 has a cylindrical shape, and a shaft hole 27 (center hole) is formed at the center in the radial direction.
  • a shaft for example, the shaft 90 of the rotary compressor 8) serving as the rotation axis of the rotor 20 is fixed by shrink fitting or press fitting.
  • a plurality (six in this case) of magnet insertion holes 22 into which the permanent magnets 25 are inserted are formed along the outer peripheral surface of the rotor core 21.
  • the magnet insertion hole 22 is a gap, and one magnet insertion hole 22 corresponds to one magnetic pole.
  • the rotor 20 as a whole has six poles.
  • the magnet insertion hole 22 has a V shape in which a central portion in the circumferential direction protrudes radially inward.
  • the magnet insertion hole 22 is not limited to the V shape, and may be, for example, a straight shape.
  • Two permanent magnets 25 are arranged in one magnet insertion hole 22. That is, two permanent magnets 25 are arranged for one magnetic pole.
  • the rotor 20 has six poles as described above, a total of twelve permanent magnets 25 are arranged.
  • the permanent magnet 25 is a flat plate-like member that is long in the axial direction of the rotor core 21, has a width in the circumferential direction of the rotor core 21, and has a thickness in the radial direction.
  • the permanent magnet 25 is composed of, for example, a rare earth magnet mainly composed of neodymium (Nd), iron (Fe), and boron (B).
  • the permanent magnet 25 is magnetized in the thickness direction.
  • the two permanent magnets 25 arranged in one magnet insertion hole 22 are magnetized such that the same magnetic poles face the same radial direction.
  • Flux barriers 26 are formed on both sides of the magnet insertion hole 22 in the circumferential direction.
  • the flux barrier 26 is a space formed continuously from the magnet insertion hole 22.
  • the flux barrier 26 is for suppressing leakage magnetic flux between adjacent magnetic poles (that is, magnetic flux flowing through the poles).
  • a first magnet holding portion 23, which is a protrusion, is formed at the center in the circumferential direction of each magnet insertion hole 22.
  • maintenance part 24 which is a protrusion is formed in the both ends of the circumferential direction of the magnet insertion hole 22, respectively.
  • the first magnet holding part 23 and the second magnet holding part 24 position and hold the permanent magnet 25 in each magnet insertion hole 22.
  • the number of slots of the stator 10 (that is, the number of teeth portions 12) is 9, and the number of poles of the rotor 20 is 6. That is, in the electric motor 1, the ratio between the number of poles of the rotor 20 and the number of slots of the stator 10 is 2: 3.
  • the connection state of the coil 3 is switched between the Y connection and the delta connection.
  • the delta connection is used, there is a possibility that the circulating current flows and the performance of the electric motor 1 is deteriorated.
  • the circulating current is caused by the third harmonic generated in the induced voltage in the winding of each phase.
  • the third harmonic is not generated in the induced voltage unless there is an influence of magnetic saturation or the like, and therefore performance degradation due to circulating current occurs. Not known.
  • FIG. 2 is a cross-sectional view showing the configuration of the rotary compressor 8.
  • the rotary compressor 8 includes a shell 80, a compression mechanism 9 disposed in the shell 80, and an electric motor 1 that drives the compression mechanism 9.
  • the rotary compressor 8 further includes a shaft 90 (crankshaft) that couples the electric motor 1 and the compression mechanism 9 so that power can be transmitted.
  • the shaft 90 is fitted into the shaft hole 27 (FIG. 1) of the rotor 20 of the electric motor 1.
  • the shell 80 is a sealed container made of, for example, a steel plate, and covers the electric motor 1 and the compression mechanism 9.
  • the shell 80 has an upper shell 80a and a lower shell 80b.
  • the upper shell 80a has a glass terminal 81 as a terminal for supplying electric power to the electric motor 1 from the outside of the rotary compressor 8, and a discharge pipe for discharging the refrigerant compressed in the rotary compressor 8 to the outside. 85 is attached.
  • a total of six lead wires corresponding to two of each of the U phase, the V phase, and the W phase of the coil 3 of the electric motor 1 (FIG. 1) are drawn out from the glass terminal 81.
  • the lower shell 80b houses the electric motor 1 and the compression mechanism 9.
  • the compression mechanism 9 has an annular first cylinder 91 and second cylinder 92 along the shaft 90.
  • the first cylinder 91 and the second cylinder 92 are fixed to the inner peripheral portion of the shell 80 (lower shell 80b).
  • An annular first piston 93 is disposed on the inner peripheral side of the first cylinder 91
  • an annular second piston 94 is disposed on the inner peripheral side of the second cylinder 92.
  • the first piston 93 and the second piston 94 are rotary pistons that rotate with the shaft 90.
  • a partition plate 97 is provided between the first cylinder 91 and the second cylinder 92.
  • the partition plate 97 is a disk-shaped member having a through hole in the center.
  • the cylinder chambers of the first cylinder 91 and the second cylinder 92 are provided with vanes (not shown) that divide the cylinder chamber into a suction side and a compression side.
  • the first cylinder 91, the second cylinder 92, and the partition plate 97 are integrally fixed by bolts 98.
  • An upper frame 95 is disposed on the upper side of the first cylinder 91 so as to close the upper side of the cylinder chamber of the first cylinder 91.
  • a lower frame 96 is disposed below the second cylinder 92 so as to close the lower side of the cylinder chamber of the second cylinder 92.
  • the upper frame 95 and the lower frame 96 support the shaft 90 in a rotatable manner.
  • Refrigerator oil (not shown) that lubricates each sliding portion of the compression mechanism 9 is stored at the bottom of the lower shell 80b of the shell 80.
  • the refrigerating machine oil ascends in the hole 90 a formed in the axial direction inside the shaft 90, and is supplied to each sliding portion from oil supply holes 90 b formed in a plurality of locations of the shaft 90.
  • the stator 10 of the electric motor 1 is attached inside the shell 80 by shrink fitting. Electric power is supplied to the coil 3 of the stator 10 from a glass terminal 81 attached to the upper shell 80a. A shaft 90 is fixed to the shaft hole 27 (FIG. 1) of the rotor 20.
  • An accumulator 87 for storing refrigerant gas is attached to the shell 80.
  • the accumulator 87 is held by, for example, a holding portion 80c provided outside the lower shell 80b.
  • a pair of suction pipes 88 and 89 are attached to the shell 80, and refrigerant gas is supplied from the accumulator 87 to the cylinders 91 and 92 via the suction pipes 88 and 89.
  • refrigerant for example, R410A, R407C, or R22 may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant having a low GWP (global warming potential).
  • the following refrigerants can be used as the low GWP refrigerant.
  • a halogenated hydrocarbon having a carbon double bond in its composition for example, HFO (Hydro-Fluoro-Orefin) -1234yf (CF3CF ⁇ CH2) can be used.
  • the GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene) may be used.
  • R1270 has a GWP of 3, which is lower than HFO-1234yf, but flammability is higher than HFO-1234yf.
  • a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition for example, a mixture of HFO-1234yf and R32 It may be used.
  • the above-mentioned HFO-1234yf tends to have a large pressure loss because it is a low-pressure refrigerant, and there is a possibility that the performance of the refrigeration cycle (especially the evaporator) will be reduced. Therefore, it is practically desirable to use a mixture with R32 or R41 which is a high-pressure refrigerant than HFO-1234yf.
  • the basic operation of the rotary compressor 8 is as follows.
  • the refrigerant gas supplied from the accumulator 87 is supplied to the cylinder chambers of the first cylinder 91 and the second cylinder 92 through the suction pipes 88 and 89.
  • the shaft 90 rotates together with the rotor 20.
  • the first piston 93 and the second piston 94 fitted to the shaft 90 rotate eccentrically in each cylinder chamber, and compress the refrigerant in each cylinder chamber.
  • the compressed refrigerant rises in the shell 80 through a hole (not shown) provided in the rotor 20 of the electric motor 1 and is discharged from the discharge pipe 85 to the outside.
  • FIG. 3 is a block diagram showing the configuration of the air conditioner 5.
  • the air conditioner 5 includes an indoor unit 5A installed indoors (air-conditioning target space) and an outdoor unit 5B installed outdoors.
  • the indoor unit 5A and the outdoor unit 5B are connected by connection pipes 40a and 40b through which the refrigerant flows.
  • the liquid refrigerant that has passed through the condenser flows through the connection pipe 40a.
  • the gas refrigerant that has passed through the evaporator flows through the connection pipe 40b.
  • the outdoor unit 5B includes a compressor 41 that compresses and discharges the refrigerant, a four-way valve (refrigerant flow switching valve) 42 that switches the flow direction of the refrigerant, and an outdoor heat exchanger 43 that performs heat exchange between the outside air and the refrigerant. And an expansion valve (decompression device) 44 for depressurizing the high-pressure refrigerant to a low pressure.
  • the compressor 41 is composed of the rotary compressor 8 (FIG. 2) described above.
  • an indoor heat exchanger 45 that performs heat exchange between the indoor air and the refrigerant is disposed.
  • the compressor 41, the four-way valve 42, the outdoor heat exchanger 43, the expansion valve 44, and the indoor heat exchanger 45 are connected by the pipe 40 including the connection pipes 40a and 40b described above, and constitute a refrigerant circuit. These components constitute a compression refrigeration cycle (compression heat pump cycle) in which the refrigerant is circulated by the compressor 41.
  • compression refrigeration cycle compression heat pump cycle
  • an indoor control device 50a is disposed in the indoor unit 5A, and an outdoor control device 50b is disposed in the outdoor unit 5B.
  • Each of the indoor control device 50a and the outdoor control device 50b has a control board on which various circuits for controlling the air conditioner 5 are formed.
  • the indoor control device 50a and the outdoor control device 50b are connected to each other by a communication cable 50c.
  • the connection cable 50c is bundled together with the connection pipes 40a and 40b described above.
  • an outdoor blower fan 46 which is a blower, is disposed so as to face the outdoor heat exchanger 43.
  • the outdoor blower fan 46 generates an air flow passing through the outdoor heat exchanger 43 by rotation.
  • the outdoor blower fan 46 is composed of, for example, a propeller fan.
  • the four-way valve 42 is controlled by the outdoor control device 50b and switches the direction in which the refrigerant flows.
  • the outdoor control device 50b When the four-way valve 42 is in the position indicated by the solid line in FIG. 3, the gas refrigerant discharged from the compressor 41 is sent to the outdoor heat exchanger 43 (condenser).
  • the four-way valve 42 is at the position indicated by the broken line in FIG. 3, the gas refrigerant flowing from the outdoor heat exchanger 43 (evaporator) is sent to the compressor 41.
  • the expansion valve 44 is controlled by the outdoor control device 50b, and depressurizes the high-pressure refrigerant to a low pressure by changing the opening degree.
  • an indoor blower fan 47 which is a blower, is disposed so as to face the indoor heat exchanger 45.
  • the indoor blower fan 47 generates an air flow that passes through the indoor heat exchanger 45 by rotation.
  • the indoor blower fan 47 is constituted by, for example, a cross flow fan.
  • the indoor unit 5A is provided with an indoor temperature sensor 54 as a temperature sensor that measures the indoor temperature Ta, which is the air temperature of the room (the air conditioning target space), and sends the measured temperature information (information signal) to the indoor control device 50a.
  • the indoor temperature sensor 54 may be a temperature sensor used in a general air conditioner, or a radiation temperature sensor that detects a surface temperature of an indoor wall or floor.
  • the indoor unit 5A is also provided with a signal receiving unit 56 that receives an instruction signal (driving instruction signal) transmitted from a remote controller 55 (remote operation device) operated by the user.
  • the remote controller 55 is used by the user to instruct the air conditioner 5 for operation input (operation start and stop) or operation details (set temperature, wind speed, etc.).
  • the compressor 41 is configured to be able to change the operating rotational speed in the range of 20 to 130 rps during normal operation. As the rotational speed of the compressor 41 increases, the amount of refrigerant circulating in the refrigerant circuit increases. The number of revolutions of the compressor 41 depends on the temperature difference ⁇ T between the current room temperature Ta obtained by the room temperature sensor 54 and the set temperature Ts set by the user with the remote controller 55 (more specifically, the control device 50). The outdoor control device 50b) controls. The larger the temperature difference ⁇ T, the higher the rotation of the compressor 41 and increases the amount of refrigerant circulation.
  • the rotation of the indoor fan 47 is controlled by the indoor control device 50a.
  • the number of rotations of the indoor fan 47 can be switched between a plurality of stages.
  • the number of rotations can be switched in three stages of strong wind, medium wind, and weak wind.
  • the rotation of the outdoor fan 46 is controlled by the outdoor control device 50b.
  • the number of rotations of the outdoor fan 46 can be switched between a plurality of stages.
  • the rotational speed of the outdoor blower fan 46 is switched according to the temperature difference ⁇ T between the measured indoor temperature Ta and the set temperature Ts.
  • the indoor unit 5A is also provided with a left / right wind direction plate 48 and an up / down wind direction plate 49.
  • the left and right wind direction plates 48 and the up and down wind direction plates 49 change the blowing direction when the conditioned air heat-exchanged by the indoor heat exchanger 45 is blown into the room by the indoor fan 47.
  • the left and right wind direction plates 48 change the blowing direction to the left and right, and the upper and lower wind direction plates 49 change the blowing direction to the up and down directions.
  • the indoor control device 50 a controls the angles of the left and right wind direction plates 48 and the upper and lower wind direction plates 49, that is, the wind direction of the blown airflow, based on the settings of the remote controller 55.
  • the basic operation of the air conditioner 5 is as follows.
  • the four-way valve 42 is switched to the position indicated by the solid line, and the high-temperature and high-pressure gas refrigerant discharged from the compressor 41 flows into the outdoor heat exchanger 43.
  • the outdoor heat exchanger 43 operates as a condenser.
  • the heat of heat condenses the refrigerant.
  • the refrigerant condenses to become a high-pressure and low-temperature liquid refrigerant, and adiabatically expands by the expansion valve 44 to become a low-pressure and low-temperature two-phase refrigerant.
  • the refrigerant that has passed through the expansion valve 44 flows into the indoor heat exchanger 45 of the indoor unit 5A.
  • the indoor heat exchanger 45 operates as an evaporator.
  • the refrigerant takes heat of evaporation by heat exchange, and the air thus cooled is supplied indoors.
  • the refrigerant evaporates into a low-temperature and low-pressure gas refrigerant, and is compressed again by the compressor 41 into a high-temperature and high-pressure refrigerant.
  • the four-way valve 42 is switched to the position indicated by the dotted line, and the high-temperature and high-pressure gas refrigerant discharged from the compressor 41 flows into the indoor heat exchanger 45.
  • the indoor heat exchanger 45 operates as a condenser.
  • the refrigerant condenses into a high-pressure and low-temperature liquid refrigerant, and adiabatically expands at the expansion valve 44 to become a low-pressure and low-temperature two-phase refrigerant.
  • the refrigerant that has passed through the expansion valve 44 flows into the outdoor heat exchanger 43 of the outdoor unit 5B.
  • the outdoor heat exchanger 43 operates as an evaporator.
  • the refrigerant evaporates into a low-temperature and low-pressure gas refrigerant, and is compressed again by the compressor 41 into a high-temperature and high-pressure refrigerant.
  • FIG. 4 is a conceptual diagram showing the basic configuration of the control system of the air conditioner 5.
  • the indoor control device 50a and the outdoor control device 50b described above exchange information with each other via the communication cable 50c to control the air conditioner 5.
  • the indoor control device 50a and the outdoor control device 50b are collectively referred to as a control device 50.
  • FIG. 5A is a block diagram showing a control system of the air conditioner 5.
  • the control device 50 is configured by a microcomputer, for example.
  • the control device 50 incorporates an input circuit 51, an arithmetic circuit 52, and an output circuit 53.
  • the input circuit 51 receives an instruction signal received from the remote controller 55 by the signal receiver 56.
  • the instruction signal includes, for example, a signal for setting an operation input, an operation mode, a set temperature, an air volume or a wind direction.
  • the input circuit 51 also receives temperature information indicating the room temperature detected by the room temperature sensor 54.
  • the input circuit 51 outputs the input information to the arithmetic circuit 52.
  • the arithmetic circuit 52 includes a CPU (Central Processing Unit) 57 and a memory 58.
  • the CPU 57 performs calculation processing and determination processing.
  • the memory 58 stores various set values and programs used for controlling the air conditioner 5.
  • the arithmetic circuit 52 performs calculation and determination based on the information input from the input circuit 51 and outputs the result to the output circuit 53.
  • the output circuit 53 is based on information input from the arithmetic circuit 52, and includes a compressor 41, a connection switching unit 60 (described later), a converter 102, an inverter 103, a compressor 41, a four-way valve 42, an expansion valve 44, and an outdoor fan. 46, a control signal is output to the indoor fan 47, the left / right wind direction plate 48 and the up / down wind direction plate 49.
  • the indoor control device 50a and the outdoor control device 50b exchange information with each other via the communication cable 50c and control various devices of the indoor unit 5A and the outdoor unit 5B.
  • the indoor control device 50a and the outdoor control device 50b are collectively expressed as a control device 50.
  • each of the indoor control device 50a and the outdoor control device 50b is constituted by a microcomputer. Note that a control device may be mounted on only one of the indoor unit 5A and the outdoor unit 5B, and various devices of the indoor unit 5A and the outdoor unit 5B may be controlled.
  • FIG. 5B is a block diagram showing a portion of the control device 50 that controls the electric motor 1 of the compressor 41 based on the room temperature Ta.
  • the arithmetic circuit 52 of the control device 50 includes a reception content analysis unit 52a, an indoor temperature acquisition unit 52b, a temperature difference calculation unit 52c, and a compressor control unit 52d. These are included in the CPU 57 of the arithmetic circuit 52, for example.
  • the reception content analysis unit 52a analyzes the instruction signal input from the remote controller 55 via the signal reception unit 56 and the input circuit 51. Based on the analysis result, the reception content analysis unit 52a outputs, for example, the operation mode and the set temperature Ts to the temperature difference calculation unit 52c.
  • the room temperature acquisition unit 52b acquires the room temperature Ta input from the room temperature sensor 54 via the input circuit 51, and outputs it to the temperature difference calculation unit 52c.
  • the temperature difference calculation unit 52c calculates a temperature difference ⁇ T between the room temperature Ta input from the room temperature acquisition unit 52b and the set temperature Ts input from the received content analysis unit 52a.
  • the temperature difference calculation unit 52c outputs the calculated temperature difference ⁇ T to the compressor control unit 52d.
  • the compressor control unit 52d controls the drive device 100 based on the temperature difference ⁇ T input from the temperature difference calculation unit 52c, thereby controlling the rotational speed of the electric motor 1 (that is, the rotational speed of the compressor 41).
  • FIG. 6 is a block diagram illustrating a configuration of the driving device 100.
  • the drive device 100 includes a converter 102 that rectifies the output of the power source 101, an inverter 103 that outputs an AC voltage to the coil 3 of the electric motor 1, a connection switching unit 60 that switches a connection state of the coil 3, and a control device 50. Configured. Power is supplied to the converter 102 from a power source 101 which is an alternating current (AC) power source.
  • AC alternating current
  • the power source 101 is an AC power source of 200 V (effective voltage), for example.
  • the converter 102 is a rectifier circuit and outputs a direct current (DC) voltage of, for example, 280V.
  • the voltage output from converter 102 is referred to as bus voltage.
  • the inverter 103 is supplied with a bus voltage from the converter 102 and outputs a line voltage (also referred to as a motor voltage) to the coil 3 of the motor 1.
  • Wirings 104, 105, 106 connected to the coils 3U, 3V, 3W, respectively, are connected to the inverter 103.
  • the coil 3U has terminals 31U and 32U.
  • the coil 3V has terminals 31V and 32V.
  • the coil 3W has terminals 31W and 32W.
  • the wiring 104 is connected to the terminal 31U of the coil 3U.
  • the wiring 105 is connected to the terminal 31V of the coil 3V.
  • the wiring 106 is connected to the terminal 31W of the coil 3W.
  • the connection switching unit 60 includes switches 61, 62, and 63.
  • the switch 61 connects the terminal 32U of the coil 3U to either the wiring 105 or the neutral point 33.
  • the switch 62 connects the terminal 32V of the coil 3V to either the wiring 106 or the neutral point 33.
  • the switch 63 connects the terminal 32 ⁇ / b> W of the coil 3 ⁇ / b> V to either the wiring 104 or the neutral point 33.
  • the switches 61, 62, 63 of the connection switching unit 60 are constituted by relay contacts. However, you may comprise with a semiconductor switch.
  • Control device 50 controls converter 102, inverter 103, and connection switching unit 60.
  • the configuration of the control device 50 is as described with reference to FIG.
  • the controller 50 receives the operation instruction signal from the remote controller 55 received by the signal receiver 56 and the room temperature detected by the room temperature sensor 54. Based on the input information, control device 50 outputs a voltage switching signal to converter 102, outputs an inverter drive signal to inverter 103, and outputs a connection switching signal to connection switching unit 60.
  • the switch 61 connects the terminal 32U of the coil 3U to the neutral point 33
  • the switch 62 connects the terminal 32V of the coil 3V to the neutral point 33
  • the switch 63 Connects the terminal 32W of the coil 3W to the neutral point 33. That is, the terminals 31U, 31V, 31W of the coils 3U, 3V, 3W are connected to the inverter 103, and the terminals 32U, 32V, 32W are connected to the neutral point 33.
  • FIG. 7 is a block diagram illustrating a state in which the switches 61, 62, and 63 of the connection switching unit 60 are switched in the drive device 100.
  • the switch 61 connects the terminal 32U of the coil 3U to the wiring 105
  • the switch 62 connects the terminal 32V of the coil 3V to the wiring 106
  • the switch 63 is connected to the coil 3W.
  • Terminal 32 ⁇ / b> W is connected to the wiring 104.
  • FIG. 8A is a schematic diagram showing the connection state of the coils 3U, 3V, 3W when the switches 61, 62, 63 are in the state shown in FIG. Coils 3U, 3V, and 3W are connected to neutral point 33 at terminals 32U, 32V, and 32W, respectively. For this reason, the connection state of the coils 3U, 3V, and 3W is the Y connection (star connection).
  • FIG. 8B is a schematic diagram showing the connection state of the coils 3U, 3V, 3W when the switches 61, 62, 63 are in the state shown in FIG.
  • the terminal 32U of the coil 3U is connected to the terminal 31V of the coil 3V via the wiring 105 (FIG. 7).
  • the terminal 32V of the coil 3V is connected to the terminal 31W of the coil 3W via the wiring 106 (FIG. 7).
  • the terminal 32W of the coil 3W is connected to the terminal 31U of the coil 3U via the wiring 104 (FIG. 7). Therefore, the connection state of the coils 3U, 3V, 3W is a delta connection (triangular connection).
  • connection switching unit 60 switches the switches 61, 62, and 63 to change the connection state of the coils 3U, 3V, and 3W of the electric motor 1 from the Y connection (first connection state) and the delta connection (second connection). (Connection state) can be switched.
  • FIG. 9 is a schematic diagram showing coil portions of the coils 3U, 3V, and 3W.
  • the electric motor 1 has nine tooth portions 12 (FIG. 1), and the coils 3U, 3V, and 3W are wound around the three tooth portions 12, respectively. That is, the coil 3U is obtained by connecting U-phase coil portions Ua, Ub, Uc wound around three teeth portions 12 in series. Similarly, the coil 3V is formed by connecting V-phase coil portions Va, Vb, and Vc wound around three teeth portions 12 in series. The coil 3W is formed by connecting W-phase coil portions Wa, Wb, and Wc wound around three teeth portions 12 in series.
  • ⁇ Operation of air conditioner> 10 to 12 are flowcharts showing the basic operation of the air conditioner 5.
  • the control device 50 of the air conditioner 5 starts operation by receiving the activation signal from the remote controller 55 by the signal receiving unit 56 (step S101).
  • the CPU 57 of the control device 50 is activated.
  • the connection state of the coil 3 becomes the delta connection at the start of operation (at the time of activation). ing.
  • control device 50 performs start-up processing of the air conditioner 5 (step S102). Specifically, for example, the fan motors of the indoor fan 47 and the outdoor fan 46 are driven.
  • control device 50 outputs a voltage switching signal to the converter 102, and boosts the bus voltage of the converter 102 to a bus voltage (for example, 390 V) corresponding to the delta connection (step S103).
  • the bus voltage of the converter 102 is the maximum voltage applied from the inverter 103 to the electric motor 1.
  • control device 50 starts up the electric motor 1 (step S104). Thereby, as for the electric motor 1, the connection state of the coil 3 is started by the delta connection. Further, the control device 50 controls the output voltage of the inverter 103 to control the rotation speed of the electric motor 1.
  • control device 50 increases the rotational speed of the electric motor 1 stepwise at a predetermined speed according to the temperature difference ⁇ T.
  • the allowable maximum number of rotations of the rotation speed of the electric motor 1 is, for example, 130 rps.
  • the control device 50 decreases the rotation speed of the electric motor 1 according to the temperature difference ⁇ T.
  • the control device 50 operates the electric motor 1 at an allowable minimum rotational speed (for example, 20 rps).
  • the control device 50 stops the rotation of the electric motor 1 to prevent overcooling (or overheating). To do. As a result, the compressor 41 is stopped.
  • the control device 50 restarts the rotation of the electric motor 1. Note that the control device 50 regulates the resumption of rotation of the electric motor 1 in a short time so as not to repeat the rotation and stop of the electric motor 1 in a short time.
  • the inverter 103 starts field weakening control.
  • the field weakening control will be described later with reference to FIGS.
  • the control device 50 determines whether or not an operation stop signal (operation stop signal for the air conditioner 5) is received from the remote controller 55 via the signal receiving unit 56 (step S105). If the operation stop signal has not been received, the process proceeds to step S106. On the other hand, when the operation stop signal is received, the control device 50 proceeds to step S109.
  • an operation stop signal operation stop signal for the air conditioner 5
  • the control device 50 acquires a temperature difference ⁇ T between the room temperature Ta detected by the room temperature sensor 54 and the set temperature Ts set by the remote controller 55 (step S106), and based on this temperature difference ⁇ T, the delta of the coil 3 is obtained. It is determined whether or not switching from the connection to the Y connection is necessary. That is, it is determined whether the connection state of the coil 3 is a delta connection and the absolute value of the temperature difference ⁇ T is equal to or less than the threshold value ⁇ Tr (step S107).
  • the threshold value ⁇ Tr is a temperature difference corresponding to an air conditioning load that is small enough to be switched to Y connection (also simply referred to as “load”).
  • step S107 if the connection state of the coil 3 is delta connection and the absolute value of the temperature difference ⁇ T is equal to or less than the threshold value ⁇ Tr, the process proceeds to step S121 (FIG. 11).
  • step S121 the control device 50 outputs a stop signal to the inverter 103 to stop the rotation of the electric motor 1. Thereafter, the control device 50 outputs a connection switching signal to the connection switching unit 60, and switches the connection state of the coil 3 from the delta connection to the Y connection (step S122). Subsequently, control device 50 outputs a voltage switching signal to converter 102, reduces the bus voltage of converter 102 to a voltage (280 V) corresponding to the Y connection (step S123), and restarts rotation of electric motor 1 (step S123). S124). Then, it returns to step S105 (FIG. 10) mentioned above.
  • step S107 when the connection state of the coil 3 is not delta connection (Y connection), or when the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr (that is, there is no need to switch to Y connection). In the case), the process proceeds to step S108.
  • step S108 it is determined whether or not switching from the Y connection to the delta connection is necessary. That is, it is determined whether or not the connection state of the coil 3 is the Y connection and the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr.
  • step S108 if the connection state of the coil 3 is Y-connection and the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr, the process proceeds to step S131 (FIG. 12).
  • step S131 the control device 50 stops the rotation of the electric motor 1. Thereafter, the control device 50 outputs a connection switching signal to the connection switching unit 60, and switches the connection state of the coil 3 from the Y connection to the delta connection (step S132). Subsequently, control device 50 outputs a voltage switching signal to converter 102, boosts the bus voltage of converter 102 to a voltage (390 V) corresponding to the delta connection (step S133), and restarts rotation of electric motor 1 (step S133). S134).
  • the electric motor 1 can be driven to a higher rotational speed than the Y connection, so that a larger load can be handled. Therefore, the temperature difference ⁇ T between the room temperature and the set temperature can be converged in a short time. Then, it returns to step S105 (FIG. 10) mentioned above.
  • step S108 when the connection state of the coil 3 is not the Y connection (when the delta connection is used), or when the absolute value of the temperature difference ⁇ T is equal to or less than the threshold value ⁇ Tr (that is, it is necessary to switch to the delta connection). If not, the process returns to step S105.
