WO2018078800A1 - 熱交換器及び冷凍サイクル装置 - Google Patents

熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2018078800A1
WO2018078800A1 PCT/JP2016/082072 JP2016082072W WO2018078800A1 WO 2018078800 A1 WO2018078800 A1 WO 2018078800A1 JP 2016082072 W JP2016082072 W JP 2016082072W WO 2018078800 A1 WO2018078800 A1 WO 2018078800A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fin
leeward
heat transfer
transfer tube
Prior art date
Application number
PCT/JP2016/082072
Other languages
English (en)
French (fr)
Inventor
中村 伸
前田 剛志
石橋 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16920027.6A priority Critical patent/EP3534103B1/en
Priority to PCT/JP2016/082072 priority patent/WO2018078800A1/ja
Priority to JP2018547032A priority patent/JP6701371B2/ja
Publication of WO2018078800A1 publication Critical patent/WO2018078800A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular

Definitions

  • the present invention relates to a fin-and-tube heat exchanger and a refrigeration cycle apparatus including the fin-and-tube heat exchanger.
  • a fin-and-tube heat exchanger provided with a plurality of plate-like fins arranged side by side with a predetermined fin pitch interval and a plurality of heat transfer tubes penetrating the fins along the direction in which the fins are arranged in parallel. It has been known.
  • a plurality of openings such as through holes or notches are formed in the plurality of fins, and heat transfer tubes are inserted into these openings.
  • the some heat exchanger tube has become the state which penetrated the fin along the parallel arrangement direction of a fin.
  • the end of each heat transfer tube is connected to a distribution pipe or header that forms a refrigerant flow path together with the heat transfer tube.
  • heat is exchanged between a heat exchange fluid such as air flowing between the fins and a heat exchange fluid such as water or refrigerant flowing in the heat transfer tube.
  • a heat exchanger is known in which cut and raised pieces called slits or louvers that are open in the direction in which air mainly flows are formed. Furthermore, conventionally, a heat exchanger is known in which a protrusion called a scratch or waffle that protrudes in a direction in which air mainly flows is formed. In such a heat exchanger, the surface area to which heat is exchanged is increased by the cut and raised pieces or the protrusions, thereby improving the heat exchange performance.
  • a heat exchanger in which a plurality of flow paths are formed inside a heat transfer tube a heat exchanger in which a groove is formed on the inner surface of the heat transfer tube, and the like are known.
  • Such a heat exchanger also increases the surface area for heat exchange by a plurality of flow paths or grooves, thereby improving the heat exchange performance.
  • Some heat transfer tubes used in such a heat exchanger have a flat shape such as a substantially elliptical shape or a substantially oval shape in cross section.
  • frost is formed on the windward side in the ventilation direction where the absolute humidity of the air is large and the temperature boundary layer becomes thin in the run-up section. It becomes easy.
  • the temperature around the heat transfer tube closest to the refrigerant flowing in the flat heat transfer tube decreases, and the temperature difference from the air increases. Frost.
  • a structure has been proposed in which a sufficient fin region is provided on the windward side so as to suppress the blockage of the interval between the heat transfer tubes even when frost is formed (for example, Patent Document 1).
  • the heat exchanger described in Patent Document 1 has a problem that when the frosting operation is started, the heat exchanger stays in the upper and lower portions of the flat heat transfer tube and is not properly discharged. The drainage of the vessel is not sufficient.
  • the heat exchanger described in Patent Document 2 has a problem that the heat transfer tube on the windward side is exposed, and frost formation starts from this portion, so that the air passage is easily blocked.
  • the heat exchanger having a flat heat transfer tube described in Patent Document 1 or 2 cannot satisfy both drainage performance and frost resistance, and has the above-described problems.
  • the present invention has been made in order to solve the above-described problems, and is a heat exchanger having a flat heat transfer tube, which improves both drainage performance and frost resistance as compared with the prior art. It aims at providing a heat exchanger and a refrigerating cycle device provided with this heat exchanger.
  • the heat exchanger according to the present invention is a heat exchanger in which air is supplied from a fan, and is inserted into the plate-shaped fins, the fins, and the first heat transfer tube having a flat cross section and the fins.
  • a second heat transfer tube that is inserted and arranged in the gravitational direction at a distance from the first heat transfer tube and has a flat cross section, and the wind in the air flow direction of the first heat transfer tube
  • a line connecting the first wind upper end portion that is the upper end portion and the second wind upper end portion that is the windward end portion in the ventilation direction of the second heat transfer tube is defined as a first virtual line,
  • the 1st lee end part which is the leeward end part in the ventilation direction of the 1st heat exchanger tube, and the 2nd lee end part which is the end part of the leeward side in the ventilation direction of the 2nd heat exchanger tube
  • the length of the windward fin region along the direction of air flow from the fan is longer than the length of the leeward fin region. That is, the windward area where the air from the blower fan first hits is relatively long. Accordingly, the gap between the heat transfer tubes is suppressed from being blocked on the windward side of the fin that frosts relatively much during the heating operation.
  • the frost melted during the defrosting operation that is, water droplets
  • the frost melted during the defrosting operation is quickly discharged downward from the windward fin region.
  • the leeward fin region is provided in the fin, when air is supplied from the fan, the water droplets melted during the defrosting operation flow up and down the heat transfer tube and promptly from the leeward fin region. It is discharged downward.
  • both the frosting resistance and the drainage performance can be improved.
  • FIG. 1 It is a refrigerant circuit diagram which shows an example of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. It is a perspective view which shows an example of the outdoor heat exchanger in the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. It is a principal part enlarged view in the outdoor heat exchanger shown in FIG. It is a principal part enlarged view in the outdoor heat exchanger shown in FIG. It is a perspective view which shows the process of inserting a heat exchanger tube and a fin. It is a principal part enlarged view of the outdoor heat exchanger which concerns on the comparative example 1. FIG. It is a principal part enlarged view of the outdoor heat exchanger which concerns on the comparative example 2.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigerant flow during the cooling operation is indicated by a broken line arrow
  • the refrigerant flow during the heating operation is indicated by a solid line arrow.
  • the refrigeration cycle apparatus 501 is an example of a refrigeration cycle apparatus according to the present invention.
  • the refrigeration cycle apparatus 501 includes a compressor 502, an indoor heat exchanger 503, an indoor fan 504, an expansion device 505, an outdoor heat exchanger 10, an outdoor fan 506, and a four-way valve 507. .
  • the compressor 502, the indoor heat exchanger 503, the expansion device 505, the outdoor heat exchanger 10, and the four-way valve 507 are connected by a refrigerant pipe to form a refrigerant circuit.
  • the compressor 502 compresses the refrigerant.
  • the refrigerant compressed by the compressor 502 is discharged and sent to the four-way valve 507.
  • the compressor 502 can be composed of, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor.
  • the indoor heat exchanger 503 functions as a condenser during heating operation and functions as an evaporator during cooling operation.
  • the indoor heat exchanger 503 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or a plate heat exchange. It can be composed of a container or the like.
  • the expansion device 505 expands and decompresses the refrigerant that has passed through the indoor heat exchanger 503 or the outdoor heat exchanger 10.
  • the expansion device 505 may be constituted by, for example, an electric expansion valve that can adjust the flow rate of the refrigerant.
  • an electric expansion valve that can adjust the flow rate of the refrigerant.
  • the expansion device 505 not only an electric expansion valve but also a mechanical expansion valve employing a diaphragm for a pressure receiving portion, a capillary tube, or the like can be applied.
  • the outdoor heat exchanger 10 functions as an evaporator during heating operation and functions as a condenser during cooling operation. Moreover, in order to improve the mounting efficiency at the time of mounting the outdoor heat exchanger 10 in an outdoor unit, there is a configuration in which the heat exchanger is bent with respect to the extending direction of the heat transfer tube. The outdoor heat exchanger 10 will be described in detail later.
  • the four-way valve 507 switches the refrigerant flow between the heating operation and the cooling operation. That is, the four-way valve 507 is switched to connect the discharge port of the compressor 502 and the indoor heat exchanger 503 and connect the suction port of the compressor 502 and the outdoor heat exchanger 10 during the heating operation. Further, the four-way valve 507 is switched to connect the discharge port of the compressor 502 and the outdoor heat exchanger 10 and to connect the suction port of the compressor 502 and the indoor heat exchanger 503 during the cooling operation.
  • the indoor fan 504 is attached to the indoor heat exchanger 503, and supplies air as a heat exchange fluid to the indoor heat exchanger 503.
  • the outdoor fan 506 is attached to the outdoor heat exchanger 10 and supplies air as a heat exchange fluid to the outdoor heat exchanger 10.
  • a high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 502.
  • the refrigerant flows according to the broken line arrows.
  • the single-phase high-temperature and high-pressure gas refrigerant discharged from the compressor 502 flows into the outdoor heat exchanger 10 that functions as a condenser via the four-way valve 507.
  • the outdoor heat exchanger 10 heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the outdoor fan 506, and the high-temperature and high-pressure gas refrigerant is condensed to be a single-phase high-pressure gas refrigerant.
  • the high-pressure liquid refrigerant sent out from the outdoor heat exchanger 10 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 505.
  • the two-phase refrigerant flows into the indoor heat exchanger 503 that functions as an evaporator.
  • heat exchange is performed between the refrigerant in the two-phase state that has flowed in and the air supplied by the indoor fan 504, and the liquid refrigerant evaporates from the refrigerant in the two-phase state. It becomes a low-pressure gas refrigerant.
  • the room is cooled.
  • the low-pressure gas refrigerant sent out from the indoor heat exchanger 503 flows into the compressor 502 via the four-way valve 507, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 502 again. Thereafter, this cycle is repeated.
  • a high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 502.
  • the refrigerant flows according to solid arrows.
