WO2018074884A1 - 재조합 단백질 및 그의 용도 - Google Patents

재조합 단백질 및 그의 용도 Download PDF

Info

Publication number
WO2018074884A1
WO2018074884A1 PCT/KR2017/011658 KR2017011658W WO2018074884A1 WO 2018074884 A1 WO2018074884 A1 WO 2018074884A1 KR 2017011658 W KR2017011658 W KR 2017011658W WO 2018074884 A1 WO2018074884 A1 WO 2018074884A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
antigen
thr
chikunguniya
fusion protein
Prior art date
Application number
PCT/KR2017/011658
Other languages
English (en)
French (fr)
Inventor
전보영
홍민선
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160146689A external-priority patent/KR101919403B1/ko
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Publication of WO2018074884A1 publication Critical patent/WO2018074884A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/255Salmonella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to recombinant proteins and their use.
  • Chikungunya virus is a tropical forest mosquito (Aedes aegypti) or white-tailed mosquito infected with 60 to 70 nm (+) ssRNA virus belonging to the family Togaviridae, genus Alphavirus.
  • Aedes albopictus (Tiger mosquito) is a virus that causes acute febrile disease called chikunguniya fever. 10-15% of the chikunguniya virus is asymptomatic, but the rest of the infected people have a 1 to 12-day incubation period, sudden high fever, intermittent chills, headache, nausea, vomiting, severe joint pain, bleeding rash and papules.
  • arthralgia is known to be a chronic disease that lasts for many years for 30 to 40% of the infected, as well as neonatal meningitis can lead to meningitis.
  • the chikunguniya since the chikunguniya has a pandemic potential to cause sudden wasting diseases, it is a potential threat in developing countries, and due to continued identification, military personnel in developed countries and emerging endemic conflict areas may be The threat will be significant.
  • the chikunguniya virus infection has a serious economic impact due to chronic lethargic symptoms when the employee is infected, leading to long-term absenteeism in the epidemic area is affected by the local industry.
  • the method of confirming whether the virus is infected is the only method to check the blood virus through a blood test or cerebrospinal fluid test to date, this method has a disadvantage that early diagnosis is difficult to take 4 to 14 days.
  • the chikunguniya virus has a very low probability of re-infection when it has immunity after infection, but there is no need for a preventive vaccine or diagnostic method for chikunguniya virus.
  • flagella is an important component that determines the motility of bacteria and consists of a hook (hook), basal body (filament) and (filament).
  • the flagella is known to have a function of determining the swimming or swarming motility of bacteria, the taxis of bacteria, and forming a biofilm to determine the adhesion of pathogenic microorganisms.
  • the structural unit protein constituting the flagella filament is called flagellin, and flagellin is regularly assembled to form filaments.
  • TLR5 toll like receptor 5
  • PRP pattern recognition receptor
  • vaccine adjuvant Currently used or contemplated for use as a vaccine adjuvant include: 1) mineral salts such as aluminum hydroxide gels, 2) surfactants, 3) bacterial origin, 4) cytokines or hormones, 6) polyanions (polyanion), 7) polyacryl, 8) carrier, 9) living vector with virus, and 10) vehicle such as mineral oil or liposome. ).
  • mineral salts such as aluminum hydroxide gels, 2) surfactants, 3) bacterial origin
  • cytokines or hormones include cytokines or hormones, 6) polyanions (polyanion), 7) polyacryl, 8) carrier, 9) living vector with virus, and 10) vehicle such as mineral oil or liposome.
  • flagellin may be a suitable target for the development of vaccine adjuvant. It's going on.
  • One object of the present invention is to provide a fusion protein and a vector expressing the fusion protein of the chikkununya virus and Toll like receptor 5 stimulating protein.
  • Another object of the present invention is to provide information for diagnosing the presence of chikungunya virus infection using the fusion protein according to the present invention.
  • Still another object of the present invention is to provide a vaccine for chikungunya virus comprising the fusion protein according to the present invention as an active ingredient.
  • One object of the present invention is to provide a kit for diagnosis of chikunguniya virus infection and information for diagnosis using a chikungunya virus antigen recombinant protein.
  • the present inventors have found that when the antigenic protein of chikununya virus and Toll like receptor 5 stimulating protein flagellin are produced as a fusion protein and inoculated into a desired subject, When the flagellin acts as a vaccine adjuvant that stimulates toll-like receptor 5 and induces immune activity, compared to the inoculation of chikunguniya envelope protein alone, the antibody to chikunguniya envelope protein is administered in the same amount.
  • the amplified antibody in the fusion protein is formed as compared to the case of using a hydrated aluminum potassium sulfate (Alum) as a vaccine adjuvant to the coat protein, so that a smaller amount of the protein antigen into the vaccine Not only can be used, IgG and I for the infection of chikunguniya virus through the fusion protein
  • the present invention was completed by discovering that gM can be diagnosed very effectively.
  • the present inventors found that the recombinant protein prepared based on the amino acid sequence of the antigenic protein E2 of chikununya virus detects IgG and IgM present in the serum of infected individuals of chikunguniya virus.
  • the present invention was completed by discovering that the virus infection can be diagnosed very effectively.
  • a fusion protein comprising a Toll like receptor 5 stimulating protein on one side of the chikungunya virus antigen protein.
  • the "Toll like receptor 5" is a representative pattern receptor (Pattern Recognition Receptor) is one of the receptors for recognizing the molecular structure associated with the pathogen existing in the pathogen, the host cell
  • the toll-like receptor 5 stimulatory protein may be used as a vaccine adjuvant by distributing the innate immune response by various stimuli and actively inducing the acquired immune response. ), But may be included without limitation, so long as it is capable of binding to a pattern receptor and being recognized as an external antigen to induce an immune response.
  • the flagellin may induce an immune response in an infected host when the flagella bacteria are infected. More specifically, Toll-like receptor 5 (TLR5; Toll-like receptor 5) present on the surface of the human cell membrane induces intracellular signal transduction through interaction with the flagellin, through which the transcription factor NF-kB Increasing the expression of can induce innate immune signal activation, as well as regulate the acquired immune response. Therefore, a fusion protein in which a flagellin is coupled to one side of the chikungunya virus antigen protein according to the present invention is compared with a case in which chikunguniya virus antigen protein is inoculated alone. And significant synergistic effects in sensitivity and sensitivity of chikunguniya virus diagnosis using the fusion protein according to the present invention.
  • TLR5 Toll-like receptor 5
  • the "fusion protein” refers to a protein produced by fusion of two or more proteins, and may be produced by genetic recombination. Expression of the fusion protein may be induced by a method of transforming a recombinant gene produced by the gene recombination method into a host cell, but is not limited thereto.
  • the fusion protein may be a fusion protein obtained by expressing a chikunguniya virus antigen protein and a toll-like receptor 5 stimulating protein, in particular, a recombinant gene produced by flagellin by a gene recombination method in a host cell.
  • the chikunguniya virus antigen protein may be chikunguniya virus envelope antigen protein.
  • the chikunguniya virus envelope antigen protein, together with nucleic acids, constitutes a particle of the virus, and generally exhibits specificity as a viral antigen.
  • the chikunguniya virus has E1, E2, E3 and 6K envelope antigen protein
  • the chikunguniya virus envelope antigen protein may be an E2 envelope antigen protein represented by SEQ ID NO:
  • the E2 envelope antigen protein represented by SEQ ID NO: 1 may be an antigen protein consisting of 343 amino acid sequences corresponding to some of the chikunguniya envelope antigen protein represented by SEQ ID NO: 2.
  • the chikunguniya virus E2 envelope antigen protein of SEQ ID NO: 2 corresponds to the viral envelope overhang, but plays a pivotal role in the composition of the envelope, but the yield of recombinant protein expression using Escherichia coli strains has been very low in the past.
  • the expression efficiency is not only very high but also highly purified. This exists.
  • the flagellin (flagellin) in the present invention may be a flagellin (flagellin) of the genus Salmonella or Bacillus.
  • the flagellin may be flagellin derived from bacteria of the genus Bacillus, but is not limited thereto.
  • the bacterium may be salmonella dublin or Bacillus cereus , but is not limited thereto.
  • the "flagellin” is a major protein constituting the flagella (flagella) that provides the motility of the bacteria, and corresponds to the protein most abundantly present in flagella bacteria.
  • the flagellin may be generally composed of domains of 2 to 4, and the domain may be composed of two conserved domains D0 and D1 in flagellar bacteria, and multivariate domains D2 and D3 having various lengths and presences.
  • the flagellin of the present invention may include any one or more of D0 and D1 domains, and preferably, the flagellin protein may be represented by SEQ ID NO: 3, but is not limited thereto.
  • the Bacillus-derived flagellin is composed of only the D0 and D1 domain, when the inoculation of the subject after the fusion protein can selectively activate the innate immune response by flagellin, minimizing unwanted toxicity There is an advantage.
  • histidine-tag may be bound to one side of the fusion protein according to the present invention.
  • histidine-labeled binding the expression of the protein in the host cell by transformation is not only possible to rapidly purify the protein of interest, but also has the advantage of increasing the purity of the purified protein.
  • Another embodiment of the present invention provides a polynucleotide encoding the fusion protein according to the present invention.
  • the "polynucleotide” is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a predetermined length or more, and the fusion protein according to the present invention Means the polynucleotide encoding.
  • the polynucleotide encoding the fusion protein according to the present invention changes the amino acid sequence of the fusion protein expressed from the coding region in consideration of the degeneracy of the codon, or the codon preferred in the organism to express the protein.
  • Various modifications may be made to the coding region within the range not to be made, and various modifications or modifications may be made within the range not affecting the expression of the gene even in parts other than the coding region, and the modified gene may also be protected within the scope of the present invention. Included within.
  • the expression vector may include a gene segment represented by the nucleotide sequence of SEQ ID NO: 4, but is not limited thereto.
  • the "expression vector” is a means for introducing a DNA into a host cell to express the fusion protein of the present invention in a microorganism, and when producing the expression vector, the type of the host cell to produce the fusion protein.
  • the expression promoter
  • terminator terminal
  • enhancer enhancer
  • expression control sequences and the like for the membrane targeting or secretion can be appropriately selected and various combinations according to the purpose.
  • the expression vector of the present invention may include a plasmid vector, a cosmid vector, a bacteriophage vector, a viral vector, and the like.
  • Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals and enhancers, and can be prepared in various ways depending on the purpose.
  • the promoter of the expression vector may be constitutive or inducible.
  • the expression vector may include a selection marker for selecting a host cell comprising the vector, and in the case of a replicable expression vector, may include a replication origin, and more preferably, may be a pET49b vector, but is not limited thereto. no.
  • Another embodiment of the present invention provides a chikunguniya virus vaccine comprising the fusion protein according to the present invention as an active ingredient.
  • the vaccine may be prepared by conventional methods well known in the art, and may further optionally include various additives that may be used when preparing a vaccine in the art.
  • the vaccines according to the invention may further comprise other adjuvant, for example composed of Group 2 elements selected from the group consisting of Mg, Ca, Sr, Ba and Ra, Ti, Zr, Hf and Rf. Salts of Group 4 elements or aluminum selected from the group or hydrates thereof.
  • the salts may be preferably formed with oxides, peroxides, hydroxides, carbonates, phosphates, pyrophosphates, hydrogenphosphates, dihydrogenphosphates, sulfates or silicates.
  • an adjuvant that may additionally be used in the vaccine composition of the present invention is magnesium hydroxide, magnesium carbonate hydroxide pentahydrate, titadium didoxide, calcium carbonate, barium oxide, barium hydroxide, Barium peroxide, barium sulfate, calcium sulfate, calcium pyrophosphate, magnesium carbonate, magnesium oxide, aluminum hydroxide, aluminum phosphate and hydrated aluminum potassium sulfate (Alum), but are not limited thereto.
  • the vaccine according to the present invention may further comprise a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier for example, but not limited to, those commonly used in the formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose , Polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like.
  • the pharmaceutical composition of the present invention may be used further including lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like.
  • the vaccine is prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
  • Suitable dosages of the vaccine in the present invention may be prescribed in various ways depending on factors such as the formulation method, mode of administration, age, weight, sex, pathological condition, food, time of administration, route of administration, rate of excretion and response to response of the patient. Can be. On the other hand, the dosage of the vaccine according to the invention may preferably be 0.0001-1000 mg / kg body weight per day.
  • the vaccine containing the fusion protein as an active ingredient may be administered to the body by intravenous injection, intraarterial injection, intramuscular injection, subcutaneous injection, intraconjunctival injection, transdermal delivery or airway inhalation.
  • the present invention is not limited thereto.
  • kits comprising the fusion protein according to the present invention as an active ingredient.
  • the kit provided in the present invention can measure the antigen-antibody complex formation level of the antibody, preferably human IgG and / or IgM, present in a sample of the fusion protein and the subject in accordance with the present invention. It is not limited.
  • diagnosis using the fusion protein of the present invention the sensitivity of IgM in the early stage of infection is very high, and there is an advantage that the diagnosis can be performed very effectively even in the early asymptomatic stage immediately after infection.
  • the kit means a set of compositions and accessories necessary for a specific purpose.
  • the kit may include not only the diagnostic composition according to the present invention, but also tools, reagents, and the like generally used in the art of the present invention, which are used in the assay for measuring the antigen-antibody complex formation level.
  • tools or reagents include, but are not limited to, suitable carriers, labeling materials capable of producing detectable signals, chromophores, solubilizers, cleaners, buffers, stabilizers, and the like.
  • the labeling substance is an enzyme, it may include a substrate and a reaction terminator capable of measuring enzyme activity.
  • Carriers include soluble carriers, insoluble carriers, and examples of soluble carriers include physiologically acceptable buffers known in the art, such as PBS, and examples of insoluble carriers include polystyrene, polyethylene, polypropylene, polyester, poly Acrylonitrile, fluorine resin, crosslinked dextran, polysaccharides, polymers such as magnetic fine particles plated with latex metal, other papers, glass, metals, agarose and combinations thereof.
  • physiologically acceptable buffers known in the art such as PBS
  • examples of insoluble carriers include polystyrene, polyethylene, polypropylene, polyester, poly Acrylonitrile, fluorine resin, crosslinked dextran, polysaccharides, polymers such as magnetic fine particles plated with latex metal, other papers, glass, metals, agarose and combinations thereof.
  • the antigen-antibody complex formation level of the fusion protein is compared from a sample obtained from a subject, and the target subject has a chikunguniya virus infection present in the early stage of infection. Early diagnosis can be used to determine whether aggressive treatment and detailed observational therapy should be performed on individualized patients.
  • the kit of the present invention includes a kit containing essential elements necessary for performing protein chip analysis (hereinafter referred to as 'protein chip kit'); Or it may be a kit containing essential elements necessary to perform ELISA (hereinafter referred to as "ELISA kit”), but is not limited thereto.
  • the "protein chip kit” means a kit in which an antibody or the like capable of reacting with a specific protein is immobilized on a single chip at a high density, and for the purpose of the present invention, the specific protein is a fusion according to the present invention. It may be a protein.
  • the kit for measuring the level of antigen-antibody complex formation may include a substrate, a buffer, a secondary antibody labeled with a chromophore or a fluorescent substance, a chromogenic substrate, and the like for immunological detection of the antibody.
  • a substrate a nitrocellulose membrane, a 96-well plate synthesized with a polyvinyl resin, a 96-well plate synthesized with a polystyrene resin, a slide glass made of glass, etc. may be used, and a peroxidase (peroxidase) may be used. ), Alkaline phosphatase and the like can be used.
  • ABTS 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid)
  • OPD o-phenyl
  • Rendiamine TMB (tetramethyl benzidine) and the like can be used.
  • the antigen-antibody complex formation level measurement of the protein may be used to count the binding of the antibody by nCounter and the like.
  • the "ELISA kit” refers to a method for measuring the amount of an antigen or an antibody using an antigen-antibody reaction using an enzyme as a marker, and generally refers to an enzyme immunoassay method. Fusion proteins according to the invention.
  • the ELISA kit may contain reagents capable of detecting antibodies in a subject of interest bound to the fusion protein, such as labeled secondary antibodies, chromophores, enzymes conjugated with antibodies and substrates thereof, or And other materials capable of binding to the antibody.
  • Another embodiment of the present invention provides a method for providing information for diagnosing chikunguniya virus infection by measuring the level of complex formation between the fusion protein according to the present invention and an antibody present in a sample of a subject. . Specifically, (a) measuring the level of antigen-antibody complex formation with the fusion protein according to the invention in a sample isolated from the subject of interest; And (b) comparing the antigen-antibody complex formation level measured in step (a) with the antigen-antibody complex formation level with the fusion protein in a normal control sample. It may be a method of providing.
  • the "target individual” means an individual whose presence or absence of chikunguniya virus infection is unclear, and means a highly susceptible individual.
  • the sample isolated from the subject may include, but is not limited to, a sample such as tissue, cells, blood, serum, plasma, saliva, or sputum of a patient having a high probability of infection.
  • it may include one or more of IgG and IgM antibodies contained in human serum, but is not limited thereto.
  • the antigen-antibody complex formation level is measured in the normal control group, that is, the antigen-antibody complex formation level using the fusion gene according to the invention as an antigen in an individual not infected with chikunguniya virus, and chikunguniya.
  • Antigen-antibody complex formation levels of a patient suspected of being infected with a virus, i.e., the desired individual can be compared, and the difference in the complex formation levels can be determined to predict whether Chikunguniya virus is infected.
  • the subject when the antigen-antibody complex formation level is higher than the sample of the normal control group not infected with the chikunguniya virus, the subject may be diagnosed as having been infected with chikunguniya virus, but is not limited thereto. .
  • the "antigen-antibody complex” means a combination of a fusion protein according to the present invention and an antibody specific for the present in a desired individual, and the level of formation of the antigen-antibody complex is determined by a detection label ( It can be measured quantitatively through the strength of the signal of the detection label.
  • the "antigen-antibody complex formation level measurement" is to confirm the presence of the antibody present in the target sample that binds to the fusion gene according to the present invention for diagnosing chikunguniya virus infection.
  • the amount of the antibody in the desired sample is confirmed using the fusion gene according to the present invention.
  • Analysis methods for this include Western blot, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunodiffusion, Ouchterlony immunodiffusion, and rocket immunoelectrophoresis. , Tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS, protein chip, and the like, but are not limited thereto.
  • the "detection label is an enzyme" of the present invention, for example, may be selected from the group consisting of fluorescent, ligand, luminescent, microparticle, redox molecule and radioisotope, but is not limited thereto. no.
  • enzymes that can be used as detection labels include ß-glucuronidase, ß-D-glucosidase, ß-D-galactosidase, urease, peroxidase or alkaline phosphatase, acetylcholinestera Glucose oxidase, hexokinase and GDPase, RNase, glucose oxidase and luciferase, phosphofructokinase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, phosphphenolpyruvate decarboxyl Laze, ß-latamaze and the like. This is not restrictive.
  • the fluorescein, isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthalaldehyde, fluorescamine, etc. may be used as the fluorescent substance, but is not limited thereto.
  • the ligand includes a biotin derivative, and the like, but is not limited thereto.
  • the light emitting material includes acridinium ester, luciferin, luciferase, and the like, but is not limited thereto.
  • the microparticles include colloidal gold, colored latex, and the like, but are not limited thereto.
  • redox molecules include ferrocene, ruthenium complex, biologen, quinone, Ti ion, Cs ion, diimide, 1,4-benzoquinone, hydroquinone, K 4 W (CN) 8 , [Os (bpy) 3 ] 2+ , [RU (bpy) 3 ] 2+ , [MO (CN) 8 ] 4- , and the like.
  • the radioisotope includes 3 H, 14 C, 32 P, 35 S, 36 Cl, 51 Cr, 57 Co, 58 Co, 59 Fe, 90 Y, 125 I, 131 I, 186 Re, It is not limited.
  • Diagnosis of the viral infection of the present invention corresponds to a very important method because it is impossible to determine what virus infection has occurred only by externally manifested symptoms. Diagnostic methods include biological assays, serological diagnostics, and electron microscopy assays by enzyme antibody binding methods. Specifically, but not limited to, for example, after diluting the serum separated from the suspicious individual to the substrate to which the antigen of the virus is attached, it is determined whether the virus is infected by measuring the antigen-antibody binding level. Corresponds to diagnosis.
  • immunotherapy a type of vaccine protocol that corresponds to therapies for treating viral individuals when infected, refers to the regulation of an individual's immune response in order to impart a desired therapeutic effect.
  • immunotherapy when administered to an individual, is sufficient to ultimately reduce symptoms associated with an undesired immune response or to increase the desired immune response and ultimately alleviate symptoms that may occur in an infected individual. It refers to a composition that modulates the immune system. Therefore, in order to provide protection against viral infections and to treat pathogen-containing infections, it is characterized by the fact that the virus is inoculated by directly injecting the antigens of the virus to the individual, thus providing a completely different protocol from the diagnostic method.
  • a recombinant protein comprising a chikungunya virus envelope antigen protein.
  • the "chikunguniya virus envelope antigen protein” means a protein constituting the envelope of chikunguniya virus.
  • the envelope antigen protein is composed of E1, E2, E3 and 6K, the present invention corresponds to the envelope overhang of the envelope antigen protein for the purpose of the invention using the E2 envelope antigen protein that plays a pivotal role in the envelope composition of the virus
  • the E2 antigen protein may be a protein consisting of 341 amino acid sequences represented by SEQ ID NO: 5, but is not limited thereto. When the protein consisting of the 341 amino acid sequence represented by SEQ ID NO: 5 is reacted with the serum of a patient suspected of infection for the diagnosis of chikunguniya virus infection, the sensitivity and accuracy of the diagnosis can be significantly increased.
  • histidine-tag may be coupled to one side of the recombinant protein according to the present invention.