  • step S109 When the operation stop signal is received in the above step S105, the rotation of the electric motor 1 is stopped (step S109). Thereafter, the control device 50 switches the connection state of the coil 3 from the Y connection to the delta connection (step S110). When the connection state of the coil 3 is already a delta connection, the connection state is maintained. Although not shown in FIG. 10, even during the steps S106 to S108, when the operation stop signal is received, the process proceeds to step S109 and the rotation of the electric motor 1 is stopped.
  • control device 50 performs a stop process of the air conditioner 5 (step S111). Specifically, the fan motors of the indoor fan 47 and the outdoor fan 46 are stopped. Then, CPU57 of the control apparatus 50 stops and the driving
  • the motor 1 when the absolute value of the temperature difference ⁇ T between the room temperature Ta and the set temperature Ts is relatively small (that is, when the absolute value is equal to or less than the threshold value ⁇ Tr), the motor 1 is operated with a highly efficient Y connection.
  • the electric motor 1 When it is necessary to cope with a larger load, that is, when the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr, the electric motor 1 is operated with a delta connection capable of accommodating a larger load. Therefore, the operation efficiency of the air conditioner 5 can be improved.
  • the rotation speed of the motor 1 is detected before step S131 for stopping the rotation of the motor 1 (step S131).
  • step S135 it may be determined whether or not the detected rotation speed is equal to or greater than a threshold value (reference value for rotation speed) (step S136).
  • the rotation speed of the electric motor 1 is detected as the frequency of the output current of the inverter 103.
  • step S136 for example, a rotation speed of 35 rps corresponding to a heating intermediate condition to be described later and a rotation speed of 85 rps corresponding to a heating rated condition are used as the rotation speed threshold of the electric motor 1. If the rotation speed of the electric motor 1 is equal to or greater than the threshold value, the rotation of the electric motor 1 is stopped, switching to the delta connection is performed, and the bus voltage of the converter 102 is increased (steps S131, S132, S133). If the rotation speed of the electric motor 1 is less than the threshold value, the process returns to step S105 in FIG.
  • connection switching is frequently repeated. It can be surely suppressed.
  • the output voltage of the inverter 103 is detected before step S131 for stopping the rotation of the electric motor 1 (step S137), and the detected output voltage is a threshold value (reference value of the output voltage). It may be determined whether or not the above is satisfied (step S138).
  • FIGS. 13A and 13B show the switching operation from the Y connection to the delta connection. At the time of switching from the delta connection to the Y connection, determination based on the rotation speed of the electric motor 1 or the output voltage of the inverter 103 is performed. May be performed.
  • FIG. 14 is a timing chart showing an example of the operation of the air conditioner 5.
  • FIG. 14 shows the operating state of the air conditioner 5 and the driving state of the outdoor blower fan 46 and the electric motor 1 (compressor 41).
  • the outdoor blower fan 46 is shown as an example of a component other than the electric motor 1 of the air conditioner 5.
  • the signal receiving unit 56 receives an operation activation signal (ON command) from the remote controller 55, the CPU 57 is activated and the air conditioner 5 is activated (ON state).
  • the air conditioner 5 is activated, the fan motor of the outdoor fan 46 starts rotating after the time t0 has elapsed.
  • the time t0 is a delay time due to communication between the indoor unit 5A and the outdoor unit 5B.
  • Time t1 is a waiting time until the rotation of the fan motor of the outdoor fan 46 is stabilized.
  • an operation stop signal (OFF command) is received from the remote controller 55.
  • the time t2 required for switching the connection is a waiting time required for restarting the electric motor 1, and is set to a time required until the refrigerant pressure in the refrigeration cycle becomes substantially equal.
  • Time t3 is a waiting time necessary for sufficiently reducing the temperature of the refrigeration cycle.
  • the CPU 57 stops and the air conditioner 5 enters an operation stop state (OFF state).
  • Time t4 is a waiting time set in advance.
  • step S107 and S108 whether or not the connection state of the coil 3 needs to be switched (steps S107 and S108) can be determined based on, for example, the rotational speed of the electric motor 1 or the inverter output voltage.
  • the rotational speed of the electric motor 1 may fluctuate in a short time, it is necessary to determine whether or not the state where the rotational speed is equal to or lower than the threshold value (or higher than the threshold value) continues for a certain time. The same applies to the inverter output voltage.
  • the temperature difference ⁇ T absolute value
  • the temperature difference ⁇ T absolute value
  • the operation state of the compressor 41 can be made to respond quickly to load fluctuations, and the comfort of the air conditioner 5 can be improved.
  • step S107 the determination of whether or not to switch from the delta connection to the Y connection (step S107) and the determination of whether or not to switch from the Y connection to the delta connection (step S108) are continued.
  • switching from the delta connection to the Y connection is performed when the air conditioning load is low (the room temperature is approaching the set temperature), and then the air conditioning load suddenly increases. Since it is unlikely to occur, the situation where the connection is frequently switched is unlikely to occur.
  • connection state of the coil 3 is switched (steps S122 and S132) in a state where the rotation of the electric motor 1 is stopped (that is, a state where the output of the inverter 103 is stopped).
  • the connection state of the coil 3 is switched while continuing to supply power to the electric motor 1, the reliability of the relay contacts constituting the switches 61, 62, 63 (FIG. 6) of the connection switching unit 60 is simplified. It is desirable to perform switching in a state where power supply to the electric motor 1 is stopped.
  • connection state of the coil 3 in a state where the rotational speed of the electric motor 1 is sufficiently lowered, and then return to the original rotational speed.
  • the switches 61, 62, and 63 of the connection switching unit 60 are configured by relay contacts. However, when configured by a semiconductor switch, it is necessary to stop the rotation of the electric motor 1 when the connection state of the coil 3 is switched. There is no.
  • the connection state of the coil 3 may be switched. . If it does in this way, it can suppress that connection switching is repeated by a small temperature change.
  • the control device 50 stops the rotation of the electric motor 1 to prevent overcooling (or overheating).
  • the connection state of the coil 3 may be switched from the delta connection to the Y connection at this timing. Specifically, in step S107 described above, it is determined whether or not the temperature difference ⁇ T is 0 or less. If the temperature difference ⁇ T is 0 or less, the rotation of the motor 1 is stopped and the connection state of the coil 3 is changed to Y. What is necessary is just to switch to a connection.
  • the bus voltage of the converter 102 is boosted when switching from the Y connection to the delta connection, a high torque can be generated by the electric motor 1. Therefore, the difference ⁇ T between the room temperature and the set temperature can be converged in a shorter time.
  • the boosting of the bus voltage of converter 102 will be described later.
  • the electric motor 1 is activated in a state where the connection state of the coil 3 is a delta connection that can cope with a larger load (that is, can rotate to a higher rotational speed).
  • the difference ⁇ T between the room temperature Ta and the set temperature Ts can be converged in a shorter time.
  • the air conditioner 5 when the air conditioner 5 is stopped for a long period of time and an abnormality occurs in the connection switching unit 60 during the stop (for example, the relays of the switches 61 to 63 are stuck and do not operate), the air conditioner 5 Since the switching from the Y connection to the delta connection is performed before the operation is stopped, the electric motor 1 can be started by the delta connection. For this reason, it is possible to prevent the performance of the air conditioner 5 from being lowered, and the comfort is not impaired.
  • connection state of the coil 3 is always the delta connection (no connection switching function) Motor efficiency equivalent to that of a simple motor can be obtained.
  • APF Annual Performance Factor
  • the current mainstream inverter motor has a problem in performing an evaluation close to actual use only under rated conditions because the capacity varies depending on the rotation speed of the compressor.
  • the home air conditioner APF calculates power consumption according to the total load of the year at the five evaluation points of cooling rating, cooling middle, heating rating, heating middle and heating low temperature. The larger this value, the higher the energy saving performance.
  • the ratio of heating intermediate conditions is very large (50%), and then the ratio of heating rated conditions is large (25%). Therefore, improving the motor efficiency in the heating intermediate condition and the heating rated condition is effective for improving the energy saving performance of the air conditioner.
  • Rotational speed of the compressor motor under the APF evaluation load conditions varies depending on the capacity of the air conditioner and the performance of the heat exchanger. For example, in a home air conditioner having a refrigeration capacity of 6.3 kW, the rotation speed N1 (first rotation speed) under the heating intermediate condition is 35 rps, and the rotation speed N2 (second rotation) under the heating rated condition Number) is 85 rps.
  • the electric motor 1 of this embodiment is intended to obtain high electric motor efficiency and electric motor torque at the rotational speed N1 corresponding to the heating intermediate condition and the rotational speed N2 corresponding to the heating rated condition. That is, of the two load conditions that are targets for performance improvement, the low-speed rotation speed is N1, and the high-speed rotation speed is N2.
  • the magnetic flux of the permanent magnet 25 is linked to the coil 3 of the stator 10, and an induced voltage is generated in the coil 3.
  • the induced voltage is proportional to the number of rotations (rotational speed) of the rotor 20 and is also proportional to the number of turns of the coil 3.
  • the induced voltage increases as the number of rotations of the electric motor 1 increases and the number of turns of the coil 3 increases.
  • the line voltage (motor voltage) output from the inverter 103 is equal to the sum of the induced voltage and the voltage generated by the resistance and inductance of the coil 3. Since the resistance and inductance of the coil 3 are negligibly small compared to the induced voltage, the line voltage is effectively controlled by the induced voltage.
  • the magnet torque of the electric motor 1 is proportional to the product of the induced voltage and the current flowing through the coil 3.
  • the induced voltage increases as the number of turns of the coil 3 increases. Therefore, as the number of turns of the coil 3 is increased, the current for generating the necessary magnet torque can be reduced. As a result, loss due to energization of the inverter 103 can be reduced and the operating efficiency of the electric motor 1 can be improved.
  • the line voltage governed by the induced voltage reaches the inverter maximum output voltage (that is, the bus voltage supplied from the converter 102 to the inverter 103) at a lower rotational speed, and the rotational speed is reduced. It can't be faster.
  • the induced voltage is lowered, so that the line voltage governed by the induced voltage does not reach the inverter maximum output voltage up to a higher rotational speed, and high-speed rotation is possible.
  • the current for generating the necessary magnet torque increases due to the reduction of the induced voltage, the loss due to energization of the inverter 103 increases, and the operating efficiency of the electric motor 1 decreases.
  • the harmonic component due to the ON / OFF duty of switching of the inverter 103 decreases when the line voltage is closer to the inverter maximum output voltage. The resulting iron loss can be reduced.
  • 15 and 16 are graphs showing the relationship between the line voltage and the rotation speed in the electric motor 1.
  • the connection state of the coil 3 is a Y connection.
  • the line voltage is proportional to the product of the field magnetic field and the rotational speed. If the field magnetic field is constant, the line voltage and the rotation speed are proportional as shown in FIG. In FIG. 15, the rotation speed N1 corresponds to the heating intermediate condition, and the rotation speed N2 corresponds to the heating rated condition.
  • the line voltage increases with the increase in the number of revolutions. However, as shown in FIG. 16, when the line voltage reaches the inverter maximum output voltage, the line voltage cannot be further increased. Is started. Here, it is assumed that field-weakening control is started at a rotational speed between rotational speeds N1 and N2.
  • the induced voltage is weakened by flowing a current of d-axis phase (direction to cancel the magnetic flux of the permanent magnet 25) through the coil 3.
  • This current is referred to as a weakening current. Since it is necessary to flow a weak current in addition to the current for generating the normal motor torque, the copper loss due to the resistance of the coil 3 increases and the conduction loss of the inverter 103 also increases.
  • FIG. 17 is a graph showing the relationship between the motor efficiency and the rotational speed when the field weakening control shown in FIG. 16 is performed. As shown in FIG. 17, the motor efficiency increases with the rotation speed, and immediately after starting the field weakening control, the motor efficiency reaches a peak as indicated by an arrow P.
  • FIG. 18 is a graph showing the relationship between the maximum torque and the rotational speed of the motor when the field weakening control shown in FIG. 16 is performed.
  • the maximum torque of the motor is constant (for example, due to a restriction by the current threshold).
  • the maximum torque of the electric motor 1 decreases with an increase in the rotational speed.
  • the maximum torque of the electric motor 1 is set to be larger than the load (necessary load) actually generated by the electric motor 1 when the product is used.
  • the maximum torque of the electric motor is referred to as electric motor torque.
  • FIG. 19 is a graph showing the relationship between the line voltage and the rotational speed for each of the Y connection and the delta connection.
  • the phase impedance of the coil 3 when the connection state of the coil 3 is a delta connection is 1 / ⁇ 3 times that when the connection state of the coil 3 is a Y connection when the number of turns is the same. Therefore, the interphase voltage (dotted line) when the connection state of the coil 3 is a delta connection is 1 / ⁇ of the interphase voltage (solid line) when the connection state of the coil 3 is a Y connection when the rotation speed is the same. Tripled.
  • the line voltage (motor voltage) is equivalent to that of Y connection for the same rotation speed N. Therefore, the output current of the inverter 103 is also equivalent to the case of Y connection.
  • the line voltage (motor voltage) reaches the inverter maximum output voltage at the rotation speed N2 (that is, the rotation speed on the high speed side among the rotation speeds targeted for performance improvement).
  • the number of turns of the coil is adjusted.
  • the motor is operated in a state where the line voltage is lower than the inverter maximum output voltage at the rotation speed N1 (that is, the low-speed rotation speed among the rotation speeds targeted for performance improvement). It is difficult to obtain high motor efficiency.
  • the coil connection state is set to Y connection, the number of turns is adjusted so that the line voltage reaches the inverter maximum output voltage at a number of revolutions slightly lower than the number of revolutions N1, and the time until the number of revolutions N2 is reached.
  • the control of switching the connection state of the coil to the delta connection is performed.
  • FIG. 20 is a graph showing the relationship between the line voltage and the rotational speed when switching from the Y connection to the delta connection.
  • the rotational speed reaches slightly lower than the rotational speed N1 (heating intermediate condition) (the rotational speed is N11)
  • the above-described field weakening control is started.
  • the rotational speed N further increases and reaches the rotational speed N0
  • switching from the Y connection to the delta connection is performed.
  • the line voltage decreases to 1 / ⁇ 3 times that of the Y connection, so that the degree of field weakening can be reduced (that is, the weakening current can be reduced).
  • the degree of field weakening can be reduced (that is, the weakening current can be reduced).
  • FIG. 21 is a graph showing the relationship between the motor efficiency and the rotation speed for each of the Y connection and the delta connection. Since the connection state of the coil 3 is set to the Y connection as described above, and the number of turns is adjusted so that the line voltage reaches the inverter maximum output voltage at the rotation speed N11 slightly lower than the rotation speed N1, FIG. As indicated by the solid line, high motor efficiency is obtained at the rotational speed N1.
  • connection state of the coil 3 is Y connection, and the line voltage becomes the inverter maximum output voltage at the rotation speed N11 (the rotation speed slightly lower than the rotation speed N1).
  • the number of turns is adjusted so as to reach, and control is performed to switch from the Y connection to the delta connection at a rotation speed N0 higher than the rotation speed N1.
  • connection state of the coil 3 is Y connection
  • the winding number is adjusted so that the line voltage reaches the inverter maximum output voltage at the rotation speed N11, and the Y connection is switched from the Y connection to the delta connection at the rotation speed N0.
  • It is a graph which shows the relationship between the motor efficiency of a case (solid line), and rotation speed.
  • a broken line is a graph which shows the relationship between the motor efficiency and rotation speed at the time of performing field-weakening control by making the connection state of the coil 3 into Y connection as shown in FIG.
  • the line voltage is proportional to the rotation speed.
  • the rotation speed N1 (heating intermediate condition) is 35 rps and the rotation speed N2 (heating rated condition) is 85 rps.
  • FIG. 23 is a graph showing the relationship between the motor torque and the rotational speed for each of the Y connection and the delta connection.
  • the motor torque is constant with respect to the increase in the rotational speed N, but when field weakening control is started, the motor torque is increased with the increase in the rotational speed N. Decreases.
  • field weakening control is started at a higher rotational speed than in the case of Y connection (N11). When field weakening control is started, the motor torque decreases as the rotational speed N increases.
  • FIG. 24 shows that the connection state of the coil 3 is Y-connection, and the number of turns is adjusted so that the line voltage reaches the inverter maximum output voltage at the rotation speed N11 (the rotation speed slightly lower than the rotation speed N1). It is a graph which shows the relationship between the motor torque at the time of switching from Y connection to delta connection at the rotation speed N0 higher than rotation speed N1, and rotation speed. As shown in FIG. 24, when the rotational speed reaches the rotational speed N11 and field weakening control is started, the motor torque decreases as the rotational speed N increases.
  • the bus voltage is switched by the converter 102 in addition to the switching of the connection state of the coil 3 by the connection switching unit 60.
  • the converter 102 is supplied with a power supply voltage (200 V) from the power supply 101 and supplies a bus voltage to the inverter 103. It is desirable that converter 102 be composed of an element with a small loss accompanying voltage rise (boost), for example, an SiC element or a GaN element.
  • boost loss accompanying voltage rise
  • the bus voltage V1 (first bus voltage) when the connection state of the coil 3 is the Y connection is set to 280 V (DC).
  • the bus voltage V2 (second bus voltage) when the connection state of the coil 3 is a delta connection is set to 390 V (DC). That is, the bus voltage V2 in the case of delta connection is set to 1.4 times the bus voltage V1 in the case of Y connection.
  • the bus voltage V2 may be V2 ⁇ (V1 / ⁇ 3) ⁇ N2 / N1 with respect to the bus voltage V1.
  • the inverter 103 supplied with the bus voltage from the converter 102 supplies the line voltage to the coil 3.
  • the inverter maximum output voltage is 1 / ⁇ 2 of the bus voltage.
  • FIG. 25 is a graph showing the relationship between the line voltage and the rotational speed when the bus voltage is switched by the converter 102 for each of the Y connection and the delta connection.
  • the line voltage (solid line) when the connection state of the coil 3 is Y connection is 1 / ⁇ 2 (that is, V1 ⁇ 1 / ⁇ 2) of the bus voltage V1 at the maximum.
  • the line voltage (one-dot chain line) is 1 / ⁇ 2 (that is, V2 ⁇ 1 / ⁇ 2) of the bus voltage V2 at the maximum.
  • FIG. 26 is a graph showing the relationship between the line voltage and the rotation speed when the connection state is switched by the connection switching unit 60 and the bus voltage is switched by the converter 102.
  • the connection state of the coil 3 is the Y connection.
  • the line voltage increases with the increase in the number of revolutions, and the line voltage reaches the inverter maximum output (V1 ⁇ 1 / ⁇ 2) at the number of revolutions N11 slightly lower than the number of revolutions N1. Thereby, field weakening control is started.
  • connection switching unit 60 switches the connection state of the coil 3 from the Y connection to the delta connection.
  • converter 102 boosts the bus voltage from V1 to V2.
  • the maximum inverter output becomes V2 ⁇ 1 / ⁇ 2.
  • the field-weakening control is not performed.
  • the line voltage increases as the rotation speed N increases, and the line voltage reaches the inverter maximum output (V2 ⁇ 1 / ⁇ 2) at the rotation speed N21 slightly lower than the rotation speed N2 (heating rated condition). This starts field weakening control.
  • connection state of the coil 3 is switched based on the comparison result between the temperature difference ⁇ T between the room temperature Ta and the set temperature Ts and the threshold value ⁇ Tr.
  • the switching from the Y connection to the delta connection at the rotational speed N0 corresponds to the switching from the Y connection to the delta connection shown in step S108 in FIG. 10 and steps S131 to S134 in FIG.
  • FIG. 27 is a graph showing the relationship between the motor efficiency and the rotational speed for each of the Y connection and the delta connection.
  • the motor efficiency solid line
  • the motor efficiency one-dot chain line
  • the motor efficiency in the case where the connection state of the coil 3 is a delta connection is higher than the motor efficiency in the delta connection shown in FIG. 21 because the bus voltage of the converter 102 increases.
  • FIG. 28 is a graph showing the relationship between the motor efficiency and the number of revolutions when the connection state is switched by the connection switching unit 60 and the bus voltage is switched by the converter 102. Since the connection state of the coil 3 is Y-connection, and the number of turns is set so that the line voltage reaches the inverter maximum output voltage at the rotation speed N11 (rotation speed slightly lower than the rotation speed N1). High motor efficiency can be obtained in the rotational speed range including the number N1.
  • the inverter maximum output voltage also rises due to the rise of the bus voltage, the line voltage becomes lower than the inverter maximum output voltage, and as a result, the field weakening control stops. By stopping the field weakening control, the copper loss due to the field weakening current is reduced, so that the motor efficiency is increased.
  • FIG. 29 is a graph showing the relationship between the motor torque and the rotational speed for each of the case where the connection state of the coil 3 is the Y connection and the delta connection.
  • the motor torque (solid line) in the case of Y connection is the same as that in FIG.
  • the electric motor torque (one-dot chain line) in the case of delta connection decreases as the rotational speed N increases.
  • FIG. 30 shows that the connection state of the coil 3 is Y connection, the winding number is adjusted so that the line voltage reaches the inverter maximum output voltage at the rotation speed N11, and the delta from the Y connection at the rotation speed N0 (> N1).
  • the motor torque decreases as the rotational speed N increases.
  • the field-weakening control is not performed until the rotational speed N reaches the rotational speed N21 (the rotational speed slightly smaller than the rotational speed N2). ), The reduction of the motor torque can be suppressed.
  • high motor torque is obtained at both the rotational speed N1 (heating intermediate condition) and the rotational speed N2 (heating rated condition). That is, high performance (motor efficiency and motor torque) can be obtained in both the heating intermediate condition and the heating rated condition of the air conditioner 5.
  • bus voltage supplied to the inverter 103 may be switched by raising or lowering the power supply voltage.
  • Y connection is made at the rotational speed N1 (heating intermediate condition) and delta connection is made at the rotational speed N2 (heating rated condition), but specific load conditions are not decided.
  • the voltage level may be adjusted with the rotation speed N1 as the maximum rotation speed operated with the Y connection and the rotation speed N2 as the maximum rotation speed operated with the delta connection. Even if it controls in this way, the efficiency of the electric motor 1 can be improved.
  • the efficiency of the electric motor 1 can be improved by setting the rotation speed N ⁇ b> 1 to the rotation speed of the heating intermediate condition and the rotation speed N ⁇ b> 2 to the rotation speed of the heating rated condition. it can.
  • the converter 102 changes the magnitude of the bus voltage in accordance with the switching of the connection state of the coil 3 by the connection switching unit 60. Also, high motor efficiency and high motor torque can be obtained.
  • connection state of the coil 3 is switched between the Y connection (first connection state) and the delta connection (second connection state) having a line voltage lower than that of the first connection state, the operation of the electric motor 1 is performed.
  • a connection state suitable for the state can be selected.
  • the bus voltage of the converter 102 when the connection state of the coil 3 is the first connection state, the bus voltage of the converter 102 is set to the first bus voltage V1, and the connection state of the coil 3 is the second connection state.
  • the bus voltage of the converter 102 is set to a second bus voltage V2 that is higher than the first bus voltage V1. Therefore, when the rotation speed of the electric motor 1 becomes high, it is possible to switch to the second connection state where the line voltage is low and further increase the bus voltage to improve the electric motor efficiency and the electric motor torque.
  • the second connection state is the delta connection
  • the first rotation speed N1 and the second rotation speed N2 of the electric motor 1 satisfy N2 / N1> ⁇ 3.
  • the heating intermediate condition and the heating that are targets for performance improvement High motor efficiency and motor torque can be obtained under rated conditions.
  • the first rotation speed N1 is the rotation speed corresponding to the operation condition with the highest ratio in the year-round energy consumption efficiency (APF)
  • the second rotation speed N2 is the operation having the second highest ratio in the year-round energy consumption efficiency. Since the rotation speed corresponds to the condition, the effect of improving the energy consumption efficiency of the air conditioner is great.
  • the converter 102 can use the power supply voltage without increasing it. And energy efficiency can be improved.
  • converter 102 is composed of a SiC element or a GaN element, loss due to boosting is small, and energy efficiency can be further improved.
  • field weakening control is performed according to the number of revolutions of the motor 1, so that the line voltage reaches the inverter maximum output voltage. Also, the rotational speed of the electric motor 1 can be increased.
  • control device 50 when the control device 50 receives an operation stop signal from the remote controller 55 via the signal receiving unit 56, the control device 50 is connected to the air conditioner 5 after the connection state of the coil 3 is switched from the Y connection to the delta connection. End driving.
  • connection state of the coil 3 is already a delta connection, the connection state is maintained. Therefore, when the operation of the air conditioner 5 is started (starting up), the operation of the air conditioner 5 can be started with the connection state of the coil 3 being in the delta connection state. Thereby, even when the temperature difference ⁇ T between the room temperature Ta and the set temperature Ts is large, the operation of the air conditioner 5 can be started in a delta connection state, and the room temperature Ta is quickly brought close to the set temperature Ts. Can do.
  • the rotational speed N0 (that is, the rotational speed when the temperature difference ⁇ T and the threshold value ⁇ Tr are the same) is switched from the Y connection to the delta connection, and the delta connection is changed to the Y connection.
  • the rotation speed N0 (temperature difference) to be switched is the same, a different rotation speed may be used.
  • FIGS. 31A and 31 (B) are graphs showing the relationship between the motor efficiency and the number of revolutions when the connection state is switched by the connection switching unit 60 and the bus voltage is switched by the converter 102.
  • FIG. As shown in FIGS. 31A and 31B, the rotational speed N4 for switching the connection state of the coil 3 from the Y connection to the delta connection is different from the rotational speed N5 for switching from the delta connection to the Y connection.
  • the switching of the bus voltage by the converter 102 is performed simultaneously with the switching of the connection state of the coil 3. That is, the bus voltage is boosted at the rotational speed N4 at which the Y connection is switched to the delta connection. On the other hand, at the rotation speed N5 where the delta connection is switched to the Y connection, the bus voltage is stepped down.
  • Such control can be executed, for example, by setting the threshold value ⁇ Tr in step S107 in FIG. 10 and the threshold value ⁇ Tr in step S108 to different values.
  • the rotation speed N4 for switching from the Y connection to the delta connection is larger than the rotation speed N5 for switching from the delta connection to the Y connection, but the magnitude may be reversed.
  • Other operations and configurations in the first modification are the same as those in the first embodiment.
  • the operating state of the compressor 41 can be made to respond quickly to sudden load fluctuations of the air conditioner 5 by switching the connection state of the coil 3 based on the room temperature Ta. Can do. Moreover, high motor efficiency can be obtained by switching the bus voltage of the converter 102 in accordance with switching of the connection state of the coil 3.
  • FIG. 32 is a graph showing the relationship between the line voltage and the rotation speed when the connection state is switched and the bus voltage of the converter 102 is switched in the second modification.