  • the single-phase high-temperature and high-pressure gas refrigerant discharged from the compressor 502 flows into the indoor heat exchanger 503 functioning as a condenser via the four-way valve 507.
  • the indoor heat exchanger 503 heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the indoor fan 504, and the high-temperature and high-pressure gas refrigerant is condensed and condensed into a single-phase high-pressure gas refrigerant.
  • the high-pressure liquid refrigerant sent out from the indoor heat exchanger 503 is converted into a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 505.
  • the two-phase refrigerant flows into the outdoor heat exchanger 10 that functions as an evaporator.
  • heat exchange is performed between the refrigerant flowing in the two-phase state and the air supplied by the outdoor fan 506, and the liquid refrigerant evaporates out of the two-phase refrigerant and is single-phased. It becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant sent out from the outdoor heat exchanger 10 flows into the compressor 502 through the four-way valve 507, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 502 again. Thereafter, this cycle is repeated.
  • the refrigerant flowing out of the evaporator is a single-phase gas refrigerant.
  • the indoor heat exchanger 503 functions as an evaporator
  • the outdoor heat exchanger 10 functions as an evaporator.
  • the evaporator when heat exchange is performed between the air supplied from the fan and the refrigerant flowing inside the heat transfer tubes constituting the evaporator, moisture in the air is condensed, Water droplets form on the surface of the evaporator. Water droplets generated on the surface of the evaporator fall down along the surfaces of the fins and the heat transfer tubes, and are discharged as drain water below the evaporator.
  • the outdoor heat exchanger 10 functions as an evaporator during heating operation in a low outside air temperature state. For this reason, the moisture in the air may form frost on the outdoor heat exchanger 10 during the heating operation. For this reason, in a refrigeration cycle apparatus or the like capable of heating operation, a defrosting operation for removing frost is usually performed when the outside air becomes a certain temperature (for example, 0 ° C.) or lower.
  • the defrosting operation is an operation of supplying hot gas, which is a high-temperature and high-pressure gas refrigerant, from the compressor 502 to the outdoor heat exchanger 10 in order to prevent frost from adhering to the outdoor heat exchanger 10 that functions as an evaporator. That is.
  • the defrosting operation may be executed when the duration time of the heating operation reaches a predetermined value (for example, 30 minutes). Further, the defrosting operation may be executed before the heating operation when the outdoor heat exchanger 10 is at a certain temperature (for example, minus 6 ° C.) or less. The frost and ice adhering to the outdoor heat exchanger 10 are melted by the hot gas supplied to the outdoor heat exchanger 10 during the defrosting operation.
  • a bypass refrigerant pipe (not shown) is provided between the discharge port of the compressor 502 and the outdoor heat exchanger 10 so that hot gas can be directly supplied from the compressor 502 to the outdoor heat exchanger 10 during the defrosting operation.
  • the outlet of the compressor 502 is connected to the outdoor heat exchanger 10 via a refrigerant flow switching device such as a four-way valve 507 so that hot gas can be supplied from the compressor 502 to the outdoor heat exchanger 10. It is good also as composition to do.
  • FIG. 2 is a perspective view showing an example of an outdoor heat exchanger in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • 3 and 4 are enlarged views of main parts of the outdoor heat exchanger shown in FIG.
  • FIG. 5 is a perspective view showing a process of inserting a heat transfer tube and fins.
  • the X direction is the lateral direction, and represents the short direction of the fins 30 of the outdoor heat exchanger 10, that is, the direction that is the width direction.
  • the Y direction is a horizontal direction, and represents a direction that is a parallel arrangement direction of the fins 30 that constitute the same heat exchange unit.
  • the Z direction is the vertical direction, that is, the direction of gravity, and represents the direction that is the longitudinal direction of the fin 30.
  • a white arrow represents a flow direction of air supplied from the outdoor fan 506 to the outdoor heat exchanger 10.
  • the outdoor heat exchanger 10 according to the first embodiment is supplied with air in the X direction from the outdoor fan 506 shown in FIG.
  • FIG. 3 has shown the principal part when the outdoor heat exchanger 10 is observed in a Y direction.
  • FIG. 4 shows a main part when the outdoor heat exchanger 10 is observed in the X direction.
  • the outdoor heat exchanger 10 is, for example, a two-row heat exchanger, and includes an upwind heat exchanger 601 and a downwind heat exchanger 602.
  • the windward side heat exchanger 601 and the leeward side heat exchanger 602 are fin-and-tube heat exchangers, and flow in the X direction, which is the flow direction of air supplied from the outdoor fan 506 shown in FIG. Along the line.
  • the windward side heat exchanger 601 is disposed on the windward side in the direction of ventilation of air supplied from the outdoor fan 506, and the leeward side heat exchanger 602 is disposed on the leeward side in the direction of ventilation of air supplied from the outdoor fan 506. Has been.
  • One end of the heat transfer tube of the windward heat exchanger 601 is connected to the windward header collecting tube 603.
  • One end of the heat transfer tube of the leeward heat exchanger 602 is connected to the leeward header collecting tube 604.
  • the other end of the heat transfer tube of the windward side heat exchanger 601 and the other end of the heat transfer tube of the leeward side heat exchanger 602 are connected to the inter-row connection member 605.
  • the outdoor heat exchanger 10 transmits one of the windward side heat exchanger 601 and the leeward side heat exchanger 602 from one of the windward header collecting pipe 603 and the leeward header collecting pipe 604.
  • the refrigerant is distributed to the heat pipe.
  • the refrigerant flowing into the other heat transfer pipes of the windward side heat exchanger 601 and the leeward side heat exchanger 602 joins at the other side of the windward side header collecting pipe 603 and the leeward side header collecting pipe 604, and is sucked into the compressor 502. It flows toward the mouth or squeezing device 505.
  • the windward side heat exchanger 601 and the leeward side heat exchanger 602 have the same configuration. For this reason, below, the wind-side heat exchanger 601 is demonstrated on behalf of both.
  • the windward side heat exchanger 601 and the leeward side heat exchanger 602 correspond to the heat exchanger of the present invention.
  • the outdoor heat can be generated only by either the windward heat exchanger 601 or the leeward heat exchanger 602.
  • the exchanger 10 may be configured.
  • the outdoor heat exchanger 10 includes a plurality of fins 30 and a plurality of heat transfer tubes.
  • the fin 30 is a plate-like member that is long in the vertical direction, and is formed in a rectangular shape that is long in the vertical direction, for example.
  • these fins 30 are arranged side by side with a specified fin pitch interval FP.
  • FIGS. 3 to 5 show two heat transfer tubes as representatives.
  • the first heat transfer tube 21 and the second heat transfer tube 22 are arranged in parallel in the vertical direction with a specified interval.
  • the first heat transfer tube 21 and the second heat transfer tube 22 are respectively inserted in the Y direction, which is a parallel arrangement direction of the plurality of fins 30.
  • the heat tube 21 and the second heat transfer tube 22 penetrate these fins 30.
  • the first heat transfer tube 21 and the second heat transfer tube 22 are flat tubes having a flat cross section cut along a plane orthogonal to the longitudinal direction.
  • the fin 30 of the outdoor heat exchanger 10 includes an upwind fin end portion 131 and a leeward fin end portion 132 as end portions in the X direction, which is the short direction of the fin 30.
  • the first heat transfer tube 21 has an upwind side end portion 141 and a leeward side end portion 142 as an end portion in the X direction that is the short side direction of the fin 30.
  • the second heat transfer tube 22 has a windward side end 241 and a leeward side end 242.
  • the windward end portion 141 of the first heat transfer tube 21 and the windward end portion 241 of the second heat transfer tube 22 are end portions on the windward side in the ventilation direction of the air supplied from the outdoor fan 506.
  • the leeward side end portion 142 of the first heat transfer tube 21 and the leeward side end portion 242 of the second heat transfer tube 22 are end portions on the leeward side in the ventilation direction of the air supplied from the outdoor fan 506.
  • Second imaginary lines 152 that connect the leeward side ends, which are the leeward side ends in the direction of air flow, are defined by a straight line.
  • the windward end portion 141 of the first heat transfer tube 21 and the windward end portion 241 of the second heat transfer tube 22 are connected by a first virtual line 151, and the leeward side of the first heat transfer tube 21.
  • the end 142 and the leeward side end 242 of the second heat transfer tube 22 are connected by a second imaginary line 152.
  • an area defined by the windward fin end portion 131 and the first imaginary line 151 is an upwind fin region 161
  • an area defined by the leeward fin end portion 132 and the second imaginary line 152 is an leeward fin region 162.
  • a region defined by the first virtual line 151 and the second virtual line 152 is defined as a heat transfer tube region 163.
  • the heat transfer tube region 163 is a region where the heat transfer tube exists in a part in the Z direction. In FIG. 3, the first heat transfer tube 21 and the second heat transfer tube 22 exist in the heat transfer tube region 163.
  • the length in the X direction of the windward fin region 161 that is, the length in the ventilation direction
  • the length in the X direction of the leeward fin region 162, that is, the length in the ventilation direction is B
  • the length B is obtained.
  • the length A is longer.
  • the configuration of the comparative example is given a code obtained by adding “1000”, “2000”, and “3000” to the code of the configuration of the first embodiment corresponding to the configuration. It shall be attached.
  • the outdoor heat exchanger of Comparative Example 1 is an outdoor heat exchanger 1010
  • the outdoor heat exchanger of Comparative Example 2 is an outdoor heat exchanger 2010,
  • the outdoor heat exchanger of Comparative Example 3 is an outdoor heat exchanger 3010. Each is shown.
  • FIG. 6 is an enlarged view of a main part of the outdoor heat exchanger according to Comparative Example 1. This FIG. 6 has shown the principal part at the time of observing the outdoor heat exchanger 1010 of the comparative example 1 in the Y direction.
