WO2018074413A1 - 変倍光学系、光学装置、変倍光学系の製造方法 - Google Patents

変倍光学系、光学装置、変倍光学系の製造方法 Download PDF

Info

Publication number
WO2018074413A1
WO2018074413A1 PCT/JP2017/037354 JP2017037354W WO2018074413A1 WO 2018074413 A1 WO2018074413 A1 WO 2018074413A1 JP 2017037354 W JP2017037354 W JP 2017037354W WO 2018074413 A1 WO2018074413 A1 WO 2018074413A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
focal length
refractive power
Prior art date
Application number
PCT/JP2017/037354
Other languages
English (en)
French (fr)
Inventor
智希 伊藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2018546323A priority Critical patent/JP6725000B2/ja
Priority to US16/338,736 priority patent/US11079575B2/en
Priority to CN201780064546.5A priority patent/CN109844603B/zh
Publication of WO2018074413A1 publication Critical patent/WO2018074413A1/ja
Priority to US17/359,927 priority patent/US11899189B2/en
Priority to US18/401,665 priority patent/US20240231060A9/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.
  • variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras, etc.
  • JP 2013-3240 A see JP 2013-3240 A.
  • the conventional variable magnification optical system has a problem that aberration variation at the time of zooming is large.
  • the distance between the groups changes, and at the time of focusing, at least a part of the fourth lens group moves, and the following conditional expression is satisfied.
  • f5 focal length of the fifth lens group
  • f2 focal length of the second lens group
  • f3 focal length of the third lens group
  • f4 focal length of the fourth lens group
  • a first lens group having a positive refractive power in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • a variable power optical system having a fourth lens group having a positive refractive power and a fifth lens group having a negative refractive power and configured to satisfy the following conditional expression: At the time of zooming, the first lens group is fixed with respect to the image plane, and the interval between adjacent lens groups is changed. At the time of focusing, at least a part of the fourth lens group moves. This is a method of manufacturing a variable magnification optical system configured as described above.
  • f5 focal length of the fifth lens group
  • f2 focal length of the second lens group
  • f3 focal length of the third lens group
  • f4 focal length of the fourth lens group
  • FIG. 1 is a cross-sectional view of the variable magnification optical system according to the first example in the wide-angle end state.
  • a 2A, 2B, and 2C are graphs showing various aberrations of the variable magnification optical system according to Example 1 when focusing on an object at infinity.
  • FIG. 2A shows a wide-angle end state
  • FIG. 2B shows an intermediate focal length state.
  • FIG. 2C shows the telephoto end state.
  • 3A, 3B, and 3C are graphs showing various aberrations of the variable magnification optical system according to Example 1 when focusing on a finite distance object.
  • FIG. 3A shows a wide-angle end state
  • FIG. 3B shows an intermediate focal length state.
  • FIG. 3C shows the telephoto end state.
  • FIG. 4A, 4B, and 4C are meridional lateral aberration diagrams when image blur correction is performed at the time of focusing on an object at infinity of the variable magnification optical system according to the first example.
  • FIG. 4A illustrates a wide-angle end state.
  • 4B shows the intermediate focal length state
  • FIG. 4C shows the telephoto end state.
  • FIG. 5 is a sectional view of the zoom optical system according to the second example of the present application in the wide-angle end state.
  • 6A, 6B, and 6C are graphs showing various aberrations of the variable magnification optical system according to Example 2 when focusing on an object at infinity.
  • FIG. 6A shows a wide-angle end state
  • FIG. 6B shows an intermediate focal length state.
  • FIG. 6C shows the telephoto end state.
  • 7A, 7B, and 7C are graphs showing various aberrations of the variable magnification optical system according to Example 2 when focusing on a finite distance object.
  • FIG. 7A shows a wide-angle end state
  • FIG. 7B shows an intermediate focal length state.
  • FIG. 7C shows the telephoto end state.
  • 8A, 8B, and 8C are meridional lateral aberration diagrams when image blur correction is performed at the time of focusing on an object at infinity of the variable magnification optical system according to Example 2, and
  • FIG. 8A shows a wide-angle end state.
  • 8B shows an intermediate focal length state
  • FIG. 8C shows a telephoto end state.
  • FIG. 8A, 8B, and 8C shows meridional lateral aberration diagrams when image blur correction is performed at the time of focusing on an object at infinity of the variable magnification optical system according to Example 2
  • FIG. 8A shows a wide-angle end state
  • FIG. 9 is a sectional view of the zoom optical system according to the third example in the wide-angle end state.
  • 10A, 10B, and 10C are graphs showing various aberrations of the zoom optical system according to the third example when focusing on an object at infinity.
  • FIG. 10A shows a wide-angle end state
  • FIG. 10B shows an intermediate focal length state.
  • FIG. 10C shows the telephoto end state.
  • 11A, 11B, and 11C are graphs showing various aberrations of the variable magnification optical system according to Example 3 when focusing on a finite distance object.
  • FIG. 11A shows a wide-angle end state
  • FIG. 11B shows an intermediate focal length state.
  • FIG. 11C shows the telephoto end state.
  • FIG. 12A, 12B, and 12C are meridional lateral aberration diagrams when image blur correction is performed at the time of focusing on an object at infinity of the variable magnification optical system according to the third example.
  • FIG. 12A illustrates a wide-angle end state.