  • the bus voltage of the converter 102 is V1
  • the rotational speed N6 between the rotational speed N1 and the rotational speed N2 heat rated condition
  • the Y connection is switched to the delta connection, and at the same time, the bus voltage is boosted to V2.
  • the bus voltage of the converter 102 is boosted to V3 while maintaining the connection state. From this rotational speed N7 to the maximum rotational speed N8, the bus voltage of the converter 102 is V3.
  • Other operations and configurations in the second modification are the same as those in the first embodiment.
  • the bus voltage of the converter 102 is switched to the three stages of V1, V2, and V3, so that high motor efficiency and high motor torque can be obtained particularly in the high rotation speed range. .
  • bus voltage switching is not limited to two steps or three steps, but may be four steps or more.
  • the bus voltage of converter 102 may be switched between three or more stages.
  • connection state of the coil 3 is switched between the Y connection and the delta connection.
  • connection state of the coil 3 may be switched between series connection and parallel connection.
  • FIG. 33A and 33B are schematic diagrams for explaining switching of the connection state of the coil 3 according to the third modification.
  • the three-phase coils 3U, 3V, and 3W are connected by Y connection.
  • the coil portions Ua, Ub, Uc of the coil 3U are connected in series
  • the coil portions Va, Vb, Vc of the coil 3V are connected in series
  • the coil portions Wa, Wb, Wc of the coil 3W are connected in series. Yes. That is, the coil part of each phase of the coil 3 is connected in series.
  • the three-phase coils 3U, 3V, 3W are connected by Y connection, but the coil portions Ua, Ub, Uc of the coil 3U are connected in parallel, and the coil portion Va of the coil 3V is connected. , Vb, Vc are connected in parallel, and coil portions Wa, Wb, Wc of the coil 3W are connected in parallel. That is, the coil portions of the respective phases of the coil 3 are connected in parallel.
  • the switching of the connection state of the coil 3 shown in FIGS. 33A and 33B can be realized by providing a changeover switch in each coil portion of the coils 3U, 3V, 3W, for example.
  • the line voltage is 1 by switching from the series connection (FIG. 33A) to the parallel connection (FIG. 33B). / N times. Therefore, when the line voltage approaches the inverter maximum output voltage, the degree of field weakening can be reduced (that is, the current weakening can be reduced) by switching the connection state of the coil 3 from series connection to parallel connection. it can.
  • connection state of the coil 3 is Since the line voltage becomes larger than the inverter maximum output voltage simply by switching from the series connection to the parallel connection, field-weakening control is required. Therefore, as described in the first embodiment, the connection state of the coil 3 is switched from the serial connection to the parallel connection, and at the same time, the bus voltage of the converter 102 is boosted. As a result, high motor efficiency and high motor torque can be obtained in both the rotational speed range including the rotational speed N1 and the rotational speed range including the rotational speed N2.
  • FIGS. 34A and 34B are schematic diagrams for explaining another configuration example of the third modified example.
  • the three-phase coils 3U, 3V, and 3W are connected by delta connection. Furthermore, the coil portions Ua, Ub, Uc of the coil 3U are connected in series, the coil portions Va, Vb, Vc of the coil 3V are connected in series, and the coil portions Wa, Wb, Wc of the coil 3W are connected in series. Yes. That is, the coil part of each phase of the coil 3 is connected in series.
  • the three-phase coils 3U, 3V, 3W are connected by delta connection, but the coil portions Ua, Ub, Uc of the coil 3U are connected in parallel, and the coil portion Va of the coil 3V is connected. , Vb, Vc are connected in parallel, and coil portions Wa, Wb, Wc of the coil 3W are connected in parallel. That is, the coil portions of the respective phases of the coil 3 are connected in parallel.
  • the low-speed rotation speed N1 and the high-speed rotation speed N2 are ( When N2 / N1)> n is satisfied, the connection state of the coil 3 is switched from the series connection (FIG. 33A) to the parallel connection (FIG. 33B), and the bus voltage of the converter 102 is boosted at the same time.
  • Other operations and configurations in the third modification are the same as those in the first embodiment.
  • the bus voltage V2 after boosting may be V2 ⁇ (V1 / n) ⁇ N2 / N1 with respect to the bus voltage V1 before boosting.
  • the degree of field weakening can be suppressed and the motor efficiency can be improved.
  • the bus voltage V1, V2 and the rotational speeds N1, N2 satisfy V2 ⁇ (V1 / n) ⁇ N2 / N1, high motor efficiency and motor torque can be obtained at the rotational speeds N1, N2.
  • the serial connection (first connection state) and the parallel connection (second connection state) may be switched.
  • the absolute value of the difference ⁇ T between the room temperature Ta detected by the room temperature sensor 54 and the set temperature Ts is compared with the threshold value ⁇ Tr, and the connection state of the coil 3 and the bus voltage of the converter 102 are switched.
  • the air conditioning load may be calculated based on the room temperature Ta, and the connection state of the coil 3 and the bus voltage of the converter 102 may be switched based on the air conditioning load.
  • FIG. 35 is a flowchart showing the basic operation of the air conditioner of the fourth modified example. Steps S101 to S105 are the same as in the first embodiment. If the operation stop signal is not received after starting the motor 1 in step S104 (step S105), the control device 50 detects the indoor temperature Ta detected by the indoor temperature sensor 54 and the set temperature Ts set by the remote controller 55. Is obtained (step S201), and the air conditioning load is calculated based on the temperature difference ⁇ T (step S202).
  • step S203 based on the calculated air conditioning load, it is determined whether or not it is necessary to switch the coil 3 from the delta connection to the Y connection. That is, it is determined whether the connection state of the coil 3 is a delta connection and the air conditioning load calculated in step S202 is equal to or less than a threshold value (reference value of the air conditioning load) (step S203).
  • step S203 if the connection state of the coil 3 is delta connection and the air conditioning load is equal to or less than the threshold value, the processing of steps S121 to S124 shown in FIG. 11 is performed.
  • steps S121 to S124 of FIG. 11 as described in the first embodiment, switching from the delta connection to the Y connection and boosting of the bus voltage by the converter 102 are performed.
  • step S203 when the connection state of the coil 3 is not delta connection (when it is Y connection), or when the air conditioning load is larger than the threshold (that is, when it is not necessary to switch to Y connection), Proceed to step S204.
  • step S204 it is determined whether or not switching from the Y connection to the delta connection is necessary. That is, it is determined whether the connection state of the coil 3 is the Y connection and the air conditioning load calculated in step S202 is greater than the threshold value.
  • step S204 if the connection state of the coil 3 is Y-connection and the air conditioning load is larger than the threshold value, the processing of steps S131 to S134 shown in FIG. 12 is performed.
  • steps S131 to S134 in FIG. 12 as described in the first embodiment, switching from the Y connection to the delta connection and the step-down of the bus voltage by the converter 102 are performed.
  • step S204 when the connection state of the coil 3 is not Y connection (when delta connection), or when the air conditioning load is larger than a threshold value (that is, when it is not necessary to switch to delta connection), The process returns to step S105.
  • Processing (steps S109 to S111) when the operation stop signal is received is the same as in the first embodiment.
  • Other operations and configurations in the fourth modification are the same as those in the first embodiment.
  • the air conditioning load is calculated based on the room temperature Ta, and the connection state of the coil 3 and the bus voltage of the converter 102 are switched based on the calculated air conditioning load.
  • the operating state of the compressor 41 can be quickly responded to the load fluctuation of 5, and the comfort can be improved.
  • connection state of the coil 3 and the bus voltage of the converter 102 may be switched based on the air conditioning load.
  • connection state of the coil 3 and the bus voltage of the converter 102 are switched based on the temperature difference ⁇ T between the room temperature Ta detected by the room temperature sensor 54 and the set temperature Ts.
  • the connection state of the coil 3 and the bus voltage of the converter 102 may be switched based on the number.
  • FIG. 36 is a flowchart showing the basic operation of the air conditioner of the fifth modified example. Steps S101 to S105 are the same as in the first embodiment. After starting the electric motor 1 in step S104, if the operation stop signal is not received (step S105), the control device 50 acquires the rotational speed of the electric motor 1 (step S301).
  • the rotation speed of the electric motor 1 is the frequency of the output current of the inverter 103 and can be detected using a current sensor or the like attached to the electric motor 1.
  • step S302 based on the rotation speed of the electric motor 1, it is determined whether or not it is necessary to switch the coil 3 from the delta connection to the Y connection. That is, it is determined whether the connection state of the coil 3 is a delta connection and the rotation speed of the electric motor 1 is equal to or less than a threshold value (reference value of the rotation speed) (step S302).
  • the threshold value used in step S302 is preferably a value (more preferably an intermediate value) between the rotation speed N1 corresponding to the heating intermediate condition and the rotation speed N2 corresponding to the heating rated condition.
  • the threshold used in step S302 is a value (more preferably an intermediate value) between the rotation speed N1 corresponding to the cooling intermediate condition and the rotation speed N2 corresponding to the cooling rated condition. desirable.
  • the rotation speed N1 corresponding to the heating intermediate condition is 35 rps
  • the rotation speed N2 corresponding to the heating rated condition is 85 rps.
  • step S302 it is determined whether or not the state where the rotational speed of the electric motor 1 is equal to or greater than the threshold value continues for a preset time.
  • step S302 if the connection state of the coil 3 is delta connection and the rotational speed of the electric motor 1 is equal to or less than the threshold value, the processing of steps S121 to S124 shown in FIG. 11 is performed.
  • steps S121 to S124 in FIG. 11 as described in the first embodiment, switching from delta connection to Y connection and boosting of the bus voltage of converter 102 are performed.
  • step S302 when the connection state of the coil 3 is not delta connection (when it is Y connection), or when the rotation speed of the motor 1 is larger than the threshold value (that is, when it is not necessary to switch to Y connection).
  • step S303 the process proceeds to step S303.
  • step S303 it is determined whether or not switching from the Y connection to the delta connection is necessary. That is, it is determined whether or not the connection state of the coil 3 is the Y connection and the rotation speed of the electric motor 1 is greater than the threshold value.
  • step S303 if the connection state of the coil 3 is Y-connection and the rotation speed of the electric motor 1 is larger than the threshold value, the processing in steps S131 to S134 shown in FIG. In steps S131 to S134 in FIG. 12, as described in the first embodiment, switching from Y connection to delta connection and step-down of the bus voltage of converter 102 are performed.
  • step S303 when the connection state of the coil 3 is not the Y connection (when it is a delta connection), or when the rotation speed of the electric motor 1 is larger than the threshold (that is, when it is not necessary to switch to the delta connection).
  • step S105 Processing (steps S109 to S111) when the operation stop signal is received is the same as in the first embodiment.
  • Other operations and configurations in the fifth modification are the same as those in the first embodiment.
  • high motor efficiency and high motor torque can be obtained by switching the connection state of the coil 3 and the bus voltage of the converter 102 based on the rotation speed of the motor 1.
  • connection state of the coil 3 and the bus voltage of the converter 102 may be switched based on the rotation speed of the electric motor 1.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • FIG. 37 is a block diagram illustrating a configuration of an air conditioner 500 according to the second embodiment.
  • FIG. 38 is a block diagram illustrating a control system of the air conditioner 500 according to the second embodiment.
  • FIG. 39 is a block diagram illustrating a control system of drive device 100a according to the second embodiment.
  • the air conditioner 500 according to Embodiment 2 further includes a compressor temperature sensor 71 as a compressor state detection unit.
  • Compressor temperature sensor 71 is a temperature sensor for detecting a compressor temperature T C indicating the state of the rotary compressor 8.
  • the compressor state detection part should just be a detector which can detect the state of the rotary compressor 8, and is not restricted to a temperature sensor.
  • the configurations of the air conditioner 500 and the drive device 100a of the second embodiment are the same as those of the air conditioner 5 and the drive device 100 of the first embodiment, respectively.
  • the driving device 100 a includes a converter 102 that rectifies the output of the power supply 101, an inverter 103 that outputs an AC voltage to the coil 3 of the electric motor 1, and a connection switching unit 60 that switches the connection state of the coil 3. And a control device 50 and a compressor temperature sensor 71. Power is supplied to the converter 102 from a power source 101 which is an alternating current (AC) power source.
  • a power source 101 which is an alternating current (AC) power source.
  • the configuration of the driving device 100a of the second embodiment is the same as that of the driving device 100 of the first embodiment.
  • the compressor temperature sensor 71 may not be a component of the drive device 100a.
  • the driving device 100 a is used together with the rotary compressor 8 and drives the electric motor 1.
  • the coercive force of neodymium rare earth magnets mainly composed of Nd-Fe-B (neodymium-iron-boron) used in permanent magnet motors has a property of decreasing with temperature.
  • Nd-Fe-B neodymium-iron-boron
  • the coercive force of the magnet deteriorates with temperature ( ⁇ 0.5 to ⁇ 0.6% / ⁇ K).
  • the maximum temperature of the compressor during driving of the compressor is lowered, the maximum magnet temperature can be reduced and the demagnetization of the magnet can be mitigated. Therefore, it is effective to control the compressor (for example, the rotational speed of the electric motor) based on the compressor temperature threshold value as a threshold value for limiting the compressor temperature.
  • a command to lower the motor speed or a command to stop the motor may be issued under a low load (air conditioning load) depending on the set value.
  • a low load air conditioning load
  • the maximum operation range of the electric motor is narrowed, and the operation of the electric motor is restricted regardless of the indoor situation (for example, the temperature difference ⁇ T) provided with the air conditioner.
  • the control device 50 issues a command to change the driving method of the electric motor 1 based on a threshold value (compressor temperature threshold value) that differs depending on the connection state of the coil 3. More specifically, the control unit 50, is detected by the compressor temperature sensor 71 the compressor temperature T C is, if it is determined to be greater than the compressor temperature threshold value, issues a command to change the driving method of the motor 1 . Thereby, the temperature of the rotary compressor 8 is lowered and the rotary compressor 8 is protected.
  • a threshold value compressor temperature threshold value
  • Compressor temperature sensor 71 detects the compressor temperature T C indicating the state of the rotary compressor 8.
  • the compressor temperature sensor 71 is fixed to the discharge pipe 85 of the rotary compressor 8.
  • the position where the compressor temperature sensor 71 is fixed is not limited to the discharge pipe 85.
  • Compressor temperature T C passes through, for example, the shell 80 of the rotary compressor 8, the discharge pipe 85 of the rotary compressor 8 (e.g., the top of the discharge pipe 85), refrigerant in the rotary compressor 8 (e.g., a discharge pipe 85 Refrigerant) and at least one temperature of the electric motor 1 provided in the rotary compressor 8.
  • Compressor temperature T C can be at a temperature other than these elements elements.
  • Compressor temperature T C is, for example, the highest temperature measured in the predetermined time.
  • Compressor temperature T C may have been the correlation between temperature data of the rotary in the compressor 8, which is measured in advance and the compressor temperature T C, it is stored in the memory 58 in the controller 50 .
  • the temperature data in the rotary compressor 8 measured in advance is data indicating the temperature (maximum temperature) in the rotary compressor 8 that varies depending on the circulation amount of the refrigerant, the heat generation temperature of the electric motor 1, and the like.
  • the compressor temperature T C detected by the compressor temperature sensor 71 may be used as the first detection value or the second detection value described below, based on the correlation between the compressor temperature T C
  • the calculated temperature data may be used as a first detection value or a second detection value described later.
  • the control device 50 detects the first detection value detected by the compressor temperature sensor 71 and the threshold value T Y as the compressor temperature threshold value.
  • the electric motor 1 is controlled based on the (first threshold value).
  • the threshold value TY is 90 ° C., for example.
  • a value other than the temperature may be set as the threshold value.
  • the control device 50 when the first detection value is greater than the threshold value T Y, the control device 50, at least one temperature detected by the compressor temperature sensor 71 (compressor temperature T C) motor so as to reduce the 1 is controlled. For example, the control device 50 issues a command to change the rotation speed of the electric motor 1 so that the rotation speed of the electric motor 1 is reduced, or stops driving (rotation) of the electric motor 1. Thus, it is possible to lower the compressor temperature T C.
  • the controller 50 detects the second detection value detected by the compressor temperature sensor 71 and the threshold value T ⁇ as the compressor temperature threshold value.
  • the electric motor 1 is controlled based on (second threshold value).
  • the control device 50 causes the electric motor to decrease at least one temperature (compressor temperature T C ) detected by the compressor temperature sensor 71. 1 is controlled.
  • the control device 50 issues a command to change the rotation speed of the electric motor 1 so that the rotation speed of the electric motor 1 is reduced, or stops driving (rotation) of the electric motor 1.
  • it is possible to lower the compressor temperature T C.
  • the electric motor 1 is designed so as not to demagnetize at the highest temperature (compressor temperature threshold) that the magnet can reach in consideration of a temperature change due to heat generation of the electric motor 1, a cooling effect by the refrigerant, and the like.
  • the permanent magnet 25 of the electric motor 1 is designed not to demagnetize around 140 ° C., which is the maximum magnet temperature.
  • the threshold value T ⁇ is set to 140 ° C.
  • the compressor temperature threshold is set higher as the connection state has a lower line voltage.
  • the line voltage of the inverter 103 in the delta connection is lower than the line voltage of the inverter 103 in the Y connection.
  • the threshold T delta is set to be larger than the threshold value T Y.
  • FIG. 40 is a flowchart showing the basic operation of the air conditioner 500 of the second embodiment.
  • Steps S101 to S105 are the same as those in the first embodiment (FIG. 10). If the operation stop signal is not received in step S105, the process proceeds to step S401.
  • connection switching unit 60 changes the connection state of the coil 3 between the delta connection (second connection state in the present embodiment) and the Y connection (this embodiment) according to the temperature difference ⁇ T or the rotation speed of the electric motor 1. In this form, it is possible to switch between the first connection state).
  • the compressor temperature sensor 71 detects the state of the rotary compressor 8 (step S401).
  • the compressor temperature T C (for example, the temperature of the discharge pipe 85) indicating the state of the rotary compressor 8 is detected.
  • connection state of the coil 3 when the Y-connection for detecting a compressor temperature T C as a first detected value.
  • connection states of coil 3 when the delta connection for detecting a compressor temperature T C as a second detection value.
  • control unit 50 wire connection of the coils 3 is a Y-connection, besides, the compressor temperature T C is greater determines whether than the threshold value T Y (step S402).
  • step S402 connection state of the coil 3 in Y-connection, and, if the compressor temperature T C is greater than the threshold value T Y, the process proceeds to step S404.
  • step S402 when connection state of the coil 3 (the case of delta connection) if not Y connection, or the compressor temperature T C is equal to or smaller than the threshold T Y, the process proceeds to step S403.
  • step S403 the control unit 50, wire connection of the coils 3 is a delta connection, besides, the compressor temperature T C is determined greater or not than the threshold value T delta.
  • step S403 connection state of the coil 3 in delta connection, and, if the compressor temperature T C is greater than the threshold value T delta, the process proceeds to step S404.
  • step S404 the control device 50 decreases the rotational speed of the electric motor 1.
  • the electric motor 1 may be stopped instead of reducing the rotational speed of the electric motor 1.
  • the electric motor 1 is stopped without changing the connection state of the coil 3.
  • the electric motor 1 is stopped in step S404, for example, the electric motor 1 is started after a predetermined time has elapsed, and then the process returns to step S105.
  • steps S401 to S404 when the connection state of the coil 3 is the Y connection, the motor 1 is controlled based on the first detection value and the first threshold value (threshold value T Y ), and the connection state of the coil 3 is determined.
  • the electric motor 1 is controlled based on the second detection value and the second threshold value (threshold value T ⁇ ). This allows the compressor temperature T C controls the rotary compressor 8 to be lower than the threshold value T Y or threshold T delta.
  • step S109 the control device 50 stops the rotation of the electric motor 1 (step S109). If the operation stop signal is received in the state where the electric motor 1 is stopped in step S404, the process proceeds to step S110 while the electric motor 1 is stopped. Although not shown in FIG. 40, even during the steps S401 to S404, when the operation stop signal is received, the process proceeds to step S109 to stop the rotation of the electric motor 1.
  • control device 50 performs a stop process of the air conditioner 500 (step S110). Specifically, the fan motors of the indoor fan 47 and the outdoor fan 46 are stopped. Thereafter, the CPU 57 of the control device 50 stops, and the operation of the air conditioner 500 ends.
  • connection state of the coil 3 is a delta connection.
  • the control device 50 when the connection state of the coil 3 is the Y connection, the control device 50 outputs a connection switching signal to the connection switching unit 60, and switches the connection state of the coil 3 from the Y connection to the delta connection.
  • the electric motor 1 is controlled using the compressor temperature threshold in consideration of the connection state of the coil 3. For example, when the detected value detected by the compressor temperature sensor 71 is larger than the compressor temperature threshold, the electric motor 1 is controlled such that the compressor temperature T C (that is, the temperature in the rotary compressor 8) decreases. . Thereby, demagnetization in the electric motor 1 can be prevented, and the electric motor 1 can be appropriately controlled according to the state of the rotary compressor 8.
  • the conventional high speed operation is performed in the delta connection, and the air conditioning is performed in the Y connection. Operate at low speed with low load. Therefore, by switching the connection state of the coil 3 from delta connection to Y-connection, the maximum temperature of the rotary compressor 8 when performing the normal load operation (the maximum value of the compressor temperature T C), during operation in the delta connection
  • the maximum temperature of the rotary compressor 8 at the time of operation by Y connection can be configured to be lower than that.
  • a predetermined one compressor temperature threshold value e.g., the same value as the threshold value T Y
  • the electric motor 1 is controlled using a plurality of compressor temperature thresholds in consideration of the connection state of the coil 3.
  • the electric motor 1 is controlled based on a compressor temperature threshold value (for example, a threshold value TY and a threshold value T ⁇ ) that differs depending on the connection state of the coil 3. Therefore, even if the compressor temperature threshold is set lower during operation in the Y connection than during operation in the delta connection, the maximum operating range of the motor 1 (particularly, the maximum number of revolutions of the motor 1 in the delta connection) is narrow. You can avoid it.
  • a compressor temperature threshold value for example, a threshold value TY and a threshold value T ⁇
  • the line spacing is such that the voltage (motor voltage) is approximately equal to the maximum output voltage of the inverter, thereby achieving high efficiency.
  • the operation is performed with the field weakening, but the current weakening increases and the demagnetization deteriorates.
  • the compressor temperature threshold value T Y when connection state of the coil 3 is Y-connection is set lower than the compressor temperature threshold value T delta when the delta connection. Therefore, it can comprise so that the maximum temperature of the rotary compressor 8 at the time of the driving
  • the motor 1 can be driven in a state where the coercive force of the magnet of the motor 1 is high, and demagnetization can be made difficult even if a larger current is passed through the motor 1. Furthermore, when the connection state of the coil 3 is the Y connection, the electric motor 1 can be driven to a higher speed rotation with a weak field.
  • the compressor temperature threshold can be set lower than in the prior art, so the demagnetization characteristics can be improved in both the Y connection and the delta connection, and dysprosium (Dy) is added. It is possible to use a magnet that is not.
  • a rare earth magnet mainly composed of neodymium (Nd), iron (Fe), and boron (B) can be used as the permanent magnet 25, and the permanent magnet 25 is used as an additive for improving the coercive force.
  • Dysprosium (Dy) is not included.
  • the residual magnetic flux density of the permanent magnet 25 is 1.36 T to 1.42 T
  • the coercive force is 1671 kA / m to 1989 kA / m
  • the maximum energy product is 354 kJ / m 3 to 398 kJ / m 3. It is.
  • Embodiment 2 described above can be combined with Embodiment 1 (including each modification). Therefore, in the modification of the second embodiment, another example of the operation of the air conditioner described in the second embodiment (control method of the electric motor 1, the rotary compressor 8, and the air conditioner 500) will be described.
  • the configuration of the air conditioner of the modification of the second embodiment is the same as the configuration of the air conditioner 500 of the second embodiment. Therefore, the air conditioner of the modification of Embodiment 2 is referred to as an air conditioner 500.
  • FIG. 41 is a flowchart showing the basic operation of an air conditioner 500 according to a modification of the second embodiment.
  • Steps S101 to S106 are the same as those in the first embodiment (FIG. 10).
  • step S107 the control device 50 switches from the delta connection of the coil 3 to the Y connection based on the temperature difference ⁇ T between the room temperature Ta detected by the room temperature sensor 54 and the set temperature Ts set by the remote controller 55. Judgment is necessary. That is, it is determined whether the connection state of the coil 3 is a delta connection and the absolute value of the temperature difference ⁇ T is equal to or less than the threshold value ⁇ Tr (step S107).
  • step S107 if the connection state of the coil 3 is delta connection and the absolute value of the temperature difference ⁇ T is equal to or less than the threshold value ⁇ Tr, the process proceeds to step S121 (FIG. 11).
  • step S107 when the connection state of the coil 3 is not delta connection (Y connection), or when the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr (that is, there is no need to switch to Y connection). In the case), the process proceeds to step S108.
  • step S108 it is determined whether or not switching from the Y connection of the coil 3 to the delta connection is necessary. For example, as in the first embodiment (step S108), the control device 50 determines whether the connection state of the coil 3 is the Y connection and the absolute value of the temperature difference ⁇ T is greater than the threshold value ⁇ Tr. Determine whether.
  • step S108 if the connection state of the coil 3 is Y-connection and the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr, the process proceeds to step S131 (FIG. 12).
  • steps S131 to S134 shown in FIG. 12 are the same as the processes shown in FIG. 13A (steps S135, S136 and S131 to S134), or FIG. May be replaced with the processing (steps S137, S138, and S131 to S134).
  • steps S106 to S108 shown in FIG. 41 may be replaced with the processing in each modification of the first embodiment (for example, steps S201 to S204 shown in FIG. 35, or steps S301 to S303 shown in FIG. 36). Good.
  • step S108 when the connection state of the coil 3 is not the Y connection (when the delta connection is used), or when the absolute value of the temperature difference ⁇ T is equal to or less than the threshold value ⁇ Tr (that is, it is necessary to switch to the delta connection). If not, the process proceeds to step S401.
  • Steps S401 to S404 are the same as those in the second embodiment (FIG. 40).
  • step S109 the control device 50 stops the rotation of the electric motor 1 (step S109). If the operation stop signal is received in the state where the electric motor 1 is stopped in step S404, the process proceeds to step S110 while the electric motor 1 is stopped. Although not shown in FIG. 41, also in steps S105 to S108 or steps S401 to S404, when an operation stop signal is received, the process proceeds to step S109 and the rotation of the electric motor 1 is stopped.
  • control device 50 (specifically, the connection switching unit 60) switches the connection state of the coil 3 from the Y connection to the delta connection (step S110).
  • the connection state of the coil 3 is already a delta connection, the connection state is maintained.
  • Step S111 is the same as that in the first embodiment (FIG. 10).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Ac Motors In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