  • the difference between the outdoor heat exchanger 1010 and the outdoor heat exchanger 10 according to Embodiment 1 is that it does not have the leeward fin region 162 shown in FIG.
  • the leeward side end portion 1142 of the first heat transfer tube 1021, the leeward side end portion 1242 of the second heat transfer tube 1022, and the leeward side fin end portion 1132 include: It is located at the same position in the X direction. Further, the length A1 in the X direction of the windward fin region 1161 is longer than the length A in the X direction of the windward fin region 161 of the first embodiment shown in FIG.
  • the outdoor heat exchanger 1010 of Comparative Example 1 has excellent frosting resistance because the length of the windward fin region 1161 in the X direction is long. However, the outdoor heat exchanger 1010 does not have a leeward fin region. Therefore, after the frost is melted in the defrosting operation, when the fan is operated again and the frosting operation is started, the upper and lower portions of the first heat transfer tube 1021 and the second heat transfer tube 2022 in the vicinity of the leeward fin end portion 1132. Molten water droplets stay in the water and are not discharged properly. That is, the outdoor heat exchanger 1010 of Comparative Example 1 is not sufficiently drainable. As a result, the water droplets that have accumulated again become a resistance to the ventilation path, reducing the frost resistance, and increasing the amount of heat required for defrosting, which also affects the increase in defrosting time. End up.
  • FIG. 7 is an enlarged view of a main part of an outdoor heat exchanger according to Comparative Example 2.
  • This FIG. 7 has shown the principal part at the time of observing the outdoor heat exchanger 2010 of the comparative example 2 in a Y direction.
  • the outdoor heat exchanger 2010 is different from the outdoor heat exchanger 10 according to Embodiment 1 in that it does not have the upwind fin region 161 shown in FIG. Therefore, in the outdoor heat exchanger 2010 of Comparative Example 2, the windward end portion 2141 of the first heat transfer tube 2021, the windward end portion 2241 of the second heat transfer tube 2022, and the windward fin end portion 2131 are: It is located at the same position in the X direction. Further, the length B2 in the X direction of the leeward fin region 2162 is longer than the length B in the X direction of the leeward fin region 162 of the first embodiment shown in FIG.
  • the length of the leeward fin region 2162 in the X direction is long, so that the frost is melted in the defrosting operation and then the fan is started again to start the frosting operation. Since the water droplets are discharged behind the fins by the air current, the drainage is relatively good. However, the first heat transfer tube 2021 and the second heat transfer tube 2022 are exposed on the windward side. As a result, there is a problem that the frost spreads from the exposed portion as a starting point, which makes it easy to block the air passage, and the frost resistance as a heat exchanger is not sufficient.
  • FIG. 8 is an enlarged view of a main part of an outdoor heat exchanger according to Comparative Example 3.
  • FIG. 8 shows a main part when the outdoor heat exchanger 3010 of Comparative Example 3 is observed in the Y direction.
  • the difference between the outdoor heat exchanger 3010 and the outdoor heat exchanger 10 according to Embodiment 1 is that the length A3 of the windward fin region 3161 in the X direction is equal to the length B3 of the leeward fin region 3162 in the X direction. Is a point.
  • the frost is melted in the defrosting operation
  • the fan is operated again and the frosting operation is started
  • the melted water droplets are discharged to the rear of the fins by the air flow, so that the drainage is relatively good.
  • the first heat transfer tube 3021 and the second heat transfer tube 3022 are close to the windward fin end portion 3131, and the frosting resistance as a heat exchanger is not sufficient.
  • the outdoor heat exchanger 10 according to the first embodiment has a leeward fin region 162 as in the comparative example 3. Therefore, even after the frost is melted in the defrosting operation, even when the fan is operated again and the frosting operation is started, the melted water droplets are discharged to the rear of the fin by the air flow, so that the drainage is relatively good. Furthermore, since the length A in the X direction of the leeward fin region 161 is longer than the length B in the X direction of the leeward fin region 162 during the frosting operation, the frosting resistance is also improved.
  • the leeward heat exchanger 602 also has the same configuration as the leeward heat exchanger 601. Accordingly, the same effect can be obtained in the leeward heat exchanger 602.
  • the refrigeration cycle apparatus 501 including the two-row outdoor heat exchanger 10 in which the windward side heat exchanger 601 and the leeward side heat exchanger 602 are arranged in parallel, the time required for the defrosting operation is shortened. The amount of heat required for frost operation can be reduced.
  • the refrigeration cycle apparatus 501 according to the first embodiment reduces the residual water of the outdoor heat exchanger 10 during the frosting operation, and further delays the blockage of the air path of the outdoor heat exchanger 10 during the frosting operation. Thus, it is possible to improve reliability, reduce ventilation resistance, and improve frost resistance. That is, according to the first embodiment, it is possible to improve the average heating capacity in the defrosting frost cycle of the refrigeration cycle apparatus 501.
  • Embodiment 2 FIG.
  • the first heat transfer tube 21 and the second heat transfer tube 22 are parallel in the flow direction of the air supplied from the outdoor fan 506 and extend perpendicular to the Z direction, which is the direction of gravity. Is arranged.
  • the angles of the first heat transfer tube 21 and the second heat transfer tube 22 are not limited to the configuration of the first embodiment.
  • the arrangement shown in the second embodiment may be used.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 9 is an enlarged view of a main part of the outdoor heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 9 shows the main part when the outdoor heat exchanger 10 is observed in the Y direction, similarly to FIG. 3.
  • the difference between the outdoor heat exchanger 10 according to the second embodiment and the first embodiment is that, in the fin 31, the heat transfer tube is inclined downward in the gravitational direction from the windward end to the leeward end. It is a point.
  • the first heat transfer tube 21 is inclined so that the leeward side end portion 142 is located below the leeward side end portion 141 in the gravity direction.
  • the 2nd heat exchanger tube 22 inclines so that the leeward side edge part 242 may be located below the windward side edge part 241 in the gravity direction. That is, the first heat transfer tube 21 is inclined downward in the gravitational direction from the windward end portion 141 toward the leeward end portion 142, and the second heat transfer tube 22 is inclined from the windward end portion 241 to the leeward end portion. Inclined downward toward the direction of gravity 242.
  • the outdoor heat exchanger 10 is configured so that water that melts on the heat transfer tube region 163 is gravity-induced in a state where air is not supplied from the outdoor fan 506 shown in FIG. And the effect of the inclination of the first heat transfer tube 21 and the second heat transfer tube 22 can be led out to the leeward side and discharged through the leeward fin region 162. Further, even in a state where air is supplied from the outdoor fan 506, that is, during the frosting operation after the defrosting operation, the first heat transfer tube 21 and the second heat transfer tube 21 are inclined downwardly in the direction of gravity along the airflow direction. Since the heat pipe 22 is arranged, it is possible to lead water droplets to the leeward side and promote drainage. As described above, according to the second embodiment, the drainage of the outdoor heat exchanger 10 can be improved.
  • Embodiment 3 FIG.
  • the outdoor heat exchanger 10 is a two-row heat exchanger, and the windward side heat exchanger 601 and the leeward side heat exchanger 602 constituting the outdoor heat exchanger 10 are the same. It has the composition of. However, the structure of the heat exchanger used in the present invention may be changed depending on the row.
  • items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 10 is an enlarged view of a main part of the outdoor heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 10 shows a main part when the windward side heat exchanger 601 and the leeward side heat exchanger 602 constituting the outdoor heat exchanger 10 are observed in the Y direction.
  • the fins 31 of the windward heat exchanger 601 of the outdoor heat exchanger 10 according to the third embodiment have the same configuration as the fins 31 of the second embodiment.
  • the difference between the outdoor heat exchanger 10 according to the third embodiment and the second embodiment is that the length A_2 in the X direction of the windward fin region 161 ′ of the fin 32 of the leeward heat exchanger 602 is the windward heat. This is a point shorter than the length A_1 in the X direction of the upwind fin region 161 in the fin 31 of the exchanger 601.
  • the outdoor heat exchanger 10 may adopt a bent configuration in order to improve mounting efficiency when mounted on the outdoor unit.
  • the leeward fin region 162 of the fin 31 of the upwind heat exchanger 601 and the upwind fin region 161 ′ of the fin 32 of the leeward heat exchanger 602 are regions facing each other. Therefore, when the outdoor heat exchanger 10 is bent, the leeward fin region 162 and the leeward fin region 161 ′ are likely to be loaded from each other, and the fin 31 and the fin 32 may be buckled.
  • the outdoor heat exchanger 10 uses the length A_2 in the X direction of the windward fin region 161 ′ in the fins 32 of the leeward heat exchanger 602 as the windward heat exchange.
  • the upwind fin region 161 of the fin 31 of the vessel 601 is configured to be shorter than the length A_1 in the X direction. Therefore, the buckling strength of the leeward fin region 161 ′ in the fins 32 of the leeward heat exchanger 602 can be increased.
  • the length B_1 in the X direction of the leeward fin region 162 is shorter than the length A_1 in the X direction of the upwind fin region 161. The strength is relatively high.
  • the frosting resistance of the outdoor heat exchanger 10 will be described.
  • the air flowing through the outdoor heat exchanger 10 first hits the upwind heat exchanger 601. Then, moisture contained in the air forms frost on the leeward heat exchanger 601, and then the air hits the leeward heat exchanger 602. At this time, since the air is dehumidified to some extent, the amount of frost on the leeward heat exchanger 602 is smaller than the amount of frost on the leeward heat exchanger 601. Therefore, in the leeward heat exchanger 602, even if only the length A_2 in the X direction of the windward fin region 161 'of the fin 32 is shortened, the influence on the frost resistance of the outdoor heat exchanger 10 is small.