  • histidine-label is combined, the expression of the host cell by the transformation can be quickly purified after the desired recombinant protein in the host cell, and there is an advantage of increasing the purity of the purified protein.
  • Another embodiment of the present invention provides a polynucleotide encoding the recombinant protein according to the present invention.
  • the "polynucleotide” is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds. Means the polynucleotide encoding.
  • the polynucleotide encoding the recombinant protein according to the present invention changes the amino acid sequence of the recombinant protein expressed from the coding region in consideration of the degeneracy of the codon, or the codon preferred in the organism to express the protein.
  • Various modifications may be made to the coding region within the range not to be made, and various modifications or modifications may be made within the range not affecting the expression of the gene even in parts other than the coding region, and the modified gene may also be protected within the scope of the present invention. Included within.
  • the expression vector may include a gene segment represented by the nucleotide sequence of SEQ ID NO: 6, but is not limited thereto.
  • the "expression vector” is a means for introducing a DNA into a host cell to express the recombinant protein of the present invention in a microorganism, and when producing the expression vector, the type of host cell to produce the recombinant protein.
  • appropriate expression control sequences such as promoter (terminator), enhancer (enhancer) and the like for the sequence or membrane targeting or secretion can be appropriately selected and various combinations according to the purpose.
  • the expression vector of the present invention may include a plasmid vector, a cosmid vector, a bacteriophage vector, a viral vector, and the like.
  • Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals and enhancers, and can be prepared in various ways depending on the purpose.
  • the promoter of the expression vector may be constitutive or inducible.
  • the expression vector may include a selection marker for selecting a host cell comprising the vector, and in the case of a replicable expression vector, may include a replication origin, more preferably, it may be a pET49b vector, but is not limited thereto. no.
  • kits comprising the recombinant protein according to the present invention as an active ingredient.
  • the kit provided in the present invention can measure the antigen-antibody complex formation level of the antibody, preferably human IgG and / or IgM, present in the sample of the recombinant protein and the subject in accordance with the present invention, It is not limited.
  • the kit means a set of compositions and accessories necessary for a specific purpose.
  • the kit may include not only the diagnostic composition according to the present invention, but also tools, reagents, and the like generally used in the art of the present invention, which are used in the assay for measuring the antigen-antibody complex formation level.
  • tools or reagents include, but are not limited to, suitable carriers, labeling materials capable of producing detectable signals, chromophores, solubilizers, cleaners, buffers, stabilizers, and the like.
  • the labeling substance is an enzyme, it may include a substrate and a reaction terminator capable of measuring enzyme activity.
  • Carriers include soluble carriers, insoluble carriers, and examples of soluble carriers include physiologically acceptable buffers known in the art, such as PBS, and examples of insoluble carriers include polystyrene, polyethylene, polypropylene, polyester, poly Acrylonitrile, fluorine resin, crosslinked dextran, polysaccharide, polymers such as magnetic fine particles plated with latex metal, other paper, glass, metal, agarose and combinations thereof.
  • physiologically acceptable buffers known in the art such as PBS
  • examples of insoluble carriers include polystyrene, polyethylene, polypropylene, polyester, poly Acrylonitrile, fluorine resin, crosslinked dextran, polysaccharide, polymers such as magnetic fine particles plated with latex metal, other paper, glass, metal, agarose and combinations thereof.
  • the antigen-antibody complex formation level of the recombinant protein is compared from a sample obtained from a desired subject, and the target subject, whether the chikunguniya virus infection exists in the early stage of infection Early diagnosis can be used to determine whether aggressive treatment and detailed observational therapy should be performed on individualized patients.
  • the kit of the present invention includes a kit containing essential elements necessary for performing protein chip analysis (hereinafter referred to as 'protein chip kit');
  • the kit may be a kit including essential elements necessary to perform ELISA (hereinafter, referred to as 'ELISA kit'), but is not limited thereto.
  • the "protein chip kit” means a kit in which an antibody or the like capable of reacting with a specific protein is immobilized on a single chip at a high density, and for the purpose of the present invention, the specific protein is a recombinant according to the present invention. It may be a protein.
  • the kit for measuring the level of antigen-antibody complex formation may include a substrate, a buffer, a secondary antibody labeled with a chromophore or a fluorescent substance, a chromogenic substrate, and the like for immunological detection of the antibody.
  • a substrate a nitrocellulose membrane, a 96-well plate synthesized with a polyvinyl resin, a 96-well plate synthesized with a polystyrene resin, a slide glass made of glass, etc. may be used, and a peroxidase (peroxidase) may be used. ), Alkaline phosphatase and the like can be used.
  • ABTS 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid)
  • OPD o-phenyl
  • Rendiamine TMB (tetramethyl benzidine) and the like can be used.
  • the antigen-antibody complex formation level measurement of the protein may be used to count the binding of the antibody by nCounter and the like.
  • the "ELISA kit” refers to a method for measuring the amount of an antigen or an antibody using an antigen-antibody reaction using an enzyme as a marker, and generally refers to an enzyme immunoassay method. It includes a recombinant protein according to.
  • the ELISA kit is a reagent capable of detecting an antibody in a subject of interest bound to the recombinant protein, for example, labeled secondary antibodies, chromophores, enzymes linked to the antibody and its And other substances capable of binding to the substrate or the antibody.
  • Another embodiment of the present invention provides a method for providing information for diagnosing chikunguniya virus infection by measuring the level of complex formation between the recombinant protein according to the present invention and an antibody present in a sample of a desired individual. . Specifically, (a) measuring the antigen-antibody complex formation level with the recombinant protein according to the invention in a sample isolated from the subject of interest and (b) the antigen-antibody complex formation measured in step (a) It may be a method of providing information for diagnosing chikunguniya virus infection comprising comparing the level with the antigen-antibody complex formation level with the recombinant protein in a normal control sample.
  • the "target individual” means an individual whose presence or absence of chikunguniya virus infection is unclear, and means a highly susceptible individual.
  • the sample isolated from the subject may include, but is not limited to, a sample such as tissue, cells, blood, serum, plasma, saliva, or sputum of a patient having a high probability of infection.
  • it may include one or more of IgG and IgM antibodies contained in human serum, but is not limited thereto.
  • the antigen-antibody complex formation level is measured in the normal control group, that is, the antigen-antibody complex formation level using the recombinant gene according to the present invention as an antigen in an individual not infected with chikunguniya virus, and chikunguniya.
  • Antigen-antibody complex formation levels of a patient suspected of being infected with a virus, i.e., the desired individual can be compared, and the difference in the complex formation levels can be determined to predict whether Chikunguniya virus is infected.
  • the subject when the antigen-antibody complex formation level is higher than the sample of the normal control group not infected with the chikunguniya virus, the subject may be diagnosed as having been infected with chikunguniya virus, but is not limited thereto. .
  • the "antigen-antibody complex” means a combination of a recombinant protein according to the present invention and an antibody specific for the present in a desired individual, and the level of formation of the antigen-antibody complex is determined by a detection label ( It can be measured quantitatively through the strength of the signal of the detection label.
  • the "antigen-antibody complex formation level measurement" is to confirm the presence of the antibody present in the target sample binding to the recombinant gene according to the present invention in order to diagnose whether Chikunguniya virus infection.
  • the recombinant gene according to the present invention is used to check the amount of the antibody in the desired sample.
  • the "detection label is an enzyme" of the present invention, for example, may be selected from the group consisting of fluorescent, ligand, luminescent, microparticle, redox molecule and radioisotope, but is not limited thereto. no.
  • enzymes that can be used as detection labels include ß-glucuronidase, ß-D-glucosidase, ß-D-galactosidase, urease, peroxidase or alkaline phosphatase, acetylcholinestera Glucose oxidase, hexokinase and GDPase, RNase, glucose oxidase and luciferase, phosphofructokinase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, phosphphenolpyruvate decarboxyl Laze, ß-latamaze and the like. This is not restrictive.
  • the fluorescein, isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthalaldehyde, fluorescamine, etc. may be used as the fluorescent substance, but is not limited thereto.
  • the ligand includes a biotin derivative, and the like, but is not limited thereto.
  • the light emitting material includes acridinium ester, luciferin, luciferase, and the like, but is not limited thereto.
  • the microparticles include colloidal gold, colored latex, and the like, but are not limited thereto.
  • redox molecules include ferrocene, ruthenium complex, biologen, quinone, Ti ion, Cs ion, diimide, 1,4-benzoquinone, hydroquinone, K 4 W (CN) 8 , [Os (bpy) 3 ] 2+ , [RU (bpy) 3 ] 2+ , [MO (CN) 8 ] 4- , and the like.
  • the radioisotope includes 3 H, 14 C, 32 P, 35 S, 36 Cl, 51 Cr, 57 Co, 58 Co, 59 Fe, 90 Y, 125 I, 131 I, 186 Re, It is not limited.
  • the antibody in the blood can be effectively detected.
  • the sensitivity and accuracy may be increased when the virus is diagnosed.
  • the fusion protein may exhibit a significant synergistic effect upon induction of immunity through the vaccine, as compared to the case of inoculation with chikunguniya virus antigen protein alone.
  • the antibody in the blood is effectively detected to detect sensitivity and accuracy in diagnosing the virus. It can increase.
  • Figure 1 shows a schematic diagram of the plasmid vector for the expression of chikunguniya-flagellin fusion protein according to an embodiment of the present invention.
  • Figure 2 shows the results of electrophoretic analysis of chikunguniya-flagellin fusion protein according to an embodiment of the present invention.
  • Figure 3 shows the result of the chikunguniya-flagellin fusion protein according to an embodiment of the present invention as a monomer in a water-soluble state.
  • TLR5 Toll like receptor 5
  • Figure 5 shows a schematic diagram of the vaccination induction process according to an embodiment of the present invention.
  • Figure 6 (a) shows the change in the antibody and the protein according to the number of times of contact with the chikunguniya-flagellin fusion protein in serum after inoculating the chikunguniya-flagellin fusion protein according to an embodiment of the present invention ELISA results are shown.
  • Figure 8 shows the results of confirming the IgM and IgM response in the chikunkuniya virus infected patients and the normal control group according to an embodiment of the present invention.
  • Figure 9 shows a schematic diagram of the plasmid vector for the expression of chikkununya virus envelope antigen protein according to an embodiment of the present invention.
  • FIG. 10 shows the results of electrophoretic analysis of recombinant proteins according to an embodiment of the present invention.
  • Figure 11 (a) and (b) shows the ELISA results in serum of normal and chikunguniya virus infection patients using recombinant proteins according to an embodiment of the present invention.
  • a protein fused with a flagellin protein and an amino acid corresponding to a portion of the antigenic protein E2 of the chikungunya virus was prepared.
  • the first amplification reaction was based on chikunguniya genomic DNA template 1 and 2 of Table 1, denatured at 95 ° C. for 30 seconds, annealing at 60 ° C. for 30 seconds and at 72 ° C. for 60 seconds.
  • the primary reactant was obtained by repeating the denaturation-annealing-synthesis cycle conducted 25 times.
  • the second amplification reaction was performed using genomic DNA of Bacillus sirius as a template, using primer 3 as shown in Table 1 below, and a primary reaction product, the product of the first reaction, as a primer, denatured at 95 ° C. for 30 seconds, and at 60 ° C.
  • the cycle of annealing and replication for 1 minute at 72 ° C. was repeated 25 times to finally obtain a fusion gene of chikunguniya-flagellin protein.
  • the fusion gene of the chikunguniya-flagellin protein was inserted into a pET49b (Addgene) vector to prepare a protein expression plasmid.
  • the protein expression plasmid was verified through DNA sequencing (macrogen), and found to be the same as SEQ ID NO: 4.
  • a schematic diagram of the prepared plasmid is as shown in FIG.
  • a fusion protein was produced through the chikunguniya-flagellin fusion gene expression plasmid prepared in Example 1.
  • the fusion gene expression plasmid was injected into the chemically treated BL21 (DE3) Escherichia coli (Escherichia coli BL21 (DE3)) by transformation method and transformed with LB agar (kanamycin) antibiotic (Becton). , Dickinson and Company) plates were cultured the transformed E. coli.
  • Single E. coli colonies containing antibiotic-resistant plasmid vectors selected through the culturing process were placed in a liquid medium (LPS) containing 1 mM kanamycin and cultured in a constant temperature shaking incubator at 37 ° C.
  • LPS liquid medium
  • the chikunguniya-flagellin fusion protein was observed at about 73 KDa, confirming that the production and expression of the normal fusion protein were correct.
  • Example 2 In order to confirm whether the fusion protein produced in Example 2 is present as a monomer, after performing gel filtration chromatography by a conventional method, the results are shown in FIG.
  • Example 2 As shown in FIG. 3, the fusion protein produced in Example 2 did not polymerize randomly in an aqueous solution, but formed a monomer.
  • the chikunguniya-flagellin fusion protein according to the present invention is present as a monomer and can stimulate TLR5, an innate immune receptor (Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A.Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility.Nat Immunol. 2003 Dec; 4 (12): 1247-5.) .
  • HEK293TLR5 cells were dispensed into 96-well plates and incubated for 12 hours in an incubator at 37 ° C and 5% carbon dioxide using DMEM (High glucose with 4500 mg / L D-glucose L-glutamine WELGENE LM 001-07) medium. .
  • the cells stabilized through the culture were treated with the flagellin protein of salmonella Dublin as a positive control (1), and the fusion protein (2) produced in Example 2 was treated by concentration.
  • Alkaline phosphatase substrate yellow (Sigma-Aldrich P7998) was diluted to 1/5 in cells treated with the fusion protein, and 100 ⁇ l each was added and incubated in the incubator for 30 minutes, followed by reaction at 405 nm. The value was measured at the wavelength, and the value is shown in FIG.
  • the domain corresponding to a part of flagellin according to the present invention can also effectively induce the stimulatory activity of TLR5.
  • the ELISA is a coating solution (Na59CO3 0.159g, NaHCO3 0.293g, per 100ml, pH9.6) Chikunguniya coat protein (ChiKE2 426 ), Alum and the fusion protein antigen of Example 2 in a concentration of 3.0ug / ml After dilution, put 100 ⁇ l into each well in a 96 well plate, and then the adsorption process was performed at 4 ° C. for one day. After the antigen adsorption was completed, the plate was washed four times using PBS, and then, in order to exclude nonspecific binding, PBS containing 5% of normal chlorine serum was added to each plate and reacted at 37 ° C. for 2 hours. .
  • Serum obtained from the inoculation of the control protein, Alum and the fusion protein of Example 2 was reacted at room temperature for 1 hour, and then washed four times with PBS, followed by anti-mouse IgG1 binding enzyme for color development. After reacting at room temperature for 1 hour, color development was performed by adding a substrate buffer solution (3,3 ', 5,5'-Tetramethylbenzidine (TMB) and hydrogen peroxide) in the dark, and the color reaction was stopped by adding 2N sulfuric acid and absorbance at 450 nm. Was measured, and the results are shown in FIGS. 6 and 7.
  • TMB 5,5'-Tetramethylbenzidine
  • the chikunguniya envelope protein (ChiKE2 426 ) corresponding to the control group was confirmed that the antibody response increased after three immunizations in the absence of Alum, and 2 when Alum was added. It was confirmed that the antibody response is increased after the round immunization.
  • the amount of the fusion protein of Example 2 increased not only with the number of inoculations, but also after 4 weeks from the group containing Chikunguniya envelope protein and Alum (ChiKE2 426 + Alum) as a control group. It was confirmed that the amount of the antibody increased significantly.
  • mice immunized with ChiKE2 protein in the SDFlic + E2B, BCFlic + E2B, and BCFlic + E2 protein against their antigen showed a high antibody response to the reaction, and specifically, it was confirmed that the reaction was not only in the flagellin fusion protein E2B but also in the recombinant E2 protein.
  • the antibody response to the flagellin antigen showed that in the group immunized with the chikunguniya-flagellin fusion protein SDFlic + E2B or BCFlic + E2B and the group inoculated with flagellin alone, the chikunguniya It was confirmed that the BCFlic + E2 group, a flagellin fusion protein, did not show an antibody response to flagellin.
  • the antibody immunized with flagellin showed no antibody response to the recombinant E2 protein ChiKE2 426 , whereas the chikunguniya-flagellin fusion proteins SDFlic + E2B, BCFlic + E2B, and BCFlic + E2 were all antibodies.
  • ChiKE2 426 a recombinant Chikunguniya E2 protein, did not show an antibody response when administered alone, but only when inoculated with an adjuvant Alum to induce an antibody response.
  • chikunguniya-flagellin fusion proteins were effectively induced antibody response even when administered alone without Alum.
  • ELISPOT was performed to confirm the number of immune cells secreting IgG.
  • ELISPOT induced tertiary immunity via inoculation as described above, and isolated the spleen of the rat 4 weeks later.
  • the spleens were separated into sterile slides and red blood cells were removed to obtain splenocytes.
  • the anti-mouse IgG antibody was diluted to a concentration of 2.0 ug / ml in a coating solution (0.159 g of Na 2 CO 3, 0.293 g of NaHCO 3 , pH 9.6), and then put into a well of 100 uL in an ELISPOT 96 well plate. After the adsorption, the adsorption process was performed at 4 ° C. for one day.
  • the plate was washed four times using sterile PBS, and then, in order to exclude nonspecific binding, RPMI1640 culture medium containing 10% fetal calf serum was added to each well, and the reaction was performed at 37 ° C. for 2 hours. Reacted. And spleen cells 5x10 6 cells / ml obtained from the spleen of each mouse was added to each well by diluting step 2 times and then reacted for 4 hours at 37 °C, washed with PBS. And streptoavidin anti mouse IgG was added and reacted overnight. Thereafter, the cells were washed with PBS, developed with AEB reagent, thoroughly washed with tap water, dried, and the number of spots was measured. The results are shown in FIG.
  • the chikunguniya-flagellin fusion proteins SDFlic + E2B and BCFlic + E2 experimental group was able to confirm a significant increase in the immune cells secreting antibodies.
  • the number of antibody-secreting immune cells increased slightly but no significant increase was observed.
  • an increase in immune cells that secrete antibodies was not observed for ChiKE2 426 protein and flagellin protein, which are recombinant chikunguniya proteins.
  • ChiKE2 426 protein and flagellin protein which are recombinant chikunguniya proteins.
  • Example 2 By using the chikunguniya-flagellin fusion protein prepared in Example 2 as an antigen, the diagnostic effect to confirm whether chikunguniya infection was confirmed by ELISA method.
  • Example 5 ELISA was carried out in the same manner as in Example 5. However, in a 96 well plate, the fusion protein prepared in Example 2 was diluted to a concentration of 3.0 ⁇ g / ml and coated using a final volume of 100 ⁇ l, and the serum of chikunguniya infected patients and chikunguniya were not infected.
  • the serum of the control group was diluted with a buffer solution at a volume ratio of 1: 300, and then reacted with a horse radish peroxidase-conjugated Goat anti-Human IgG and an IgM antibody for detection. As shown in Example 5, the absorbance was measured at 450 nm. It was. The results are shown in FIG.
  • the reaction with the fusion protein (BCFlic-ChiK E2 343 ) prepared in Example 2 according to the present invention and IgG and IgM antibodies in patients with chikunguniya infection was more sensitive than the response to the control chiKE2 426 and It was confirmed that the specificity was remarkably high, and in particular, it was confirmed that the IgM antibody detected early in the infection can be detected very sensitively.
  • the chikunguniya-flagellin fusion protein according to the present invention is used as an antigen for diagnosing chikunguniya virus infection, a significant synergistic effect on sensitivity and specificity is compared with that of E2, which is a chikunguniya antigen protein. It was found that there was, and could be effectively used to diagnose the initial infection of the Chikunkuniya virus.
  • the first amplification reaction was based on chikunguniya genomic DNA template 1 and 2 of Table 2, denatured at 95 ° C. for 30 seconds, annealed at 60 ° C. for 30 seconds and at 70 ° C. for 70 seconds. The reaction was carried out by repeating the denaturation-annealing-synthesis cycle carried out in 25 times.
  • the E2 recombinant protein gene, the PCR reaction product was inserted into a pET49b (Addgene) vector to prepare a protein expression plasmid.
  • the protein expression plasmid was verified through DNA sequencing (macrogen), and found to be the same as SEQ ID NO: 6.
  • a schematic diagram of the prepared plasmid is as shown in FIG.
  • the recombinant protein of chikunguniya envelope protein E2 was produced through the recombinant gene expression plasmid prepared in Example 7.
  • the recombinant gene expression plasmid was inserted into the E. coli BL21 (DE3) chemically treated by a transformation method, and LB agar (Becton, Dickinson and Company) containing kanamycin antibiotics. )
  • the transformed Escherichia coli was cultured on a plate. Through the culturing process, a single E. coli colony containing an antibiotic resistant plasmid vector was placed in a liquid medium (LPS) containing 1 mM kanamycin and cultured in a constant temperature shaking incubator at 37 ° C.
  • LPS liquid medium
  • Example 8 By using the recombinant protein prepared in Example 8 as an antigen, the diagnostic effect to confirm whether Chikunguniya virus infection was verified by the ELISA method.
  • the ELISA is a chikunguniya antigen protein having a commercially available 426 amino acid sequence corresponding to the recombinant protein prepared in Example 2 and the control in a coating solution (Na2CO3 0.159g, NaHCO3 0.293g, per 100ml, pH9.6) was diluted to a concentration of 3.0 ⁇ g / ml and the final volume of 100 ⁇ l was put in each well of a 96 well plate, followed by adsorption for 1 day at 4 ° C. After the antigen adsorption was completed, the plate was washed four times using PBS, and then, in order to exclude nonspecific binding, PBS containing 5% of normal goat serum was added to each plate and reacted at 37 ° C. for 2 hours. .
  • Serum of chikunguniya infected patients and serum of chikunguniya uninfected normal control group were diluted with a buffer solution at a volume ratio of 1: 300 and reacted at room temperature for 1 hour, followed by 4 washes with PBS.
  • the substrate buffer (3,3 ', 5,5'-Tetramethylbenzidine ( TMB) and aqueous hydrogen peroxide) were added, and 2N sulfuric acid was added to stop the color reaction, and the absorbance was measured at 450 nm.
  • TMB 5,5'-Tetramethylbenzidine
  • the results are shown in FIGS. 11A and 11B.
  • the fusion protein and / or recombinant protein of the present invention is expected to be effectively used for the prevention and treatment of chikunguniya virus because its effect is remarkable compared to the vaccine for chikunguniya virus.
  • the fusion protein and / or recombinant protein of the present invention is expected to be usable for diagnosing viral infection since the infection can be diagnosed even in the early stages of infection with chikunguniya virus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Rheumatology (AREA)
  • Rehabilitation Therapy (AREA)
  • Public Health (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 치쿤구니야 바이러스 항원 단백질 및 톨-유사수용체 5(Toll like receptor 5) 자극 단백질인 플라젤린 융합 단백질 및 그의 용도에 관한 것으로, 본 발명에 따른 치쿤구니야 바이러스(chikungunya virus) 외피 항원 단백질에 톨-유사수용체 5 자극 단백질인 플라젤린이 결합된 융합 단백질을 이용하여 상기 바이러스 감염 여부를 진단하는 경우에는 혈액 내 항체를 효과적으로 검출하여, 상기 바이러스 진단 시 민감도 및 정확도를 높일 수 있다. 또한, 상기 융합 단백질은 치쿤구니야 바이러스 항원 단백질 단독으로 접종된 경우에 비하여, 백신을 통한 면역 유도 시 현저한 시너지 효과를 발휘할 수 있다. 또한, 본 발명은 치쿤구니야 바이러스 항원 재조합 단백질을 이용하여 치쿤구니야 바이러스(chikungunya virus) 감염 여부 진단 키트 및 진단을 위한 정보를 제공하는 것으로, 상기 재조합 단백질을 이용하여 상기 바이러스 감염 여부를 진단하는 경우에는 혈액 내 항체를 효과적으로 검출하여, 상기 바이러스 진단 시 민감도 및정확도를 높일 수 있다.