駆動装置(100)は、コイル(3)を有する電動機(1)を駆動するものである。駆動装置(100)は、母線電圧を生成するコンバータ(102)と、母線電圧を交流電圧に変換してコイル(3)に供給するインバータ(103)と、コイル(3)の結線状態を切り替える結線切り替え部(60)とを備える。コンバータ(102)が生成する母線電圧は、コイル(3)の結線状態に応じて切り替えられる。

Description

駆動装置、空気調和機および電動機の駆動方法
 本発明は、電動機を駆動する駆動装置、電動機を有する空気調和機、および電動機の駆動方法に関する。
 空気調和機等で用いられる電動機に関し、低速回転時および高速回転時の運転効率を向上するため、電動機のコイルの結線状態をY結線(スター結線)とデルタ結線(三角結線またはΔ結線とも称する)とで切り替えることが行われている(例えば、特許文献1参照)。
 具体的には、電動機の回転数を閾値と比較し、回転数が閾値よりも大きいかまたは小さい状態が一定時間経過した場合に、Y結線からデルタ結線に切り替えるという制御が行われている(例えば、特許文献2参照)。
特開2009-216324号公報 特許第4619826号公報
 しかしながら、単にY結線とデルタ結線とを切り替えるだけでは、電動機の効率を十分に向上することが難しい。
 本発明は、上記の課題を解決するためになされたものであり、電動機の効率を十分に向上することを目的とする。
 本発明の駆動装置は、コイルを有する電動機を駆動する駆動装置であって、母線電圧を生成するコンバータと、母線電圧を交流電圧に変換してコイルに供給するインバータと、コイルの結線状態を切り替える結線切り替え部とを備える。コンバータが生成する母線電圧は、コイルの結線状態に応じて切り替えられる。
 本発明によれば、コイルの結線状態に応じてコンバータの母線電圧が切り替えられるため、電動機効率を十分に向上することができる。
実施の形態1の電動機の構成を示す断面図である。 実施の形態1のロータリー圧縮機の構成を示す断面図である。 実施の形態1の空気調和機の構成を示すブロック図である。 実施の形態1の空気調和機の制御系の基本構成を示す概念図である。 実施の形態1の空気調和機の制御系を示すブロック図(A)、および室内温度に基づいて圧縮機の電動機を制御する部分を示すブロック図(B)である。 実施の形態1の駆動装置の構成を示すブロック図である。 実施の形態1の駆動装置の構成を示すブロック図である。 実施の形態1のコイルの結線状態の切り替え動作を示す模式図(A)および(B)である。 実施の形態1のコイルの結線状態を示す模式図である。 実施の形態1の空気調和機の基本動作を示すフローチャートである。 実施の形態1の空気調和機の結線切り替え動作を示すフローチャートである。 実施の形態1の空気調和機の結線切り替え動作を示すフローチャートである。 実施の形態1の空気調和機の結線切り替え動作の他の例を示すフローチャート(A)および(B)である。 実施の形態1の空気調和機の動作の一例を示すタイミングチャートである。 電動機において、コイルをY結線で結線した場合の線間電圧と回転数との関係を示すグラフである。 電動機において、コイルをY結線で結線し、弱め界磁制御を行った場合の線間電圧と回転数との関係を示すグラフである。 図16に示した弱め界磁制御を行った場合の電動機効率と回転数との関係を示すグラフである。 図16に示した弱め界磁制御を行った場合の電動機トルクと回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、線間電圧と回転数との関係を示すグラフである。 Y結線からデルタ結線への切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機効率と回転数との関係を示すグラフである。 コイルの結線状態をY結線とし、暖房中間条件よりも僅かに小さい回転数で線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、Y結線からデルタ結線に切り替えた場合の電動機効率と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機トルクと回転数との関係を示すグラフである。 コイルの結線状態をY結線とし、暖房中間条件よりも僅かに小さい回転数で線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、Y結線からデルタ結線に切り替えた場合の電動機トルクと回転数との関係を示すグラフである。 コンバータで母線電圧を切り替えた場合の線間電圧と回転数との関係を示すグラフである。 実施の形態1において、コイルの結線状態の切り替えと、コンバータの母線電圧の切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機効率と回転数との関係を示すグラフである。 実施の形態1において、コイルの結線状態の切り替えと、コンバータの母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機トルクと回転数との関係を示すグラフである。 実施の形態1において、コイルの結線状態の切り替えと、コンバータの母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。 実施の形態1の第1の変形例における電動機効率と回転数との関係を示すグラフ(A)、(B)である。 実施の形態1の第2の変形例における線間電圧と回転数との関係を示すグラフである。 実施の形態1の第3の変形例のコイルの結線状態の切り替え動作を説明するための模式図(A)、(B)である。 実施の形態1の第3の変形例のコイルの結線状態の切り替え動作の他の例を説明するための模式図(A)、(B)である。 実施の形態1の第4の変形例における結線切り替え動作を示すフローチャートである。 実施の形態1の第5の変形例における結線切り替え動作を示すフローチャートである。 実施の形態2の空気調和機の構成を示すブロック図である。 実施の形態2の空気調和機の制御系を示すブロック図である。 実施の形態2の駆動装置の制御系を示すブロック図である。 実施の形態2の空気調和機の基本動作を示すフローチャートである。 実施の形態2の変形例の空気調和機の基本動作を示すフローチャートである。
実施の形態1.
<電動機の構成>
 本発明の実施の形態1について説明する。図1は、本発明の実施の形態1の電動機1の構成を示す断面図である。この電動機1は、永久磁石埋込型電動機であり、例えばロータリー圧縮機に用いられる。電動機1は、ステータ10と、ステータ10の内側に回転可能に設けられたロータ20とを備えている。ステータ10とロータ20との間には、例えば0.3~1mmのエアギャップが形成されている。なお、図1は、ロータ20の回転軸に直交する面における断面図である。
 以下では、ロータ20の軸方向(回転軸の方向)を、単に「軸方向」と称する。また、ステータ10およびロータ20の外周(円周)に沿った方向を、単に「周方向」と称する。ステータ10およびロータ20の半径方向を、単に「径方向」と称する。
 ステータ10は、ステータコア11と、ステータコア11に巻き付けられたコイル3とを備えている。ステータコア11は、厚さ0.1~0.7mm(ここでは0.35mm)の複数の電磁鋼板を回転軸方向に積層し、カシメにより締結したものである。
 ステータコア11は、環状のヨーク部13と、ヨーク部13から径方向内側に突出する複数(ここでは9つ)のティース部12とを有している。隣り合うティース部12の間には、スロットが形成される。各ティース部12は、径方向内側の先端に、幅(ステータコア11の周方向の寸法)の広い歯先部を有している。
 各ティース部12には、絶縁体(インシュレータ)14を介して、ステータ巻線であるコイル3が巻き付けられている。コイル3は、例えば、線径(直径)が0.8mmのマグネットワイヤを、各ティース部12に集中巻きで110巻き(110ターン)巻き付けたものである。コイル3の巻き数および線径は、電動機1に要求される特性(回転数、トルク等)、供給電圧、またはスロットの断面積に応じて決定される。
 コイル3は、U相、V相およびW相の3相巻線(コイル3U,3V,3Wと称する)で構成されている。各相のコイル3の両端子は開放されている。すなわち、コイル3は、合計6つの端子を有している。コイル3の結線状態は、後述するように、Y結線とデルタ結線とで切り替え可能に構成されている。絶縁体14は、例えば、PET(ポリエチレンテレフタレート)により形成されたフィルムで構成され、厚さは0.1~0.2mmである。
 ステータコア11は、複数(ここでは9つ)のブロックが薄肉部を介して連結された構成を有している。ステータコア11を帯状に展開した状態で、各ティース部12にマグネットワイヤを巻き付け、その後、ステータコア11を環状に曲げて両端部を溶接する。
 このように絶縁体14を薄いフィルムで構成し、また巻線しやすいようにステータコア11を分割構造とすることは、スロット内のコイル3の巻き数を増加する上で有効である。なお、ステータコア11は、上記のように複数のブロック(分割コア)が連結された構成を有するものには限定されない。
 ロータ20は、ロータコア21と、ロータコア21に取り付けられた永久磁石25とを有する。ロータコア21は、厚さ0.1~0.7mm(ここでは0.35mm)の複数の電磁鋼板を回転軸方向に積層し、カシメにより締結したものである。
 ロータコア21は、円筒形状を有しており、その径方向中心にはシャフト孔27(中心孔)が形成されている。シャフト孔27には、ロータ20の回転軸となるシャフト(例えばロータリー圧縮機8のシャフト90)が、焼嵌または圧入等によって固定されている。
 ロータコア21の外周面に沿って、永久磁石25が挿入される複数(ここでは6つ)の磁石挿入孔22が形成されている。磁石挿入孔22は空隙であり、1磁極に1つの磁石挿入孔22が対応している。ここでは6つの磁石挿入孔22が設けられているため、ロータ20全体で6極となる。
 磁石挿入孔22は、ここでは、周方向の中央部が径方向内側に突出するV字形状を有している。なお、磁石挿入孔22は、V字形状に限定されるものではなく、例えばストレート形状であってもよい。
 1つの磁石挿入孔22内には、2つの永久磁石25が配置される。すなわち、1磁極について2つの永久磁石25が配置される。ここでは、上記の通りロータ20が6極であるため、合計12個の永久磁石25が配置される。
 永久磁石25は、ロータコア21の軸方向に長い平板状の部材であり、ロータコア21の周方向に幅を有し、径方向に厚さを有している。永久磁石25は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を主成分とする希土類磁石で構成されている。
 永久磁石25は、厚さ方向に着磁されている。また、1つの磁石挿入孔22内に配置された2つの永久磁石25は、互いに同一の磁極が径方向の同じ側を向くように着磁されている。
 磁石挿入孔22の周方向両側には、フラックスバリア26がそれぞれ形成されている。フラックスバリア26は、磁石挿入孔22に連続して形成された空隙である。フラックスバリア26は、隣り合う磁極間の漏れ磁束(すなわち、極間を通って流れる磁束)を抑制するためのものである。
 ロータコア21において、各磁石挿入孔22の周方向の中央部には、突起である第1の磁石保持部23が形成されている。また、ロータコア21において、磁石挿入孔22の周方向の両端部には、突起である第2の磁石保持部24がそれぞれ形成されている。第1の磁石保持部23および第2の磁石保持部24は、各磁石挿入孔22内において永久磁石25を位置決めして保持するものである。
 上記の通り、ステータ10のスロット数(すなわちティース部12の数)は9であり、ロータ20の極数は6である。すなわち、電動機1は、ロータ20の極数とステータ10のスロット数との比が、2:3である。
 電動機1では、コイル3の結線状態がY結線とデルタ結線とで切り替えられるが、デルタ結線を用いる場合に、循環電流が流れて電動機1の性能が低下する可能性がある。循環電流は、各相の巻線における誘起電圧に発生する3次高調波に起因する。極数とスロット数との比が2:3である集中巻きの場合には、磁気飽和等の影響がなければ、誘起電圧に3次高調波が発生せず、従って循環電流による性能低下が生じないことが知られている。
<ロータリー圧縮機の構成>
 次に、電動機1を用いたロータリー圧縮機8について説明する。図2は、ロータリー圧縮機8の構成を示す断面図である。ロータリー圧縮機8は、シェル80と、シェル80内に配設された圧縮機構9と、圧縮機構9を駆動する電動機1とを備えている。ロータリー圧縮機8は、さらに、電動機1と圧縮機構9とを動力伝達可能に連結するシャフト90(クランクシャフト)を有している。シャフト90は、電動機1のロータ20のシャフト孔27(図1)に嵌合する。
 シェル80は、例えば鋼板で形成された密閉容器であり、電動機1および圧縮機構9を覆う。シェル80は、上部シェル80aと下部シェル80bとを有している。上部シェル80aには、ロータリー圧縮機8の外部から電動機1に電力を供給するための端子部としてのガラス端子81と、ロータリー圧縮機8内で圧縮された冷媒を外部に吐出するための吐出管85とが取り付けられている。ここでは、ガラス端子81から、電動機1(図1)のコイル3のU相、V相およびW相のそれぞれ2本ずつに対応する、合計6本の引き出し線が引き出されている。下部シェル80bには、電動機1および圧縮機構9が収容されている。
 圧縮機構9は、シャフト90に沿って、円環状の第1シリンダ91および第2シリンダ92を有している。第1シリンダ91および第2シリンダ92は、シェル80(下部シェル80b)の内周部に固定されている。第1シリンダ91の内周側には、円環状の第1ピストン93が配置され、第2シリンダ92の内周側には、円環状の第2ピストン94が配置されている。第1ピストン93および第2ピストン94は、シャフト90と共に回転するロータリーピストンである。
 第1シリンダ91と第2シリンダ92との間には、仕切板97が設けられている。仕切板97は、中央に貫通穴を有する円板状の部材である。第1シリンダ91および第2シリンダ92のシリンダ室には、シリンダ室を吸入側と圧縮側とに分けるベーン(図示せず)が設けられている。第1シリンダ91、第2シリンダ92および仕切板97は、ボルト98によって一体に固定されている。
 第1シリンダ91の上側には、第1シリンダ91のシリンダ室の上側を塞ぐように、上部フレーム95が配置されている。第2シリンダ92の下側には、第2シリンダ92のシリンダ室の下側を塞ぐように、下部フレーム96が配置されている。上部フレーム95および下部フレーム96は、シャフト90を回転可能に支持している。
 シェル80の下部シェル80bの底部には、圧縮機構9の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。冷凍機油は、シャフト90の内部に軸方向に形成された孔90a内を上昇し、シャフト90の複数箇所に形成された給油孔90bから各摺動部に供給される。
 電動機1のステータ10は、焼き嵌めによりシェル80の内側に取り付けられている。ステータ10のコイル3には、上部シェル80aに取り付けられたガラス端子81から、電力が供給される。ロータ20のシャフト孔27(図1)には、シャフト90が固定されている。
 シェル80には、冷媒ガスを貯蔵するアキュムレータ87が取り付けられている。アキュムレータ87は、例えば、下部シェル80bの外側に設けられた保持部80cによって保持されている。シェル80には、一対の吸入パイプ88,89が取り付けられ、この吸入パイプ88,89を介してアキュムレータ87からシリンダ91,92に冷媒ガスが供給される。
 冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、低GWP(地球温暖化係数)の冷媒を用いることが望ましい。低GWPの冷媒としては、例えば、以下の冷媒を用いることができる。
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CF3CF=CH2)を用いることができる。HFO-1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
 ロータリー圧縮機8の基本動作は、以下の通りである。アキュムレータ87から供給された冷媒ガスは、吸入パイプ88,89を通って第1シリンダ91および第2シリンダ92の各シリンダ室に供給される。電動機1が駆動されてロータ20が回転すると、ロータ20と共にシャフト90が回転する。そして、シャフト90に嵌合する第1ピストン93および第2ピストン94が各シリンダ室内で偏心回転し、各シリンダ室内で冷媒を圧縮する。圧縮された冷媒は、電動機1のロータ20に設けられた穴(図示せず)を通ってシェル80内を上昇し、吐出管85から外部に吐出される。
<空気調和機の構成>
 次に、実施の形態1の駆動装置を含む空気調和機5について説明する。図3は、空気調和機5の構成を示すブロック図である。空気調和機5は、室内(空調対象空間)に設置される室内機5Aと、屋外に設置される室外機5Bとを備えている。室内機5Aと室外機5Bとは、冷媒が流れる接続配管40a,40bによって接続されている。接続配管40aには、凝縮器を通過した液冷媒が流れる。接続配管40bには、蒸発器を通過したガス冷媒が流れる。
 室外機5Bには、冷媒を圧縮して吐出する圧縮機41と、冷媒の流れ方向を切り替える四方弁(冷媒流路切替弁)42と、外気と冷媒との熱交換を行う室外熱交換器43と、高圧の冷媒を低圧に減圧する膨張弁(減圧装置)44とが配設されている。圧縮機41は、上述したロータリー圧縮機8(図2)で構成されている。室内機5Aには、室内空気と冷媒との熱交換を行う室内熱交換器45が配置される。
 これら圧縮機41、四方弁42、室外熱交換器43、膨張弁44および室内熱交換器45は、上述した接続配管40a,40bを含む配管40によって接続され、冷媒回路を構成している。これらの構成要素により、圧縮機41により冷媒を循環させる圧縮式冷凍サイクル(圧縮式ヒートポンプサイクル)が構成される。
 空気調和機5の運転を制御するため、室内機5Aには室内制御装置50aが配置され、室外機5Bには室外制御装置50bが配置されている。室内制御装置50aおよび室外制御装置50bは、それぞれ、空気調和機5を制御するための各種回路が形成された制御基板を有している。室内制御装置50aと室外制御装置50bとは、連絡ケーブル50cによって互いに接続されている。連絡ケーブル50cは、上述した接続配管40a,40bと共に束ねられている。
 室外機5Bには、室外熱交換器43に対向するように、送風機である室外送風ファン46が配置される。室外送風ファン46は、回転により、室外熱交換器43を通過する空気流を生成する。室外送風ファン46は、例えばプロペラファンで構成される。
 四方弁42は、室外制御装置50bによって制御され、冷媒の流れる方向を切り替える。四方弁42が図3に実線で示す位置にあるときには、圧縮機41から吐出されたガス冷媒を室外熱交換器43(凝縮器)に送る。一方、四方弁42が図3に破線で示す位置にあるときには、室外熱交換器43(蒸発器)から流入したガス冷媒を圧縮機41に送る。膨張弁44は、室外制御装置50bによって制御され、開度を変更することにより高圧の冷媒を低圧に減圧する。
 室内機5Aには、室内熱交換器45に対向するように、送風機である室内送風ファン47が配置される。室内送風ファン47は、回転により、室内熱交換器45を通過する空気流を生成する。室内送風ファン47は、例えばクロスフローファンで構成される。
 室内機5Aには、室内(空調対象空間)の空気温度である室内温度Taを測定し、測定した温度情報(情報信号)を室内制御装置50aに送る温度センサとしての室内温度センサ54が設けられている。室内温度センサ54は、一般的な空気調和機で用いられる温度センサで構成してもよく、室内の壁または床等の表面温度を検出する輻射温度センサを用いてもよい。
 室内機5Aには、また、ユーザが操作するリモコン55(遠隔操作装置)から発信された指示信号(運転指示信号)を受信する信号受信部56が設けられている。リモコン55は、ユーザが空気調和機5に運転入力(運転開始および停止)または運転内容(設定温度、風速等)の指示を行うものである。
 圧縮機41は、通常運転時では、20~130rpsの範囲で運転回転数を変更できるように構成されている。圧縮機41の回転数の増加に伴って、冷媒回路の冷媒循環量が増加する。圧縮機41の回転数は、室内温度センサ54によって得られる現在の室内温度Taと、ユーザがリモコン55で設定した設定温度Tsとの温度差ΔTに応じて、制御装置50(より具体的には、室外制御装置50b)が制御する。温度差ΔTが大きいほど圧縮機41が高回転で回転し、冷媒の循環量を増加させる。
 室内送風ファン47の回転は、室内制御装置50aによって制御される。室内送風ファン47の回転数は、複数段階に切り替え可能である。ここでは、例えば、強風、中風および弱風の3段階に回転数を切り替えることができる。また、リモコン55で風速設定が自動モードに設定されている場合には、測定した室内温度Taと設定温度Tsとの温度差ΔTに応じて、室内送風ファン47の回転数が切り替えられる。
 室外送風ファン46の回転は、室外制御装置50bによって制御される。室外送風ファン46の回転数は、複数段階に切り替え可能である。ここでは、測定された室内温度Taと設定温度Tsとの温度差ΔTに応じて、室外送風ファン46の回転数が切り替えられる。
 室内機5Aは、また、左右風向板48と上下風向板49とを備えている。左右風向板48および上下風向板49は、室内熱交換器45で熱交換した調和空気が室内送風ファン47によって室内に吹き出されるときの吹き出し方向を変更するものである。左右風向板48は吹き出し方向を左右に変更し、上下風向板49は吹出し方向を上下に変更する。左右風向板48および上下風向板49のそれぞれの角度、すなわち吹出し気流の風向は、室内制御装置50aが、リモコン55の設定に基づいて制御する。
 空気調和機5の基本動作は、次の通りである。冷房運転時には、四方弁42が実線で示す位置に切り替えられ、圧縮機41から吐出された高温高圧のガス冷媒は室外熱交換器43に流入する。この場合、室外熱交換器43は凝縮器として動作する。室外送風ファン46の回転により空気が室外熱交換器43を通過する際に、熱交換により冷媒の凝縮熱を奪う。冷媒は凝縮して高圧低温の液冷媒となり、膨張弁44で断熱膨張して低圧低温の二相冷媒となる。
 膨張弁44を通過した冷媒は、室内機5Aの室内熱交換器45に流入する。室内熱交換器45は蒸発器として動作する。室内送風ファン47の回転により空気が室内熱交換器45を通過する際に、熱交換により冷媒に蒸発熱を奪われ、これにより冷却された空気が室内に供給される。冷媒は蒸発して低温低圧のガス冷媒となり、圧縮機41で再び高温高圧な冷媒に圧縮される。
 暖房運転時には、四方弁42が点線で示す位置に切り替えられ、圧縮機41から吐出された高温高圧のガス冷媒は室内熱交換器45に流入する。この場合、室内熱交換器45は凝縮器として動作する。室内送風ファン47の回転により空気が室内熱交換器45を通過する際に、熱交換により冷媒から凝縮熱を奪い、これにより加熱された空気が室内に供給される。また、冷媒は凝縮して高圧低温の液冷媒となり、膨張弁44で断熱膨張して低圧低温の二相冷媒となる。
 膨張弁44を通過した冷媒は、室外機5Bの室外熱交換器43に流入する。室外熱交換器43は蒸発器として動作する。室外送風ファン46の回転により空気が室外熱交換器43を通過する際に、熱交換により冷媒に蒸発熱を奪われる。冷媒は蒸発して低温低圧のガス冷媒となり、圧縮機41で再び高温高圧な冷媒に圧縮される。
 図4は、空気調和機5の制御系の基本構成を示す概念図である。上述した室内制御装置50aと室外制御装置50bとは、連絡ケーブル50cを介して互いに情報をやり取りして空気調和機5を制御している。ここでは、室内制御装置50aと室外制御装置50bとを合わせて、制御装置50と称する。
 図5(A)は、空気調和機5の制御系を示すブロック図である。制御装置50は、例えばマイクロコンピュータで構成されている。制御装置50には、入力回路51、演算回路52および出力回路53が組み込まれている。
 入力回路51には、信号受信部56がリモコン55から受信した指示信号が入力される。指示信号は、例えば、運転入力、運転モード、設定温度、風量または風向を設定する信号を含む。入力回路51には、また、室内温度センサ54が検出した室内の温度を表す温度情報が入力される。入力回路51は、入力されたこれらの情報を、演算回路52に出力する。
 演算回路52は、CPU(Central Processing Unit)57とメモリ58とを有する。CPU57は、演算処理および判断処理を行う。メモリ58は、空気調和機5の制御に用いる各種の設定値およびプログラムを記憶している。演算回路52は、入力回路51から入力された情報に基づいて演算および判断を行い、その結果を出力回路53に出力する。
 出力回路53は、演算回路52から入力された情報に基づいて、圧縮機41、結線切り替え部60(後述)、コンバータ102、インバータ103、圧縮機41、四方弁42、膨張弁44、室外送風ファン46、室内送風ファン47、左右風向板48および上下風向板49に、制御信号を出力する。
 上述したように、室内制御装置50aおよび室外制御装置50b(図4)は、連絡ケーブル50cを介して相互に情報をやりとりし、室内機5Aおよび室外機5Bの各種機器を制御しているため、ここでは室内制御装置50aと室外制御装置50bとを合わせて制御装置50と表現している。実際には、室内制御装置50aおよび室外制御装置50bのそれぞれが、マイクロコンピュータで構成されている。なお、室内機5Aおよび室外機5Bの何れか一方にのみ制御装置を搭載し、室内機5Aおよび室外機5Bの各種機器を制御するようにしてもよい。
 図5(B)は、制御装置50において、室内温度Taに基づいて圧縮機41の電動機1を制御する部分を示すブロック図である。制御装置50の演算回路52は、受信内容解析部52aと、室内温度取得部52bと、温度差算出部52cと、圧縮機制御部52dとを備える。これらは、例えば、演算回路52のCPU57に含まれる。
 受信内容解析部52aは、リモコン55から信号受信部56および入力回路51を経て入力された指示信号を解析する。受信内容解析部52aは、解析結果に基づき、例えば運転モードおよび設定温度Tsを、温度差算出部52cに出力する。室内温度取得部52bは、室内温度センサ54から入力回路51を経て入力された室内温度Taを取得し、温度差算出部52cに出力する。
 温度差算出部52cは、室内温度取得部52bから入力された室内温度Taと、受信内容解析部52aから入力された設定温度Tsとの温度差ΔTを算出する。受信内容解析部52aから入力された運転モードが暖房運転である場合は、温度差ΔT=Ts-Taで算出される。運転モードが冷房運転である場合は、温度差ΔT=Ta-Tsで算出される。温度差算出部52cは、算出した温度差ΔTを、圧縮機制御部52dに出力する。
 圧縮機制御部52dは、温度差算出部52cから入力された温度差ΔTに基づいて、駆動装置100を制御し、これにより電動機1の回転数(すなわち圧縮機41の回転数)を制御する。
<駆動装置の構成>
 次に、電動機1を駆動する駆動装置100について説明する。図6は、駆動装置100の構成を示すブロック図である。駆動装置100は、電源101の出力を整流するコンバータ102と、電動機1のコイル3に交流電圧を出力するインバータ103と、コイル3の結線状態を切り替える結線切り替え部60と、制御装置50とを備えて構成される。コンバータ102には、交流(AC)電源である電源101から電力が供給される。