  • the third embodiment it is possible to improve the productivity such as buckling strength as compared with the related art while ensuring the frosting resistance of the outdoor heat exchanger 10.
  • FIG. 10 shows an example in which each heat transfer tube is inclined
  • the present invention is not limited to this.
  • the length A_2 of the windward fin region 161 ′ of the fin 32 of the leeward heat exchanger 602 in the X direction is shorter than the length A_1 of the windward fin region 161 of the fin 31 of the windward heat exchanger 601 in the X direction. If it is, each heat exchanger tube does not need to be inclined.
  • FIG. FIG. 11 is an enlarged view of a main part of an outdoor heat exchanger according to Embodiment 4 of the present invention.
  • the length A_1 in the X direction of the upwind fin region 161 is the X direction of the leeward fin region 162. Longer than the length B_1.
  • the length B_2 in the X direction of the leeward fin region 162 ′ of the fin 33 of the leeward heat exchanger 602 is the same as the length A_1 of the leeward fin region 161 in the fin 31 of the windward heat exchanger 601 in the X direction.
  • the length A_2 in the X direction of the windward fin region 161 ′ of the fin 33 of the leeward heat exchanger 602 is the length B_1 of the leeward fin region 162 in the fin 31 of the windward heat exchanger 601 in the X direction.
  • the leeward heat exchanger 602 has a configuration in which the leeward heat exchanger 601 is inverted vertically and horizontally.
  • the windward side heat exchanger 601 can be used as the leeward side heat exchanger 602 by arranging it upside down and horizontally. Therefore, it is not necessary to prepare equipment for manufacturing the leeward heat exchanger 602 in addition to equipment for manufacturing the leeward heat exchanger 601, and an increase in manufacturing cost can be suppressed.
  • each heat exchanger tube inclined is shown in FIG. 11, it is not restricted to this.
  • the length A_1 in the X direction of the upwind fin region 161 is longer than the length B_1 in the X direction of the downwind fin region 162, and the downwind heat exchanger 602
  • each heat transfer tube may not be inclined.
  • the heat exchanger according to each embodiment is used as the outdoor heat exchanger 10, but the present invention is not limited to this.
  • the heat exchangers of Embodiments 1 to 4 may be used as the indoor heat exchanger 503 shown in FIG. In that case, by reducing the moisture remaining in the indoor heat exchanger 503, the input of the indoor fan 504 can be reduced, and the energy consumption of the refrigeration cycle apparatus 501 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

ファンから空気が供給される熱交換器は、板状のフィンと、フィンに挿入された扁平形状の第1の伝熱管と、フィンに挿入され、第1の伝熱管と間隔をおいて重力方向に並んで配置された扁平形状の第2の伝熱管とを備える。第1の伝熱管の風上側の端部である第1の風上端部と、第2の伝熱管の風上側の端部である第2の風上端部とを結ぶ線を第1の仮想線とし、第1の伝熱管の風下側の端部である第1の風下端部と、第2の伝熱管の風下側の端部である第2の風下端部とを結ぶ線を第2の仮想線としたとき、フィンの風上側の端部と第1の仮想線とで画定される風上フィン領域の、ファンからの空気の通風方向に沿った長さは、第2の仮想線とフィンの風下側の端部とで画定される風下フィン領域の通風方向に沿った長さより長い。

Description

熱交換器及び冷凍サイクル装置
 本発明は、フィンアンドチューブ型の熱交換器、及びフィンアンドチューブ型の熱交換器を備えた冷凍サイクル装置に関するものである。
 従来、所定のフィンピッチ間隔を空けて並設された板状の複数のフィンと、フィンの並設方向に沿ってフィンを貫通する複数の伝熱管とを備えたフィンアンドチューブ型の熱交換器が知られている。
 複数のフィンには貫通孔又は切り欠き等の開口部が複数形成され、これらの開口部に伝熱管が挿入される。これにより、複数の伝熱管は、フィンの並設方向に沿ってフィンを貫通した状態となっている。各伝熱管の端部は、伝熱管とともに冷媒流路を形成する分配管又はヘッダに接続されている。そして、熱交換器において、フィンの間を流動する空気等の熱交換流体と、伝熱管内を流動する水又は冷媒等の被熱交換流体との間で熱が交換される。
 また、従来、空気が主に流れる方向に向けて開口したスリット又はルーバーと呼称される切り起こし片が形成されている熱交換器が知られている。さらに、従来、空気が主に流れる方向に対し突出したスクラッチ又はワッフルと呼称される突出部が形成されている熱交換器が知られている。このような熱交換器においては、切り起こし片又は突出部によって、熱交換される表面積を増やし、熱交換性能を向上させている。
 さらには、従来、伝熱管の内部に複数の流路が形成された熱交換器、伝熱管の内面に溝が形成された熱交換器等が知られている。このような熱交換器も、複数の流路又は溝によって、熱交換される表面積を増やし、熱交換性能を向上させている。
 このような熱交換器に用いられる伝熱管には、断面が略楕円形状又は略長円形状等の扁平形状となっているものがある。ところで、例えば外気温度が氷点下となる環境で熱交換器が蒸発器として動作する場合、空気の絶対湿度が大きく、かつ助走区間となり温度境界層の薄くなる通風方向の風上側に、着霜が生じやすくなる。特に、熱交換器の外表面においては、扁平形状の伝熱管内を流れる冷媒に最も近接した伝熱管周囲の部位の温度が低下し、空気との温度差が大きくなるため、この部位に多く着霜する。そこで、風上側に十分なフィン領域を設け、着霜しても伝熱管同士の間隔の閉塞を抑制するよう構成したものが提案されている(例えば、特許文献1)。
 一方で、霜は除霜運転によって融解されて水滴となる。除霜運転が終了すると、再び着霜運転が開始され、熱交換器を空気が通風し始める。そのため、除霜運転で発生した水滴が後方へ移動し、扁平形状の伝熱管の上部又は下部に滞留し、適切に排出されないという問題がある。そこで、通風方向の風下側にフィン領域を設け、通風開始後の水滴滞留の抑制を図ったものも提案されている(例えば、特許文献2)。
特許第3264525号公報 特許第5736794号公報
 しかしながら、特許文献1に記載の熱交換器は、先述の通り、着霜運転が開始されると、扁平形状の伝熱管の上部及び下部に滞留し、適切に排出されないという問題があり、熱交換器の排水性が十分ではない。また特許文献2に記載の熱交換器は、風上側の伝熱管が剥き出しになっており、当部を起点に着霜が広がることで、風路が閉塞しやすくなるという問題があった。
 ここで、除霜運転が終了して暖房運転が開始された際、伝熱管領域に水滴が残っていると、該水滴は再び氷結して成長することになる。従って、除霜運転終了後、暖房運転開始時の伝熱管領域における水滴の残留は、伝熱管の損傷等による信頼性の低下につながる。また、再氷結により伝熱管の周囲が霜で塞がれるため、通風抵抗の増加に影響すると共に、着霜に対する性能維持力である着霜耐力の低下を招く。また、次回の除霜運転時においては、暖房運転時に熱交換器に付着した霜だけではなく、氷結した水滴も溶かす必要がある。このため、除霜時間の増加による快適性の低下、及び、暖房運転と除霜運転とを繰り返すことによる一定時間における平均暖房能力の低下を招く。また着霜により風路が閉塞されると、風量が低下することで、暖房運転中の能力の低下を招く。
 すなわち、特許文献1又は2に記載の扁平形状の伝熱管を有する熱交換器は、排水性能と着霜耐力を共に満たすことができず、上述のような課題を有していた。
 本発明は、上記のような課題を解決するためになされたものであり、扁平形状の伝熱管を有する熱交換器であって、従来よりも排水性能及び着霜耐力を両立して向上させた熱交換器、及びこの熱交換器を備えた冷凍サイクル装置を提供することを目的とする。