Description

재조합 단백질 및 그의 용도
본 발명은 재조합 단백질 및 그의 용도에 관한 것이다.
치쿤구니야 바이러스(chikungunya virus)는 토가비리데과(family Togaviridae), 알파바이러스속(genus Alphavirus)에 속하는 직경 60 내지 70nm (+)ssRNA 바이러스로 감염된 열대숲모기(Aedes aegypti)나 흰줄숲모기(Aedes albopictus, Tiger mosquito)를 매개로 하여 전파되는 급성열성질환인 치쿤구니야 열병을 일으키는 바이러스로 알려져 있다. 상기 치쿤구니야 바이러스가 감염되는 경우 10~15%는 무증상을 보이지만, 나머지 감염자는 1~12일의 잠복기를 거쳐 갑작스러운 고열, 간헐적 오한, 두통, 구역질, 구토, 극심한 관절통, 점상출혈발진 및 구진발진 등의 증세를 보이며, 39~40℃에 이르는 고열은 수일 동안 지속되는 것으로 보고되어 있다. 특히, 관절통의 경우 감염자의 30~40%가 수년간 지속되는 만성질환으로 나타날 수 있을 뿐만 아니라, 신생아의 경우 뇌수막염으로까지 이어질 수 있는 질병으로 알려져 있다.
또한, 상기 치쿤구니야는 갑작스런 소모성 질환을 일으킬 수 있는 유행성 잠재력을 가지고 있기 때문에, 개발도상국에서는 잠재적인 위협이 되며, 지속적인 확인으로 인하여 선진국 및 새로 나타나는 풍토성 충돌 지역 내 군사적 배치로 인하여 군인들에게 위협이 상당할 것이다. 상기 치쿤구니야 바이러스 감염은 피고용인이 감염되는 경우 만성적인 무기력한 증상으로 인하여, 유행지역에서 장기 결근으로 이어져 지역 산업이 영향을 받기 때문에 심각한 경제적 타격을 준다는 문제점이 존재한다.
상기 치쿤구니야 바이러스가 감염되어 치쿤구니야 열이 발생되는 경우, 열, 관절통, 발진 등의 증상을 통해 진단할 수 있지만 뎅기열과 증상이 매우 유사하여 그 정확한 진단이 쉽지 않다. 따라서, 상기 바이러스의 감염 여부를 확실히 하는 방법은 현재까지 혈액 검사 또는 뇌척수액 검사를 통해 혈중 바이러스를 확인하는 방법 밖에 없고, 이러한 방법은 4일에서 14일이 소요되어 조기 진단이 어렵다는 단점이 존재한다.
또한, 상기 치쿤구니야 바이러스는 감염 후 면역력을 가지는 경우 재감염 확률이 매우 낮지만, 현재까지 치쿤구니야 바이러스에 대한 예방 백신 또는 진단 방법이 존재하지 않아 그 필요성이 절실한 실정이다.
한편, 편모(flagella)는 세균의 운동성을 결정하는 중요한 구성요소이며 크게 후크(hook), 기저체(basal body) 및 필라멘트(filament)로 구성되어 있다. 편모는 세균의 유영 혹은 유주운동(swarming motility), 세균의 주성(taxis)을 결정하고, 생물막(biofilm)을 형성하여, 병원성 미생물의 부착능을 결정하는 기능이 있다고 알려져있다. 편모의 필라멘트를 구성하는 구성단위 단백질을 플라젤린(flagellin)이라 하며, 플라젤린이 규칙적으로 조합되어(assembling) 필라멘트를 형성한다. 편모를 갖는 그람 음성 및 그람 양성 세균의 플라젤린은 TLR5(toll like receptor 5)를 자극하여 NF-κB를 활성화 시킨다고 보고되어 있다(Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A: Nature 410:1099-1103, 2001). 상기 TLR5는 패턴인식수용체(PRP: pattern recognition receptor)로 병원체와 관련된 분자구조를 인식하는 수용체에 해당하는 것으로 알려져 있으며, 선천성 면역반응을 유도하고 나아가 획득 면역 반응을 조절하는 것으로 알려져 있다.
현재 백신 보조제로 사용되고 있거나 사용이 고려되고 있는 것으로는 1) 수산화 알루미늄 젤 등과 같은 미네랄염(mineral salt), 2) 계면활성 물질, 3) 세균 유래 물질, 4) 사이토카인 혹은 호르몬, 6) 다가음이온(polyanion), 7) 폴리아크릴(polyacryl), 8) 담체(carrier), 9) 바이러스를 이용한 생 벡터(living vector), 및 10) 미네랄 오일(mineral oil)이나 리포좀(liposome) 등과 같은 운반체(vehicle) 등이 있다. 그러나 백신 보조제는 외독소에 해당하여 부작용의 발생 위험성이 크기 때문에 독성을 줄이고자 하는 연구가 활발히 진행되고 있으며, 이에 따라 상기 플라젤린이 백신 보조제의 개발에 적합한 표적이 될 수 있어, 이에 대한 연구가 활발히 진행되고 있는 실정이다.
본 발명의 일 목적은 치쿤구니야 바이러스(chikungunya virus)의 항원 단백질 및 톨-유사수용체 5(Toll like receptor 5) 자극 단백질이 융합된 융합 단백질 및 그를 발현하는 벡터를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 본 발명에 따른 상기 융합 단백질을 이용하여 치쿤구니야 바이러스(chikungunya virus) 감염 여부 진단을 위한 정보를 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은 본 발명에 따른 상기 융합 단백질을 유효성분으로 포함하는 치쿤구니야 바이러스(chikungunya virus)용 백신을 제공하는 것을 목적으로 한다.
본 발명의 일 목적은 치쿤구니야 바이러스(chikungunya virus) 항원 재조합 단백질을 이용하여 치쿤구니야 바이러스 감염 여부 진단 키트 및 진단을 위한 정보를 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명자들은 연구 결과, 치쿤구니야 바이러스(chikungunya virus)의 항원 단백질 및 톨-유사수용체 5(Toll like receptor 5) 자극 단백질인 플라젤린(flagellin)을 융합 단백질로 제작하여 목적하는 개체에 접종하는 경우, 치쿤구니야 외피 단백질을 단독으로 접종하는 경우에 비해, 플라젤린이 톨-유사수용체 5를 자극하여 면역 활성을 유도하는 백신보조제로서 작용하는 경우 치쿤구니야 외피 단백질에 대한 항체가 동량의 백신 투여 시 보다 높게 형성될 뿐만 아니라, 상기 외피 단백질에 백신보조제인 수화된 알루미늄 포타슘 설페이트(Alum)를 추가로 사용하는 경우에 비해 상기 융합 단백질에서 증폭된 항체를 형성하여, 보다 소량의 단백질 항원을 백신으로 사용할 수 있을 뿐만 아니라, 상기 융합 단백질을 통하여 치쿤구니야 바이러스의 감염 여부에 대해 IgG 및 IgM 검출을 통하여 매우 효과적으로 진단할 수 있음을 발견하여 본 발명을 완성하게 되었다.
또한, 본 발명자들은 연구 결과, 치쿤구니야 바이러스(chikungunya virus)의 항원 단백질 E2의 아미노산 서열을 기반으로 제조한 재조합 단백질을 이용하여 치쿤구니야 바이러스의 감염 개체의 혈청 내 존재하는 IgG 및 IgM 검출을 통해 상기 바이러스 감염 여부를 매우 효과적으로 진단할 수 있음을 발견하여 본 발명을 완성하게 되었다.
본 발명의 일 구현 예에서는 치쿤구니야 바이러스(chikungunya virus) 항원 단백질의 일측에 톨-유사수용체 5(Toll like receptor 5) 자극 단백질을 포함하는 융합 단백질을 제공한다.
단, 본 발명에 있어서 상기 “톨-유사수용체 5(Toll like receptor 5)"란 대표적인 패턴인식수용체(Pattern Recognition Receptor)로서 병원체에 존재하는 병원체와 관련된 분자구조를 인식하는 수용체 중 하나이며, 숙주세포의 세포 표면 혹은 세포질 내 분포하며 다양한 자극에 의해 선천성 면역 반응을 유도할 뿐만 아니라 획득 면역 반응을 적극 유도하여 백신 보조제로 사용될 수 있다. 바람직하게는 상기 톨-유사수용체 5 자극 단백질은 플라젤린(flagellin)일 수 있으나, 패턴인식수용체에 결합하여 외부 항원으로 인식되어 면역 반응을 유도할 수 있는 것이라면 이에 제한되지 아니하고 포함될 수 있다.
본 발명에서 상기 플라젤린은 편모성 세균이 감염된 경우에 감염된 숙주 내에서 면역 반응을 유도할 수 있다. 보다 구체적으로 인체의 세포막 표면에 존재하는 톨-유사 수용체 5(TLR5; Toll-like receptor 5)는 상기 플라젤린과의 상호작용을 통하여 세포 내 신호 전달을 유발하고, 이를 통하여 전사인자인 NF-kB의 발현을 증가시켜 선천성면역신호 활성화를 유도할 뿐만 아니라, 획득 면역 반응을 조절할 수 있다. 따라서, 본 발명에 따른 치쿤구니야 바이러스(chikungunya virus) 항원 단백질의 일측에 플라젤린(flagellin)이 결합된 융합 단백질은 치쿤구니야 바이러스 항원 단백질 단독으로 접종된 경우에 비하여, 백신을 통한 면역 유도 과정 및 본 발명에 따른 융합 단백질을 이용한 치쿤구니야 바이러스 진단의 민감성 및 감수성에서 현저한 시너지 효과를 발휘할 수 있다.
단, 본 발명에 있어서 상기 "융합 단백질"이란, 두 개 이상 단백질이 융합되어 생성된 단백질을 의미하며, 유전자 재조합 방법을 통해 생산할 수 있다. 상기 유전자 재조합 방법에 의해 생산된 재조합 유전자를 숙주세포에 형질전환(transformation)시키는 방법으로 융합 단백질의 발현을 유도할 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 목적상 상기 융합 단백질은 치쿤구니야 바이러스 항원 단백질 및 톨-유사수용체 5 자극 단백질, 특히 플라젤린이 유전자 재조합 방법에 의해 제조된 재조합 유전자를 숙주세포에서 발현시켜서 얻은 융합 단백질 일 수 있다.
본 발명에 있어서 상기 치쿤구니야 바이러스 항원 단백질은 치쿤구니야 바이러스 외피 항원 단백질 일 수 있다. 상기 치쿤구니야 바이러스 외피 항원 단백질은 핵산과 함께 바이러스의 입자를 구성하는 단백질로, 일반적으로 바이러스 항원으로서의 특이성을 나타낸다.
본 발명에서 상기 치쿤구니야 바이러스는 E1, E2, E3 및 6K 외피 항원 단백질을 갖고 있으며, 본 발명의 목적상 상기 치쿤구니야 바이러스 외피 항원 단백질은 서열번호 1로 표시되는 E2 외피 항원 단백질 일 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 서열번호 1로 표시되는 E2 외피 항원 단백질은 서열번호 2로 표시되는 치쿤구니야 외피 항원 단백질 중 일부에 해당하는 343개의 아미노산 서열로 구성된 항원 단백질 일 수 있다. 상기 서열번호 2의 치쿤구니야 바이러스 E2 외피 항원 단백질은 바이러스 외피 돌출부위에 해당하여 외피 구성에 중추적인 역할을 하나, 대장균(Escherichia coli) 균주를 사용한 재조합 단백질 발현의 수율이 종래에는 매우 저조하였다. 그러나, 본 발명에 따른 서열번호 1로 표시되는 E2 외피 항원 단백질에 플라젤린을 결합시킨 뒤, 대장균을 사용하여 상기 융합 단백질을 발현하는 경우 발현 효율이 매우 높을 뿐만 아니라, 순도 높게 정제할 수 있다는 장점이 존재한다.
또한, 본 발명에서 상기 플라젤린(flagellin)은 살모넬라 속 또는 바실러스 속 세균의 플라젤린(flagellin)일 수 있다. 바람직하게 상기 플라젤린은 바실러스 속 세균에서 유래된 플라젤린일 수 있으나, 이에 제한되는 것은 아니다. 보다 바람직하게는 상기 세균은 살모넬라 더블린(salmonella dublin) 또는 바실러스 시리우스(Bacillus cereus) 일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서 상기 "플라젤린(flagellin)"이란, 세균의 운동성을 제공하는 편모(flagella)를 구성하는 주요 단백질로, 편모성 세균에 가장 풍부하게 존재하는 단백질에 해당한다. 상기 플라젤린은 일반적으로 2 ~ 4의 도메인으로 구성되어 있을 수 있으며, 상기 도메인은 편모성 세균에 2개의 보존 도메인 D0 및 D1과, 길이 및 존재 유무가 다양한 다변화 도메인 D2 및 D3로 구성될 수 있다. 본 발명의 목적상 본 발명의 상기 플라젤린은 D0 및 D1 도메인 중 어느 하나 이상을 포함할 수 있고, 바람직하게는 상기 플라젤린 단백질은 서열번호 3으로 표시되는 것일 수 있으나, 이에 제한되는 것은 아니다. 특히, 상기 바실러스 유래 플라젤린은 D0 및 D1 도메인만으로 구성되어 있어, 상기 융합 단백질 제조 후 목적하는 개체에 접종하는 경우 플라젤린에 의한 선천성 면역반응을 선택적으로 활성화시키고, 원치 않는 독성을 최소화 시킬 수 있다는 장점이 존재한다.
본 발명의 일 구체예에서는 본 발명에 따른 상기 융합 단백질의 일측에 히스티딘-표지(Histidine-tag)가 결합되어 있을 수 있다. 히스티딘-표지가 결합되는 경우에는 형질전환에 의해 숙주세포에서 발현이 유도된 이후 숙주 세포에서 목적하는 단백질을 빠르게 정제할 수 있을 뿐만 아니라, 정제된 단백질의 순도를 높일 수 있다는 장점이 존재한다.
본 발명의 다른 구현예에서는 본 발명에 따른 상기 융합 단백질을 코딩하는 폴리뉴클레오티드를 제공한다.
단, 본 발명에서 상기 "폴리뉴클레오티드"란, 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬 모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 본 발명에 따른 융합 단백질을 코딩하는 폴리뉴클레오티드를 의미한다.
본 발명에 따른 상기 융합 단백질을 코딩하는 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy), 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 융합 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 상기 변형 유전자 역시 본 발명의 보호범위 내에 포함된다.
본 발명의 또 다른 구현예에서는 본 발명에 따른 상기 폴리뉴클레오티드를 포함하는 발현 벡터를 제공한다. 바람직하게는 상기 발현 벡터는 서열번호 4의 염기서열로 표시되는 유전자 절편을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서 상기 "발현 벡터"란, 숙주세포에 DNA를 도입하여 본 발명의 융합 단백질을 미생물에서 발현시키기 위한 수단으로서, 상기 발현 벡터의 제작 시에는 상기 융합 단백질을 생산하고자 하는 숙주세포의 종류에 따라 프로모터(promoter), 종결자(terminator), 인핸서(inhancer) 등과 같은 발현 조절 서열 및 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.
이에 제한되는 것은 아니지만, 본 발명의 상기 발현 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오 파아지 벡터, 및 바이러스 벡터 등을 포함할 수 있다. 적합한 발현 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 발현 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 상기 시그널 서열에서 숙주가 효모 (yeast)인 경우에는 MFa 시그널 서열, SUC2시그널 서열 등이, 숙주가 동물 세포인 경우에는 인슐린 시그널 서열, a-인터페론 시그널 서열, 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되는 것은 아니다. 또한, 발현 벡터는 벡터를 포함하는 숙주 세포를 선택하기 위한 선택 마커를 포함할 수 있고, 복제 가능한 발현 벡터인 경우 복제 기원을 포함할 수 있고, 보다 바직하게는 pET49b 벡터일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 또 다른구현 예에서는 본 발명에 따른 상기 융합 단백질을 유효성분으로 포함하는 치쿤구니야 바이러스용 백신을 제공한다.
본 발명에서 상기 백신은 당업계에서 잘 알려진 통상적인 방법으로 제조될 수 있고, 당업계에서 백신 제조 시 사용할 수 있는 여러 첨가물을 임의로 더 포함할 수 있다.
또한, 본 발명에 따른 백신은 다른 면역보조제를 추가적으로 포함할 수 있으며, 예를 들어 Mg, Ca, Sr, Ba 및 Ra으로 구성된 군으로부터 선택되는 제2족 원소, Ti, Zr, Hf 및 Rf로 구성된 군으로부터 선택되는 제 4족 원소 또는 알루미늄의 염 또는 그의 수화물을 포함할 수 있다. 상기 염은 바람직하게는 옥사이드, 퍼옥사이드, 하이드록사이드, 카보네이트, 포스페이트, 파이로포스페이트, 하이드로겐포스페이트, 다이하이드로겐포스페이트, 설페이트 또는 실리케이트와 함께 형성될 수 있다. 예를 들어, 본 발명의 백신 조성물에서 추가적으로 이용될 수 있는 면역보조제는 마그네슘 하이드록사이드, 마그네슘 카보네이트 하이드독사이드 펜타하이드데이트, 티타듐 다이독사이드, 칼슘 카보네이트, 바륨 옥사이드, 바륨 하이이드록사이드, 바륨 퍼옥사이드, 바륨 설페이트, 칼슘 설페이트, 칼슘 파이로포스페이트, 마그네슘 카보네이트, 마그네슘 옥사이드, 알루미늄 하이드록사이드, 알루미늄 포스페이트 및 수화된 알루미늄 포타슘 설페이트(Alum)일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명에 따른 상기 백신은 약학적으로 허용되는 담체를 더 포함할 수 있다. 이에 제한되는 것은 아니지만 예를 들면, 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함하여 사용될 수 있다.
본 발명에서 상기 백신은, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명에서 상기 백신의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명에 따른 백신의 투여량은 바람직하게는 1일 당 0.0001-1000mg/kg(체중)일 수 있다.
본 발명의 일 구체 예에서는 상기 융합 단백질을 유효성분으로 포함하는 백신은 정맥내주사, 동맥내주사, 근육내주사, 피하내주사, 결막내주사, 경피전달 또는 기도흡입으로 체내에 투여될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 구현 예에서는 본 발명에 따른 상기 융합 단백질을 유효성분으로 포함하는 치쿤구니야 바이러스 진단용 키트를 제공한다. 본 발명에서 제공하는 상기 키트는 본 발명에 따른 상기 융합 단백질과 목적하는 개체의 시료 내 존재하는 항체, 바람직하게는 인간의 IgG 및/또는 IgM의 항원-항체 복합체 형성 수준을 측정할 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 상기 융합 단백질을 이용하여 진단하는 경우에는 감염 초기의 IgM의 민감도가 매우 높아, 감염된 직후 초기의 무증상인 경우에도 매우 효과적으로 진단할 수 있다는 장점이 존재한다.
단, 본 발명에서 상기 "키트"란, 특정한 목적을 위해 필요한 조성물 및 부속품을 모아놓은 세트를 의미한다. 구체적으로 상기 키트에는 본 발명에 따른 진단용 조성물 뿐만 아니라, 상기 항원-항체 복합체 형성 수준을 측정하는 분석에 사용되는 본 발명의 해당 분야에서 일반적으로 사용되는 도구, 시약 등이 포함될 수 있다. 상기 도구 또는 시약의 일 예로, 적합한 담체, 검출 가능한 신호를 생성할 수 있는 표지 물질, 발색단(chromophores), 용해제, 세정제, 완충제, 안정화제 등이 포함되나 이에 제한되지 않는다. 표지 물질이 효소인 경우에는 효소 활성을 측정할 수 있는 기질 및 반응 정지제를 포함할 수 있다. 담체는 가용성 담체, 불용성 담체가 있고, 가용성 담체의 일 예로 당 분야에서 공지된 생리학적으로 허용되는 완충액, 예를 들어 PBS가 있고, 불용성 담체의 일 예로 폴리스틸렌, 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리아크릴로니트릴, 불소 수지, 가교 덱스트란, 폴리사카라이드, 라텍스에 금속을 도금한 자성 미립자와 같은 고분자, 기타 종이, 유리, 금속, 아가로오스 및 이들의 조합일 수 있다.
본 발명에서 제공하는 키트를 이용하는 경우, 목적하는 개체로부터 얻은 시료로부터 상기 융합 단백질의 항원-항체 복합체 형성 수준을 비교하여, 목적하는 개체에 있어서, 감염 초기 잠복기가 존재하는 치쿤구니야 바이러스 감염 여부를 조기에 진단하여 개별화된 환자에게 적극적인 치료 시행 및 세밀한 관찰요법 여부를 결정할 수 있다. 또한, 본 발명의 상기 키트는 단백질 칩 분석을 수행하기 위해 필요한 필수 요소를 포함하는 키트(이하 '단백질 칩 키트' 라 한다); 또는 ELISA를 수행하기 위해 필요한 필수 요소를 포함하는 키트(이하 'ELISA 키트'라 한다.)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 "단백질 칩 키트"란, 특정 단백질과 반응할 수 있는 항체 등을 단일 칩 상에 고밀도로 고정화시킨 키트를 의미하며, 본 발명의 목적상 상기 특정 단백질은 본 발명에 따른 융합 단백질 일 수 있다.
본 발명에 따른 상기 항원-항체 복합체 형성 수준을 측정하기 위한 키트는 항체의 면역학적 검출을 위하여 기재, 완충용액, 발색효소 또는 형광물질로 표지된 2차 항체, 발색기질 등을 포함할 수 있다. 상기에서 기재로는 니트로셀룰로오스 막, 폴리비닐 수지로 합성된 96-웰 플레이트, 폴리스틸렌 수지로 합성된 96-웰 플레이트, 유리로 된 슬라이드 글라스 등이 이용될 수 있고, 발색효소로는 퍼옥시다아제(peroxidase), 알칼라인 포스파타아제(alkaline phosphatase) 등이 사용될 수 있다. 또한, 형광물질로는 FITC, RITC 등이 사용될 수 있고, 발색기질로는 ABTS(2,2'-아지노-비스-(3-에틸벤조티아졸린-6-설폰산)), OPD(o-페닐렌디아민), TMB(테트라메틸 벤지딘) 등이 사용될 수 있다. 또한, 상기 단백질의 항원-항체 복합체 형성 수준 측정은 항체의 결합물을 nCounter 등으로 계수하는 방법이 사용될 수 있다.
본 발명에 있어서, 상기 "ELISA 키트"란, 효소를 표식자로 하여 항원-항체 반응을 이용한 항원 또는 항체량 측정 방법을 일반적으로 효소면역분석법을 총칭하며, 본 발명의 목적상 상기 ELISA 키트는 본 발명에 따른 융합 단백질을 포함한다. 또한, 상기 ELISA 키트는 상기 융합 단백질에 결합된 목적하는 개체 내의 항체를 검출할 수 있는 시약, 예를 들면, 표지된 2차 항체, 발색단(chromophores), 항체와 컨주게이트되어 있는 효소 및 그의 기질 또는 항체와 결합할 수 있는 다른 물질 등을 포함할 수 있다.