 電源101は、例えば200V(実効電圧)の交流電源である。コンバータ102は、整流回路であり、例えば280Vの直流(DC)電圧を出力する。コンバータ102から出力される電圧を、母線電圧と称する。インバータ103は、コンバータ102から母線電圧を供給され、電動機1のコイル3に線間電圧(電動機電圧とも称する)を出力する。インバータ103には、コイル3U,3V,3Wにそれぞれ接続された配線104,105,106が接続されている。
 コイル3Uは、端子31U,32Uを有する。コイル3Vは、端子31V,32Vを有する。コイル3Wは、端子31W,32Wを有する。配線104は、コイル3Uの端子31Uに接続されている。配線105は、コイル3Vの端子31Vに接続されている。配線106は、コイル3Wの端子31Wに接続されている。
 結線切り替え部60は、スイッチ61,62,63を有する。スイッチ61は、コイル3Uの端子32Uを、配線105および中性点33の何れかに接続する。スイッチ62は、コイル3Vの端子32Vを、配線106および中性点33の何れかに接続する。スイッチ63は、コイル3Vの端子32Wを、配線104および中性点33の何れかに接続する。結線切り替え部60のスイッチ61,62,63は、ここではリレー接点で構成されている。但し、半導体スイッチで構成してもよい。
 制御装置50は、コンバータ102、インバータ103および結線切り替え部60を制御する。制御装置50の構成は、図5を参照して説明した通りである。制御装置50には、信号受信部56が受信したリモコン55からの運転指示信号と、室内温度センサ54が検出した室内温度とが入力される。制御装置50は、これらの入力情報に基づき、コンバータ102に電圧切り替え信号を出力し、インバータ103にインバータ駆動信号を出力し、結線切り替え部60に結線切り替え信号を出力する。
 図6に示した状態では、スイッチ61は、コイル3Uの端子32Uを中性点33に接続しており、スイッチ62は、コイル3Vの端子32Vを中性点33に接続しており、スイッチ63は、コイル3Wの端子32Wを中性点33に接続している。すなわち、コイル3U,3V,3Wの端子31U,31V,31Wはインバータ103に接続され、端子32U,32V,32Wは中性点33に接続されている。
 図7は、駆動装置100において、結線切り替え部60のスイッチ61,62,63が切り替えられた状態を示すブロック図である。図7に示した状態では、スイッチ61は、コイル3Uの端子32Uを配線105に接続しており、スイッチ62は、コイル3Vの端子32Vを配線106に接続しており、スイッチ63は、コイル3Wの端子32Wを配線104に接続している。
 図8(A)は、スイッチ61,62,63が図6に示した状態にあるときのコイル3U,3V,3Wの結線状態を示す模式図である。コイル3U、3V,3Wは、それぞれ端子32U,32V,32Wにおいて中性点33に接続されている。そのため、コイル3U、3V,3Wの結線状態は、Y結線(スター結線)となる。
 図8(B)は、スイッチ61,62,63が図7に示した状態にあるときのコイル3U,3V,3Wの結線状態を示す模式図である。コイル3Uの端子32Uは、配線105(図7)を介してコイル3Vの端子31Vに接続される。コイル3Vの端子32Vは、配線106(図7)を介してコイル3Wの端子31Wに接続される。コイル3Wの端子32Wは、配線104(図7)を介してコイル3Uの端子31Uに接続される。そのため、コイル3U、3V,3Wの結線状態は、デルタ結線(三角結線)となる。
 このように、結線切り替え部60は、スイッチ61,62,63の切り替えにより、電動機1のコイル3U,3V,3Wの結線状態を、Y結線(第1の結線状態)およびデルタ結線(第2の結線状態)との間で切り替えることができる。
 図9は、コイル3U,3V,3Wのそれぞれのコイル部分を示す模式図である。上述したように、電動機1は、9つのティース部12(図1)を有しており、コイル3U,3V,3Wはそれぞれ3つのティース部12に巻かれている。すなわち、コイル3Uは、3つのティース部12に巻かれたU相のコイル部分Ua,Ub,Ucを直列に接続したものである。同様に、コイル3Vは、3つのティース部12に巻かれたV相のコイル部分Va,Vb,Vcを直列に接続したものである。また、コイル3Wは、3つのティース部12に巻かれたW相のコイル部分Wa,Wb,Wcを直列に接続したものである。
<空気調和機の動作>
 図10~12は、空気調和機5の基本動作を示すフローチャートである。空気調和機5の制御装置50は、信号受信部56によりリモコン55から起動信号を受信することにより、運転を開始する(ステップS101)。ここでは、制御装置50のCPU57が起動する。後述するように、空気調和機5は、前回終了時にコイル3の結線状態をデルタ結線に切り替えて終了しているため、運転開始時(起動時)にはコイル3の結線状態がデルタ結線となっている。
 次に、制御装置50は、空気調和機5の起動処理を行う(ステップS102)。具体的には、例えば、室内送風ファン47および室外送風ファン46の各ファンモータを駆動する。
 次に、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧を、デルタ結線に対応した母線電圧(例えば390V)に昇圧する(ステップS103)。コンバータ102の母線電圧は、インバータ103から電動機1に印加される最大電圧である。
 次に、制御装置50は、電動機1を起動する(ステップS104)。これにより、電動機1は、コイル3の結線状態がデルタ結線で起動される。また、制御装置50は、インバータ103の出力電圧を制御して、電動機1の回転数を制御する。
 具体的には、制御装置50は、温度差ΔTに応じて、電動機1の回転数を予め定められた速度で段階的に上昇させる。電動機1の回転速度の許容最大回転数は、例えば130rpsである。これにより、圧縮機41による冷媒循環量を増加させ、冷房運転の場合には冷房能力を高め、暖房運転の場合には暖房能力を高める。
 また、空調効果により室内温度Taが設定温度Tsに接近し、温度差ΔTが減少傾向を示すようになると、制御装置50は、温度差ΔTに応じて電動機1の回転数を減少させる。温度差ΔTが予め定められたゼロ近傍温度(但し0より大)まで減少すると、制御装置50は、電動機1を許容最小回転数(例えば20rps)で運転する。
 また、室内温度Taが設定温度Tsに達した場合(すなわち温度差ΔTが0以下となる場合)には、制御装置50は、過冷房(または過暖房)防止のために電動機1の回転を停止する。これにより、圧縮機41が停止した状態となる。そして、温度差ΔTが再び0より大きくなった場合には、制御装置50は電動機1の回転を再開する。なお、制御装置50は、電動機1の回転と停止を短時間で繰り返さないように、電動機1の短時間での回転再開を規制する。
 また、電動機1の回転数が予め設定した回転数に達すると、インバータ103が弱め界磁制御を開始する。弱め界磁制御については、図15~30を参照して後述する。
 制御装置50は、リモコン55から信号受信部56を介して運転停止信号(空気調和機5の運転停止信号)を受信したか否かを判断する(ステップS105)。運転停止信号を受信していない場合には、ステップS106に進む。一方、運転停止信号を受信した場合には、制御装置50は、ステップS109に進む。
 制御装置50は、室内温度センサ54で検出した室内温度Taと、リモコン55により設定された設定温度Tsとの温度差ΔTを取得し(ステップS106)、この温度差ΔTに基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTr以下か否かを判断する(ステップS107)。閾値ΔTrは、Y結線に切り替え可能な程度に小さい空調負荷(単に「負荷」とも称する)に相当する温度差である。
 上記の通り、ΔTは、運転モードが暖房運転の場合にはΔT=Ts-Taで表され、冷房運転の場合にはΔT=Ta-Tsで表されるため、ここではΔTの絶対値と閾値ΔTrとを比較してY結線への切り替えの要否を判断している。
 ステップS107での比較の結果、コイル3の結線状態がデルタ結線で、且つ、温度差ΔTの絶対値が閾値ΔTr以下であれば、ステップS121(図11)に進む。
 図11に示すように、ステップS121では、制御装置50は、インバータ103に停止信号を出力し、電動機1の回転を停止する。その後、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をデルタ結線からY結線に切り替える(ステップS122)。続いて、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧をY結線に対応した電圧(280V)に降圧し(ステップS123)、電動機1の回転を再開する(ステップS124)。その後、上述したステップS105(図10)に戻る。
 上記ステップS107での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTrより大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS108に進む。
 ステップS108では、Y結線からデルタ結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がY結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTrより大きいか否かを判断する。
 ステップS108での比較の結果、コイル3の結線状態がY結線で、且つ、温度差ΔTの絶対値が閾値ΔTrより大きければ、ステップS131(図12)に進む。
 図12に示すように、ステップS131では、制御装置50は、電動機1の回転を停止する。その後、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS132)。続いて、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧をデルタ結線に対応した電圧(390V)に昇圧し(ステップS133)、電動機1の回転を再開する(ステップS134)。
 デルタ結線の場合、Y結線と比べて、電動機1をより高い回転数まで駆動できるため、より大きい負荷に対応することができる。そのため、室内温度と設定温度との温度差ΔTを短時間で収束させることができる。その後、上述したステップS105(図10)に戻る。
 上記ステップS108での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTr以下である場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS105に戻る。
 上記のステップS105で運転停止信号を受信した場合には、電動機1の回転を停止する(ステップS109)。その後、制御装置50は、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS110)。コイル3の結線状態が既にデルタ結線である場合には、その結線状態を維持する。なお、図10では省略するが、ステップS106~S108の間においても、運転停止信号を受信した場合には、ステップS109に進んで電動機1の回転を停止する。
 その後、制御装置50は、空気調和機5の停止処理を行う(ステップS111)。具体的には、室内送風ファン47および室外送風ファン46の各ファンモータを停止する。その後、制御装置50のCPU57が停止し、空気調和機5の運転が終了する。
 以上のように、室内温度Taと設定温度Tsとの温度差ΔTの絶対値が比較的小さい場合(すなわち閾値ΔTr以下である場合)には、高効率なY結線で電動機1を運転する。そして、より大きい負荷への対応が必要な場合、すなわち温度差ΔTの絶対値が閾値ΔTrより大きい場合には、より大きい負荷への対応が可能なデルタ結線で電動機1を運転する。そのため、空気調和機5の運転効率を向上することができる。
 なお、Y結線からデルタ結線への切り替え動作(図12)において、図13(A)に示すように、電動機1の回転を停止するステップS131の前に、電動機1の回転数を検出し(ステップS135)、検出した回転数が閾値(回転数の基準値)以上か否かを判断してもよい(ステップS136)。電動機1の回転数は、インバータ103の出力電流の周波数として検出される。
 ステップS136では、電動機1の回転数の閾値として、例えば、後述する暖房中間条件に相当する回転数35rpsと暖房定格条件に相当する回転数85rpsの中間の60rpsを用いる。電動機1の回転数が閾値以上であれば、電動機1の回転を停止してデルタ結線への切り替えを行い、コンバータ102の母線電圧を昇圧する(ステップS131,S132,S133)。電動機1の回転数が閾値未満であれば、図10のステップS105に戻る。
 このように温度差ΔTに基づく結線切り替え要否の判断(ステップS108)に加えて、電動機1の回転数に基づいて結線切り替え要否の判断を行うことで、結線切り替えが頻繁に繰り返されることを確実に抑制することができる。
 また、図13(B)に示すように、電動機1の回転を停止するステップS131の前に、インバータ103の出力電圧を検出し(ステップS137)、検出した出力電圧が閾値(出力電圧の基準値)以上か否かを判断してもよい(ステップS138)。
 図13(A)および(B)には、Y結線からデルタ結線への切り替え動作を示したが、デルタ結線からY結線への切り替え時に、電動機1の回転数またはインバータ103の出力電圧に基づく判断を行ってもよい。
 図14は、空気調和機5の動作の一例を示すタイミングチャートである。図14には、空気調和機5の運転状態、並びに室外送風ファン46および電動機1(圧縮機41)の駆動状態を示している。室外送風ファン46は、空気調和機5の電動機1以外の構成要素の一例として示している。
 信号受信部56がリモコン55から運転起動信号(ON指令)を受信することにより、CPU57が起動し、空気調和機5が起動状態(ON状態)となる。空気調和機5が起動状態になると、時間t0が経過した後に、室外送風ファン46のファンモータが回転を開始する。時間t0は、室内機5Aと室外機5Bとの間の通信による遅延時間である。
 空気調和機5の起動後、時間t1が経過した後に、デルタ結線による電動機1の回転が開始される。時間t1は、室外送風ファン46のファンモータの回転が安定するまでの待ち時間である。電動機1の回転開始前に室外送風ファン46を回転させることで、冷凍サイクルの温度が必要以上に上昇することが防止される。
 図14の例では、デルタ結線からY結線への切り替えが行われ、さらにY結線からデルタ結線への切り替えが行われたのち、リモコン55から運転停止信号(OFF指令)を受信している。結線の切り替えに要する時間t2は、電動機1の再起動に必要な待ち時間であり、冷凍サイクルにおける冷媒圧力が概ね均等になるまでに必要な時間に設定される。
 リモコン55から運転停止信号を受信すると、電動機1の回転が停止し、その後、時間t3が経過したのちに室外送風ファン46のファンモータの回転が停止する。時間t3は、冷凍サイクルの温度を十分低下させるために必要な待ち時間である。その後、時間t4が経過したのち、CPU57が停止し、空気調和機5が運転停止状態(OFF状態)となる。時間t4は、予め設定された待ち時間である。
<温度検出に基づく結線切り替えについて>
 以上の空気調和機5の動作において、コイル3の結線状態の切り替え要否の判断(ステップS107,S108)は、例えば、電動機1の回転速度、またはインバータ出力電圧に基づいて判断することもできる。但し、電動機1の回転速度は短い時間で変動する可能性があるため、回転速度が閾値以下(または閾値以上)である状態が一定時間継続するか否かを判断する必要がある。インバータ出力電圧についても同様である。
 特に、リモコン55による設定温度が大きく変更された場合、あるいは、部屋の窓を開けたこと等によって空気調和機5の負荷が急激に変化した場合には、コイル3の結線状態の切り替え要否の判断に時間を要すると、負荷変動に対する圧縮機41の運転状態の対応が遅れる。その結果、空気調和機5による快適性が低下する可能性がある。
 これに対し、この実施の形態では、室内温度センサ54で検出した室内温度Taと設定温度Tsとの温度差ΔT(絶対値)を閾値と比較している。温度は短い時間での変動が少ないため、温度差ΔTの検出および閾値との比較を継続する必要がなく、結線切り替え要否の判断を短い時間で行うことができる。そのため、圧縮機41の運転状態を負荷変動に迅速に対応させ、空気調和機5による快適性を向上することができる。
 なお、上記の空気調和機5の動作では、デルタ結線からY結線への切り替え要否の判断(ステップS107)と、Y結線からデルタ結線への切り替え要否の判断(ステップS108)とを続けて行っているが、デルタ結線からY結線への切り替えが行われるのは、空調負荷が低下している(室内温度が設定温度に接近している)場合であり、その後に空調負荷が急に増加する可能性は低いため、結線の切り替えが頻繁に行われるという事態は生じくい。
 また、上記の空気調和機5の動作では、コイル3の結線状態の切り替え(ステップS122,S132)を、電動機1の回転を停止した状態(すなわちインバータ103の出力を停止した状態)で行っている。電動機1への電力供給を続けながらコイル3の結線状態を切り替えることも可能であるが、結線切り替え部60のスイッチ61,62,63(図6)を構成するリレー接点の信頼性の簡単から、電動機1への電力供給を停止した状態で切り替えを行うことが望ましい。
 なお、電動機1の回転数を十分に低下させた状態でコイル3の結線状態の切り替えを行い、その後に元の回転数に戻すことも可能である。
 また、ここでは結線切り替え部60のスイッチ61,62,63をリレー接点で構成しているが、半導体スイッチで構成した場合には、コイル3の結線状態の切り替え時に電動機1の回転を停止する必要はない。
 また、室内温度Taと設定温度Tsとの温度差ΔT(絶対値)が閾値ΔTr以下となる状態が複数回(予め設定した回数)繰り返された場合に、コイル3の結線状態を切り替えてもよい。このようにすれば、小さな温度変化によって結線切り替えが繰り返されることを抑制することができる。
 なお、上記の通り、室内温度と設定温度との温度差ΔTが0以下(ΔT≦0)になると、制御装置50は過冷房(または過暖房)防止のために電動機1の回転を停止するが、このタイミングでコイル3の結線状態をデルタ結線からY結線に切り替えてもよい。具体的には、上述したステップS107で温度差ΔTが0以下か否かを判断するようにし、温度差ΔTが0以下の場合には電動機1の回転を停止してコイル3の結線状態をY結線に切り替えるようにすればよい。
 また、上記の空気調和機5の動作では、Y結線からデルタ結線への切り替え時に、コンバータ102の母線電圧を昇圧しているため、電動機1により高いトルクを発生することができる。そのため、室内温度と設定温度との差ΔTを、より短時間で収束させることができる。コンバータ102の母線電圧の昇圧については、後述する。
<起動時の結線状態について>
 上記の通り、実施の形態1の空気調和機5は、運転起動信号を受信して電動機1を起動する際には、コイル3の結線状態をデルタ結線として制御を開始する。また、空気調和機5の運転停止時には、コイル3の結線状態はデルタ結線に切り替えられる。
 空気調和機5の運転開始時は空調負荷の正確な検出が困難である。特に、空気調和機5の運転開始時には、室内温度と設定温度との差が大きく、空調負荷が大きいのが一般的である。そこで、この実施の形態1では、コイル3の結線状態を、より大きい負荷に対応可能な(すなわち、より高回転数まで回転可能な)デルタ結線とした状態で、電動機1を起動している。これにより、空気調和機5の運転開始時に、室内温度Taと設定温度Tsとの差ΔTを、より短時間で収束させることができる。
 また、空気調和機5を長期間停止し、停止中に結線切り替え部60に異常(例えば、スイッチ61~63のリレーが貼りついて動作しなくなる等)が発生した場合にも、空気調和機5の運転停止前にY結線からデルタ結線への切り替えが行われているため、デルタ結線で電動機1を起動することができる。そのため、空気調和機5の能力の低下を防ぐことができ、快適性を損なうことはない。
 なお、コイル3の結線状態をデルタ結線として電動機1を起動し、Y結線への切り替えを行わない場合には、コイルの結線状態が常にデルタ結線である(結線切り替え機能を有さない)一般的な電動機と同等の電動機効率を得ることができる。
<電動機効率および電動機トルク>
 次に、電動機効率および電動機トルクの改善について説明する。一般に、家庭用の空気調和機は、省エネルギー法の規制対象となっており、地球環境の視点からCO排出削減が義務づけられている。技術の進歩により、圧縮機の圧縮効率、圧縮機の電動機の運転効率、および熱交換器の熱伝達率等が改善され、空気調和機のエネルギー消費効率COP(Coefficient Of Performance)は年々向上し、ランニングコスト(消費電力)およびCO排出量も低減している。
 COPは、ある一定の温度条件で運転した場合の性能を評価するものであり、季節に応じた空気調和機の運転状況は加味されていない。しかしながら、空気調和機の実際の使用時には、外気温度の変化により、冷房または暖房に必要な能力および消費電力が変化する。そこで、実際の使用時に近い状態での評価を行うため、あるモデルケースを定め、年間を通じた総合負荷と総消費電力量を算出し、効率を求めるAPF(Annual Performance Factor:通年エネルギー消費効率)が省エネルギーの指標として用いられている。
 特に、現在の主流であるインバータ電動機では、圧縮機の回転数によって能力が変化するため、定格条件だけで実際の使用に近い評価を行うには課題がある。
 家庭用の空気調和機のAPFは、冷房定格、冷房中間、暖房定格、暖房中間および暖房低温の5つの評価点において、年間の総合負荷に応じた消費電力量を算出する。この値が大きいほど省エネルギー性が高いと評価される。
 年間の総合負荷の内訳としては、暖房中間条件の比率が非常に大きく(50%)、次に暖房定格条件の比率が大きい(25%)。そのため、暖房中間条件と暖房定格条件において電動機効率を向上させることが、空気調和機の省エネルギー性の向上に有効である。
 APFの評価負荷条件における圧縮機の電動機の回転数は、空気調和機の能力および熱交換器の性能により変化する。例えば、冷凍能力6.3kWの家庭用の空気調和機においては、暖房中間条件での回転数N1(第1の回転数)が35rpsであり、暖房定格条件での回転数N2(第2の回転数)が85rpsである。
 この実施の形態の電動機1は、暖房中間条件に相当する回転数N1および暖房定格条件に相当する回転数N2において、高い電動機効率および電動機トルクを得ることを目的としている。すなわち、性能改善の対象となる2つの負荷条件のうち、低速側の回転数がN1であり、高速側の回転数がN2である。
 ロータ20に永久磁石25を搭載した電動機1では、ロータ20が回転すると、永久磁石25の磁束がステータ10のコイル3に鎖交し、コイル3に誘起電圧が発生する。誘起電圧は、ロータ20の回転数(回転速度)に比例し、また、コイル3の巻き数にも比例する。電動機1の回転数が大きく、コイル3の巻き数が多いほど、誘起電圧は大きくなる。
 インバータ103から出力される線間電圧(電動機電圧)は、上記の誘起電圧と、コイル3の抵抗およびインダクタンスにより生じる電圧との和と等しい。コイル3の抵抗およびインダクタンスは、誘起電圧と比較すると無視できる程度に小さいため、事実上、線間電圧は誘起電圧に支配される。また、電動機1のマグネットトルクは、誘起電圧と、コイル3に流れる電流との積に比例する。
 誘起電圧は、コイル3の巻き数を多くするほど高くなる。そのため、コイル3の巻き数を多くするほど、必要なマグネットトルクを発生するための電流が少なくて済む。その結果、インバータ103の通電による損失を低減し、電動機1の運転効率を向上することができる。その一方、誘起電圧の上昇により、誘起電圧に支配される線間電圧が、より低い回転数でインバータ最大出力電圧(すなわちコンバータ102からインバータ103に供給される母線電圧)に達し、回転数をそれ以上に速くすることができない。
 また、コイル3の巻き数を少なくすると、誘起電圧が低下するため、誘起電圧に支配される線間電圧がより高い回転数までインバータ最大出力電圧に到達せず、高速回転が可能となる。しかしながら、誘起電圧の低下により、必要なマグネットトルクを発生するための電流が増加するため、インバータ103の通電による損失が増加し、電動機1の運転効率が低下する。
 また、インバータ103のスイッチング周波数の観点では、線間電圧がインバータ最大出力電圧に近い方が、インバータ103のスイッチングのON/OFFデューティーに起因する高調波成分が減少するため、電流の高調波成分に起因する鉄損を低減することができる。
 図15および図16は、電動機1における線間電圧と回転数との関係を示すグラフである。コイル3の結線状態は、Y結線とする。線間電圧は、界磁磁界と回転数との積に比例する。界磁磁界が一定であれば、図15に示すように、線間電圧と回転数とは比例する。なお、図15において、回転数N1は暖房中間条件に対応し、回転数N2は暖房定格条件に対応する。
 回転数の増加と共に線間電圧も増加するが、図16に示すように、線間電圧がインバータ最大出力電圧に達すると、それ以上線間電圧を高くすることはできないため、インバータ103による弱め界磁制御が開始される。ここでは、回転数N1,N2の間の回転数で、弱め界磁制御を開始したものとする。
 弱め界磁制御では、コイル3にd軸位相(永久磁石25の磁束を打ち消す向き)の電流を流すことによって、誘起電圧を弱める。この電流を、弱め電流と称する。通常の電動機トルクを発生させるための電流に加えて、弱め電流を流す必要があるため、コイル3の抵抗に起因する銅損が増加し、インバータ103の通電損失も増加する。
 図17は、図16に示した弱め界磁制御を行った場合の電動機効率と回転数との関係を示すグラフである。図17に示すように、電動機効率は回転数と共に増加し、弱め界磁制御を開始した直後に、矢印Pで示すように電動機効率がピークに達する。
 回転数がさらに増加すると、コイル3に流す弱め電流も増加するため、これによる銅損が増加し、電動機効率が低下する。なお、電動機効率とインバータ効率との積である総合効率においても、図17と同様の曲線で表される変化が見られる。
 図18は、図16に示した弱め界磁制御を行った場合の電動機の最大トルクと回転数との関係を示すグラフである。弱め界磁制御を開始する前は、電動機の最大トルクは一定である(例えば電流閾値による制約のため)。弱め界磁制御を開始すると、回転数の増加とともに電動機1の最大トルクが低下する。電動機1の最大トルクは、製品使用時で電動機1が実際に発生する負荷(必要とされる負荷)よりも大きくなるように設定されている。以下では、説明の便宜上、電動機の最大トルクを、電動機トルクと称する。
 図19は、Y結線とデルタ結線のそれぞれについて、線間電圧と回転数との関係を示すグラフである。コイル3の結線状態がデルタ結線である場合のコイル3の相インピーダンスは、巻き数を同数とすると、コイル3の結線状態がY結線である場合の1/√3倍となる。そのため、コイル3の結線状態がデルタ結線である場合の相間電圧(一点鎖線)は、回転数を同じとすると、コイル3の結線状態がY結線である場合の相間電圧(実線)の1/√3倍となる。