 本発明に係る熱交換器は、ファンから空気が供給される熱交換器であって、板状のフィンと、前記フィンに挿入され、断面が扁平形状の第1の伝熱管と、前記フィンに挿入され、前記第1の伝熱管と間隔をおいて重力方向に並んで配置され、断面が扁平形状の第2の伝熱管とを備え、前記第1の伝熱管の前記空気の通風方向における風上側の端部である第1の風上端部と、前記第2の伝熱管の前記通風方向における風上側の端部である第2の風上端部とを結ぶ線を第1の仮想線とし、前記第1の伝熱管の前記通風方向における風下側の端部である第1の風下端部と、前記第2の伝熱管の前記通風方向における風下側の端部である第2の風下端部とを結ぶ線を第2の仮想線としたとき、前記フィンは、前記フィンの前記通風方向における風上側の端部と前記第1の仮想線とで画定される風上フィン領域と、前記第1の仮想線と前記第2の仮想線とで画定される伝熱管領域と、前記第2の仮想線と前記フィンの前記通風方向における風下側の端部とで画定される風下フィン領域とを有しており、前記通風方向に沿った前記風上フィン領域の長さは、前記通風方向に沿った前記風下フィン領域の長さより長いものである。
 熱交換器を冷凍サイクルの室外熱交換器として搭載し暖房運転を行うと、送風ファンから送られてくる外気中の水分が熱交換器に着霜し、その後、除霜運転を行うと霜は融解する。本発明によれば、熱交換器のフィンにおいて、ファンから供給される空気の通風方向に沿った風上フィン領域の長さは、風下フィン領域の長さよりも長くなっている。すなわち、送風ファンからの空気が最初にあたる風上側の領域が相対的に長く設けられている。従って、暖房運転時に比較的多く着霜するフィンの風上側において、伝熱管同士の間隔が閉塞することが抑制される。そして、除霜運転中に融解した霜、すなわち水滴は、風上フィン領域から速やかに下方へ排出される。また、本発明よれば、フィンに風下フィン領域が設けられているため、ファンより空気が供給されると、除霜運転中に融解した水滴は伝熱管上下を流動し、風下フィン領域から速やかに下方へ排出される。
 以上のように、本発明によれば、熱交換器及びこの熱交換器を備えた冷凍サイクル装置において、着霜耐力及び排水性能を共に向上させることができる。
本発明の実施の形態1に係る冷凍サイクル装置の一例を示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置における室外熱交換器の一例を示す斜視図である。 図2に示す室外熱交換器における要部拡大図である。 図2に示す室外熱交換器における要部拡大図である。 伝熱管とフィンを挿入する工程を示す斜視図である。 比較例1に係る室外熱交換器の要部拡大図である。 比較例2に係る室外熱交換器の要部拡大図である。 比較例3に係る室外熱交換器の要部拡大図である。 本発明の実施の形態2に係る室外熱交換器における要部拡大図である。 本発明の実施の形態3に係る室外熱交換器における要部拡大図である。 本発明の実施の形態4に係る室外熱交換器における要部拡大図である。
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 はじめに、本発明の実施の形態1に係る冷凍サイクル装置501について説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置の一例を示す冷媒回路図である。なお、図1では、冷房運転時の冷媒の流れを破線矢印で示し、暖房運転時の冷媒の流れを実線矢印で示している。また、冷凍サイクル装置501は、本発明に係る冷凍サイクル装置の一例である。
[冷凍サイクル装置501の構成]
 図1に示すように、冷凍サイクル装置501は、圧縮機502、室内熱交換器503、室内ファン504、絞り装置505、室外熱交換器10、室外ファン506、及び、四方弁507を備えている。圧縮機502、室内熱交換器503、絞り装置505、室外熱交換器10及び四方弁507が冷媒配管によって接続され、冷媒回路が形成されている。
 圧縮機502は、冷媒を圧縮するものである。圧縮機502で圧縮された冷媒は、吐出されて四方弁507へ送られる。圧縮機502は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、又は往復圧縮機等で構成することができる。
 室内熱交換器503は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能するものである。室内熱交換器503は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又はプレート熱交換器等で構成することができる。
 絞り装置505は、室内熱交換器503又は室外熱交換器10を経由した冷媒を膨張させて減圧するものである。絞り装置505は、例えば冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、絞り装置505としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、又はキャピラリーチューブ等を適用することも可能である。
 室外熱交換器10は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能するものである。また、室外熱交換器10は、室外機に搭載する際の実装効率を向上させるため、伝熱管の延長方向に対し、熱交換器を曲げた構成も存在する。室外熱交換器10については、後段で詳細に説明する。
 四方弁507は、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。つまり、四方弁507は、暖房運転時、圧縮機502の吐出口と室内熱交換器503とを接続し、圧縮機502の吸入口と室外熱交換器10とを接続するように切り替えられる。また、四方弁507は、冷房運転時、圧縮機502の吐出口と室外熱交換器10とを接続し、圧縮機502の吸入口と室内熱交換器503とを接続するように切り替えられる。
 室内ファン504は、室内熱交換器503に付設されており、室内熱交換器503に熱交換流体である空気を供給するものである。室外ファン506は、室外熱交換器10に付設されており、室外熱交換器10に熱交換流体である空気を供給するものである。
[冷凍サイクル装置501の動作]
 次に、冷凍サイクル装置501の動作について、冷媒の流れとともに説明する。まず、冷凍サイクル装置501が実行する冷房運転について説明する。なお、冷房運転時の冷媒の流れは、図1に破線矢印で示している。ここでは、熱交換流体が空気であり、被熱交換流体が冷媒である場合を例に、冷凍サイクル装置501の動作について説明する。
 図1に示すように、圧縮機502を駆動させることによって、圧縮機502から高温高圧のガス状態の冷媒が吐出する。以下、破線矢印に従って冷媒が流れる。圧縮機502から吐出した単相の高温高圧のガス冷媒は、四方弁507を介して凝縮器として機能する室外熱交換器10に流れ込む。室外熱交換器10では、流れ込んだ高温高圧のガス冷媒と、室外ファン506によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して単相の高圧の液冷媒になる。
 室外熱交換器10から送り出された高圧の液冷媒は、絞り装置505によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室内熱交換器503に流れ込む。室内熱交換器503では、流れ込んだ二相状態の冷媒と、室内ファン504によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して単相の低圧のガス冷媒になる。この熱交換によって、室内が冷却されることになる。室内熱交換器503から送り出された低圧のガス冷媒は、四方弁507を介して圧縮機502に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機502から吐出する。以下、このサイクルが繰り返される。
 次に、冷凍サイクル装置501が実行する暖房運転について説明する。なお、暖房運転時の冷媒の流れは、図1に実線矢印で示している。
 図1に示すように、圧縮機502を駆動させることによって、圧縮機502から高温高圧のガス状態の冷媒が吐出する。以下、実線矢印に従って冷媒が流れる。圧縮機502から吐出した単相の高温高圧のガス冷媒は、四方弁507を介して凝縮器として機能する室内熱交換器503に流れ込む。室内熱交換器503では、流れ込んだ高温高圧のガス冷媒と、室内ファン504によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して単相の高圧の液冷媒になる。この熱交換によって、室内が暖房されることになる。
 室内熱交換器503から送り出された高圧の液冷媒は、絞り装置505によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室外熱交換器10に流れ込む。室外熱交換器10では、流れ込んだ二相状態の冷媒と、室外ファン506によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して単相の低圧のガス冷媒になる。
 室外熱交換器10から送り出された低圧のガス冷媒は、四方弁507を介して圧縮機502に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機502から吐出する。以下、このサイクルが繰り返される。
 上記の冷房運転及び暖房運転の際、圧縮機502に冷媒が液状態で流入すると、液圧縮を起こし、圧縮機502の故障の原因となってしまう。そのため、蒸発器から流出する冷媒は単相のガス冷媒となっていることが望ましい。冷房運転時では、室内熱交換器503が蒸発器として機能し、暖房運転時では、室外熱交換器10が蒸発器として機能している。
 ここで、蒸発器では、ファンから供給される空気と、蒸発器を構成している伝熱管の内部を流動する冷媒との間で熱交換が行われる際に、空気中の水分が凝縮し、蒸発器の表面に水滴が生ずる。蒸発器の表面に生じた水滴は、フィン及び伝熱管の表面を伝って下方に落下していき、ドレン水として蒸発器の下方に排出される。
 また、室外熱交換器10は、低外気温状態となっている暖房運転時、蒸発器として機能する。このため、暖房運転時、空気中の水分が室外熱交換器10に着霜することがある。そのため、暖房運転が可能な冷凍サイクル装置等では、通常、外気が一定温度(例えば、0℃)以下となったときに霜を除去するための除霜運転を行うようになっている。
 除霜運転とは、蒸発器として機能する室外熱交換器10に霜が付着するのを防ぐために、圧縮機502から室外熱交換器10に高温高圧のガス冷媒であるホットガスを供給する運転のことである。なお、除霜運転を、暖房運転の継続時間が所定値(例えば、30分)に達した場合に実行するようにしてもよい。また、除霜運転を、室外熱交換器10が一定温度(例えば、マイナス6℃)以下の場合に、暖房運転を行う前に実行するようにしてもよい。室外熱交換器10に付着した霜及び氷は、除霜運転時に室外熱交換器10に供給されるホットガスによって融解される。
 例えば、除霜運転時に圧縮機502から室外熱交換器10にホットガスを直接的に供給できるように、圧縮機502の吐出口と室外熱交換器10との間を不図示のバイパス冷媒配管で接続する構成にできる。また、圧縮機502から室外熱交換器10にホットガスを供給できるように、圧縮機502の吐出口を、例えば四方弁507等の冷媒流路切替装置を介して、室外熱交換器10に接続する構成としてもよい。
[室外熱交換器10の詳細]