본 발명의 또 다른 구현예에서는 본 발명에 따른 상기 융합 단백질과 목적하는 개체의 시료 내 존재하는 항체와의 복합체 형성 수준을 측정하여 치쿤구니야 바이러스 감염을 진단하기 위한 정보를 제공하는 방법을 제공한다. 구체적으로, (a) 목적하는 개체로부터 분리된 시료 내에서 본 발명에 따른 융합 단백질과의 항원-항체 복합체 형성 수준을 측정하는 단계; 및 (b) 상기 (a) 단계에서 측정된 항원-항체 복합체 형성 수준을 정상 대조군 시료에서 상기 융합 단백질과의 항원-항체 복합체 형성 수준과 비교하는 단계를 포함하는 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법일 수 있다.
또한, 본 발명에 있어서 상기 "목적하는 개체"란, 치쿤구니야 바이러스 감염의 여부가 확실하지 않은 개체로, 감염 가능성이 높은 개체를 의미한다. 또한, 상기 개체에서 분리된 시료란, 감염 가능성이 높은 환자의 조직, 세포, 혈액, 혈청, 혈장, 타액 또는 객담과 같은 시료 등을 포함할 수 있으나, 이에 제한되지 아니한다. 바람직하게는 인간의 혈청 내에 포함되어 있는 IgG 및 IgM 항체 중 어느 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 아니한다.
본 발명에 있어서 상기 항원-항체 복합체 형성 수준의 측정은 정상 대조군, 즉 치쿤구니야 바이러스가 감염되지 않은 개체에서의 본 발명에 따른 융합 유전자를 항원으로 하는 항원-항체 복합체 형성 수준과, 치쿤구니야 바이러스가 감염된 것으로 의심되는 환자, 즉 목적하는 개체의 항원-항체 복합체 형성 수준을 비교할 수 있고, 상기 복합체 형성 수준의 차이를 판단하여, 치쿤구니야 바이러스 감염 여부를 예측할 수 있다. 바람직하게는, 상기 항원-항체 복합체 형성 수준이 치쿤구니야 바이러스가 감염되지 않은 정상 대조군의 시료보다 높은 경우에 목적하는 개체가 치쿤구니야 바이러스가 감염되었을 것으로 진단할 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명에 있어서 상기 "항원-항체 복합체"란, 본 발명에 따른 융합 단백질과 목적하는 개체 내 존재하는 이에 특이적인 항체의 결합물을 의미하고, 항원-항체 복합체의 형성 수준은 검출 라벨(detection label)의 시그널의 세기를 통해서 정량적으로 측정 가능하다.
또한, 본 발명에 있어서 상기 "항원-항체 복합체 형성 수준 측정"이란, 치쿤구니야 바이러스 감염 여부를 진단하기 위하여 본 발명에 따른 상기 융합 유전자와 결합하는 목적하는 시료 내 존재하는 항체의 존재 정도를 확인하는 과정으로, 본 발명에 따른 융합 유전자를 이용하여 목적하는 시료 내의 항체의 양을 확인한다. 이를 위한 분석 방법으로는 웨스턴 블럿, ELISA(enzyme linked immunosorbent asay), 방사선면역분석(RIA: Radioimmunoassay), 방사면역확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역 확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법(Immunoprecipitation assay), 보체고정분석법(Complement Fixation Assay), FACS, 단백질 칩(protein chip) 등이 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 상기 "검출 라벨은 효소"는, 예를 들면 형광물, 리간드, 발광물, 미소입자(microparticle), 레독스 분자 및 방사선 동위원소로 이루어진 그룹 중에서 선택할 수 있으며, 이에 제한되는 것은 아니다. 보다 구체적으로, 검출 라벨로서 이용 가능한 효소에는 ß-글루쿠로니다제, ß-D-글루코시다제, ß-D-갈락토시다제, 우레아제, 퍼옥시다아제 또는 알칼라인 포스파타아제, 아세틸콜린에스테라제, 글루코즈 옥시다제, 헥소키나제와 GDPase, RNase, 글루코즈 옥시다제와 루시페라제, 포스포프럭토키나제, 포스포에놀피루베이트 카복실라제, 아스파르테이트 아미노트랜스페라제, 포스페놀피루베이트 데카복실라제, ß-라타마제 등이 있으며. 이에 제한되지 않는다. 또한, 상기 형광물로서 이용 가능한 것에는 플루오레신, 이소티오시아네이트, 로다민, 피코에리테린, 피코시아닌, 알로피코시아닌, o-프탈데히드, 플루오레스카민 등이 있으나, 이에 제한되지 않는다. 또한, 상기 리간드에는 바이오틴 유도체 등이 있고, 이에 제한되지 않는다. 또한, 상기 발광물에는 아크리디늄 에스테르, 루시페린, 루시퍼라아제 등이 있으며, 이에 제한되지 않는다. 또한, 미소입자에는 콜로이드 금, 착색된 라텍스 등이 있으며, 이에 제한되지 않는다. 또한, 레독스 분자에는 페로센, 루테늄 착화합물, 바이올로젠, 퀴논, Ti 이온, Cs 이온, 디이미드, 1,4-벤조퀴논, 하이드로퀴논, K4W(CN)8, [Os(bpy)3]2+, [RU(bpy)3]2+, [MO(CN)8]4- 등이 포함되며, 이에 제한되지 않는다. 또한, 상기 방사선동위원소에는 3H, 14C, 32P, 35S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, 131I, 186Re이 포함되며, 이에 제한되지 않는다.
본 발명의 상기 바이러스 감염, 특히 본 발명에 따른 치쿤구니야 바이러스 감염 진단은 외부로 나타나는 병증만으로 어떠한 바이러스의 감염이 발생하였는지 판단하는 것은 불가능하기 때문에 매우 중요한 방법에 해당한다. 진단방법으로는 생물학적 검정, 혈청학적 진단 및 효소 항체 결합법에 의한 전자현미경 검정 방법 등이 존재한다. 구체적으로, 이에 제한되는 것은 아니지만 예를 들면, 바이러스의 항원이 부착되어 있는 기판에 감염이 의심되는 개체로부터 분리된 혈청을 희석하여 넣어준 뒤, 항원-항체 결합 수준 측정을 통해 바이러스의 감염 여부를 진단하는 것에 해당한다.
반면에, 바이러스 개체가 감염되었을 경우 이를 치료하기 위한 요법에 해당하는 백신 프로토콜의 일종인 면역요법은 바람직한 치료요법적 효과를 부여하기 위하여 개인의 면역 반응을 조절하는 것을 지칭한다. 특히, 면역치료제(Immunotherapeutics)는 개체에 투여 되었을 때, 원하지 않는 면역 반응과 연계된 증상을 궁극적으로 감소시키거나 원하는 면역 반응을 증가시켜 감염된 개체에서 발생할 수 있는 증상을 궁극적으로 경감시키는데 충분하도록 개체의 면역계를 조절하는 조성물을 지칭한다. 따라서, 바이러스 감염에 대한 보호를 제공하고 바이러스를 포함하는 병원체 감염의 치료를 위하여, 상기 바이러스의 항원 등을 직접 개체에 투여하는 접종하는 방식으로 이루어진다는 특징이 있어, 진단방법과는 전혀 상이한 프로토콜을 따른다.
본 발명의 일 구현 예에서는 치쿤구니야 바이러스(chikungunya virus) 외피 항원 단백질을 포함하는 재조합 단백질을 제공한다.
본 발명에 있어서, 상기 "치쿤구니야 바이러스 외피 항원 단백질"이란, 치쿤구니야 바이러스의 외피를 구성을 하는 단백질을 의미한다. 상기 외피 항원 단백질은 E1, E2, E3 및 6K로 구성되어 있으며, 본 발명은 발명의 목적상 외피 항원 단백질 중 외피 돌출 부위에 해당하여 바이러스의 외피 구성에 중추적인 역할을 하는 E2 외피 항원 단백질을 이용한 것일 수 있고, 바람직하게는 상기 E2 항원 단백질은 서열번호 5로 표시되는 341개의 아미노산 서열로 구성된 단백질 일 수 있으나, 이에 제한되는 것은 아니다. 상기 서열번호 5로 표시되는 341개의 아미노산 서열로 구성된 단백질은 치쿤구니야 바이러스 감염의 진단을 위하여 감염이 의심되는 환자의 혈청과 반응시키는 경우, 진단의 민감도 및 정확도를 현저하게 높일 수 있다.
본 발명의 일 구체 예에서는 본 발명에 따른 상기 재조합 단백질의 일측에 히스티딘-표지(Histidine-tag)가 결합 되어 있을 수 있다. 히스티딘-표지가 결합 되는 경우에는 형질전환에 의해 숙주세포에서 발현이 유도된 이후 숙주 세포에서 목적하는 재조합 단백질을 빠르게 정제할 수 있을 뿐만 아니라, 정제된 단백질의 순도를 높일 수 있다는 장점이 존재한다.
본 발명의 다른 구현 예에서는 본 발명에 따른 상기 재조합 단백질을 코딩하는 폴리뉴클레오티드를 제공한다.
단, 본 발명에서 상기 "폴리뉴클레오티드"란, 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬 모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 본 발명에 따른 재조합 단백질을 코딩하는 폴리뉴클레오티드를 의미한다.
본 발명에 따른 상기 재조합 단백질을 코딩하는 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy), 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 재조합 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 상기 변형 유전자 역시 본 발명의 보호범위 내에 포함된다.
본 발명의 또 다른 구현 예에서는 본 발명에 따른 상기 폴리뉴클레오티드를 포함하는 발현 벡터를 제공한다. 바람직하게는 상기 발현 벡터는 서열번호 6의 염기서열로 표시되는 유전자 절편을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서 상기 "발현 벡터"란, 숙주세포에 DNA를 도입하여 본 발명의 재조합 단백질을 미생물에서 발현시키기 위한 수단으로서, 상기 발현 벡터의 제작 시에는 상기 재조합 단백질을 생산하고자 하는 숙주세포의 종류에 따라 프로모터 (promoter), 종결자 (terminator), 인핸서 (inhancer) 등과 같은 발현 조절 서열 및 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.
이에 제한되는 것은 아니지만, 본 발명의 상기 발현 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오 파아지 벡터, 및 바이러스 벡터 등을 포함할 수 있다. 적합한 발현 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 발현 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 상기 시그널 서열에서 숙주가 효모 (yeast)인 경우에는 MFα 시그널 서열, SUC2시그널 서열 등이, 숙주가 동물 세포인 경우에는 인슐린 시그널 서열, α-인터페론 시그널 서열, 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되는 것은 아니다. 또한, 발현 벡터는 벡터를 포함하는 숙주 세포를 선택하기 위한 선택 마커를 포함할 수 있고, 복제 가능한 발현 벡터인 경우 복제 기원을 포함할 수 있고, 보다 바람직하게는 pET49b 벡터일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 또 다른 구현 예에서는 본 발명에 따른 상기 재조합 단백질을 유효성분으로 포함하는 치쿤구니야 바이러스 진단용 키트를 제공한다. 본 발명에서 제공하는 상기 키트는 본 발명에 따른 상기 재조합 단백질과 목적하는 개체의 시료 내 존재하는 항체, 바람직하게는 인간의 IgG 및/또는 IgM의 항원-항체 복합체 형성 수준을 측정할 수 있으나, 이에 제한되는 것은 아니다.
단, 본 발명에서 상기 "키트"란, 특정한 목적을 위해 필요한 조성물 및 부속품을 모아놓은 세트를 의미한다. 구체적으로 상기 키트에는 본 발명에 따른 진단용 조성물뿐만 아니라, 상기 항원-항체 복합체 형성 수준을 측정하는 분석에 사용되는 본 발명의 해당 분야에서 일반적으로 사용되는 도구, 시약 등이 포함될 수 있다. 상기 도구 또는 시약의 일 예로, 적합한 담체, 검출 가능한 신호를 생성할 수 있는 표지 물질, 발색단(chromophores), 용해제, 세정제, 완충제, 안정화제 등이 포함되나 이에 제한되지 않는다. 표지 물질이 효소인 경우에는 효소 활성을 측정할 수 있는 기질 및 반응 정지제를 포함할 수 있다. 담체는 가용성 담체, 불용성 담체가 있고, 가용성 담체의 일 예로 당 분야에서 공지된 생리학적으로 허용되는 완충액, 예를 들어 PBS가 있고, 불용성 담체의 일 예로 폴리스틸렌, 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리아크릴로니트릴, 불소 수지, 가교덱스트란, 폴리사카라이드, 라텍스에 금속을 도금한 자성 미립자와 같은 고분자, 기타 종이, 유리, 금속, 아가로오스 및 이들의 조합일 수 있다.
본 발명에서 제공하는 키트를 이용하는 경우, 목적하는 개체로부터 얻은 시료로부터 상기 재조합 단백질의 항원-항체 복합체 형성 수준을 비교하여, 목적하는 개체에 있어서, 감염 초기 잠복기가 존재하는 치쿤구니야 바이러스 감염 여부를 조기에 진단하여 개별화된 환자에게 적극적인 치료 시행 및 세밀한 관찰요법 여부를 결정할 수 있다. 또한, 본 발명의 상기 키트는 단백질 칩 분석을 수행하기 위해 필요한 필수 요소를 포함하는 키트(이하 '단백질 칩 키트' 라 한다); 또는 ELISA를 수행하기 위해 필요한 필수 요소를 포함하는 키트(이하 'ELISA 키트'라 한다)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 “단백질 칩 키트”란, 특정 단백질과 반응할 수 있는 항체 등을 단일 칩 상에 고밀도로 고정화 시킨 키트를 의미하며, 본 발명의 목적상 상기 특정 단백질은 본 발명에 따른 재조합 단백질 일 수 있다.
본 발명에 따른 상기 항원-항체 복합체 형성 수준을 측정하기 위한 키트는 항체의 면역학적 검출을 위하여 기재, 완충용액, 발색효소 또는 형광물질로 표지된 2차 항체, 발색기질 등을 포함할 수 있다. 상기에서 기재로는 니트로셀룰로오스 막, 폴리비닐 수지로 합성된 96-웰 플레이트, 폴리스틸렌 수지로 합성된 96-웰 플레이트, 유리로 된 슬라이드 글라스 등이 이용될 수 있고, 발색효소로는 퍼옥시다아제(peroxidase), 알칼라인 포스파타아제(alkaline phosphatase) 등이 사용될 수 있다. 또한, 형광물질로는 FITC, RITC 등이 사용될 수 있고, 발색기질로는 ABTS(2,2'-아지노-비스-(3-에틸벤조티아졸린-6-설폰산)), OPD(o-페닐렌디아민), TMB(테트라메틸 벤지딘) 등이 사용될 수 있다. 또한, 상기 단백질의 항원-항체 복합체 형성 수준 측정은 항체의 결합물을 nCounter 등으로 계수하는 방법이 사용될 수 있다.
본 발명에 있어서, 상기 "ELISA 키트"란, 효소를 표식자로 하여 항원-항체 반응을 이용한 항원 또는 항체량 측정 방법을 일반적으로 효소면역분석법을 총칭하며, 본 발명의 목적상 상기 ELISA 키트는 본 발명에 따른 재조합 단백질을 포함한다. 또한, 상기 ELISA 키트는 상기 재조합 단백질에 결합된 목적하는 개체 내의 항체를 검출할 수 있는 시약, 예를 들면, 표지된 2차 항체, 발색단(chromophores), 항체와 결합(link)되어 있는 효소 및 그의 기질 또는 항체와 결합할 수 있는 다른 물질 등을 포함할 수 있다.
본 발명의 또 다른 구현 예에서는 본 발명에 따른 상기 재조합 단백질과 목적하는 개체의 시료 내 존재하는 항체와의 복합체 형성 수준을 측정하여 치쿤구니야 바이러스 감염을 진단하기 위한 정보를 제공하는 방법을 제공한다. 구체적으로, (a) 목적하는 개체로부터 분리된 시료 내에서 본 발명에 따른 재조합 단백질과의 항원-항체 복합체 형성 수준을 측정하는 단계 및 (b) 상기 (a) 단계에서 측정된 항원-항체 복합체 형성 수준을 정상 대조군 시료에서 상기 재조합 단백질과의 항원-항체 복합체 형성 수준과 비교하는 단계를 포함하는 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법일 수 있다.
또한, 본 발명에 있어서 상기 "목적하는 개체"란, 치쿤구니야 바이러스 감염의 여부가 확실하지 않은 개체로, 감염 가능성이 높은 개체를 의미한다. 또한, 상기 개체에서 분리된 시료란, 감염 가능성이 높은 환자의 조직, 세포, 혈액, 혈청, 혈장, 타액 또는 객담과 같은 시료 등을 포함할 수 있으나, 이에 제한되지 아니한다. 바람직하게는 인간의 혈청 내에 포함되어 있는 IgG 및 IgM 항체 중 어느 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 아니한다.
본 발명에 있어서 상기 항원-항체 복합체 형성 수준의 측정은 정상 대조군, 즉 치쿤구니야 바이러스가 감염되지 않은 개체에서의 본 발명에 따른 재조합 유전자를 항원으로 하는 항원-항체 복합체 형성 수준과, 치쿤구니야 바이러스가 감염된 것으로 의심되는 환자, 즉 목적하는 개체의 항원-항체 복합체 형성 수준을 비교할 수 있고, 상기 복합체 형성 수준의 차이를 판단하여, 치쿤구니야 바이러스 감염 여부를 예측할 수 있다. 바람직하게는, 상기 항원-항체 복합체 형성 수준이 치쿤구니야 바이러스가 감염되지 않은 정상 대조군의 시료보다 높은 경우에 목적하는 개체가 치쿤구니야 바이러스가 감염되었을 것으로 진단할 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명에 있어서 상기 "항원-항체 복합체"란, 본 발명에 따른 재조합 단백질과 목적하는 개체 내 존재하는 이에 특이적인 항체의 결합물을 의미하고, 항원-항체 복합체의 형성 수준은 검출 라벨(detection label)의 시그널의 세기를 통해서 정량적으로 측정 가능하다.
또한, 본 발명에 있어서 상기 "항원-항체 복합체 형성 수준 측정"이란, 치쿤구니야 바이러스 감염 여부를 진단하기 위하여 본 발명에 따른 상기 재조합 유전자와 결합하는 목적하는 시료 내 존재하는 항체의 존재 정도를 확인하는 과정으로, 본 발명에 따른 재조합 유전자를 이용하여 목적하는 시료 내의 항체의 양을 확인한다. 이를 위한 분석 방법으로는 웨스턴 블럿, ELISA (enzyme linked immunosorbent assay), 방사선면역분석 (RIA: Radioimmunoassay), 방사면역확산법(radioimmunodiffusion), 오우크테로니 (Ouchterlony) 면역 확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법 (Immunoprecipitation assay), 보체고정분석법 (Complement Fixation Assay), FACS, 단백질 칩 (protein chip) 등이 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 상기 "검출 라벨은 효소"는, 예를 들면 형광물, 리간드, 발광물, 미소입자(microparticle), 레독스 분자 및 방사선 동위원소로 이루어진 그룹 중에서 선택할 수 있으며, 이에 제한되는 것은 아니다. 보다 구체적으로, 검출 라벨로서 이용 가능한 효소에는 ß-글루쿠로니다제, ß-D-글루코시다제, ß-D-갈락토시다제, 우레아제, 퍼옥시다아제 또는 알칼라인 포스파타아제, 아세틸콜린에스테라제, 글루코즈 옥시다제, 헥소키나제와 GDPase, RNase, 글루코즈 옥시다제와 루시페라제, 포스포프럭토키나제, 포스포에놀피루베이트 카복실라제, 아스파르테이트 아미노트랜스페라제, 포스페놀피루베이트 데카복실라제, ß-라타마제 등이 있으며. 이에 제한되지 않는다. 또한, 상기 형광물로서 이용 가능한 것에는 플루오레신, 이소티오시아네이트, 로다민, 피코에리테린, 피코시아닌, 알로피코시아닌, o-프탈데히드, 플루오레스카민 등이 있으나, 이에 제한되지 않는다. 또한, 상기 리간드에는 바이오틴 유도체 등이 있고, 이에 제한되지 않는다. 또한, 상기 발광물에는 아크리디늄 에스테르, 루시페린, 루시퍼라아제 등이 있으며, 이에 제한되지 않는다. 또한, 미소입자에는 콜로이드 금, 착색된 라텍스 등이 있으며, 이에 제한되지 않는다. 또한, 레독스 분자에는 페로센, 루테늄 착화합물, 바이올로젠, 퀴논, Ti 이온, Cs 이온, 디이미드, 1,4-벤조퀴논, 하이드로퀴논, K4W(CN)8, [Os(bpy)3]2+, [RU(bpy)3]2+, [MO(CN)8]4- 등이 포함되며, 이에 제한되지 않는다. 또한, 상기 방사선동위원소에는 3H, 14C, 32P, 35S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, 131I, 186Re이 포함되며, 이에 제한되지 않는다.
본 발명에 따른 치쿤구니야 바이러스(chikungunya virus) 외피 항원 단백질에 톨-유사수용체 5 자극 단백질인 플라젤린이 결합된 융합 단백질을 이용하여 상기 바이러스 감염 여부를 진단하는 경우에는 혈액 내 항체를 효과적으로 검출하여, 상기 바이러스 진단 시 민감도 및 정확도를 높일 수 있다.
또한, 상기 융합 단백질은 치쿤구니야 바이러스 항원 단백질 단독으로 접종된 경우에 비하여, 백신을 통한 면역 유도 시 현저한 시너지 효과를 발휘할 수 있다.
또한, 본 발명에 따른 치쿤구니야 바이러스(chikungunya virus) 외피 항원 단백질 E2를 이용한 재조합 단백질을 이용하여 상기 바이러스 감염 여부를 진단하는 경우에는 혈액 내 항체를 효과적으로 검출하여, 상기 바이러스 진단 시 민감도 및 정확도를 높일 수 있다.
도 1은 본 발명의 일 실시예에 따른 치쿤구니야-플라젤린 융합 단백질의 발현을 위한 플라스미드 벡터 모식도를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 치쿤구니야-플라젤린 융합 단백질의 전기영동 분석 결과를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 치쿤구니야-플라젤린 융합 단백질이 수용상태에서 단량체로 존재하는 결과를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 톨 유사 수용체 5(TLR5; Toll like receptor 5)의 자극을 통한 신호전달활성에 대한 결과를 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 백신화 유도 과정에 대한 모식도를 나타낸 것이다.
도 6의 (a)는 본 발명의 일 실시예에 따른 치쿤구니야-플라젤린 융합단백질을 마우스에 접종한 후 혈청내의 치쿤구니야-플라젤린 융합단백질에 대한 접촉횟수에 따른 항체 변화와 각 단백질에 대한 ELISA결과를 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 ELISPOT 결과를 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따른 치쿤쿠니야 바이러스에 감염된 환자와 정상 대조군에서의 IgM 및 IgM 반응을 확인한 결과를 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 치쿤구니야 바이러스(chikungunya virus) 외피 항원 단백질의 발현을 위한 플라스미드 벡터 모식도를 나타낸 것이다.