 すなわち、コイル3をデルタ結線により結線した場合、巻き数をY結線の場合の√3倍にすれば、同じ回転数Nに対して、線間電圧(電動機電圧)がY結線の場合と等価となり、従ってインバータ103の出力電流もY結線の場合と等価となる。
 ティースへの巻き数が数十巻以上となる電動機では、次のような理由で、デルタ結線よりもY結線を採用することが多い。一つは、デルタ結線はY結線に比べてコイルの巻き数が多いため、製造工程においてコイルの巻線に要する時間が長くなるという理由である。もう一つは、デルタ結線の場合に循環電流が発生する可能性があるという理由である。
 一般に、Y結線を採用する電動機では、回転数N2(すなわち、性能向上の対象となる回転数のうち、高速側の回転数)で、線間電圧(電動機電圧)がインバータ最大出力電圧に達するように、コイルの巻き数を調整している。しかしながら、この場合、回転数N1(すなわち、性能向上の対象となる回転数のうち、低速側の回転数)では、線間電圧がインバータ最大出力電圧よりも低い状態で電動機を運転することとなり、高い電動機効率を得ることが難しい。
 そこで、コイルの結線状態をY結線とし、回転数N1よりも僅かに低い回転数で線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N2に到達するまでの間に、コイルの結線状態をデルタ結線に切り替えるという制御が行われている。
 図20は、Y結線からデルタ結線への切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。図20に示した例では、回転数N1(暖房中間条件)よりも僅かに低い回転数(回転数N11とする)に達すると、上述した弱め界磁制御を開始する。回転数Nがさらに増加して回転数N0に達すると、Y結線からデルタ結線への切り替えを行う。回転数N11は、ここでは、回転数N1よりも5%低い回転数(すなわちN11=N1×0.95)である。
 デルタ結線への切り替えにより、線間電圧がY結線の1/√3倍に低下するため、弱め界磁の程度を小さく抑える(すなわち弱め電流を小さくする)ことができる。これにより、弱め電流に起因する銅損を抑制し、電動機効率および電動機トルクの低下を抑制することができる。
 図21は、Y結線とデルタ結線のそれぞれについて、電動機効率と回転数との関係を示すグラフである。上記のようにコイル3の結線状態をY結線とし、回転数N1よりも僅かに低い回転数N11で線間電圧がインバータ最大出力電圧に達するように巻き数を調整しているため、図21に実線で示すように、回転数N1で高い電動機効率が得られる。
 一方、コイル3の巻き数を同数とすると、デルタ結線の場合には、図21に一点鎖線で示すように、回転数N2で、Y結線の場合よりも高い電動機効率が得られる。そのため、図21に示す実線と一点鎖線との交点でY結線からデルタ結線に切り替えれば、回転数N1(暖房中間条件)と回転数N2(暖房定格条件)の両方で高い電動機効率が得られる。
 そのため、図20を参照して説明したように、コイル3の結線状態をY結線とし、回転数N11(回転数N1よりも僅かに低い回転数)のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N1よりも高い回転数N0でY結線からデルタ結線に切り替える制御を行う。
 しかしながら、単にコイル3の結線状態をY結線からデルタ結線に切り換えるだけでは、電動機効率を十分に向上することができない。この点について以下に説明する。
 図22は、コイル3の結線状態をY結線とし、回転数N11のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N0でY結線からデルタ結線に切り替えた場合(実線)の電動機効率と回転数との関係を示すグラフである。なお、破線は、図17に示したようにコイル3の結線状態をY結線とし、弱め界磁制御を行った場合の電動機効率と回転数との関係を示すグラフである。
 線間電圧は、回転数に比例する。例えば、冷凍能力6.3kWの家庭用の空気調和機では、回転数N1(暖房中間条件)が35rpsであり、回転数N2(暖房定格条件)が85rpsであるため、暖房中間条件における線間電圧を基準とすると、暖房定格条件における線間電圧は、2.4倍(=85/35)となる。
 コイル3の結線状態をデルタ結線に切り替えた後の、暖房定格条件(回転数N2)における線間電圧は、インバータ最大出力電圧に対して1.4倍(=85/35/√3)となる。線間電圧をインバータ最大出力電圧よりも大きくすることはできないため、弱め界磁制御を開始する。
 弱め界磁制御では、界磁を弱めるために必要な弱め電流をコイル3に流すため、銅損が増加し、電動機効率および電動機トルクが低下する。そのため、図22に実線で示したように、暖房定格条件(回転数N2)における電動機効率を改善することができない。
 暖房定格条件(回転数N2)での弱め界磁の程度を抑える(弱め電流を小さくする)ためには、コイル3の巻き数を少なくして相間電圧を低くする必要があるが、その場合、暖房中間条件(回転数N1)における相間電圧も低下し、結線の切り替えによる電動機効率の改善効果が小さくなる。
 すなわち、性能改善の対象となる負荷条件が2つあり、低速側の回転数N1と、高速側の回転数N2とが、(N2/N1)>√3を満足する場合には、Y結線からデルタ結線に切り替えても弱め界磁制御が必要となるため、単にY結線からデルタ結線に切り替えただけでは、電動機効率の十分な改善効果を得ることができない。
 図23は、Y結線とデルタ結線のそれぞれについて、電動機トルクと回転数との関係を示すグラフである。Y結線の場合には、図18を参照して説明したように、回転数Nの増加に対して電動機トルクは一定であるが、弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。デルタ結線の場合には、Y結線の場合(N11)よりも高い回転数で弱め界磁制御を開始するが、弱め界磁制御を開始すると、回転数Nの増加とともに電動機トルクが低下する。
 図24は、コイル3の結線状態をY結線とし、回転数N11(回転数N1よりも僅かに低い回転数)のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N1よりも高い回転数N0でY結線からデルタ結線に切り替えた場合の電動機トルクと回転数との関係を示すグラフである。図24に示すように、回転数が回転数N11に達して弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。
 回転数がさらに増加して回転数N0に達し、Y結線からデルタ結線への切り替えが行われると、弱め界磁制御が一時的に停止するため、電動機トルクは上昇する。しかしながら、回転数Nがさらに増加して弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。このように、単にY結線からデルタ結線に切り替えただけでは、特に高回転数域での電動機トルクの低下を抑制することができない。
 そこで、この実施の形態1の駆動装置100は、結線切り替え部60によるコイル3の結線状態の切り替えに加えて、コンバータ102により母線電圧を切り替えている。コンバータ102は、電源101から電源電圧(200V)を供給され、インバータ103に母線電圧を供給するものである。コンバータ102は、電圧上昇(昇圧)に伴う損失の小さい素子、例えばSiC素子またはGaN素子で構成することが望ましい。
 具体的には、コイル3の結線状態がY結線である場合の母線電圧V1(第1の母線電圧)は、280V(DC)に設定されている。これに対し、コイル3の結線状態がデルタ結線である場合の母線電圧V2(第2の母線電圧)は、390V(DC)に設定されている。つまり、デルタ結線の場合の母線電圧V2は、Y結線の場合の母線電圧V1の1.4倍に設定されている。なお、母線電圧V2は、母線電圧V1に対し、V2≧(V1/√3)×N2/N1であればよい。コンバータ102から母線電圧を供給されたインバータ103は、コイル3に線間電圧を供給する。インバータ最大出力電圧は、母線電圧の1/√2である。
 図25は、Y結線とデルタ結線のそれぞれについて、コンバータ102で母線電圧を切り替えた場合の線間電圧と回転数との関係を示すグラフである。図25に示すように、コイル3の結線状態がY結線である場合の線間電圧(実線)は、最大で、母線電圧V1の1/√2(すなわちV1×1/√2)となる。コイル3の結線状態がデルタ結線である場合の線間電圧(一点鎖線)は、最大で、母線電圧V2の1/√2(すなわちV2×1/√2)となる。
 図26は、結線切り替え部60による結線状態の切り替えと、コンバータ102による母線電圧の切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。図26に示すように、回転数N1(暖房中間条件)を含む回転数域では、コイル3の結線状態がY結線である。回転数の増加と共に線間電圧が増加し、回転数N1よりも僅かに低い回転数N11で、線間電圧がインバータ最大出力(V1×1/√2)に達する。これにより、弱め界磁制御が開始される。
 回転数がさらに上昇して回転数N0に達すると、結線切り替え部60がコイル3の結線状態をY結線からデルタ結線に切り替える。同時に、コンバータ102が、母線電圧をV1からV2に昇圧する。昇圧により、インバータ最大出力はV2×1/√2となる。この時点では、相間電圧がインバータ最大出力よりも低いため、弱め界磁制御は行われない。
 その後、回転数Nの増加と共に線間電圧が増加し、回転数N2(暖房定格条件)よりも僅かに低い回転数N21で、線間電圧がインバータ最大出力(V2×1/√2)に達し、これにより弱め界磁制御が開始される。なお、回転数N21は、回転数N2よりも5%低い回転数(すなわちN21=N2×0.95)である。
 この実施の形態1では、上記の通り、室内温度Taと設定温度Tsとの温度差ΔTと閾値ΔTrとの比較結果に基づいて、コイル3の結線状態を切り替えている。回転数N0におけるY結線からデルタ結線への切り替えは、図10のステップS108および図12のステップS131~S134に示したY結線からデルタ結線への切り替えに対応している。
 この場合の電動機効率の改善効果について説明する。図27は、Y結線とデルタ結線のそれぞれについて、電動機効率と回転数との関係を示すグラフである。図27において、コイル3の結線状態がY結線である場合の電動機効率(実線)は、図21に示したY結線での電動機効率と同様である。一方、コイル3の結線状態がデルタ結線である場合の電動機効率(一点鎖線)は、コンバータ102の母線電圧が上昇するため、図21に示したデルタ結線での電動機効率よりも高い。
 図28は、結線切り替え部60による結線状態の切り替えと、コンバータ102による母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。コイル3の結線状態をY結線とし、回転数N11(回転数N1よりも僅かに低い回転数)のときに線間電圧がインバータ最大出力電圧に達するように巻き数が設定されているため、回転数N1を含む回転数域で高い電動機効率が得られる。
 回転数が上記の回転数N11に達すると、弱め界磁制御が開始され、さらに回転数N0に達すると、コイル3の結線状態がY結線からデルタ結線に切り替えられ、また、コンバータ102により母線電圧が上昇する。
 母線電圧の上昇によってインバータ最大出力電圧も上昇するため、線間電圧はインバータ最大出力電圧よりも低くなり、その結果、弱め界磁制御は停止する。弱め界磁制御の停止により、弱め電流に起因する銅損が低減するため、電動機効率は上昇する。
 さらに、回転数Nが回転数N2(暖房定格条件)よりも僅かに小さい回転数N21に達すると、線間電圧がインバータ最大出力電圧に達し、弱め界磁制御が開始される。弱め界磁制御の開始により銅損が増加するが、コンバータ102により母線電圧が上昇しているため、高い電動機効率が得られる。
 すなわち、図28に実線で示すように、回転数N1(暖房中間条件)および回転数N2(暖房定格条件)の両方で、高い電動機効率が得られる。
 次に、電動機トルクの改善効果について説明する。図29は、コイル3の結線状態がY結線の場合とデルタ結線の場合のそれぞれについて、電動機トルクと回転数との関係を示すグラフである。Y結線の場合の電動機トルク(実線)は、図18と同様である。デルタ結線の場合の電動機トルク(一点鎖線)は、回転数N2(暖房定格条件)よりも僅かに低い回転数N21で弱め界磁制御が開始されると、回転数Nの増加とともに低下する。
 図30は、コイル3の結線状態をY結線とし、回転数N11のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N0(>N1)でY結線からデルタ結線に切り替え、さらに母線電圧を昇圧させた場合の電動機トルクと回転数との関係を示すグラフである。図30に示すように、回転数N1(暖房中間条件)よりも僅かに低い回転数N11で弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。
 回転数Nがさらに増加して回転数N0に達すると、コイル3の結線状態がY結線からデルタ結線に切り替えられ、さらに母線電圧が上昇する。デルタ結線への切り替えと母線電圧の上昇により、線間電圧がインバータ最大出力電圧よりも低くなるため、弱め界磁制御が停止する。これにより、電動機トルクは上昇する。その後、回転数N2(暖房定格条件)よりも僅かに低い回転数N21で弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。
 このように、デルタ結線への切り替え後、回転数Nが回転数N21(回転数N2よりも僅かに小さい回転数)に達するまでは弱め界磁制御が行われないため、特に回転数N2(暖房定格条件)を含む回転数域において、電動機トルクの低下を抑制することができる。
 すなわち、図30に実線で示すように、回転数N1(暖房中間条件)および回転数N2(暖房定格条件)の両方で、高い電動機トルクが得られる。つまり、空気調和機5の暖房中間条件および暖房定格条件の両方において、高い性能(電動機効率および電動機トルク)を得ることができる。
 なお、コンバータ102の電圧を昇圧すると、昇圧に伴う損失が発生するため、電動機効率への寄与率の最も大きい暖房中間条件での結線状態(すなわちY結線)では、電源電圧を昇圧せずに利用することが好ましい。電源101の電源電圧は200V(実効値)であり、最大値は280V(=200V×√2)である。そのため、Y結線の場合のコンバータ102の母線電圧(280V)は、電源電圧の最大値と同じと言うことができる。
 また、インバータ103に供給される母線電圧の切り替えは、電源電圧を昇圧または降圧させることにより行っても良い。
 また、上記の空気調和機5の運転制御では、回転数N1(暖房中間条件)でY結線とし、回転数N2(暖房定格条件)でデルタ結線としたが、具体的な負荷条件が決まっていない場合には、回転数N1をY結線で運転する最大回転数とし、回転数N2をデルタ結線で運転する最大回転数として、電圧レベルを調整してもよい。このように制御しても、電動機1の効率を向上することができる。
 上述したように、家庭用の空気調和機5では、回転数N1を暖房中間条件の回転数とし、回転数N2を暖房定格条件の回転数とすることで、電動機1の効率を向上することができる。
<実施の形態1の効果>
 以上説明したように、実施の形態1では、結線切り替え部60によるコイル3の結線状態の切り替えに応じて、コンバータ102が母線電圧の大きさを変化させるため、結線状態の切り替えの前後のいずれにおいても、高い電動機効率および高い電動機トルクを得ることができる。
 また、コイル3の結線状態を、Y結線(第1の結線状態)と、第1の結線状態よりも線間電圧が低いデルタ結線(第2の結線状態)とで切り替えるため、電動機1の運転状態に適した結線状態を選択することができる。
 また、この実施の形態1では、コイル3の結線状態が第1の結線状態のときに、コンバータ102の母線電圧を第1の母線電圧V1とし、コイル3の結線状態が第2の結線状態のときに、コンバータ102の母線電圧を第1の母線電圧V1よりも高い第2の母線電圧V2としている。そのため、電動機1の回転数が高くなる場合に、線間電圧の低い第2の結線状態に切り替え、さらに母線電圧を高めて電動機効率および電動機トルクを向上することができる。
 また、第1の結線状態がY結線、第2の結線状態がデルタ結線であり、電動機1の第1の回転数N1と第2の回転数N2とがN2/N1>√3を満足する場合には、電動機1の回転数が第1の回転数N1のときに、コイル3の結線状態をY結線とし、電動機1の回転数が第2の回転数N2のときに、コイル3の結線状態をデルタ結線とするため、回転数N1,N2のいずれにおいても、電動機効率および電動機トルクを向上することができる。
 特に、第1の母線電圧V1、第2の母線電圧V2、第1の回転数N1および第2の回転数N2が、V2≧(V1/√3)×N2/N1を満足することにより、回転数N1,N2において高い電動機効率および電動機トルクを得ることができる。
 また、第1の回転数N1が暖房中間条件に相当する回転数であり、第2の回転数N2が暖房定格条件に相当する回転数であるため、性能改善の対象となる暖房中間条件および暖房定格条件で、高い電動機効率および電動機トルクを得ることができる。
 すなわち、第1の回転数N1が通年エネルギー消費効率(APF)における比率が最も高い運転条件に相当する回転数であり、第2の回転数N2が通年エネルギー消費効率における比率が2番目に高い運転条件に相当する回転数であるため、空気調和機のエネルギー消費効率を向上する効果が大きい。
 また、第1の母線電圧V1が電源電圧の実効値の√2倍と同じであるため、コイル3が第1の結線状態にあるときには、コンバータ102が電源電圧を昇圧せずに利用することができ、エネルギー効率を向上することができる。
 また、コンバータ102がSiC素子またはGaN素子で構成されているため、昇圧に伴う損失が小さく、エネルギー効率をさらに向上することができる。
 また、Y結線(第1の結線状態)およびデルタ結線(第2の結線状態)のそれぞれにおいて、電動機1の回転数に応じて弱め界磁制御を行うため、線間電圧がインバータ最大出力電圧に達しても電動機1の回転数を上昇させることができる。
 また、制御装置50が、リモコン55から信号受信部56を介して運転停止信号を受信した場合、コイル3の結線状態がY結線からデルタ結線に切り替わった後、制御装置50は空気調和機5の運転を終了させる。コイル3の結線状態が既にデルタ結線である場合には、その結線状態が維持される。したがって、空気調和機5の運転開始時(起動時)に、コイル3の結線状態がデルタ結線の状態で空気調和機5の運転を開始させることができる。これにより、室内温度Taと設定温度Tsとの温度差ΔTが大きい場合でも、デルタ結線の状態で空気調和機5の運転を開始させることができ、室内温度Taを迅速に設定温度Tsに近づけることができる。
第1の変形例.
 次に、実施の形態1の第1の変形例について説明する。上記の実施の形態1では、コイルの結線状態をY結線からデルタ結線に切り替える回転数N0(すなわち、温度差ΔTと閾値ΔTrとが同じになるときの回転数)と、デルタ結線からY結線に切り替える回転数N0(温度差)とが同じであったが、異なる回転数であってもよい。
 図31(A)および(B)は、結線切り替え部60による結線状態の切り替えおよびコンバータ102による母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。図31(A)および(B)に示すように、コイル3の結線状態をY結線からデルタ結線に切り替える回転数N4と、デルタ結線からY結線に切り替える回転数N5とは、互いに異なっている。
 また、コンバータ102による母線電圧の切り替えは、コイル3の結線状態の切り替えと同時に行われる。すなわち、Y結線からデルタ結線に切り替える回転数N4では、母線電圧が昇圧される。一方、デルタ結線からY結線に切り替える回転数N5では、母線電圧が降圧される。
 このような制御は、例えば、図10のステップS107の閾値ΔTrと、ステップS108の閾値ΔTrを、互いに異なる値に設定することによって実行することができる。図31(A)および(B)に示した例では、Y結線からデルタ結線に切り替える回転数N4が、デルタ結線からY結線に切り替える回転数N5よりも大きいが、大小が逆であってもよい。第1の変形例における他の動作および構成は、実施の形態1と同様である。
 この第1の変形例においても、室内温度Taに基づいてコイル3の結線状態を切り替えることで、空気調和機5の急激な負荷変動に対して、圧縮機41の運転状態を迅速に対応させることができる。また、コイル3の結線状態の切り替えに応じてコンバータ102の母線電圧を切り替えることにより、高い電動機効率を得ることができる。
第2の変形例.
 次に、実施の形態1の第2の変形例について説明する。上記の実施の形態1では、コンバータ102の母線電圧を2段階(V1/V2)に切り替えたが、図32に示すように、3段階に切り替えてもよい。
 図32は、第2の変形例において、結線状態の切り替えと、コンバータ102の母線電圧の切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。図32の例では、暖房中間条件に相当する回転数N1(Y結線)ではコンバータ102の母線電圧をV1とし、回転数N1と回転数N2(暖房定格条件)との間の回転数N6で、Y結線からデルタ結線に切り替え、同時に、母線電圧をV2に昇圧している。
 さらに、回転数N2よりも高い回転数N7において、結線状態はそのままで、コンバータ102の母線電圧をV3に昇圧している。この回転数N7から最高回転数N8までは、コンバータ102の母線電圧はV3である。第2の変形例における他の動作および構成は、実施の形態1と同様である。
 このように、第2の変形例では、コンバータ102の母線電圧をV1、V2、V3の3段階に切り替えているため、特に高回転速度域において、高い電動機効率および高い電動機トルクを得ることができる。
 なお、母線電圧の切り替えは、2段階または3段階に限らず、4段階以上であってもよい。また、第1の変形例(図31)において、コンバータ102の母線電圧を3段階以上に切り替えてもよい。
第3の変形例.
 次に、実施の形態1の第3の変形例について説明する。上記の実施の形態1では、コイル3の結線状態をY結線とデルタ結線とで切り替えた。しかしながら、コイル3の結線状態を直列接続と並列接続とで切り替えてもよい。
 図33(A)および(B)は、第3の変形例のコイル3の結線状態の切り替えを説明するための模式図である。図33(A)では、3相のコイル3U,3V,3WはY結線により結線されている。さらに、コイル3Uのコイル部分Ua,Ub,Ucは直列に接続され、コイル3Vのコイル部分Va,Vb,Vcは直列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは直列に接続されている。すなわち、コイル3の各相のコイル部分は直列に接続されている。
 一方、図33(B)では、3相のコイル3U,3V,3WはY結線により結線されているが、コイル3Uのコイル部分Ua,Ub,Ucは並列に接続され、コイル3Vのコイル部分Va,Vb,Vcは並列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは並列に接続されている。すなわち、コイル3の各相のコイル部分は並列に接続されている。図33(A)および(B)に示したコイル3の結線状態の切り替えは、例えば、コイル3U,3V,3Wの各コイル部分に切り替えスイッチを設けることによって、実現することができる。
 各相において並列接続されたコイル部分の数(すなわち列数)をnとすると、直列接続(図33(A))から並列接続(図33(B))に切り替えることにより、線間電圧は1/n倍に低下する。従って、線間電圧がインバータ最高出力電圧に接近した際に、コイル3の結線状態を直列接続から並列接続に切り替えることにより、弱め界磁の程度を小さく抑える(すなわち弱め電流を小さくする)ことができる。
 性能改善の対象となる負荷条件が2つあり、低速側の回転数N1と、高速側の回転数N2とが、(N2/N1)>nを満足する場合には、コイル3の結線状態を直列接続から並列接続に切り替えただけでは線間電圧がインバータ最大出力電圧よりも大きくなるため、弱め界磁制御が必要となる。そこで、実施の形態1で説明したように、コイル3の結線状態を直列接続から並列接続に切り替えると同時に、コンバータ102の母線電圧を昇圧する。これにより、回転数N1を含む回転数域と回転数N2を含む回転数域の何れにおいても、高い電動機効率および高い電動機トルクが得られる。
 図34(A)および(B)は、第3の変形例の別の構成例を説明するための模式図である。図34(A)では、3相のコイル3U,3V,3Wはデルタ結線により結線されている。さらに、コイル3Uのコイル部分Ua,Ub,Ucは直列に接続され、コイル3Vのコイル部分Va,Vb,Vcは直列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは直列に接続されている。すなわち、コイル3の各相のコイル部分は直列に接続されている。
 一方、図34(B)では、3相のコイル3U,3V,3Wはデルタ結線により結線されているが、コイル3Uのコイル部分Ua,Ub,Ucは並列に接続され、コイル3Vのコイル部分Va,Vb,Vcは並列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは並列に接続されている。すなわち、コイル3の各相のコイル部分は並列に接続されている。
 この場合も、図33(A)および(B)に示した例と同様に、性能改善の対象となる2つの負荷条件のうち、低速側の回転数N1と高速側の回転数N2とが(N2/N1)>nを満足する場合に、コイル3の結線状態を直列接続(図33(A))から並列接続(図33(B))に切り替え、同時にコンバータ102の母線電圧を昇圧する。第3の変形例における他の動作および構成は、実施の形態1と同様である。昇圧後の母線電圧V2は、昇圧前の母線電圧V1に対し、V2≧(V1/n)×N2/N1であればよい。
 このように、第3の変形例では、コンバータ102の結線状態を直列接続と並列接続とで切り替えることにより、弱め界磁の程度を小さく抑え、電動機効率を向上することができる。また、母線電圧V1,V2および回転数N1,N2が、V2≧(V1/n)×N2/N1を満足することにより、回転数N1,N2において高い電動機効率および電動機トルクを得ることができる。
 なお、第1の変形例および第2の変形例において、直列接続(第1の結線状態)と並列接続(第2の結線状態)とを切り替えてもよい。
第4の変形例.
 上述した実施の形態1では、室内温度センサ54によって検出した室内温度Taと設定温度Tsとの差ΔTの絶対値を閾値ΔTrと比較して、コイル3の結線状態およびコンバータ102の母線電圧を切り替えたが、室内温度Taに基づいて空調負荷を算出し、空調負荷に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えてもよい。
 図35は、第4の変形例の空気調和機の基本動作を示すフローチャートである。ステップS101~S105は、実施の形態1と同様である。ステップS104で電動機1を起動したのち、運転停止信号を受信していなければ(ステップS105)、制御装置50は、室内温度センサ54で検出した室内温度Taと、リモコン55により設定された設定温度Tsとの温度差ΔTを取得し(ステップS201)、この温度差ΔTに基づき、空調負荷を算出する(ステップS202)。