 図2は、本発明の実施の形態1に係る冷凍サイクル装置における室外熱交換器の一例を示す斜視図である。図3及び図4は、図2に示す室外熱交換器における要部拡大図である。図5は、伝熱管とフィンを挿入する工程を示す斜視図である。なお、図2以降において、X方向は横方向であり、室外熱交換器10のフィン30の短手方向、すなわち幅方向となる方向を表している。Y方向は横方向であり、同一の熱交換部を構成するフィン30の並設方向となる方向を表している。Z方向は上下方向、すなわち重力方向であり、フィン30の長手方向となる方向を表している。白抜き矢印は、室外ファン506から室外熱交換器10へ供給される空気の流れ方向を表している。図2からわかるように、本実施の形態1に係る室外熱交換器10は、図1に示す室外ファン506からX方向に空気が供給される。また、図3は、Y方向に室外熱交換器10を観察した際の、要部を示している。また、図4は、X方向に室外熱交換器10を観察した際の、要部を示している。
 室外熱交換器10は、例えば二列構造の熱交換器であり、風上側熱交換器601及び風下側熱交換器602を備えている。これら風上側熱交換器601及び風下側熱交換器602は、フィンアンドチューブ型熱交換器であり、図1に示す室外ファン506から供給される空気の流れ方向、すなわち通風方向であるX方向に沿って並設されている。風上側熱交換器601は、室外ファン506から供給される空気の通風方向において風上側に配置され、風下側熱交換器602は、室外ファン506から供給される空気の通風方向において風下側に配置されている。風上側熱交換器601の伝熱管の一端は、風上側ヘッダ集合管603に接続されている。風下側熱交換器602の伝熱管の一端は、風下側ヘッダ集合管604に接続されている。また、風上側熱交換器601の伝熱管の他端と、風下側熱交換器602の伝熱管の他端とは、列間接続部材605に接続されている。
 つまり、本実施の形態1に係る室外熱交換器10は、風上側ヘッダ集合管603及び風下側ヘッダ集合管604の一方から、風上側熱交換器601及び風下側熱交換器602の一方の伝熱管に冷媒が分配される。そして、風上側熱交換器601及び風下側熱交換器602の一方の伝熱管に分配された冷媒は、列間接続部材605を介して、風上側熱交換器601及び風下側熱交換器602の他方の伝熱管に流入する。その後、風上側熱交換器601及び風下側熱交換器602の他方の伝熱管に流入した冷媒は、風上側ヘッダ集合管603及び風下側ヘッダ集合管604の他方で合流し、圧縮機502の吸入口又は絞り装置505の方へ流れていく。
 なお、本実施の形態1では、風上側熱交換器601及び風下側熱交換器602は、同様の構成を有している。このため、以下では、双方を代表して、風上側熱交換器601について説明する。ここで、風上側熱交換器601及び風下側熱交換器602が、本発明の熱交換器に相当する。なお、風上側熱交換器601又は風下側熱交換器602の一方で室外熱交換器10の熱交換負荷を賄える場合、風上側熱交換器601又は風下側熱交換器602の一方のみで室外熱交換器10を構成しても勿論よい。
 図3、図4及び図5に示すように、室外熱交換器10は、複数のフィン30及び複数の伝熱管を備えている。詳しくは、フィン30は、上下方向に長い板状の部材であり、例えば、上下方向に長い矩形状に形成されている。図4に示されるように、同一の熱交換部において、これらフィン30は、規定のフィンピッチ間隔FPを空けて並設されている。
 複数の伝熱管について、図3~図5では、代表して2本の伝熱管を記載している。ここでは、Z方向上部に位置するものを第1の伝熱管21、またZ方向下部に位置するものを第2の伝熱管22とそれぞれ定義する。図3及び図4に示されるように、第1の伝熱管21及び第2の伝熱管22は、上下方向に規定の間隔を空けて並設されている。また、図5に示されるように、第1の伝熱管21及び第2の伝熱管22は、それぞれ、複数のフィン30の並設方向であるY方向に対し挿入されており、第1の伝熱管21及び第2の伝熱管22はこれらフィン30を貫通している。第1の伝熱管21及び第2の伝熱管22は、長手方向と直交する面で切断した断面が扁平形状となっている扁平管である。
 また、本実施の形態1では、室外熱交換器10のフィン30は、該フィン30の短手方向であるX方向の端部として、風上側フィン端部131と、風下側フィン端部132を有している。また、フィン30を貫通している伝熱管に関して、該フィン30の短手方向であるX方向の端部として、第1の伝熱管21は風上側端部141と風下側端部142と有し、第2の伝熱管22は風上側端部241と風下側端部242とを有している。第1の伝熱管21の風上側端部141及び第2の伝熱管22の風上側端部241は、室外ファン506から供給される空気の通風方向における風上側の端部である。第1の伝熱管21の風下側端部142及び第2の伝熱管22の風下側端部242は、室外ファン506から供給される空気の通風方向における風下側の端部である。
 なお、本実施の形態1に係る室外熱交換器10の着霜作用及び排水作用を説明するため、以下のように定義する。
 各伝熱管の室外ファン506から供給される空気の通風方向における風上側の端部である風上側端部同士を直線で結ぶ第1の仮想線151、各伝熱管の室外ファン506から供給される空気の通風方向における風下側の端部である風下側端部同士を直線で結ぶ第2の仮想線152を定義し、それぞれ一点鎖線にて示す。図3では、第1の伝熱管21の風上側端部141と第2の伝熱管22の風上側端部241とが第1の仮想線151で結ばれ、第1の伝熱管21の風下側端部142と第2の伝熱管22の風下側端部242とが第2の仮想線152で結ばれている。また、風上側フィン端部131と第1の仮想線151により画定される領域を風上フィン領域161、風下側フィン端部132と第2の仮想線152により画定される領域を風下フィン領域162、また第1の仮想線151と第2の仮想線152により画定される領域を伝熱管領域163と定義する。伝熱管領域163は、Z方向の一部に伝熱管が存在する領域である。図3では、伝熱管領域163に、第1の伝熱管21及び第2の伝熱管22が存在している。また、風上フィン領域161のX方向の長さ、すなわち通風方向の長さをAとし、風下フィン領域162のX方向の長さ、すなわち通風方向の長さをBとすると、長さBに比べ、長さAが長くなっている。
[室外熱交換器10の着霜作用及び排水作用]
 続いて、本実施の形態1に係る室外熱交換器10の着霜作用及び排水作用について説明する。なお、本実施の形態1に係る室外熱交換器10の効果の理解を容易とするため、以下では、まず比較例1、比較例2、及び比較例3の室外熱交換器の構成について説明する。その後、本実施の形態1に係る室外熱交換器10の着霜作用及び排水作用を説明する。
 なお、比較例1~3を示す際、比較例の構成には、当該構成と対応する本実施の形態1の構成の符号にそれぞれ「1000」、「2000」、「3000」を加えた符号を付すものとする。例えば、比較例1の室外熱交換器は、室外熱交換器1010、比較例2の室外熱交換器は、室外熱交換器2010、比較例3の室外熱交換器は、室外熱交換器3010とそれぞれ示す。
[比較例1]
 図6は、比較例1に係る室外熱交換器の要部拡大図である。この図6は、Y方向に比較例1の室外熱交換器1010を観察した際の要部を示している。室外熱交換器1010が本実施の形態1に係る室外熱交換器10と異なる点は、図3に示されている風下フィン領域162を有していない点である。このため、比較例1の室外熱交換器1010においては、第1の伝熱管1021の風下側端部1142、第2の伝熱管1022の風下側端部1242、及び風下側フィン端部1132が、X方向において同一位置に位置している。また、風上フィン領域1161のX方向の長さA1が、図3に示す、本実施の形態1の風上フィン領域161のX方向の長さAより長くなっている。
 比較例1の室外熱交換器1010は、風上フィン領域1161のX方向の長さが長いため、着霜耐力は優れている。しかしながら、室外熱交換器1010は風下フィン領域を有していない。そのため、除霜運転で霜を融解した後に、再度ファンが稼働し着霜運転が始まると、風下側フィン端部1132の近傍において第1の伝熱管1021及び第2の伝熱管2022の上部及び下部に融解した水滴が滞留し、適切に排出されない。すなわち、比較例1の室外熱交換器1010は排水性が十分ではない。そのため、滞留した水滴が再び氷結することで、通風路に対する抵抗体となり、着霜耐力も低減してしまい、さらに除霜に必要な熱量が増加することで、除霜時間の増加にも影響してしまう。
[比較例2]
 図7は、比較例2に係る室外熱交換器の要部拡大図である。この図7は、Y方向に比較例2の室外熱交換器2010を観察した際の要部を示している。室外熱交換器2010が本実施の形態1に係る室外熱交換器10と異なる点は、図3に示されている風上フィン領域161を有していない点である。このため、比較例2の室外熱交換器2010においては、第1の伝熱管2021の風上側端部2141、第2の伝熱管2022の風上側端部2241、及び風上側フィン端部2131が、X方向において同一位置に位置している。また、風下フィン領域2162のX方向の長さB2が、図3に示す、本実施の形態1の風下フィン領域162のX方向の長さBより長くなっている。
 比較例2の室外熱交換器2010は、風下フィン領域2162のX方向の長さが長いため、除霜運転で霜を融解した後に、再度ファンが稼働し着霜運転が始まる場合にも、融解した水滴は、気流によりフィン後方へ排出されるため、排水性は比較的良好である。しかしながら、風上側において第1の伝熱管2021及び第2の伝熱管2022が剥き出しになっている。その結果、この剥き出している部分を起点に着霜が広がることで、風路を閉塞しやすくなるという問題があり、熱交換器としての着霜耐力は十分ではない。
[比較例3]
 図8は、比較例3に係る室外熱交換器の要部拡大図である。この図8は、Y方向に比較例3の室外熱交換器3010を観察した際の要部を示している。室外熱交換器3010が本実施の形態1に係る室外熱交換器10と異なる点は、風上フィン領域3161のX方向の長さA3が、風下フィン領域3162のX方向の長さB3と等しい点である。このため、除霜運転で霜を融解した後に、再度ファンが稼働し着霜運転が始まる場合にも、融解した水滴は、気流によりフィン後方へ排出されるため、排水性は比較的良好となる。しかしながら、風上側において、第1の伝熱管3021及び第2の伝熱管3022は風上フィン端部3131と近接しており、熱交換器としての着霜耐力は十分ではない。
 一方、本実施の形態1に係る室外熱交換器10は、図3に示されるように、比較例3と同様、風下フィン領域162を有している。従って、除霜運転で霜を融解した後に、再度ファンが稼働し着霜運転が始まる場合にも、融解した水滴は、気流によりフィン後方へ排出されるため、排水性は比較的良好である。さらに、着霜運転時には、風上フィン領域161のX方向の長さAが、風下フィン領域162のX方向の長さBより長いため、着霜耐力も良好となる。
 すなわち、本実施の形態1によれば、風上側熱交換器601の除霜運転における排水性と着霜運転における着想耐力とを共に向上させることができる。なお、上述のように、風下側熱交換器602も風上側熱交換器601と同様の構成を有している。従って、風下側熱交換器602においても、同様の効果が得られる。
 さらに、風上側熱交換器601と風下側熱交換器602とが並列されている二列構造の室外熱交換器10を備える冷凍サイクル装置501においては、除霜運転にかかる時間が短縮され、除霜運転に必要な熱量を減らすことができる。また、本実施の形態1に係る冷凍サイクル装置501は、着霜運転時における室外熱交換器10の残水を減少させ、さらに着霜運転時における室外熱交換器10の風路の閉塞を遅らせることで、信頼性の向上、通風抵抗の減少、着霜耐力の向上を実現することができる。すなわち、本実施の形態1によれば、冷凍サイクル装置501の除着霜サイクルにおける平均暖房能力の向上を実現することが可能となる。
実施の形態2.