도 10은 본 발명의 일 실시예에 따른 재조합 단백질의 전기영동 분석 결과를 나타낸 것이다.
도 11의 (a) 및 (b)는 본 발명의 일 실시예에 따른 재조합 단백질을 이용한 정상 및 치쿤구니야 바이러스 감염 환자 혈청 내 ELISA 결과를 나타낸 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예
[실시예 1] 치쿤구니야-플라젤린 융합 단백질 발현 플라스미드 제작
치쿤구니야 바이러스(Chikungunya virus)에 적합한 백신을 제작하기 위하여 치쿤구니야 바이러스의 외피 단백질 항원 E2의 일부분에 해당하는 아미노산과 플라젤린 단백질이 융합된 단백질을 제작하였다.
상기 치쿤구니야-플라젤린 융합 단백질을 제작하기 위하여, 두 단계의 PCR 반응을 실시하였다. 첫 번째 증폭 반응은 치쿤구니야 게노믹 DNA(genomic DNA)를 주형으로 하기 표 1의 1번 및 2번의 프라이머로 95℃에서 30초간 변성, 60℃에서 30초간 어닐링 및 72℃에서 60초의 합성 조건에서 실시하는 변성-어닐링-합성 사이클을 25회 반복하여 1차 반응물을 얻었다. 두 번째 증폭 반응은 바실러스 시리우스의 게노믹 DNA를 주형으로 하기 표 1의 3번 프라이머 및 상기 첫 번째 반응의 산물인 1차 반응물을 프라이머로 이용하여, 95℃에서 30초간 변성, 60℃에서 30초간 어닐링 및 72℃에서 1분간 복제반응의 사이클을 25회 반복하여 최종적으로 치쿤구니야-플라젤린 단백질의 융합 유전자를 얻었다. 상기 치쿤구니야-플라젤린 단백질의 융합 유전자는 pET49b(Addgene) 벡터에 삽입하여 단백질 발현 플라스미드(plasmid)를 제작하였다. 상기 단백질 발현 플라스미드는 DNA 서열분석(sequencing, macrogen)을 통해 검증한 결과, 서열번호 4와 같음을 확인하였다. 상기 제작된 플라스미드의 모식도는 도 1과 같다.
번호 프라이머 서열
1 5'-CAA ATG GTT TCT AAA TTA TTA CAA GCG GCC GC AAG CAC CAA GGA CAA CTT CAA TGT C -3'
2 5'-CCT CGA GTT ACC CGG GCC CTT CAG TCG GCA CGG TTA A-3
3 5'-AG GAT CCG ATG AGA ATT AAT ACA AAC ATT AAC AGC ATG CG-3'
[실시예 2] 치쿤구니야-플라젤린 융합 단백질 생산
상기 실시예 1에서 제작한 치쿤구니야-플라젤린 융합 유전자 발현 플라스미드를 통해 융합 단백질을 생산하였다.
상기 융합 유전자 발현 플라스미드를 화학적으로 처리한 BL21(DE3) 대장균(Escherichia coli BL21(DE3))에 형질전환(transformation) 방법으로 주입하고, 카나마이신(kanamycin) 항생제가 포함되어 있는 LB 아가(agar)(Becton, Dickinson and Company) 플레이트에 상기 형질전환된 대장균을 배양하였다. 상기 배양하는 과정을 통하여 선별된, 항생제 내성이 있는 플라스미드 벡터가 포함되어 있는 단일 대장균 콜로니를 1mM의 카나마이신이 있는 액체 배지(LPS)에 넣고, 37℃의 항온 진탕 배양기에서 배양하였다. 상기 배양액의 OD600값이 ~0.7이 되면, 5-브로모-인돌-3-클로로-이소프로필울-ß-D-갈락토피라노시드(IPTG) 1 mM을 첨가한 후에 37℃에서 3시간 동안 추가 배양하여, 융합 단백질의 발현을 유도하였다. 상기 융합 단백질의 발현이 유도된 대장균은 4,000rpm에서 20분간 원심분리하여 세포를 수득하고, 상기 수득된 대장균 세포의 용해(cell lysis)는 소니케이터(sonicator)를 이용하였다. 상기 세포 용해액은 원심분리를 통해 다른 세포 이물질을 제거한 뒤, Ni-NTA 한천 비드(Qiagen)와 4℃에서 2시간 동안 결합시켰다. 그 후, 10 mM 이미다졸/1X 인산염완충용액(Phosphate-Buffered Saline; PBS)을 이용하여 일차적으로 비특이적 결합을 한 다른 단백질들을 제거하고, 다시 50 mM 이미다졸/1X 인산염완충용액을 이용하여 최종적으로 비특이적 결합 단백질을 제거하였다. 비드에 결합되어 있던 치쿤구니야-플라젤린 융합 단백질은 250 mM 이미다졸/1X 인산염완충용액을 이용한 경쟁적인 저해 방법으로 Ni-NTA 한천 비드에서 용리시켜 수득하였다. 상기 수득된 융합 단백질(추출, elution)은 SDS-PAGE를 통하여 사이즈 및 순도를 확인하였고, 그 결과는 도 2에 나타내었다.
도 2에서 보는 바와 같이, 치쿤구니야-플라젤린 융합 단백질이 약 73KDa에서 관찰되는 것으로 보아, 정상적인 융합 단백질의 제작 및 발현이 제대로 된 것을 확인하였다.
[실시예 3] 치쿤구니야-플라젤린 융합 단백질 특성 확인
상기 실시예 2에서 생산된 융합 단백질이 단량체로 존재하는지 확인하기 위하여, 통상의 방법에 의해 겔 침투 크로마토그래피(gel filtration chromatography)를 수행한 뒤, 그 결과를 도 3에 나타내었다.
도 3에서 바는 바와 같이, 상기 실시예 2에서 생산된 융합 단백질은 수용액 내에서 무작위적으로 중합되지 않고, 단량체를 형성하였다.
상기 결과를 통하여 본 발명에 따른 치쿤구니야-플라젤린 융합 단백질이 단량체로 존재하고, 그를 통하여 선천성면역 수용체인 TLR5를 자극할 수 있음을 알 수 있었다(Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A.Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol. 2003 Dec;4(12):1247-5.).
[실시예 4] 치쿤구니야-플라젤린 융합 단백질의 TLR5 자극 활성 확인
상기 실시예 2에서 생산된 융합 단백질의 TLR5 자극 활성 여부를 확인하기 위하여, TLR5에 의해 활성이 유도되는 NF-κB의 전사량을 측정하였다.
HEK293TLR5 세포를 96웰 플레이트에 분주하여 DMEM(High glucose with 4500 mg/L D-glucose L-glutamine WELGENE LM 001-07) 배지를 이용하여 37℃, 5% 이산화탄소 조건의 항온 배양기 내에서 12시간 배양하였다. 배양을 통해 안정화된 상기 세포에 살모넬라 더블린(salmonella Dublin)의 플라젤린 단백질을 양성 대조군(1)으로 처리하고, 또한 상기 실시예 2에서 생산된 융합 단백질(2)을 농도별로 처리하였다. 상기 융합 단백질이 처리된 세포에 알칼라인 포스파테이즈 기질 노란색(alkaline phosphatase substrate yellow(Sigma-Aldrich P7998))을 1/5로 희석하여 100㎕씩 넣고 30분간 상기 배양기 내에서 배양하여 반응시킨 뒤 405nm의 파장에서 그 값을 측정하여, 그 값을 도 4에 나타내었다.
도 4에서 보는 바와 같이, 상기 실시예 2에서 생산된 융합 단백질(2)에 의하여 TLR5의 자극을 통한 세포 신호전달 체계의 활성이 대조군(1)과 같이 유발될 수 있음을 확인하였다.
상기 결과를 통하여, 본 발명에 따른 플라젤린 일부에 해당하는 도메인 역시 TLR5의 자극 활성을 효과적으로 유도할 수 있음을 알 수 있다.
[실시예 5] 치쿤구니야-플라젤린 융합 단백질을 이용한 백신 효과 검증
상기 실시예 2에서 제작한 치쿤구니야-플라젤린 융합 단백질의 백신 효과를 확인하기 위하여, 도 5에 도시된 방법에 따라 면역화시킨 후 ELISA 방법에 의해 검증하였다.
5-6 주령의 암컷 BALB/C 쥐에 대조군으로 업체에서 구입한 치쿤구니야 외피 단백질(ChiKE2426) 및 알루미늄포타슘 설페이트(Alum), 실험군으로 상기 실시예 2의 융합 단백질을 2주 간격으로 한 개체당 10㎍ 또는 20㎍ 피하 면역 주사 방법으로 접종하여 면역화시켰다. 그리고 상기 접종에 의해 1차 내지 3차 면역을 유발하고 2주 후 상기 개체의 혈액에서 통상의 방법에 의해 혈청을 얻은 후, IgG의 생성 정도를 확인하기 위하여 ELISA를 수행하였다.
상기 ELISA는 코팅용액(Na2CO3 0.159g, NaHCO3 0.293g, 100ml 당, pH9.6)에 치쿤구니야 외피 단백질(ChiKE2426), Alum 및 상기 실시예 2의 융합 단백질 항원을 3.0ug/ml의 농도로 희석한 후 96웰 플레이트에 100㎕씩 각 well에 넣어 준 후, 4℃에서 하루동안 흡착과정을 거쳤다. 항원의 흡착이 완료된 상기 플레이트는 PBS를 이용하여 4회 세척 과정을 거친 뒤, 비특이적 결합을 배제하기 위하여 정상염소혈청이 5% 포함되어 있는 PBS를 각각의 플레이트에 넣고 37℃에서 2시간 동안 반응시켰다. 상기 대조군, Alum 및 실시예 2의 융합 단백질 접종을 통해 얻은 쥐의 혈청을 상온에서 1시간 동안 반응시킨 뒤, PBS로 4회 세척 과정을 거친 후 발색을 위한 효소가 결합되어 있는 항-쥐 IgG1 과 상온에서 1시간 동안 반응시킨 뒤에 암실에서 기질 완충용액(3,3', 5,5'-Tetramethylbenzidine(TMB) 및 과산화수소수)을 첨가하여 발색시키고, 2N 황산을 가하여 발색 반응을 중지시키고 450nm에서 흡광도를 측정하여, 그 결과를 도 6 및 도 7에 나타내었다.
도 6(a)에서 보는 바와 같이, 대조군에 해당하는 치쿤구니야 외피 단백질(ChiKE2426)은 Alum이 없는 경우에는 3회 면역 후 항체 반응이 증가하는 것을 확인할 수 있었고, Alum이 추가된 경우에는 2회 면역 후 항체 반응이 증가되는 것을 확인하였다. 또한, 상기 실시예 2의 융합 단백질은 접종한 횟수에 따라 그 양이 증가하였을 뿐만 아니라, 대조군인 치쿤구니야 외피 단백질 및 Alum이 함께 포함되어 있는 군(ChiKE2426 + Alum)에서 보다 4주차 이후부터 항체의 양이 현저하게 증가하는 것을 확인할 수 있었다.
또한 도 6(b)에서 보는 바와 같이, 각 항원에 대한 항체반응을 측정하였을 때, ChiKE2 단백질을 이용하여 면역화시킨 쥐에서는 자신의 항원에 대하여 SDFlic+E2B, BCFlic+E2B, 및 BCFlic+E2 단백질에 대하여 높은 항체반응을 나타내었고, 특이하게도 플라젤린 융합 단백질인 E2B 뿐만 아니라 재조합 E2 단백질에서도 상호반응을 나타내는 것을 확인하였다. 플라젤린 항원에 대한 항체 반응 결과를 보면, 치쿤구니야-플라젤린 융합 단백질인 SDFlic+E2B 또는 BCFlic+E2B로 면역화시킨 그룹과 플라젤린을 단독으로 접종한 그룹에서는 항체반응을 나타낸 반면, 치쿤구니야-플라젤린 융합 단백질인 BCFlic+E2 그룹에서는 플라젤린에 대한 항체반응을 나타내지 않는 것을 확인하였다. 그리고 플라젤린을 이용하여 면역화시킨 그룹에서는 재조합 E2 단백질인 ChiKE2426에 대해서는 항체반응을 나타내지 않는 반면, 치쿤구니야-플라젤린 융합 단백질인 SDFlic+E2B, BCFlic+E2B, 및 BCFlic+E2 그룹에서는 모두 항체반응을 나타내어 치쿤구니야-플라젤린 융합 단백질들이 특이적으로 항체반응을 나타내는 것을 확인하였다. 또한 재조합 치쿤구니야 E2단백질인 ChiKE2426은 단독으로 투여하였을 때는 항체반응을 나타내지 못하고 면역보조제인 Alum과 혼합하여 접종하였을 때만 항체반응이 유도되는 것을 확인하였다. 반면 치쿤구니야-플라젤린 융합 단백질들은 Alum 없이 단독 투여하였을 때에도 항체반응이 효과적으로 유도되는 것을 확인할 수 있었다.
또한, IgG를 분비하는 면역세포수를 확인하기 위하여 ELISPOT을 수행하였다.
ELISPOT은 상기에서 설명한 바와 같이 접종을 통해 3차 면역을 유발하고, 4주 후에 상기 쥐의 비장을 분리하였다. 그리고 분리된 비장을 멸균된 슬라이드로 분쇄한 후 적혈구를 제거하여 비장세포를 획득하였다. 그리고 코팅용액(Na2CO3 0.159g, NaHCO3 0.293g, 100ml 당, pH9.6)에 항-마우스 IgG 항체를 2.0ug/ml의 농도로 희석한 후 ELISPOT 96 웰 플레이트에 100uL씩 웰에 넣어 준 후, 4℃에서 하루동안 흡착과정을 거쳤다. 항원 흡착이 완료된 플레이트는 멸균된 PBS를 이용하여 4회 세척 과정을 거친 뒤, 비특이적 결합을 배제하기 위하여 우태아혈청이 10% 포함된 RPMI1640 배양배지를 각각의 웰에 첨가하고 37℃에서 2시간 동안 반응시켰다. 그리고 각 마우스의 비장에서 얻은 비장세포 5x106 cells/ml을 2배씩 단계희석하여 각 웰에 첨가한 후에 37℃에서 4시간 동안 반응시킨 후, PBS를 이용하여 세척하였다. 그리고 스트렙토아비딘 항 마우스 IgG를 첨가하고 하룻밤 동안 반응시켰다. 이 후 PBS를 이용하여 세척하고 AEB 시약을 이용하여 발색시키고, 수돗물로 충분히 세척하고 말린 후 스팟의 갯수를 측정하였다. 그 결과는 도 7에 나타내었다.
도 7에서 보는 바와 같이, 치쿤구니야-플라젤린 융합 단백질인 SDFlic+E2B과 BCFlic+E2 실험군에서는 항체를 분비하는 면역세포의 현저한 증가를 확인할 수 있었다. 다만 BCFlic+E2B 실험군의 경우에는 항체를 분비하는 면역세포의 수가 약간 증가되었지만 의미있는 증가는 확인되지 않았다. 또한, 재조합 치쿤구니야 단백질인 ChiKE2426단백질과 플라젤린 단백질에 대해서는 항체를 분비하는 면역세포의 증가가 관찰되지 않는 것을 확인하였다. 상기 결과를 통하여, 본 발명에 따른 치쿤구니야-플라젤린 융합 단백질은 효과적으로 항체를 생성하는 면역세포를 유도하는 것을 확인할 수 있었다.
상기 결과들을 통하여, 본 발명에 따른 치쿤구니야-플라젤린 융합 단백질을 백신으로 사용하는 경우, 치쿤구니야 외피 단백질 단독으로 사용하거나, 혹은 상기 외피 단백질에 Alum을 추가로 사용한 경우와 비교하여 면역 반응이 현저하게 증가되는 것을 확인하였으며, 이를 통하여 본 발명에 따른 치쿤구니야-플라젤린 융합 단백질은 기존 백신과 비교하여 현저히 증가된 효과를 가진 백신으로 사용가능하다는 것을 확인할 수 있었다.
[실시예 6] 치쿤구니야-플라젤린 융합 단백질을 이용한 진단 효과 검증
상기 실시예 2에서 제조한 치쿤구니야-플라젤린 융합 단백질을 항원으로 이용하여 치쿤구니야 감염 여부 확인을 위한 진단 효과를 ELISA 방법에 의해 검증하였다.
ELISA는 상기 실시예 5와 동일한 방법으로 수행하였다. 단, 96웰 플레이트에 상기 실시예 2에서 제조한 융합 단백질을 3.0㎍/ml의 농도로 희석하여 최종 부피 100㎕를 이용하여 코팅하였고, 치쿤구니야 감염 환자 혈청 및 치쿤구니야가 감염되지 않은 정상 대조군의 혈청을 부피비 1:300의 비율에 해당하도록 완충액으로 희석하여 검출을 위한 horse radish peroxidase-conjugated Goat anti-Human IgG 및 IgM 항체와 반응 후 상기 실시예 5와 같이 발색 정도를 450nm에서 흡광도를 측정하였다. 그 결과는 도 8에 나타내었다.
도 8에서 보는 바와 같이, 본 발명에 따른 실시예 2에서 제작한 융합 단백질(BCFlic-ChiK E2343)과 치쿤구니야 감염 환자의 IgG 및 IgM 항체와 반응은 대조군인 chiKE2426에 대한 반응보다 민감도 및 특이도가 현저하게 높은 것을 확인할 수 있었고, 특히 감염 초기에 검출되는 IgM 항체를 매우 민감하게 검출할 수 있는 것을 확인할 수 있었다.
상기 결과를 통하여 본 발명에 따른 치쿤구니야-플라젤린 융합 단백질을 치쿤구니야 바이러스 감염 여부 진단을 위한 항원으로 사용하는 경우 단순히 치쿤구니야 항원 단백질인 E2를 사용한 것에 비하여 민감성 및 특이성에 현저한 상승 효과가 있는 것을 알 수 있었으며, 치쿤쿠니야 바이러스의 초기 감염 진단에 효과적으로 사용 가능하다는 것을 확인할 수 있었다.
[실시예 7] 치쿤구니야 외피 항원 단백질 발현 플라스미드 제작
치쿤구니야 바이러스(chikungunya virus)의 검출을 위하여 정확성 및 감수성을 현저하게 높일 수 있는 아미노산 서열인 치쿤구니야 바이러스의 외피 단백질 항원 E2의 일부분에 해당하는 341 아미노산 서열을 갖는 재조합 단백질을 제작하였다.
상기 재조합 단백질을 제작하기 위하여, 하기 PCR 반응을 실시하였다. 첫 번째 증폭 반응은 치쿤구니야 게노믹 DNA(genomic DNA)를 주형으로 하기 표 2의 1번 및 2번의 프라이머로 95℃에서 30초간 변성, 60℃에서 30초간 어닐링 및 72℃에서 70초의 합성 조건에서 실시하는 변성-어닐링-합성 사이클을 25회 반복하여 반응물을 얻었다. 상기 PCR 반응물인 E2 재조합 단백질 유전자는 pET49b(Addgene) 벡터에 삽입하여 단백질 발현 플라스미드(plasmid)를 제작하였다.
상기 단백질 발현 플라스미드는 DNA 서열분석(sequencing, macrogen)을 통해 검증한 결과, 서열번호 6과 같음을 확인하였다. 상기 제작된 플라스미드의 모식도는 도 9과 같다.
번호 프라이머 서열
1 5' G GGA TCCG AGC ACC AAG GAC AAC TTC AAT GTC T 3'
2 5' C GTCGAC TTA CGG CCA ATA CTT GTA CGG CTC 3'
[실시예 8] 치쿤구니야 재조합 단백질 생산
상기 실시예 7에서 제작한 재조합 유전자 발현 플라스미드를 통해 치쿤구니야 외피 단백질 E2의 재조합 단백질을 생산하였다.
상기 재조합 유전자 발현 플라스미드를 화학적으로 처리한 대장균 BL21(DE3)에 형질전환(transformation) 방법에 의해 삽입(insert)하고, 카나마이신(kanamycin) 항생제가 포함되어 있는 LB 아가(agar) (Becton, Dickinson and Company) 플레이트에 상기 형질전환된 대장균을 배양하였다. 상기 배양하는 과정을 통하여, 항생제 내성이 있는 플라스미드 벡터가 포함되어 있는 단일 대장균 콜로니를 1mM의 카나마이신이 있는 액체 배지(LPS)에 넣고, 37℃의 항온 진탕 배양기에서 배양하였다. 상기 배양액의 OD600값이 ~0.7이 되면, 5-브로모-인돌-3-클로로-이소프로필울-β-D-갈락토피라노시드(IPTG) 1 mM을 첨가하여 37℃에서 3시간 동안 배양하여, 재조합 단백질의 발현을 유도하였다. 상기 재조합 단백질의 발현이 유도된 대장균은 4,000 rpm에서 20분 원심분리하여 수득하고, 상기 대장균 세포의 용해(cell lysis)는 소니케이터(sonicator)를 이용하였다. 상기 세포 용해액은 원심분리를 통해 다른 세포 이물질을 제거한 뒤, Ni-NTA 한천 비드(Qiagen)와 4℃에서 2시간 결합시켰다. 그 후, 10 mM 이미다졸/1X 인산염완충용액(Phosphate-Buffered Saline)으로 비특이적인 결합을 한 다른 단백질들을 제거하고, 50 mM 이미다졸/1X 인산염완충용액을 이용하여 최종적으로 비특이적 결합의 단백질을 제거하였다. 비드에 결합 되어 있던 재조합 단백질은 250 mM 이미다졸/1X 인산염완충용액을 이용한 경쟁적인 저해 방법으로 Ni-NTA 한천 비드에서 용리시켜 수득하였다. 상기 수득된 재조합 단백질(추출, elution)은 SDS-PAGE를 통하여 사이즈 및 순도를 확인하여, 그 결과를 도 10에 나타내었다.
도 10에서 보는 바와 같이, 상기 과정을 통하여 제조된 치쿤구니야 바이러스 외피 항원 E2 재조합 단백질이 약 38 KDa에서 관찰되는 것으로 보아, 재조합 단백질의 제작 및 발현이 제대로 된 것을 확인하였다.
[실시예 9] 치쿤구니야 외피 항원 E2 재조합 단백질을 이용한 진단 효과 검증
상기 실시예 8에서 제조한 재조합 단백질을 항원으로 이용하여 치쿤구니야 바이러스 감염 여부 확인을 위한 진단 효과를 ELISA 방법에 의해 검증하였다.
상기 ELISA는 코팅용액(Na2CO3 0.159g, NaHCO3 0.293g, 100ml 당, pH9.6)에 상기 실시예 2에서 제조한 재조합 단백질 및 대조군에 해당하는 상업적으로 판매되는 426 아미노산 서열을 갖는 치쿤구니야 항원 단백질을 3.0㎍/ml의 농도로 희석하여 최종 부피 100㎕를 96웰 플레이트의 각각 웰(well)에 넣어 준 후, 4℃에서 하루동안 흡착 과정을 거쳤다. 항원의 흡착이 완료된 상기 플레이트는 PBS를 이용하여 4회 세척 과정을 거친 뒤, 비특이적 결합을 배제하기 위하여 정상 염소 혈청이 5% 포함되어 있는 PBS를 각각의 플레이트에 넣고 37℃에서 2시간 동안 반응시켰다.
치쿤구니야 감염 환자 혈청 및 치쿤구니야가 감염되지 않은 정상 대조군의 혈청을 부피비 1:300의 비율에 해당하도록 완충액으로 희석하여 상온에서 1시간 동안 반응시킨 뒤, PBS로 4회 세척 과정을 거친 후 발색을 위한 효소가 결합되어 있는 horse radish peroxidase-conjugated Goat anti-Human IgG 및 IgM 항체와 반응 후 상온에서 1시간 동안 반응시킨 뒤에 암실에서 기질 완충용액(3,3', 5,5'-Tetramethylbenzidine (TMB) 및 과산화수소수)을 첨가하여 발색 시키고, 2N 황산을 가하여 발색 반응을 중지시키고 450nm에서 흡광도를 측정하여, 그 결과를 도 11의 (a) 및 (b)에 나타내었다.
도 11의 (a) 및 (b)에서 보는 바와 같이, 본 발명에 따른 실시예 8에서 제작한 재조합 단백질(ChiK E2341)과 치쿤구니야 감염 환자의 IgG 및 IgM 항체와 반응은 대조군인 업체에서 제조한 대조군(chiKE2426) 보다 민감도 및 특이도가 현저하게 높은 것을 확인할 수 있었고, 특히 감염 초기에 검출되는 IgM항체를 매우 민감하게 검출할 수 있는 것을 확인할 수 있었다.
상기 결과를 통하여 본 발명에 따른 재조합 단백질을 치쿤구니야 바이러스 감염 여부 진단을 위한 항원으로 사용하는 경우 단순히 치쿤구니야 항원 단백질인 E2(chiKE2426)를 사용한 것에 비하여 민감성 및 특이성에 현저한 상승 효과가 있는 것을 알 수 있다.
상기 결과를 이상에서 본 발명에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
본 발명의 융합 단백질 및/또는 재조합 단백질은 기존 치쿤구니야 바이러스용 백신과 비교하여 그 효과가 현저하기 때문에 치쿤구니야 바이러스의 예방 및 치료에 효과적으로 사용가능할 것으로 기대된다. 또한, 본 발명의 융합 단백질 및/또는 재조합 단백질은 치쿤구니야 바이러스의 감염 초기에도 감염을 진단할 수 있으므로 바이러스 감염 진단에 사용가능할 것으로 기대된다.
<110> Industry-Academic Cooperation Foundation Office of Research Affairs, Yonsei University
<120> RECOMBINANT PROTEIN AND USE THEREOF
<130> OPB173811PCT
<150> KR 1020160136649
<151> 2016-10-20
<150> KR 1020160146689
<151> 2016-11-04
<160> 6
<170> KoPatentIn 3.0
<210> 1
<211> 343
<212> PRT
<213> Chikungunya virus