 次に、算出した空調負荷に基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、ステップS202で算出した空調負荷が閾値(空調負荷の基準値)以下か否かを判断する(ステップS203)。
 ステップS203での比較の結果、コイル3の結線状態がデルタ結線で、且つ空調負荷が閾値以下であれば、図11に示したステップS121~S124の処理を行う。図11のステップS121~S124では、実施の形態1で説明したように、デルタ結線からY結線への切り替えおよびコンバータ102による母線電圧の昇圧を行う。
 上記ステップS203での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、空調負荷が閾値より大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS204に進む。
 ステップS204では、Y結線からデルタ結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がY結線であって、なお且つ、ステップS202で算出した空調負荷が閾値より大きいか否かを判断する。
 ステップS204での比較の結果、コイル3の結線状態がY結線で、且つ、空調負荷が閾値より大きければ、図12に示したステップS131~S134の処理を行う。図12のステップS131~S134では、実施の形態1で説明したように、Y結線からデルタ結線への切り替えおよびコンバータ102による母線電圧の降圧を行う。
 上記ステップS204での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、空調負荷が閾値より大きい場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS105に戻る。運転停止信号を受信した場合の処理(ステップS109~S111)は、実施の形態1と同様である。第4の変形例における他の動作および構成は、実施の形態1と同様である。
 このように、第4の変形例では、室内温度Taに基づいて空調負荷を算出し、算出した空調負荷に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えているため、空気調和機5の負荷変動に対して、圧縮機41の運転状態を迅速に対応させることができ、快適性を向上することができる。
 なお、第1の変形例、第2の変形例および第3の変形例において、空調負荷に基づいてコイル3の結線状態およびコンバータ102の母線電圧の切り替えを行ってもよい。
第5の変形例.
 上述した実施の形態1では、室内温度センサ54によって検出した室内温度Taと設定温度Tsとの温度差ΔTに基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えたが、電動機1の回転数に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えてもよい。
 図36は、第5の変形例の空気調和機の基本動作を示すフローチャートである。ステップS101~S105は、実施の形態1と同様である。ステップS104で電動機1を起動したのち、運転停止信号を受信していなければ(ステップS105)、制御装置50は、電動機1の回転数を取得する(ステップS301)。電動機1の回転数は、インバータ103の出力電流の周波数であり、電動機1に取り付けた電流センサ等を用いて検出することができる。
 次に、この電動機1の回転数に基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、電動機1の回転数が閾値(回転数の基準値)以下か否かを判断する(ステップS302)。
 暖房運転の場合、ステップS302で用いる閾値は、暖房中間条件に相当する回転数N1と、暖房定格条件に相当する回転数N2との間の値(より望ましくは中間値)であることが望ましい。また、冷房運転の場合、ステップS302で用いる閾値は、冷房中間条件に相当する回転数N1と、冷房定格条件に相当する回転数N2との間の値(より望ましくは中間値)であることが望ましい。
 例えば冷凍能力6.3kWの家庭用の空気調和機の場合、暖房中間条件に相当する回転数N1が35rpsであり、暖房定格条件に相当する回転数N2が85rpsであるため、ステップS302で用いる閾値は、回転数N1と回転数N2との中間値である60rpsが望ましい。
 但し、電動機1の回転数は変動する可能性がある。そのため、このステップS302では、電動機1の回転数が閾値以上である状態が、予め設定した時間に亘って継続するか否かを判断する。
 ステップS302での比較の結果、コイル3の結線状態がデルタ結線で、且つ電動機1の回転数が閾値以下であれば、図11に示したステップS121~S124の処理を行う。図11のステップS121~S124では、実施の形態1で説明したように、デルタ結線からY結線への切り替えおよびコンバータ102の母線電圧の昇圧を行う。
 上記ステップS302での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、電動機1の回転数が閾値より大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS303に進む。
 ステップS303では、Y結線からデルタ結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がY結線であって、なお且つ、電動機1の回転数が閾値より大きいか否かを判断する。
 ステップS303での比較の結果、コイル3の結線状態がY結線で、且つ、電動機1の回転数が閾値より大きければ、図12に示したステップS131~S134の処理を行う。図12のステップS131~S134では、実施の形態1で説明したように、Y結線からデルタ結線への切り替えおよびコンバータ102の母線電圧の降圧を行う。
 上記ステップS303での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、電動機1の回転数が閾値より大きい場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS105に戻る。運転停止信号を受信した場合の処理(ステップS109~S111)は、実施の形態1と同様である。第5の変形例における他の動作および構成は、実施の形態1と同様である。
 このように、第5の変形例では、電動機1の回転数に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えることにより、高い電動機効率および高い電動機トルクを得ることができる。
 なお、第1の変形例、第2の変形例および第3の変形例において、電動機1の回転数に基づいてコイル3の結線状態およびコンバータ102の母線電圧の切り替えを行ってもよい。
 なお、ここでは、圧縮機の一例としてロータリー圧縮機8について説明したが、各実施の形態の電動機は、ロータリー圧縮機8以外の圧縮機に適用してもよい。
実施の形態2.
 次に、本発明の実施の形態2について説明する。
<空気調和機の構成>
 図37は、実施の形態2の空気調和機500の構成を示すブロック図である。図38は、実施の形態2の空気調和機500の制御系を示すブロック図である。図39は、実施の形態2の駆動装置100aの制御系を示すブロック図である。実施の形態2の空気調和機500は、圧縮機状態検出部としての圧縮機温度センサ71をさらに備える。圧縮機温度センサ71は、ロータリー圧縮機8の状態を示す圧縮機温度Tを検出する温度センサである。ただし、圧縮機状態検出部は、ロータリー圧縮機8の状態を検出可能な検出器であればよく、温度センサに限られない。
 圧縮機温度センサ71を除いて、実施の形態2の空気調和機500および駆動装置100aの構成は、実施の形態1の空気調和機5および駆動装置100とそれぞれ同様である。
 図39に示される例では、駆動装置100aは、電源101の出力を整流するコンバータ102と、電動機1のコイル3に交流電圧を出力するインバータ103と、コイル3の結線状態を切り替える結線切り替え部60と、制御装置50と、圧縮機温度センサ71とを備えて構成される。コンバータ102には、交流(AC)電源である電源101から電力が供給される。
 圧縮機温度センサ71を除いて、実施の形態2の駆動装置100aの構成は、実施の形態1の駆動装置100と同様である。ただし、圧縮機温度センサ71は、駆動装置100aの構成要素でなくてもよい。駆動装置100aは、ロータリー圧縮機8と共に用いられ、電動機1を駆動する。
 永久磁石型電動機に用いられる、Nd-Fe-B(ネオジウム-鉄-ボロン)を主成分とするネオジウム希土類磁石の保磁力は、温度により低下する性質を持つ。圧縮機のような140℃の高温雰囲気中でネオジウム希土類磁石を用いた電動機を使用する場合、磁石の保磁力は温度により劣化(-0.5~-0.6%/ΔK)するため、Dy(ディスプロシウム)元素を添加して保磁力を向上させる必要性がある。
 Dy元素を磁石に添加すると、保磁力特性は向上するが、残留磁束密度特性が低下するというデメリットがある。残留磁束密度が低下すると、電動機のマグネットトルクが低下し、通電電流が増加するため、銅損が増加する。そのため、効率面でもDy添加量を低減したいという要求は大きい。
 例えば、圧縮機の駆動中における圧縮機の最高温度を下げれば、磁石最高温度を低減でき、磁石の減磁を緩和することができる。そのため、圧縮機の温度を制限するための閾値としての圧縮機温度閾値に基づいて圧縮機(例えば、電動機の回転数)を制御することが有効である。
 しかしながら、圧縮機温度閾値を低く設定すると、設定値によっては低い負荷(空調負荷)の状態で、電動機の回転数を下げる指令、または、電動機を停止する指令が出されることがある。この場合、電動機の最大運転範囲が狭くなり、空気調和機が備えられた室内の状況(例えば、上記の温度差ΔT)に関わらず、電動機の運転が制限される。
 そこで、実施の形態2では、制御装置50は、コイル3の結線状態により異なる閾値(圧縮機温度閾値)に基づいて電動機1の駆動方法を変更する指令を発する。具体的には、制御装置50は、圧縮機温度センサ71によって検出された圧縮機温度Tが、圧縮機温度閾値よりも大きいと判定した場合に、電動機1の駆動方法を変更する指令を出す。これにより、ロータリー圧縮機8の温度を低下させ、ロータリー圧縮機8を保護する。
 圧縮機温度センサ71は、ロータリー圧縮機8の状態を示す圧縮機温度Tを検出する。本実施の形態では、圧縮機温度センサ71は、ロータリー圧縮機8の吐出管85に固定されている。ただし、圧縮機温度センサ71が固定される位置は、吐出管85に限られない。
 圧縮機温度Tは、例えば、ロータリー圧縮機8のシェル80、ロータリー圧縮機8の吐出管85(例えば、吐出管85の上部)、ロータリー圧縮機8内の冷媒(例えば、吐出管85を通る冷媒)およびロータリー圧縮機8の内部に備えられた電動機1のうちの少なくとも1つの温度である。圧縮機温度Tは、これらの要素以外の要素の温度でもよい。
 圧縮機温度Tは、例えば、予め定められた時間内において計測された最高温度である。圧縮機温度Tの測定対象ごとに、予め計測されたロータリー圧縮機8内の温度データと圧縮機温度Tとの相関関係を、制御装置50内のメモリ58に記憶させておいてもよい。予め計測されたロータリー圧縮機8内の温度データとは、冷媒の循環量および電動機1の発熱温度等によって変動するロータリー圧縮機8内の温度(最高温度)を示すデータである。この場合、圧縮機温度センサ71によって検出された圧縮機温度Tを、後述する第1の検出値または第2の検出値として用いてもよく、圧縮機温度Tとの相関関係に基づいて算出された温度データを、後述する第1の検出値または第2の検出値として用いてもよい。
 コイル3の結線状態が第1の結線状態(例えば、Y結線)のとき、制御装置50は、圧縮機温度センサ71によって検出された第1の検出値と、圧縮機温度閾値としての閾値T(第1の閾値)とに基づいて電動機1を制御する。閾値Tは、例えば、90℃である。温度センサ以外の検出器を圧縮機状態検出部として用いる場合は、温度以外の値を閾値として設定してもよい。
 具体的には、第1の検出値が閾値Tよりも大きいとき、制御装置50は、圧縮機温度センサ71によって検出された少なくとも1つの温度(圧縮機温度T)が低下するように電動機1を制御する。例えば、制御装置50は、電動機1の回転数が少なくなるように電動機1の回転数を変更する指令を出すか、または、電動機1の駆動(回転)を停止させる。これにより、圧縮機温度Tを低下させることができる。
 コイル3の結線状態が第2の結線状態(例えば、デルタ結線)のとき、制御装置50は、圧縮機温度センサ71によって検出された第2の検出値と、圧縮機温度閾値としての閾値TΔ(第2の閾値)とに基づいて電動機1を制御する。
 具体的には、第2の検出値が閾値TΔよりも大きいとき、制御装置50は、圧縮機温度センサ71によって検出された少なくとも1つの温度(圧縮機温度T)が低下するように電動機1を制御する。例えば、制御装置50は、電動機1の回転数が少なくなるように電動機1の回転数を変更する指令を出すか、または、電動機1の駆動(回転)を停止させる。これにより、圧縮機温度Tを低下させることができる。
 電動機1は、電動機1の発熱による温度変化、冷媒による冷却効果等を考慮して、磁石が到達し得る最高温度(圧縮機温度閾値)において減磁しないように設計されている。例えば、本実施の形態では、電動機1の永久磁石25は、磁石最高温度である140℃付近で減磁しないように設計されている。この場合、閾値TΔが140℃に設定される。
 結線切り替え部60によって切り替え可能なコイル3の結線状態のうち、線間電圧が低い結線状態ほど圧縮機温度閾値を高く設定する。本実施の形態では、デルタ結線におけるインバータ103の線間電圧は、Y結線におけるインバータ103の線間電圧よりも低い。したがって、閾値TΔは、閾値Tよりも大きくなるように設定される。これにより、電動機1の最大運転範囲(特に、デルタ結線での電動機1の最大回転数)が狭まらないようにすることができる。
<空気調和機の動作>
 次に、実施の形態2の空気調和機500の基本動作(電動機1、ロータリー圧縮機8および空気調和機500の制御方法)について説明する。
 図40は、実施の形態2の空気調和機500の基本動作を示すフローチャートである。
 ステップS101~S105は、実施の形態1(図10)と同様である。ステップS105で運転停止信号を受信していない場合には、ステップS401に進む。
 結線切り替え部60は、上記の温度差ΔTまたは電動機1の回転数などに応じて、コイル3の結線状態を、デルタ結線(本実施の形態では、第2の結線状態)とY結線(本実施の形態では、第1の結線状態)との間で切り替えることができる。
 圧縮機温度センサ71は、ロータリー圧縮機8の状態を検出する(ステップS401)。本実施の形態では、ロータリー圧縮機8の状態を示す圧縮機温度T(例えば、吐出管85の温度)を検出する。
 ステップS401では、コイル3の結線状態がY結線のとき、圧縮機温度Tを第1の検出値として検出する。一方、コイル3の結線状態がデルタ結線のとき、圧縮機温度Tを第2の検出値として検出する。
 さらに、制御装置50は、コイル3の結線状態がY結線であって、なお且つ、圧縮機温度Tが閾値Tよりも大きいか否かを判断する(ステップS402)。
 ステップS402での比較の結果、コイル3の結線状態がY結線で、且つ、圧縮機温度Tが閾値Tよりも大きければ、ステップS404に進む。
 上記ステップS402の比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、圧縮機温度Tが閾値T以下である場合には、ステップS403に進む。
 ステップS403では、制御装置50は、コイル3の結線状態がデルタ結線であって、なお且つ、圧縮機温度Tが閾値TΔよりも大きいか否かを判断する。
 ステップS403での比較の結果、コイル3の結線状態がデルタ結線で、且つ、圧縮機温度Tが閾値TΔよりも大きければ、ステップS404に進む。
 上記ステップS403での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、圧縮機温度Tが閾値TΔ以下である場合には、ステップS105に戻る。
 ステップS404では、制御装置50は、電動機1の回転数を低下させる。ただし、電動機1の回転数を低下させる代わりに電動機1を停止させてもよい。ステップS404で電動機1を停止させる場合は、コイル3の結線状態を変更せずに電動機1を停止させる。ステップS404で電動機1を停止させた場合は、例えば、予め定められた時間経過後に電動機1を起動してからステップS105に戻る。
 すなわち、ステップS401~S404では、コイル3の結線状態がY結線のとき、第1の検出値と第1の閾値(閾値T)とに基づいて電動機1を制御し、コイル3の結線状態がデルタ結線のとき、第2の検出値と第2の閾値(閾値TΔ)とに基づいて電動機1を制御する。これにより、圧縮機温度Tが閾値Tまたは閾値TΔよりも低くなるようにロータリー圧縮機8を制御することができる。
 上記のステップS105で運転停止信号を受信した場合には、制御装置50は、電動機1の回転を停止する(ステップS109)。なお、ステップS404において電動機1を停止させた状態で運転停止信号を受信した場合には、電動機1を停止させた状態でステップS110に進む。なお、図40では省略するが、ステップS401~S404の間においても、運転停止信号を受信した場合には、ステップS109に進んで電動機1の回転を停止する。
 その後、制御装置50は、空気調和機500の停止処理を行う(ステップS110)。具体的には、室内送風ファン47および室外送風ファン46の各ファンモータを停止する。その後、制御装置50のCPU57が停止し、空気調和機500の運転が終了する。
 ステップS110で、空気調和機500の停止処理を行う場合、コイル3の結線状態がデルタ結線であることが望ましい。例えば、ステップS110で、コイル3の結線状態がY結線であるとき、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をY結線からデルタ結線に切り替える。
<実施の形態2の効果>
 実施の形態2によれば、コイル3の結線状態を考慮して、圧縮機温度閾値を用いて電動機1を制御する。例えば、圧縮機温度センサ71によって検出された検出値が圧縮機温度閾値よりも大きいとき、圧縮機温度T(すなわち、ロータリー圧縮機8内の温度)が低下するように電動機1が制御される。これにより、電動機1における減磁を防ぐことができ、ロータリー圧縮機8の状態に応じて、電動機1を適切に制御することができる。
 実施の形態1で説明したように、コイル3の結線状態をY結線とデルタ結線とで切り替えて運転する駆動装置においては、デルタ結線では従来通りの高回転数の運転を行い、Y結線では空調負荷の小さい低回転数で運転を行う。そのため、コイル3の結線状態をデルタ結線からY結線に切り替えることにより、通常負荷運転を行う際のロータリー圧縮機8の最高温度(圧縮機温度Tの最大値)について、デルタ結線での運転時よりもY結線での運転時のロータリー圧縮機8の最高温度の方が低くなるように構成することができる。
 例えば、コイル3の結線状態を考慮せずに、予め定められた1つの圧縮機温度閾値(例えば、閾値Tと同じ値)に基づいて電動機1を制御する場合、電動機1の最大運転範囲(特に、デルタ結線での電動機1の最大回転数)が狭まる場合がある。そこで、実施の形態2では、コイル3の結線状態を考慮して、複数の圧縮機温度閾値を用いて電動機1を制御する。
 具体的には、コイル3の結線状態により異なる圧縮機温度閾値(例えば、閾値Tおよび閾値TΔ)に基づいて電動機1を制御する。したがって、圧縮機温度閾値をデルタ結線での運転時よりもY結線での運転時において低く設定しても、電動機1の最大運転範囲(特に、デルタ結線での電動機1の最大回転数)が狭まらないようにすることができる。
 例えば、実施の形態1で説明したコイル3の結線状態の切り替えを行う構成では、コイル3の結線状態がY結線で、且つ、電動機1が低い回転数(暖房中間条件)のときに、線間電圧(電動機電圧)がインバータ最大出力電圧とほぼ等しくなるように構成し、高効率化を図っている。この場合、結線切り替え回数を減らすために、電動機1をできるだけ高速回転まで回転させたい場合がある。そのため、弱め界磁で運転が行われるが、弱め電流が増加し、減磁が悪化する。
 温度が低い方が永久磁石25の保磁力が高く、電流を増やしても減磁しにくくすることができる。そこで、実施の形態2によれば、コイル3の結線状態がY結線のときの圧縮機温度閾値Tが、デルタ結線のときの圧縮機温度閾値TΔよりも低く設定されている。これにより、デルタ結線での運転時よりもY結線での運転時のロータリー圧縮機8の最高温度の方が低くなるように構成することができる。したがって、弱め電流が増えても減磁しない構成にすることができ、より高速回転までY結線での駆動が可能となり、結線の切り替え自由度が大きくなるという利点がある。言い換えると、電動機1の磁石の保磁力が高い状態で電動機1を駆動させることができ、電動機1により大きい電流を流しても減磁しにくくすることができる。さらに、コイル3の結線状態がY結線のときに、弱め界磁でより高速回転まで電動機1を駆動させることができる。
 また、結線切り替えを行わない従来のコイルの巻き数(ターン数)と近い巻き数であるコイルのY結線から、デルタ結線に切り替えた場合、高速回転における弱め界磁を抑制することができ、従来よりもデルタ結線において減磁に強い構成を得ることができる。
 さらに、Y結線においては、従来よりも圧縮機温度閾値を低く設定することができるので、Y結線およびデルタ結線の双方で減磁特性を向上させることができ、ディスプロシウム(Dy)が添加されていない磁石を用いることが可能となる。
 例えば、永久磁石25として、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を主成分とする希土類磁石を用いることができ、この永久磁石25は、保磁力を向上させるための添加物としてのディスプロシウム(Dy)を含まない。この場合、永久磁石25の残留磁束密度は、1.36Tから1.42Tであり、保磁力は、1671kA/mから1989kA/mであり、最大エネルギー積は、354kJ/mから398kJ/mである。
実施の形態2の変形例.
 次に、本発明の実施の形態2の変形例について説明する。上記の実施の形態2は、実施の形態1(各変形例を含む)と組み合わせることができる。そこで、実施の形態2の変形例では、実施の形態2で説明した空気調和機の動作(電動機1、ロータリー圧縮機8および空気調和機500の制御方法)の他の例について説明する。実施の形態2の変形例の空気調和機の構成は、実施の形態2の空気調和機500の構成と同じである。したがって、実施の形態2の変形例の空気調和機を、空気調和機500と称する。
 図41は、実施の形態2の変形例の空気調和機500の基本動作を示すフローチャートである。
 ステップS101~S106は、実施の形態1(図10)と同様である。
 ステップS107では、制御装置50は、室内温度センサ54で検出した室内温度Taと、リモコン55により設定された設定温度Tsとの温度差ΔTに基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTr以下か否かを判断する(ステップS107)。
 ステップS107での比較の結果、コイル3の結線状態がデルタ結線で、且つ、温度差ΔTの絶対値が閾値ΔTr以下であれば、ステップS121(図11)に進む。
 上記ステップS107での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTrより大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS108に進む。
 ステップS108では、コイル3のY結線からデルタ結線への切り替えの要否を判断する。例えば、実施の形態1(ステップS108)と同様に、制御装置50は、コイル3の結線状態がY結線であって、なお且つ、上記の温度差ΔTの絶対値が、閾値ΔTrより大きいか否かを判断する。
 ステップS108での比較の結果、コイル3の結線状態がY結線で、且つ、温度差ΔTの絶対値が閾値ΔTrより大きければ、ステップS131(図12)に進む。実施の形態2の変形例において、図12に示されるステップS131~S134における処理は、図13(A)に示される処理(ステップS135,S136およびS131~S134)、または図13(B)に示される処理(ステップS137,S138およびS131~S134)に置き換えてもよい。
 図41に示されるステップS106~S108における処理は、実施の形態1の各変形における処理(例えば、図35に示されるステップS201~S204、または図36に示されるステップS301~S303)に置き換えてもよい。
 上記ステップS108での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTr以下である場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS401に進む。
 ステップS401~S404は、実施の形態2(図40)と同様である。
 上記のステップS105で運転停止信号を受信した場合には、制御装置50は、電動機1の回転を停止する(ステップS109)。なお、ステップS404において電動機1を停止させた状態で運転停止信号を受信した場合には、電動機1を停止させた状態でステップS110に進む。なお、図41では省略するが、ステップS105~S108またはステップS401~S404においても、運転停止信号を受信した場合には、ステップS109に進んで電動機1の回転を停止する。
 その後、制御装置50(具体的には、結線切り替え部60)は、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS110)。コイル3の結線状態が既にデルタ結線である場合には、その結線状態を維持する。
 ステップS111は、実施の形態1(図10)と同様である。
 実施の形態2の変形例によれば、実施の形態1(各変形例を含む)および実施の形態2で説明した効果と同じ効果を有する。
 以上に説明した各実施の形態及び各変形例における特徴は、互いに適宜組み合わせることができる。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良または変形を行なうことができる。
 1 電動機、 3,3U,3V,3W コイル、 5,500 空気調和機、 5A 室内機、 5B 室外機、 8 ロータリー圧縮機(圧縮機)、 9 圧縮機構、 10 ステータ、 11 ステータコア、 12 ティース部、 20 ロータ、 21 ロータコア、 25 永久磁石、 41 圧縮機、 42 四方弁、 43 室外熱交換器、 44 膨張弁、 45 室内熱交換器、 46 室外送風ファン、 47 室内送風ファン、 50 制御装置、 50a 室内制御装置、 50b 室外制御装置、 50c 連絡ケーブル、 51 入力回路、 52 演算回路、 53 出力回路、 54 室内温度センサ、 55 リモコン、 56 信号受信部、 57 CPU、 58 メモリ、 60 結線切り替え部、 61,62,63 スイッチ、 71 圧縮機温度センサ、 80 シェル、 81 ガラス端子、 85 吐出管、 90 シャフト、 100,100a 駆動装置、 101 電源、 102 コンバータ、 103 インバータ。