 実施の形態1では、第1の伝熱管21及び第2の伝熱管22は、室外ファン506から供給される空気の流れ方向において平行となり、かつ重力方向であるZ方向に対して垂直に延びるように配置されている。しかしながら、第1の伝熱管21及び第2の伝熱管の22の角度は、実施の形態1の構成に限定されるものではない。例えば、以下に説明するように、本実施の形態2で示す配置でもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図9は、本発明の実施の形態2に係る室外熱交換器における要部拡大図である。図9は、図3と同様に、Y方向に室外熱交換器10を観察した際の要部を示している。本実施の形態2に係る室外熱交換器10が実施の形態1と異なる点は、フィン31において、伝熱管が、風上側端部から風下側端部に向かって重力方向の下向きに傾斜している点である。図9に示されるように、第1の伝熱管21は、重力方向において、風下側端部142が風上側端部141よりも下側に位置するよう傾斜していている。同様に、第2の伝熱管22は、重力方向において、風下側端部242が風上側端部241よりも下側に位置するよう傾斜していている。すなわち、第1の伝熱管21は、風上側端部141から風下側端部142に向かって重力方向の下向きに傾斜し、第2の伝熱管22は、風上側端部241から風下側端部242に向かって重力方向の下向きに傾斜している。
 そのため、本実施の形態2に係る室外熱交換器10は、図1に示す室外ファン506から空気が供給されない状態、例えば除霜運転時においても、伝熱管領域163上で融解する水滴を、重力と第1の伝熱管21及び第2の伝熱管22の傾斜の効果とで風下側に導出し、風下フィン領域162を介して排出することが可能となる。さらに、室外ファン506から空気が供給される状態、すなわち除霜運転後の着霜運転時においても、気流の風向に沿って重力方向下方に傾斜して第1の伝熱管21及び第2の伝熱管22が配置されているため、水滴を風下側に導出し、排水を促進することが可能となる。以上のように、本実施の形態2によれば、室外熱交換器10の排水性を向上させることができる。
実施の形態3.
 実施の形態1及び実施の形態2では、室外熱交換器10を2列構成の熱交換器とし、室外熱交換器10を構成する風上側熱交換器601及び風下側熱交換器602は、同様の構成を有している。しかしながら、本発明に用いられる熱交換器は、列によって構成を変更しても良い。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図10は、本発明の実施の形態3に係る室外熱交換器における要部拡大図である。図10は、室外熱交換器10を構成する風上側熱交換器601及び風下側熱交換器602をY方向に観察した際の要部を示している。
 本実施の形態3に係る室外熱交換器10の風上側熱交換器601のフィン31は、実施の形態2のフィン31と同様の構成を有している。本実施の形態3に係る室外熱交換器10が実施の形態2と異なる点は、風下側熱交換器602のフィン32における風上フィン領域161’のX方向の長さA_2が、風上側熱交換器601のフィン31における風上フィン領域161のX方向の長さA_1より短い点である。
 室外熱交換器10は、室外機に搭載する際の実装効率を向上させるために、曲げた構成を採用する場合がある。風上側熱交換器601のフィン31の風下フィン領域162及び、風下側熱交換器602のフィン32の風上フィン領域161’は、対向している領域である。従って、室外熱交換器10を曲げると、風下フィン領域162及び風上フィン領域161’には互いの方向からの荷重がかかりやすく、フィン31及びフィン32が座屈してしまう懸念がある。
 図10に示すように、本実施の形態3に係る室外熱交換器10は、風下側熱交換器602のフィン32における風上フィン領域161’のX方向の長さA_2を、風上側熱交換器601のフィン31における風上フィン領域161のX方向の長さA_1より短く構成している。従って、風下側熱交換器602のフィン32における風上フィン領域161’の座屈強度を高められる。また、実施の形態2と同様、風上側熱交換器601のフィン31において、風下フィン領域162のX方向の長さB_1は風上フィン領域161のX方向の長さA_1より短いため、座屈強度は相対的に高い。以上の構成により、室外熱交換器10を曲げて室外機に搭載する場合、フィン31及びフィン32が座屈しにくい室外熱交換器10を提供することができる。
 ここで、実施の形態3に係る室外熱交換器10の着霜耐力について説明する。暖房運転時、室外熱交換器10を流動する空気は、まず風上側熱交換器601に当たる。そして、空気に含まれている水分が風上側熱交換器601に着霜し、続いて、空気は風下側熱交換器602に当たる。この時点で、空気はある程度除湿された状態にあるため、風下側熱交換器602に着霜する量は、風上側熱交換器601に着霜する量に比べ少量である。従って、風下側熱交換器602において、フィン32の風上フィン領域161’のX方向の長さA_2のみを短くしても、室外熱交換器10の着霜耐力に与える影響は小さい。
 以上のように、本実施の形態3によれば、室外熱交換器10の着霜耐力を確保しつつ、従来よりも座屈強度等の製造性を向上させることができる。
 なお、図10では各伝熱管が傾斜した例を示しているがこれに限るものではない。風下側熱交換器602のフィン32の風上フィン領域161’のX方向の長さA_2が、風上側熱交換器601のフィン31の風上フィン領域161のX方向の長さA_1より短く構成されていれば、各伝熱管は傾斜していなくてもよい。
実施の形態4.
 図11は、本発明の実施の形態4に係る室外熱交換器における要部拡大図である。実施の形態1~実施の形態3と同様、本実施の形態4の風上側熱交換器601のフィン31において、風上フィン領域161のX方向の長さA_1は、風下フィン領域162のX方向の長さB_1よりも長い。さらに、風下側熱交換器602のフィン33における風下フィン領域162’のX方向の長さB_2は、風上側熱交換器601のフィン31における風上フィン領域161のX方向の長さA_1と同一であり、かつ風下側熱交換器602のフィン33における風上フィン領域161’のX方向の長さA_2は、風上側熱交換器601のフィン31における風下フィン領域162のX方向の長さB_1と同一である。すなわち、風下側熱交換器602は、風上側熱交換器601を上下左右に反転させた構成を有している。換言すると、二列構造の室外熱交換器10を製造するにあたり、風上側熱交換器601を上下左右に反転させて配置することにより、風下側熱交換器602として使用できる。従って、風上側熱交換器601を製造するための設備の他に風下側熱交換器602を製造するための設備を用意する必要がなく、製造コストの高騰を抑制することができる。
 なお、図11では各伝熱管が傾斜した例を示しているがこれに限るものではない。風上側熱交換器601のフィン31において、風上フィン領域161のX方向の長さA_1が、風下フィン領域162のX方向の長さB_1よりも長く、風下側熱交換器602が、風上側熱交換器601を上下左右に反転させた構成を有していれば、各伝熱管は傾斜していなくてもよい。
 以上、上記の実施の形態1~実施の形態4では、各実施の形態に係る熱交換器を室外熱交換器10として用いたがこれに限るものではない。実施の形態1~実施の形態4の熱交換器を図1に示す室内熱交換器503として用いてよい。その場合、室内熱交換器503に滞留する水分を減らすことで、室内ファン504の入力を削減させることができ、冷凍サイクル装置501の消費エネルギーを削減することができる。
 10 室外熱交換器、21 第1の伝熱管、22 第2の伝熱管、30 フィン、31 フィン、32 フィン、33 フィン、131 風上側フィン端部、132 風下側フィン端部、141 風上側端部、142 風下側端部、151 第1の仮想線、152 第2の仮想線、161 風上フィン領域、161' 風上フィン領域、162 風下フィン領域、162' 風下フィン領域、163 伝熱管領域、163’ 伝熱管領域、241 風上側端部、242 風下側端部、501 冷凍サイクル装置、502 圧縮機、503 室内熱交換器、504 室内ファン、505 絞り装置、506 室外ファン、507 四方弁、601 風上側熱交換器、602 風下側熱交換器、603 風上側ヘッダ集合管、604 風下側ヘッダ集合管、605 列間接続部材、1010 室外熱交換器、1021 第1の伝熱管、1022 第2の伝熱管、1132 風下側フィン端部、1142 風下側端部、1161 風上フィン領域、1242 風下側端部、2010 室外熱交換器、2021 第1の伝熱管、2022 第2の伝熱管、2131 風上側フィン端部、2141 風上側端部、2162 風下フィン領域、2241 風上側端部、3010 室外熱交換器、3021 第1の伝熱管、3022 第2の伝熱管、3131 風上フィン端部、3161 風上フィン領域、3162 風下フィン領域、FP フィンピッチ間隔。

Claims (5)

  1.  ファンから空気が供給される熱交換器であって、
     板状のフィンと、
     前記フィンに挿入され、断面が扁平形状の第1の伝熱管と、
     前記フィンに挿入され、前記第1の伝熱管と間隔をおいて重力方向に並んで配置され、断面が扁平形状の第2の伝熱管とを備え、
     前記第1の伝熱管の前記空気の通風方向における風上側の端部である第1の風上端部と、前記第2の伝熱管の前記通風方向における風上側の端部である第2の風上端部とを結ぶ線を第1の仮想線とし、
     前記第1の伝熱管の前記通風方向における風下側の端部である第1の風下端部と、前記第2の伝熱管の前記通風方向における風下側の端部である第2の風下端部とを結ぶ線を第2の仮想線としたとき、
     前記フィンは、前記フィンの前記通風方向における風上側の端部と前記第1の仮想線とで画定される風上フィン領域と、前記第1の仮想線と前記第2の仮想線とで画定される伝熱管領域と、前記第2の仮想線と前記フィンの前記通風方向における風下側の端部とで画定される風下フィン領域とを有しており、前記通風方向に沿った前記風上フィン領域の長さは、前記通風方向に沿った前記風下フィン領域の長さより長い熱交換器。
  2.  前記熱交換器は、前記通風方向において風上側に配置され、請求項1に記載の構成を有する風上側熱交換器と、前記通風方向において風下側に配置され、請求項1に記載の構成を有する風下側熱交換器とを有する二列構造の熱交換器であり、前記風下側熱交換器における前記風上フィン領域の前記通風方向に沿った長さは、前記風上側熱交換器における前記風上フィン領域の前記通風方向に沿った長さより短い熱交換器。
  3.  ファンから空気が供給される熱交換器であって、
     板状のフィンと、
     前記フィンに挿入され、断面が扁平形状の第1の伝熱管と、
     前記フィンに挿入され、前記第1の伝熱管と間隔をおいて重力方向に並んで配置され、断面が扁平形状の第2の伝熱管とを備え、
     前記第1の伝熱管の前記空気の通風方向における風上側の端部である第1の風上端部と、前記第2の伝熱管の前記通風方向における風上側の端部である第2の風上端部とを結ぶ線を第1の仮想線とし、
     前記第1の伝熱管の前記通風方向における風下側の端部である第1の風下端部と、前記第2の伝熱管の前記通風方向における風下側の端部である第2の風下端部とを結ぶ線を第2の仮想線としたとき、
     前記フィンは、前記フィンの前記通風方向における風上側の端部と前記第1の仮想線とで画定される風上フィン領域と、前記第1の仮想線と前記第2の仮想線とで画定される伝熱管領域と、前記第2の仮想線と前記フィンの前記通風方向における風下側の端部とで画定される風下フィン領域とを有しており、
     前記熱交換器は、前記通風方向において風上側に配置されている風上側熱交換器と、前記通風方向において風下側に配置されている風下側熱交換器とを有する二列構造の熱交換器であり、
     前記風上側熱交換器において、前記通風方向に沿った前記風上フィン領域の長さは、前記通風方向に沿った前記風下フィン領域の長さより長く、