<400> 1
Gly Ser Ser Thr Lys Asp Asn Phe Asn Val Tyr Lys Ala Thr Arg Pro
1 5 10 15
Tyr Leu Ala His Cys Pro Asp Cys Gly Glu Gly His Ser Cys His Ser
20 25 30
Pro Val Ala Leu Glu Arg Ile Arg Asn Glu Ala Thr Asp Gly Thr Leu
35 40 45
Lys Ile Gln Val Ser Leu Gln Ile Gly Ile Lys Thr Asp Asp Ser His
50 55 60
Asp Trp Thr Lys Leu Arg Tyr Met Asp Asn His Met Pro Ala Asp Ala
65 70 75 80
Glu Arg Ala Gly Leu Phe Val Arg Thr Ser Ala Pro Cys Thr Ile Thr
85 90 95
Gly Thr Met Gly His Phe Ile Leu Ala Arg Cys Pro Lys Gly Glu Thr
100 105 110
Leu Thr Val Gly Phe Thr Asp Gly Arg Lys Ile Ser His Ser Cys Thr
115 120 125
His Pro Phe His His Asp Pro Pro Val Ile Gly Arg Glu Lys Phe His
130 135 140
Ser Arg Pro Gln His Gly Arg Glu Leu Pro Cys Ser Thr Tyr Ala Gln
145 150 155 160
Ser Thr Ala Ala Thr Ala Glu Glu Ile Glu Val His Met Pro Pro Asp
165 170 175
Thr Pro Asp Arg Thr Leu Met Ser Gln Gln Ser Gly Asn Val Lys Ile
180 185 190
Thr Val Asn Ser Gln Thr Val Arg Tyr Lys Cys Asn Cys Gly Asp Ser
195 200 205
Ser Glu Gly Leu Thr Thr Thr Asp Lys Val Ile Asn Asn Cys Lys Val
210 215 220
Asp Gln Cys His Ala Ala Val Thr Asn His Lys Lys Trp Gln Tyr Asn
225 230 235 240
Ser Pro Leu Val Pro Arg Asn Ala Glu Ser Gly Asp Arg Lys Gly Lys
245 250 255
Val His Ile Pro Phe Pro Leu Ala Asn Val Thr Cys Arg Val Pro Lys
260 265 270
Ala Arg Asn Pro Thr Val Thr Tyr Gly Lys Asn Gln Val Ile Met Leu
275 280 285
Leu Tyr Pro Asp His Pro Thr Leu Leu Ser Tyr Arg Asn Met Gly Glu
290 295 300
Glu Pro Asn Tyr Gln Glu Glu Trp Val Thr His Lys Lys Glu Ile Arg
305 310 315 320
Leu Thr Val Pro Thr Glu Gly Leu Glu Val Thr Trp Gly Asn Asn Glu
325 330 335
Pro Tyr Lys Tyr Trp Pro Gln
340
<210> 2
<211> 427
<212> PRT
<213> Chikungunya virus
<400> 2
Gly Ser Ser Thr Lys Asp Asn Phe Asn Val Tyr Lys Ala Thr Arg Pro
1 5 10 15
Tyr Leu Ala His Cys Pro Asp Cys Gly Glu Gly His Ser Cys His Ser
20 25 30
Pro Val Ala Leu Glu Arg Ile Arg Asn Glu Ala Thr Asp Gly Thr Leu
35 40 45
Lys Ile Gln Val Ser Leu Gln Ile Gly Ile Lys Thr Asp Asp Ser His
50 55 60
Asp Trp Thr Lys Leu Arg Tyr Met Asp Asn His Met Pro Ala Asp Ala
65 70 75 80
Glu Arg Ala Gly Leu Phe Val Arg Thr Ser Ala Pro Cys Thr Ile Thr
85 90 95
Gly Thr Met Gly His Phe Ile Leu Ala Arg Cys Pro Lys Gly Glu Thr
100 105 110
Leu Thr Val Gly Phe Thr Asp Gly Arg Lys Ile Ser His Ser Cys Thr
115 120 125
His Pro Phe His His Asp Pro Pro Val Ile Gly Arg Glu Lys Phe His
130 135 140
Ser Arg Pro Gln His Gly Arg Glu Leu Pro Cys Ser Thr Tyr Ala Gln
145 150 155 160
Ser Thr Ala Ala Thr Ala Glu Glu Ile Glu Val His Met Pro Pro Asp
165 170 175
Thr Pro Asp Arg Thr Leu Met Ser Gln Gln Ser Gly Asn Val Lys Ile
180 185 190
Thr Val Asn Ser Gln Thr Val Arg Tyr Lys Cys Asn Cys Gly Asp Ser
195 200 205
Ser Glu Gly Leu Thr Thr Thr Asp Lys Val Ile Asn Asn Cys Lys Val
210 215 220
Asp Gln Cys His Ala Ala Val Thr Asn His Lys Lys Trp Gln Tyr Asn
225 230 235 240
Ser Pro Leu Val Pro Arg Asn Ala Glu Ser Gly Asp Arg Lys Gly Lys
245 250 255
Val His Ile Pro Phe Pro Leu Ala Asn Val Thr Cys Arg Val Pro Lys
260 265 270
Ala Arg Asn Pro Thr Val Thr Tyr Gly Lys Asn Gln Val Ile Met Leu
275 280 285
Leu Tyr Pro Asp His Pro Thr Leu Leu Ser Tyr Arg Asn Met Gly Glu
290 295 300
Glu Pro Asn Tyr Gln Glu Glu Trp Val Thr His Lys Lys Glu Ile Arg
305 310 315 320
Leu Thr Val Pro Thr Glu Gly Leu Glu Val Thr Trp Gly Asn Asn Glu
325 330 335
Pro Tyr Lys Tyr Trp Pro Gln Leu Ser Thr Asn Gly Thr Ala His Gly
340 345 350
His Pro His Glu Ile Ile Leu Tyr Tyr Tyr Glu Leu Tyr Pro Thr Met
355 360 365
Thr Val Val Val Val Ser Val Ala Ser Phe Ile Leu Leu Ser Met Val
370 375 380
Gly Val Ala Val Gly Met Cys Met Cys Ala Arg Arg Arg Cys Ile Thr
385 390 395 400
Pro Tyr Glu Leu Thr Pro Gly Ala Thr Val Pro Phe Leu Leu Ser Leu
405 410 415
Ile Cys Cys Ile Arg Thr Ala Lys Ala Val Asp
420 425
<210> 3
<211> 273
<212> PRT
<213> Bacillus cereus
<400> 3
Met Arg Ile Asn Thr Asn Ile Asn Ser Met Arg Thr Gln Glu Tyr Met
1 5 10 15
Arg Gln Asn Gln Asp Lys Met Asn Thr Ala Met Asn Arg Leu Ser Ser
20 25 30
Gly Lys Ser Ile Asn Ser Ala Ala Asp Asp Ala Ala Gly Leu Ala Ile
35 40 45
Ala Thr Arg Met Arg Ala Lys Glu Gly Gly Leu Asn Val Gly Ala Arg
50 55 60
Asn Thr Gln Asp Ala Met Ser Ala Leu Arg Thr Gly Asp Ala Ala Leu
65 70 75 80
Gly Ser Ile Ser Asn Ile Leu Leu Arg Met Arg Asp Leu Ala Thr Gln
85 90 95
Ala Ala Asn Gly Thr Asn Asn Ala Glu Asp Thr Ala Ser Leu Asp Lys
100 105 110
Glu Tyr Val Ala Leu Lys Asp Glu Ile Asp His Ile Ala Gly Lys Thr
115 120 125
Asn Phe Asn Gly Asn Ser Phe Leu Asp Thr Thr Ala Thr Pro Pro Gly
130 135 140
Lys Asp Ile Glu Ile Gln Leu Ser Asp Ala Ser Gly Asp Thr Met Thr
145 150 155 160
Leu Lys Ala Ile Asp Thr Lys Ser Leu Thr Thr Gly Thr Leu Thr Asn
165 170 175
Leu Lys Asp Arg Ala Thr Ala Glu Thr Glu Ile Thr Lys Leu Asp Thr
180 185 190
Ala Ile Gln Lys Ile Ala Asp Glu Arg Ala Thr Phe Gly Ser Gln Leu
195 200 205
Asn Arg Leu Asp His Asn Leu Asn Asn Val Thr Ser Gln Ala Thr Asn
210 215 220
Met Ala Ala Ala Ala Ser Gln Ile Glu Asp Ala Asp Met Ala Lys Glu
225 230 235 240
Met Ser Glu Met Thr Lys Phe Lys Ile Leu Asn Glu Ala Gly Ile Ser
245 250 255
Met Leu Ser Gln Ala Asn Gln Thr Pro Gln Met Val Ser Lys Leu Leu
260 265 270
Gln
<210> 4
<211> 657
<212> PRT
<213> Artificial Sequence
<220>
<223> fusion protein
<400> 4
Met Arg Gly Ser His His His His His His Gly Met Ala Ser Met Thr
1 5 10 15
Gly Gly Gln Gln Met Gly Arg Asp Leu Tyr Asp Leu Val Pro Arg Gly
20 25 30
Ser Ala Lys Asp Pro Met Arg Ile Asn Thr Asn Ile Asn Ser Met Arg
35 40 45
Thr Gln Glu Tyr Met Arg Gln Asn Gln Asp Lys Met Asn Thr Ala Met
50 55 60
Asn Arg Leu Ser Ser Gly Lys Ser Ile Asn Ser Ala Ala Asp Asp Ala
65 70 75 80
Ala Gly Leu Ala Ile Ala Thr Arg Met Arg Ala Lys Glu Gly Gly Leu
85 90 95
Asn Val Gly Ala Arg Asn Thr Gln Asp Ala Met Ser Ala Leu Arg Thr
100 105 110
Gly Asp Ala Ala Leu Gly Ser Ile Ser Asn Ile Leu Leu Arg Met Arg
115 120 125
Asp Leu Ala Thr Gln Ala Ala Asn Gly Thr Asn Asn Ala Glu Asp Thr
130 135 140
Ala Ser Leu Asp Lys Glu Tyr Val Ala Leu Lys Asp Glu Ile Asp His
145 150 155 160
Ile Ala Gly Lys Thr Asn Phe Asn Gly Asn Ser Phe Leu Asp Thr Thr
165 170 175
Ala Thr Pro Pro Gly Lys Asp Ile Glu Ile Gln Leu Ser Asp Ala Ser
180 185 190
Gly Asp Thr Met Thr Leu Lys Ala Ile Asp Thr Lys Ser Leu Thr Thr
195 200 205
Gly Thr Leu Thr Asn Leu Lys Asp Arg Ala Thr Ala Glu Thr Glu Ile
210 215 220
Thr Lys Leu Asp Thr Ala Ile Gln Lys Ile Ala Asp Glu Arg Ala Thr
225 230 235 240
Phe Gly Ser Gln Leu Asn Arg Leu Asp His Asn Leu Asn Asn Val Thr
245 250 255
Ser Gln Ala Thr Asn Met Ala Ala Ala Ala Ser Gln Ile Glu Asp Ala
260 265 270
Asp Met Ala Lys Glu Met Ser Glu Met Thr Lys Phe Lys Ile Leu Asn
275 280 285
Glu Ala Gly Ile Ser Met Leu Ser Gln Ala Asn Gln Thr Pro Gln Met
290 295 300
Val Ser Lys Leu Leu Gln Ala Ala Ala Pro Gly Ser Ser Thr Lys Asp
305 310 315 320
Asn Phe Asn Val Tyr Lys Ala Thr Arg Pro Tyr Leu Ala His Cys Pro
325 330 335
Asp Cys Gly Glu Gly His Ser Cys His Ser Pro Val Ala Leu Glu Arg
340 345 350
Ile Arg Asn Glu Ala Thr Asp Gly Thr Leu Lys Ile Gln Val Ser Leu
355 360 365
Gln Ile Gly Ile Lys Thr Asp Asp Ser His Asp Trp Thr Lys Leu Arg
370 375 380
Tyr Met Asp Asn His Met Pro Ala Asp Ala Glu Arg Ala Gly Leu Phe
385 390 395 400
Val Arg Thr Ser Ala Pro Cys Thr Ile Thr Gly Thr Met Gly His Phe
405 410 415
Ile Leu Ala Arg Cys Pro Lys Gly Glu Thr Leu Thr Val Gly Phe Thr
420 425 430
Asp Gly Arg Lys Ile Ser His Ser Cys Thr His Pro Phe His His Asp
435 440 445
Pro Pro Val Ile Gly Arg Glu Lys Phe His Ser Arg Pro Gln His Gly
450 455 460
Arg Glu Leu Pro Cys Ser Thr Tyr Ala Gln Ser Thr Ala Ala Thr Ala
465 470 475 480
Glu Glu Ile Glu Val His Met Pro Pro Asp Thr Pro Asp Arg Thr Leu
485 490 495
Met Ser Gln Gln Ser Gly Asn Val Lys Ile Thr Val Asn Ser Gln Thr
500 505 510
Val Arg Tyr Lys Cys Asn Cys Gly Asp Ser Ser Glu Gly Leu Thr Thr
515 520 525
Thr Asp Lys Val Ile Asn Asn Cys Lys Val Asp Gln Cys His Ala Ala
530 535 540
Val Thr Asn His Lys Lys Trp Gln Tyr Asn Ser Pro Leu Val Pro Arg
545 550 555 560
Asn Ala Glu Ser Gly Asp Arg Lys Gly Lys Val His Ile Pro Phe Pro
565 570 575
Leu Ala Asn Val Thr Cys Arg Val Pro Lys Ala Arg Asn Pro Thr Val
580 585 590
Thr Tyr Gly Lys Asn Gln Val Ile Met Leu Leu Tyr Pro Asp His Pro
595 600 605
Thr Leu Leu Ser Tyr Arg Asn Met Gly Glu Glu Pro Asn Tyr Gln Glu
610 615 620
Glu Trp Val Thr His Lys Lys Glu Ile Arg Leu Thr Val Pro Thr Glu
625 630 635 640
Gly Leu Glu Val Thr Trp Gly Asn Asn Glu Pro Tyr Lys Tyr Trp Pro
645 650 655
Gln
<210> 5
<211> 341
<212> PRT
<213> Chikungunya virus
<400> 5
Ser Thr Lys Asp Asn Phe Asn Val Tyr Lys Ala Thr Arg Pro Tyr Leu
1 5 10 15
Ala His Cys Pro Asp Cys Gly Glu Gly His Ser Cys His Ser Pro Val
20 25 30
Ala Leu Glu Arg Ile Arg Asn Glu Ala Thr Asp Gly Thr Leu Lys Ile
35 40 45
Gln Val Ser Leu Gln Ile Gly Ile Lys Thr Asp Asp Ser His Asp Trp
50 55 60
Thr Lys Leu Arg Tyr Met Asp Asn His Met Pro Ala Asp Ala Glu Arg
65 70 75 80
Ala Gly Leu Phe Val Arg Thr Ser Ala Pro Cys Thr Ile Thr Gly Thr
85 90 95
Met Gly His Phe Ile Leu Ala Arg Cys Pro Lys Gly Glu Thr Leu Thr
100 105 110
Val Gly Phe Thr Asp Gly Arg Lys Ile Ser His Ser Cys Thr His Pro
115 120 125
Phe His His Asp Pro Pro Val Ile Gly Arg Glu Lys Phe His Ser Arg
130 135 140
Pro Gln His Gly Arg Glu Leu Pro Cys Ser Thr Tyr Ala Gln Ser Thr
145 150 155 160
Ala Ala Thr Ala Glu Glu Ile Glu Val His Met Pro Pro Asp Thr Pro
165 170 175
Asp Arg Thr Leu Met Ser Gln Gln Ser Gly Asn Val Lys Ile Thr Val
180 185 190
Asn Ser Gln Thr Val Arg Tyr Lys Cys Asn Cys Gly Asp Ser Ser Glu
195 200 205
Gly Leu Thr Thr Thr Asp Lys Val Ile Asn Asn Cys Lys Val Asp Gln
210 215 220
Cys His Ala Ala Val Thr Asn His Lys Lys Trp Gln Tyr Asn Ser Pro
225 230 235 240
Leu Val Pro Arg Asn Ala Glu Ser Gly Asp Arg Lys Gly Lys Val His
245 250 255
Ile Pro Phe Pro Leu Ala Asn Val Thr Cys Arg Val Pro Lys Ala Arg
260 265 270
Asn Pro Thr Val Thr Tyr Gly Lys Asn Gln Val Ile Met Leu Leu Tyr
275 280 285
Pro Asp His Pro Thr Leu Leu Ser Tyr Arg Asn Met Gly Glu Glu Pro
290 295 300
Asn Tyr Gln Glu Glu Trp Val Thr His Lys Lys Glu Ile Arg Leu Thr
305 310 315 320
Val Pro Thr Glu Gly Leu Glu Val Thr Trp Gly Asn Asn Glu Pro Tyr
325 330 335
Lys Tyr Trp Pro Gln
340
<210> 6
<211> 1030
<212> DNA
<213> Chikungunya virus
<400> 6
ggatccgagc accaaggaca acttcaatgt ctataaagcc acaagaccgt acctagctca 60
ctgtcccgac tgtggagaag ggcactcgtg ccatagtccc gtagcgctag aacgcatcag 120
aaacgaagcg acagacggga cgttgaaaat ccaggtttcc ttgcaaatcg gaataaagac 180
ggatgatagc catgattgga ccaagctgcg ttatatggac aatcacatgc cagcagacgc 240
agagcgggcc gggctatttg taagaacgtc agcaccgtgc acgattactg gaacaatggg 300
acacttcatt ctggcccgat gtccgaaagg agaaactctg acggtggggt tcactgatgg 360
tagaaagatc agtcactcat gtacgcaccc atttcaccac gaccctcctg tgataggccg 420
ggaaaaattc cattcccgac cgcagcacgg tagggaacta ccttgcagca cgtacgcgca 480
gagcaccgct gcaactgccg aggagataga ggtacatatg cccccagaca ccccagatcg 540
cacattaatg tcacaacagt ccggcaatgt aaagatcaca gtcaatagtc agacggtgcg 600
gtacaagtgc aattgtggtg actcaagtga aggattaacc actacagata aagtgattaa 660
taactgcaag gttgatcaat gccatgccgc ggtcaccaat cacaaaaaat ggcagtataa 720
ttcccctctg gtcccgcgca atgctgaatc cggggaccgg aaaggaaaag ttcacattcc 780
atttcctctg gcaaatgtga catgcagggt gcctaaagca agaaacccca ccgtgacgta 840
cggaaaaaac caagtcatca tgttgctgta tcctgaccac ccaacgctcc tgtcctacag 900
gaatatggga gaagaaccaa actatcaaga agagtgggtg acgcataaga aggagatcag 960
gttaaccgtg ccgactgaag ggctcgaggt cacgtggggt aacaatgagc cgtacaagta 1020
ttggccgcag 1030