Claims (17)

  1.  コイルを有する電動機を駆動する駆動装置であって、
     母線電圧を生成するコンバータと、
     前記母線電圧を交流電圧に変換して前記コイルに供給するインバータと、
     前記コイルの結線状態を切り替える結線切り替え部と
     を備え、
     前記コンバータが生成する前記母線電圧が、前記コイルの結線状態に応じて切り替えられる
     駆動装置。
  2.  前記コイルの結線状態には、第1の結線状態と第2の結線状態とがあり、
     前記インバータは、前記第1の結線状態よりも前記第2の結線状態の方が低い線間電圧を出力する、請求項1に記載の駆動装置。
  3.  前記コイルの結線状態が前記第1の結線状態であるときに、前記コンバータの前記母線電圧が第1の母線電圧V1であり、
     前記コイルの結線状態が前記第2の結線状態であるときに、前記コンバータの前記母線電圧が第2の母線電圧V2であり、
     前記第2の母線電圧V2は前記第1の母線電圧V1よりも高い、請求項2に記載の駆動装置。
  4.  前記コイルは、3相コイルであり、
     前記第1の結線状態は、前記3相コイルがY結線によって結線された状態であり、
     前記第2の結線状態は、前記3相コイルがデルタ結線によって結線された状態である、請求項3に記載の駆動装置。
  5.  前記電動機の第1の回転数N1と第2の回転数N2とが、N2/N1>√3を満足し、
     前記電動機の回転数が前記第1の回転数N1であるとき、前記結線切り替え部は前記コイルの前記結線状態を前記第1の結線状態とし、
     前記電動機の回転数が前記第2の回転数N2であるとき、前記結線切り替え部は前記コイルの前記結線状態を前記第2の結線状態とする、請求項4に記載の駆動装置。
  6.  前記第1の母線電圧V1、前記第2の母線電圧V2、前記第1の回転数N1および前記第2の回転数N2が、
     V2≧(V1/√3)×N2/N1
     を満足する、請求項5に記載の駆動装置。
  7.  前記コイルは、Y結線またはデルタ結線によって結線された3相コイルであり、
     前記第1の結線状態は、前記3相コイルが、直列に結線された第1の数のコイル部分を相毎に有する状態であり、
     前記第2の結線状態は、前記3相コイルが、並列に結線された前記第1の数のコイル部分を相毎に有する状態である、
     請求項3に記載の駆動装置。
  8.  前記第1の数が「n」で表され、
     前記電動機の第1の回転数N1と第2の回転数N2とが、N2/N1>nを満足し、
     前記電動機の回転数が前記第1の回転数N1であるとき、前記結線切り替え部は前記コイルの前記結線状態を前記第1の結線状態とし、
     前記電動機の回転数が前記第2の回転数N2であるとき、前記結線切り替え部は前記コイルの前記結線状態を前記第2の結線状態とする、請求項7に記載の駆動装置。
  9.  前記第1の母線電圧V1および前記第2の母線電圧V2、並びに前記第1の回転数N1および前記第2の回転数N2が、
     V2≧(V1/n)×N2/N1
     を満足する、請求項8に記載の駆動装置。
  10.  前記電動機は空気調和機で用いられるものであり、
     前記第1の回転数N1は、前記空気調和機の暖房中間条件に相当し、
     前記第2の回転数N2は、前記空気調和機の暖房定格条件に相当する、請求項5、6、8および9の何れか1項に記載の駆動装置。
  11.  前記電動機は空気調和機で用いられるものであり、
     前記第1の回転数N1は、前記空気調和機の通年エネルギー消費効率(APF)における比率が最も高い運転条件に相当し、
     前記第2の回転数N2は、前記空気調和機の通年エネルギー消費効率における比率が2番目に高い運転条件に相当する、請求項5、6、8、9および10の何れか1項に記載の駆動装置。
  12.  前記コンバータに交流の電源電圧を供給する電源をさらに備え、
     前記第1の母線電圧V1は、前記電源電圧の実効値の√2倍と同じである、請求項3から11までの何れか1項に記載の駆動装置。
  13.  前記結線切り替え部は、
     前記電動機の回転数が閾値以下の場合に、前記電動機の結線状態を前記第1の結線状態に切り替え、
     前記電動機の回転数が前記閾値より大きい場合に、前記電動機の結線状態を前記第2の結線状態に切り替える、請求項2から12までの何れか1項に記載の駆動装置。
  14.  前記インバータは、前記電動機の回転数に応じて弱め界磁制御を行う、請求項1から13までの何れか1項に記載の駆動装置。
  15.  前記コンバータは、SiC素子またはGaN素子を有する、請求項1から14までの何れか1項に記載の駆動装置。
  16.  コイルを有する電動機と、前記電動機によって駆動される圧縮機と、前記電動機を駆動する駆動装置とを備えた空気調和機であって、
     前記駆動装置は、
     母線電圧を生成するコンバータと、
     前記母線電圧を交流電圧に変換して前記コイルに供給するインバータと、
     前記コイルの結線状態を切り替える結線切り替え部と
     を備え、
     前記コンバータが生成する前記母線電圧が、前記コイルの結線状態に応じて切り替えられる
     空気調和機。
  17.  コイルを有する電動機を、母線電圧を生成するコンバータと、前記母線電圧を交流電圧に変換して前記コイルに供給するインバータとを用いて駆動する駆動方法であって、
     前記コイルの結線状態を切り替えるステップと、
     前記コイルの結線状態に応じて、前記母線電圧を切り替えるステップと
     を有する電動機の駆動方法。
PCT/JP2016/082208 2016-10-31 2016-10-31 駆動装置、空気調和機および電動機の駆動方法 WO2018078840A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16920396.5A EP3534534B1 (en) 2016-10-31 2016-10-31 Drive device, air conditioner and drive method of electric motor
JP2018547067A JP6625762B2 (ja) 2016-10-31 2016-10-31 駆動装置、空気調和機および電動機の駆動方法
CN201680089717.5A CN109863686B (zh) 2016-10-31 2016-10-31 驱动装置、空气调节机以及电动机的驱动方法
PCT/JP2016/082208 WO2018078840A1 (ja) 2016-10-31 2016-10-31 駆動装置、空気調和機および電動機の駆動方法
AU2016428282A AU2016428282B2 (en) 2016-10-31 2016-10-31 Drive device, air conditioner and drive method of electric motor
US16/335,899 US10763773B2 (en) 2016-10-31 2016-10-31 Driving device, air conditioner, and method for driving motor
KR1020197009311A KR102278116B1 (ko) 2016-10-31 2016-10-31 구동 장치, 공기 조화기 및 전동기의 구동 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082208 WO2018078840A1 (ja) 2016-10-31 2016-10-31 駆動装置、空気調和機および電動機の駆動方法

Publications (1)

Publication Number Publication Date
WO2018078840A1 true WO2018078840A1 (ja) 2018-05-03

Family

ID=62024611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082208 WO2018078840A1 (ja) 2016-10-31 2016-10-31 駆動装置、空気調和機および電動機の駆動方法

Country Status (7)

Country Link
US (1) US10763773B2 (ja)
EP (1) EP3534534B1 (ja)
JP (1) JP6625762B2 (ja)
KR (1) KR102278116B1 (ja)
CN (1) CN109863686B (ja)
AU (1) AU2016428282B2 (ja)
WO (1) WO2018078840A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152792A1 (ja) * 2019-01-23 2020-07-30 三菱電機株式会社 駆動装置、圧縮機、冷凍空調装置、および電動機の駆動方法
JPWO2020021681A1 (ja) * 2018-07-26 2021-03-11 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器
US10965237B2 (en) 2017-07-25 2021-03-30 Mitsubishi Electric Corporation Driving device, air conditioner, and driving method
US11101763B2 (en) 2016-10-31 2021-08-24 Mitsubishi Electric Corporation Air conditioner and method for controlling air conditioner
US11139769B2 (en) 2016-10-31 2021-10-05 Mitsubishi Electric Corporation Driving device, air conditioner, and method for driving motor
CN115103985A (zh) * 2020-02-20 2022-09-23 三菱电机株式会社 空调装置
US11502634B2 (en) 2017-07-25 2022-11-15 Mitsubishi Electric Corporation Driving device, compressor, air conditioner, and driving method
US11637521B2 (en) 2016-10-31 2023-04-25 Mitsubishi Electric Corporation Driving device, air conditioner, and method for controlling compressor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
WO2019017495A1 (ja) 2017-07-21 2019-01-24 株式会社デンソー 回転電機
CN108119955B (zh) * 2017-12-19 2019-10-25 珠海格力电器股份有限公司 空调器系统及具有其的空调器
CN111566904B (zh) 2017-12-28 2023-04-28 株式会社电装 旋转电机
JP7006541B2 (ja) 2017-12-28 2022-01-24 株式会社デンソー 回転電機
DE112018006694T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
DE112018006699T5 (de) * 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
JP7341136B2 (ja) * 2018-01-03 2023-09-08 広東美芝制冷設備有限公司 圧縮機及び冷却装置
KR102155602B1 (ko) * 2019-06-28 2020-09-14 엘지전자 주식회사 모터, 모터용 영구자석, 모터를 구비한 압축기 및 이를 구비한 공기조화기
CN113692690A (zh) 2020-03-05 2021-11-23 株式会社电装 旋转电机
CN111969798A (zh) * 2020-09-22 2020-11-20 珠海格力电器股份有限公司 电机控制装置、方法、电机设备及空调系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP2009216324A (ja) 2008-03-11 2009-09-24 Toshiba Carrier Corp 空気調和機
JP4619826B2 (ja) 2005-03-07 2011-01-26 三菱電機株式会社 電動機駆動装置、電動機駆動方法及び圧縮機
WO2016051456A1 (ja) * 2014-09-29 2016-04-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド 巻線切替モータ駆動装置、巻線切替モータの駆動制御方法、及びそれらを用いた冷凍空調機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4619826Y1 (ja) 1970-01-06 1971-07-09
JPH03265489A (ja) * 1990-03-15 1991-11-26 Canon Electron Inc モータ駆動回路
JP5318050B2 (ja) * 2010-09-02 2013-10-16 三菱電機株式会社 永久磁石型モータの駆動装置及び圧縮機
EP2884203B1 (en) * 2012-06-29 2019-11-13 Mitsubishi Electric Corporation Heat pump device
JP5569606B1 (ja) * 2013-02-01 2014-08-13 株式会社安川電機 インバータ装置および電動機ドライブシステム
JP6257290B2 (ja) * 2013-12-04 2018-01-10 日立ジョンソンコントロールズ空調株式会社 密閉型電動圧縮機
JP6530174B2 (ja) 2014-10-28 2019-06-12 シャープ株式会社 冷凍サイクル装置
JP6491455B2 (ja) * 2014-10-28 2019-03-27 シャープ株式会社 電動機
JP2016099029A (ja) * 2014-11-19 2016-05-30 シャープ株式会社 空気調和機
JP6636170B2 (ja) 2016-10-31 2020-01-29 三菱電機株式会社 駆動装置、空気調和機および電動機の駆動方法
CN109863691B (zh) 2016-10-31 2023-04-04 三菱电机株式会社 空气调和机以及空气调和机的控制方法
US11637521B2 (en) 2016-10-31 2023-04-25 Mitsubishi Electric Corporation Driving device, air conditioner, and method for controlling compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619826B2 (ja) 2005-03-07 2011-01-26 三菱電機株式会社 電動機駆動装置、電動機駆動方法及び圧縮機
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP2009216324A (ja) 2008-03-11 2009-09-24 Toshiba Carrier Corp 空気調和機
WO2016051456A1 (ja) * 2014-09-29 2016-04-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド 巻線切替モータ駆動装置、巻線切替モータの駆動制御方法、及びそれらを用いた冷凍空調機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534534A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101763B2 (en) 2016-10-31 2021-08-24 Mitsubishi Electric Corporation Air conditioner and method for controlling air conditioner
US11139769B2 (en) 2016-10-31 2021-10-05 Mitsubishi Electric Corporation Driving device, air conditioner, and method for driving motor
US11637521B2 (en) 2016-10-31 2023-04-25 Mitsubishi Electric Corporation Driving device, air conditioner, and method for controlling compressor
US10965237B2 (en) 2017-07-25 2021-03-30 Mitsubishi Electric Corporation Driving device, air conditioner, and driving method
US11502634B2 (en) 2017-07-25 2022-11-15 Mitsubishi Electric Corporation Driving device, compressor, air conditioner, and driving method
JPWO2020021681A1 (ja) * 2018-07-26 2021-03-11 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器
JP6991336B2 (ja) 2018-07-26 2022-01-12 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器
WO2020152792A1 (ja) * 2019-01-23 2020-07-30 三菱電機株式会社 駆動装置、圧縮機、冷凍空調装置、および電動機の駆動方法
JPWO2020152792A1 (ja) * 2019-01-23 2021-09-09 三菱電機株式会社 駆動装置、圧縮機、冷凍空調装置、および電動機の駆動方法
CN115103985A (zh) * 2020-02-20 2022-09-23 三菱电机株式会社 空调装置
US11996793B2 (en) 2020-02-20 2024-05-28 Mitsubishi Electric Corporation Air conditioning apparatus

Also Published As

Publication number Publication date
EP3534534A4 (en) 2019-11-13
KR20190042705A (ko) 2019-04-24
US10763773B2 (en) 2020-09-01
EP3534534A1 (en) 2019-09-04
JPWO2018078840A1 (ja) 2019-04-11
JP6625762B2 (ja) 2019-12-25
AU2016428282B2 (en) 2020-05-14
CN109863686A (zh) 2019-06-07
EP3534534B1 (en) 2021-10-20
KR102278116B1 (ko) 2021-07-15
CN109863686B (zh) 2022-09-16
AU2016428282A1 (en) 2019-05-02
US20200021222A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018078835A1 (ja) 空気調和機および空気調和機の制御方法
JP6625762B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
WO2018078845A1 (ja) 駆動装置、空気調和機および電動機の駆動方法
WO2018078838A1 (ja) 駆動装置および空気調和機、並びに圧縮機の制御方法
JP6710336B2 (ja) 駆動装置、空気調和機および駆動方法
JP6942184B2 (ja) 駆動装置、圧縮機、空気調和機および駆動方法
JP6800301B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
EP3661047B1 (en) Drive device, compressor, air conditioner, and method for driving embedded permanent magnet-type electric motor
JP6899935B2 (ja) 空気調和機および空気調和機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547067

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197009311

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016428282

Country of ref document: AU

Date of ref document: 20161031

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016920396

Country of ref document: EP

Effective date: 20190531