     前記風下側熱交換器における前記風上フィン領域の前記通風方向に沿った長さと、前記風上側熱交換器における前記風下フィン領域の前記通風方向に沿った長さは等しく、
     前記風下側熱交換器における前記風下フィン領域の前記通風方向に沿った長さと、前記風上側熱交換器における前記風上フィン領域の前記通風方向に沿った長さとは等しい熱交換器。
  4.  前記第1の伝熱管は、前記第1の風上端部から前記第1の風下端部に向かって、重力方向の下向きに傾斜し、前記第2の伝熱管は、前記第2の風上端部から前記第2の風下端部に向かって、重力方向の下向きに傾斜している請求項1~3のいずれか一項に記載の熱交換器。
  5.  請求項1~4のいずれか一項に記載の熱交換器と、前記熱交換器へ空気を供給する送風ファンとを備えている冷凍サイクル装置。
PCT/JP2016/082072 2016-10-28 2016-10-28 熱交換器及び冷凍サイクル装置 WO2018078800A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16920027.6A EP3534103B1 (en) 2016-10-28 2016-10-28 Heat exchanger and refrigeration cycle device
PCT/JP2016/082072 WO2018078800A1 (ja) 2016-10-28 2016-10-28 熱交換器及び冷凍サイクル装置
JP2018547032A JP6701371B2 (ja) 2016-10-28 2016-10-28 熱交換器及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082072 WO2018078800A1 (ja) 2016-10-28 2016-10-28 熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018078800A1 true WO2018078800A1 (ja) 2018-05-03

Family

ID=62023258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082072 WO2018078800A1 (ja) 2016-10-28 2016-10-28 熱交換器及び冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3534103B1 (ja)
JP (1) JP6701371B2 (ja)
WO (1) WO2018078800A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112060867A (zh) * 2020-08-10 2020-12-11 盐城工学院 一种新型汽车空调冷凝器
CN112424552A (zh) * 2018-07-27 2021-02-26 三菱电机株式会社 热交换器、热交换器单元及制冷循环装置
JPWO2020110301A1 (ja) * 2018-11-30 2021-05-20 三菱電機株式会社 冷凍サイクル装置
WO2023054270A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 熱交換器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425282B2 (ja) * 2019-09-30 2024-01-31 ダイキン工業株式会社 蒸発器、およびそれを備えた冷凍サイクル装置
WO2022224350A1 (ja) * 2021-04-20 2022-10-27 三菱電機株式会社 熱交換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130375U (ja) * 1984-02-10 1985-08-31 松下電器産業株式会社 ヒ−トポンプ式冷暖房装置の熱源側ユニツト
JP2000193389A (ja) * 1998-12-28 2000-07-14 Hitachi Ltd 空気調和機の室外ユニット
JP2006153290A (ja) * 2004-11-25 2006-06-15 Daikin Ind Ltd 熱交換器
WO2016013100A1 (ja) * 2014-07-25 2016-01-28 三菱電機株式会社 熱交換器およびこの熱交換器を備えた空調冷凍装置
JP2016176646A (ja) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機の室外機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297897A (ja) * 1988-09-30 1990-04-10 Matsushita Refrig Co Ltd フィンチューブ型熱交換器
JPH0379058U (ja) * 1989-12-04 1991-08-12
JPH05322470A (ja) * 1992-05-28 1993-12-07 Hitachi Ltd 熱交換器
JPH0791873A (ja) * 1993-09-20 1995-04-07 Hitachi Ltd フィンアンドチューブ形熱交換器
JPH11257800A (ja) * 1998-03-09 1999-09-24 Sanyo Electric Co Ltd 熱交換器及びその熱交換器を備えた空気調和装置
CN202013133U (zh) * 2008-02-22 2011-10-19 利厄伯特公司 热交换器和热交换器系统
JP4715971B2 (ja) * 2009-11-04 2011-07-06 ダイキン工業株式会社 熱交換器及びそれを備えた室内機
KR101936224B1 (ko) * 2012-04-26 2019-01-08 엘지전자 주식회사 열교환기
JP2013245884A (ja) * 2012-05-28 2013-12-09 Panasonic Corp フィンチューブ熱交換器
WO2014091536A1 (ja) * 2012-12-10 2014-06-19 三菱電機株式会社 扁平管熱交換器
JP2014139493A (ja) * 2013-01-21 2014-07-31 Toshiba Corp 空気調和装置の熱交換器
WO2016121123A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130375U (ja) * 1984-02-10 1985-08-31 松下電器産業株式会社 ヒ−トポンプ式冷暖房装置の熱源側ユニツト
JP2000193389A (ja) * 1998-12-28 2000-07-14 Hitachi Ltd 空気調和機の室外ユニット
JP2006153290A (ja) * 2004-11-25 2006-06-15 Daikin Ind Ltd 熱交換器
WO2016013100A1 (ja) * 2014-07-25 2016-01-28 三菱電機株式会社 熱交換器およびこの熱交換器を備えた空調冷凍装置
JP2016176646A (ja) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機の室外機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534103A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424552A (zh) * 2018-07-27 2021-02-26 三菱电机株式会社 热交换器、热交换器单元及制冷循环装置
EP3832244A4 (en) * 2018-07-27 2021-08-04 Mitsubishi Electric Corporation HEAT EXCHANGER, HEAT EXCHANGER UNIT AND REFRIGERATION CYCLE DEVICE
CN112424552B (zh) * 2018-07-27 2023-01-17 三菱电机株式会社 热交换器、热交换器单元及制冷循环装置
US11578930B2 (en) 2018-07-27 2023-02-14 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JPWO2020110301A1 (ja) * 2018-11-30 2021-05-20 三菱電機株式会社 冷凍サイクル装置
CN112060867A (zh) * 2020-08-10 2020-12-11 盐城工学院 一种新型汽车空调冷凝器
WO2023054270A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 熱交換器
JP2023051525A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 熱交換器

Also Published As

Publication number Publication date
EP3534103B1 (en) 2020-12-23
JP6701371B2 (ja) 2020-05-27
EP3534103A4 (en) 2020-02-26
JPWO2018078800A1 (ja) 2019-06-24
EP3534103A1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2018078800A1 (ja) 熱交換器及び冷凍サイクル装置
KR101313347B1 (ko) 열교환기 및 공기 조화기
US20130284416A1 (en) Heat exchanger and air conditioner
CN104254751A (zh) 热交换器
KR20130110221A (ko) 열교환기 및 공기 조화기
WO2018003123A1 (ja) 熱交換器及び冷凍サイクル装置
WO2016194088A1 (ja) 熱交換器及び冷凍サイクル装置
EP3156752B1 (en) Heat exchanger
US10557652B2 (en) Heat exchanger and air conditioner
JP6692495B2 (ja) 熱交換器及び冷凍サイクル装置
JP6628879B2 (ja) 熱交換器およびこの熱交換器を備えたヒートポンプ装置
JP7112053B2 (ja) 熱交換器及びそれを用いた冷凍サイクル装置
JP6918131B2 (ja) 熱交換器および冷凍サイクル装置
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP2005201492A (ja) 熱交換器
JP6584668B2 (ja) 冷凍サイクル装置
WO2019176061A1 (ja) 熱交換器及び冷凍サイクル装置
EP3832244A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
CN109642739B (zh) 空调装置
WO2019106755A1 (ja) 空気調和機
JP6608946B2 (ja) 空気調和装置及び空気調和装置の室外機
JP7118279B2 (ja) 熱交換器、その製造方法および空気調和装置
WO2020110301A1 (ja) 冷凍サイクル装置
JP2005308252A (ja) 熱交換器およびこれを備えた空気調和機の室外ユニット
JP2011247499A (ja) 空気熱交換器及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016920027

Country of ref document: EP

Effective date: 20190528