Claims (29)

  1. 서열번호 1로 표시되는 치쿤구니야 바이러스(chikungunya virus) 외피 항원 단백질 및 톨-유사 수용체 5(Toll-like receptor 5) 자극 단백질을 포함하는, 융합 단백질.
  2. 제 1항에 있어서,
    상기 톨-유사수용체 5 자극 단백질은 플라젤린(flagellin)인 것인, 융합 단백질.
  3. 제 2항에 있어서,
    상기 플라젤린은 살모넬라 속 또는 바실러스 속 세균의 플라젤린인 것인, 융합 단백질.
  4. 제 3항에 있어서,
    상기 플라젤린은 살모넬라 더블린(salmonella dublin) 또는 바실러스 시리우스(Bacillus cereus) 의 플라젤린인 것인, 융합 단백질.
  5. 제 2항에 있어서,
    상기 플라젤린은 플라젤린 D0 도메인 및 D1 도메인으로 이루어진 군으로부터 선택된 어느 하나 이상의 도메인을 포함하는, 융합 단백질.
  6. 제 2항에 있어서,
    상기 플라젤린은 서열번호 3으로 표시되는 것인, 융합 단백질.
  7. 제 1항에 있어서,
    상기 융합 단백질의 일측에 히스티딘-표지(Histidine-tag)가 결합되어 있는 것인, 융합 단백질.
  8. 제 1항 내지 제 7항 중 어느 한 항의 융합 단백질을 코딩하는 폴리뉴클레오티드.
  9. 제 8항의 폴리뉴클레오티드를 포함하는 재조합 발현벡터.
  10. 제 9항에 있어서,
    상기 재조합 발현벡터는 pET49b인 것인, 재조합 발현벡터.
  11. 제 9항에 있어서,
    상기 재조합 발현벡터는 서열번호 4의 염기서열로 표시되는 유전자 절편을 포함하는 것인, 재조합 발현벡터.
  12. 제 1항 내지 제 7항 중 어느 한 항의 융합 단백질을 유효성분으로 포함하는, 치쿤구니야 바이러스용 백신.
  13. 제 12항에 있어서,
    상기 백신은 정맥 내 주사, 동맥 내 주사, 근육 내 주사, 피하 내 주사, 결막 내 주사, 경피 전달 또는 기도 흡입으로 체내 투여되는 것을 특징으로 하는, 치쿤구니야 바이러스용 백신.
  14. 제 1항 내지 제 7항 중 어느 한 항의 융합 단백질을 유효성분으로 포함하는, 치쿤구니야 바이러스 진단용 키트.
  15. (a) 목적하는 개체로부터 분리된 시료 내에서 제 1항 내지 제 7항 중 어느 한 항의 융합 단백질과의 항원-항체 복합체 형성 수준을 측정하는 단계; 및
    (b) 상기 (a) 단계에서 측정된 항원-항체 복합체 형성 수준을 정상 대조군 시료에서 제 1항 내지 제 7항 중 어느 한 항의 융합 단백질과의 항원-항체 복합체 형성 수준과 비교하는 단계를 포함하는, 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법.
  16. 제 15항에 있어서,
    상기 시료는 혈청 내 IgG 및 IgM 중 어느 하나 이상을 포함하는 것인, 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법.
  17. 제 15항에 있어서,
    상기 (a) 단계에서 측정된 항원-항체 복합체 형성 수준이 (b) 단계에서 측정된 정상 대조군 시료의 항원-항체 복합체 형성 수준보다 높은 경우, 치쿤구니야 바이러스 감염으로 평가하는, 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법.
  18. 치쿤구니야 바이러스(chikungunya virus) 외피 항원 E2 단백질을 포함하는, 재조합 단백질.
  19. 제 18항에 있어서,
    상기 치쿤구니야 바이러스 외피 항원 E2 단백질은 서열번호 5로 표시되는 것인, 재조합 단백질.
  20. 제 18항에 있어서,
    상기 재조합 단백질의 일측에 히스티딘-표지(Histidine-tag)가 결합되어 있는 것인, 재조합 단백질.
  21. 제 18항 내지 제 20항 중 어느 한 항의 재조합 단백질을 코딩하는 폴리뉴클레오티드.
  22. 제 21항의 폴리뉴클레오티드를 포함하는 재조합 발현벡터.
  23. 제 22항에 있어서,
    상기 재조합 발현벡터는 pET49b인 것인, 재조합 발현벡터.
  24. 제 22항에 있어서,
    상기 재조합 발현벡터는 서열번호 6의 염기서열로 표시되는 유전자 절편을 포함하는 것인, 재조합 발현벡터.
  25. 제 18항 내지 제 20항 중 어느 한 항의 재조합 단백질을 유효성분으로 포함하는, 치쿤구니야 바이러스 진단용 키트.
  26. (a) 목적하는 개체로부터 분리된 시료 내에서 제 18항 내지 제 20항 중 어느 한 항의 재조합 단백질과의 항원-항체 복합체 형성 수준을 측정하는 단계; 및
    (b) 상기 (a) 단계에서 측정된 항원-항체 복합체 형성 수준을 정상 대조군 시료에서 제 18항 내지 제 20항 중 어느 한 항의 재조합 단백질과의 항원-항체 결합 수준과 비교하는 단계를 포함하는, 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법.
  27. 제 26항에 있어서,
    상기 항원-항체 복합체 형성 수준 측정 방법은 방사상면역분석, 웨스턴블롯, ELISA(Enzyme linked immunosorbent assay) 또는 면역형광분석 방법을 통해 측정되는 것인, 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법.
  28. 제 26항에 있어서,
    상기 시료는 혈청 내 IgG 및 IgM 중 어느 하나 이상을 포함하는 것인, 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법.
  29. 제 26항에 있어서,
    상기 (a) 단계에서 측정된 항원-항체 복합체 형성 수준이 (b) 단계에서 측정된 정상 대조군 시료의 항원-항체 복합체 형성 수준보다 높은 경우, 치쿤구니야 바이러스가 감염된 것으로 평가하는, 치쿤구니야 바이러스 감염 진단을 위한 정보를 제공하는 방법.
PCT/KR2017/011658 2016-10-20 2017-10-20 재조합 단백질 및 그의 용도 WO2018074884A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0136649 2016-10-20
KR20160136649 2016-10-20
KR1020160146689A KR101919403B1 (ko) 2016-11-04 2016-11-04 재조합 단백질 및 그의 용도
KR10-2016-0146689 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018074884A1 true WO2018074884A1 (ko) 2018-04-26

Family

ID=62018799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011658 WO2018074884A1 (ko) 2016-10-20 2017-10-20 재조합 단백질 및 그의 용도

Country Status (1)

Country Link
WO (1) WO2018074884A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699218A1 (de) 2019-02-22 2020-08-26 Covestro Deutschland AG Neue zweikomponenten-deckbeschichtungssysteme enthaltend polyasparaginsäureester
EP3699219A1 (de) 2019-02-22 2020-08-26 Covestro Deutschland AG Neue zweikomponenten-klarlacksysteme enthaltend polyasparaginsäureester
WO2020169700A1 (de) 2019-02-22 2020-08-27 Covestro Intellectual Property Gmbh & Co. Kg Neue zweikomponenten-klarlacksysteme enthaltend polyasparaginsäureester
CN112946041A (zh) * 2021-02-06 2021-06-11 自然资源部第一海洋研究所 一种基于融合蛋白传感器的重金属离子检测方法
CN113045670A (zh) * 2019-12-27 2021-06-29 华南农业大学 一种可溶性鸡α干扰素融合蛋白及其生产方法与应用
EP3868805A1 (de) 2020-02-18 2021-08-25 Covestro Deutschland AG Neue zweikomponenten-klarlacksysteme enthaltend polyasparaginsäureester
CN114206946A (zh) * 2020-06-10 2022-03-18 四川三叶草生物制药有限公司 冠状病毒疫苗组合物、方法及其使用
CN114213545A (zh) * 2021-11-01 2022-03-22 河南农业大学 一种新型水禽星状病毒重组融合蛋白、制备方法及其应用
CN114456241A (zh) * 2021-03-01 2022-05-10 成都威斯克生物医药有限公司 抗SARS-CoV-2感染的蛋白及疫苗
CN114789247A (zh) * 2021-01-26 2022-07-26 中国农业大学 提高纳米材料稳定性的方法
CN113388041B (zh) * 2020-03-12 2024-02-06 厦门大学 具有融合前早期构象的SARS-CoV-2 S三聚体蛋白及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042564A1 (en) * 2003-10-20 2005-05-12 Sidney Kimmel Cancer Center Flagellin fusion proteins as adjuvants or vaccines and methods of use
WO2010050903A1 (en) * 2008-10-28 2010-05-06 Kemijski Institut Chimeric flagellins for vaccines
KR20140043784A (ko) * 2011-06-17 2014-04-10 브하라트 바이오테크 인터내셔날 리미티드 불활성화된 치쿤구니야 바이러스 균주를 포함하는 백신 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042564A1 (en) * 2003-10-20 2005-05-12 Sidney Kimmel Cancer Center Flagellin fusion proteins as adjuvants or vaccines and methods of use
WO2010050903A1 (en) * 2008-10-28 2010-05-06 Kemijski Institut Chimeric flagellins for vaccines
KR20140043784A (ko) * 2011-06-17 2014-04-10 브하라트 바이오테크 인터내셔날 리미티드 불활성화된 치쿤구니야 바이러스 균주를 포함하는 백신 조성물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein [O] 25 July 2016 (2016-07-25), "structural polyprotein, E2-6K-E1 region, partial [Chikungunya virus]", XP055478399, Database accession no. CCA61131.1 *
DATABASE Protein [O] 28 August 2013 (2013-08-28), "MULTISPECIES: flagellin [Bacillus cereus group]", XP055478425, Database accession no. WP_001222373.1 *
FORSTNERIC, VIDA ET AL.: "Distinctive Recognition of Flagellin by Human and Mouse Toll-like Receptor 5", PLOS ONE, vol. 11, no. 7, 8 July 2016 (2016-07-08), pages 1 - 18, XP055478410 *
YANG, ZHAOSHOU ET AL.: "Western Blot Detection of Human Anti-chikungunya Virus Antibody with Recombinant Envelope 2 Protein", THE KOREAN JOURNAL OF PARASITOLOGY, vol. 54, no. 2, April 2016 (2016-04-01), pages 239 - 241, XP055478415 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699219A1 (de) 2019-02-22 2020-08-26 Covestro Deutschland AG Neue zweikomponenten-klarlacksysteme enthaltend polyasparaginsäureester
WO2020169700A1 (de) 2019-02-22 2020-08-27 Covestro Intellectual Property Gmbh & Co. Kg Neue zweikomponenten-klarlacksysteme enthaltend polyasparaginsäureester
WO2020169701A1 (de) 2019-02-22 2020-08-27 Covestro Intellectual Property Gmbh & Co. Kg Neue zweikomponenten-deckbeschichtungssysteme enthaltend polyasparaginsäureester
EP3699218A1 (de) 2019-02-22 2020-08-26 Covestro Deutschland AG Neue zweikomponenten-deckbeschichtungssysteme enthaltend polyasparaginsäureester
CN113045670A (zh) * 2019-12-27 2021-06-29 华南农业大学 一种可溶性鸡α干扰素融合蛋白及其生产方法与应用
EP3868805A1 (de) 2020-02-18 2021-08-25 Covestro Deutschland AG Neue zweikomponenten-klarlacksysteme enthaltend polyasparaginsäureester
CN113388041B (zh) * 2020-03-12 2024-02-06 厦门大学 具有融合前早期构象的SARS-CoV-2 S三聚体蛋白及其应用
CN114206946A (zh) * 2020-06-10 2022-03-18 四川三叶草生物制药有限公司 冠状病毒疫苗组合物、方法及其使用
CN114206946B (zh) * 2020-06-10 2024-04-19 四川三叶草生物制药有限公司 冠状病毒疫苗组合物、方法及其使用
CN114789247A (zh) * 2021-01-26 2022-07-26 中国农业大学 提高纳米材料稳定性的方法
CN112946041A (zh) * 2021-02-06 2021-06-11 自然资源部第一海洋研究所 一种基于融合蛋白传感器的重金属离子检测方法
CN112946041B (zh) * 2021-02-06 2022-07-22 自然资源部第一海洋研究所 一种基于融合蛋白传感器的重金属离子检测方法
CN114456241A (zh) * 2021-03-01 2022-05-10 成都威斯克生物医药有限公司 抗SARS-CoV-2感染的蛋白及疫苗
CN114456241B (zh) * 2021-03-01 2023-11-21 成都威斯克生物医药有限公司 抗SARS-CoV-2感染的蛋白及疫苗
CN114213545A (zh) * 2021-11-01 2022-03-22 河南农业大学 一种新型水禽星状病毒重组融合蛋白、制备方法及其应用

Similar Documents

Publication Publication Date Title
WO2018074884A1 (ko) 재조합 단백질 및 그의 용도
WO2021194188A1 (ko) 사스-코로나바이러스-2에 중화 활성을 갖는 결합 분자
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2020218829A1 (ko) 플라젤린 융합 단백질 및 이의 용도
WO2014158001A1 (ko) 2 이상의 인플루엔자 a 바이러스 중화 결합 분자를 포함하는 조성물
WO2019039891A1 (ko) 중동호흡기증후군 코로나바이러스의 스파이크 단백질에 대한 단일클론항체 및 이의 용도
WO2020050667A1 (ko) 고형암을 위한 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
WO2018040537A1 (zh) 人pd-1基因敲除的cldn18.2 特异性嵌合抗原受体t细胞的制备方法以及应用
WO2020251284A1 (ko) 아프리카 돼지 열병 바이러스 유래 p72, p104, p205 단백질 절편 및 이의 용도
WO2011043584A2 (ko) 형질전환 식물 유래의 고병원성 조류독감 바이러스 단백질 백신 및 그 제조방법
WO2022211537A1 (ko) 신규한 면역 활성 인터루킨 2 아날로그 결합체 및 이의 제조 방법
WO2020076079A2 (ko) 락토바실러스 카제이 유래의 두 종류 프로모터를 이용한 두 가지 목적단백질의 동시 표면발현벡터 및 이를 이용한 단백질의 미생물표면 발현 방법
WO2016200189A1 (ko) 광견병 바이러스 g 단백질의 에피토프 및 이에 특이적으로 결합하는 광견병 바이러스 중화 결합 분자
WO2017116207A1 (ko) Fgf21 아날로그, fgf21 결합체, 및 이의 용도
WO2022211558A1 (ko) 사스-코로나바이러스-2 스파이크 단백질의 에피토프에 결합하는 사스-코로나바이러스-2 중화 결합 분자
WO2010047509A2 (ko) 친화도와 안정성이 향상된 항 dr5 항체, 및 이를 포함하는 암 예방 또는 치료용 조성물
WO2019182417A1 (ko) 황열 바이러스 유래 ns1 단백질, 이에 특이적으로 결합하는 단일클론항체 및 이의 용도
WO2015199386A1 (ko) 가용성 단백질 발현량이 증대된 헬리코박터 파일로리 유래 α-1,2 푸코실 전달효소의 유전자와 단백질 및 α-1,2 푸코실올리고당 생산에의 응용
WO2022139493A1 (ko) TGF-β 신호전달을 억제할 수 있는 신규한 펩타이드 및 이의 용도
WO2022019671A1 (ko) 사스-코로나바이러스-2 스파이크 단백질의 에피토프에 결합하는 사스-코로나바이러스-2 중화 결합 분자
WO2022065913A1 (ko) 요산산화효소-알부민 접합체, 그 제조방법 및 용도
WO2019066437A1 (ko) 가용성 변형 호흡기 융합세포 바이러스 (rsv) f 단백질 항원
WO2022035201A1 (ko) Il-12 및 항-fap 항체를 포함하는 융합단백질 및 이의 용도
WO2020209645A1 (ko) 프로그램화된 세포 사멸 단백질 리간드-1 (pd-l1)에 대한 항체 및 이의 용도
WO2020162696A1 (ko) 암 치료를 위한 t 세포의 활성화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862945

Country of ref document: EP

Kind code of ref document: A1