  • 12B shows the intermediate focal length state
  • FIG. 12C shows the telephoto end state.
  • It is sectional drawing which shows the outline of the optical apparatus provided with the variable magnification optical system of this application.
  • It is a flowchart which shows the outline of the manufacturing method of the variable magnification optical system of this application.
  • variable magnification optical system of this embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a fourth lens group having a positive refractive power and a fifth lens group having a negative refractive power, and at the time of zooming, the first lens group is fixed with respect to the image plane, The distance between the lens groups changes.
  • variable magnification optical system of the present embodiment realizes variable magnification with this configuration, and can suppress fluctuations in various aberrations at the time of zooming, particularly fluctuations in spherical aberration and fluctuations in field curvature. Further, since the first lens group is fixed at the time of zooming, the lens group driving mechanism can be simplified and the lens barrel can be downsized.
  • variable power optical system of the present embodiment at least a part of the fourth lens group moves during focusing under such a configuration.
  • the amount of movement of the focusing lens group at the time of focusing can be suppressed, and the overall length of the entire optical system can be suppressed to reduce the size.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (1) under such a configuration.
  • (1) 1.20 ⁇ f5 / f2 ⁇ 3.60
  • f5 focal length of the fifth lens group
  • f2 focal length of the second lens group
  • Conditional expression (1) is a conditional expression for defining an appropriate value for the ratio between the focal length of the fifth lens group and the focal length of the second lens group.
  • conditional expression (1) If the corresponding value of the conditional expression (1) exceeds the upper limit value, the refractive power of the second lens group increases, and it becomes difficult to correct coma aberration in the wide-angle end state and spherical aberration in the telephoto end state. Absent.
  • conditional expression (1) If the corresponding value of conditional expression (1) is less than the lower limit, the refractive power of the fifth lens unit becomes large, and correction of astigmatism becomes difficult, which is not preferable.
  • variable magnification optical system of the present embodiment satisfies the following conditional expression (2) under such a configuration. (2) 0.80 ⁇ f3 / f4 ⁇ 2.20
  • f3 Focal length of the third lens group
  • f4 Focal length of the fourth lens group
  • Conditional expression (2) is a conditional expression for defining an appropriate value for the ratio between the focal length of the third lens group and the focal length of the fourth lens group.
  • conditional expression (2) exceeds the upper limit value, the refractive power of the fourth lens unit becomes large, and it becomes difficult to correct spherical aberration and curvature of field at the time of focusing, which is not preferable.
  • conditional expression (2) If the corresponding value of conditional expression (2) is less than the lower limit, the refractive power of the third lens group becomes large, and it becomes difficult to correct spherical aberration in the telephoto end state, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.00. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.20.
  • the third lens group is fixed with respect to the image plane during zooming.
  • the lens group drive mechanism can be simplified, and the lens barrel can be reduced in size.
  • the fifth lens group is fixed with respect to the image plane during zooming.
  • the lens group drive mechanism can be simplified, and the lens barrel can be reduced in size.
  • the zoom optical system according to the present embodiment preferably has an aperture stop between the second lens group and the fourth lens group. With such a configuration, coma and curvature of field can be favorably corrected.
  • the zoom optical system according to the present embodiment preferably moves so that at least a part of the fifth lens group includes a component in a direction orthogonal to the optical axis.
  • variable magnification optical system of the present embodiment preferably satisfies the following conditional expression (3).
  • (3) 0.64 ⁇ f4 / ( ⁇ f2) ⁇ 2.20
  • f4 Focal length of the fourth lens group
  • f2 Focal length of the second lens group
  • Conditional expression (3) is a conditional expression for defining an appropriate value for the ratio between the focal length of the fourth lens group and the focal length of the second lens group.
  • conditional expression (3) If the corresponding value of conditional expression (3) exceeds the upper limit value, the refractive power of the second lens group becomes large, and it becomes difficult to correct coma aberration in the wide-angle end state and spherical aberration in the telephoto end state. Absent.
  • conditional expression (3) If the corresponding value of conditional expression (3) is less than the lower limit, the refractive power of the fourth lens unit becomes large, and it becomes difficult to correct spherical aberration and curvature of field at the time of focusing, which is not preferable.
  • variable magnification optical system preferably satisfies the following conditional expression (4). (4) 0.94 ⁇ ( ⁇ f5) / f4 ⁇ 3.00
  • f5 focal length of the fifth lens group
  • f4 focal length of the fourth lens group
  • Conditional expression (4) is a conditional expression for defining an appropriate value for the ratio between the focal length of the fifth lens group and the focal length of the fourth lens group.
  • the refractive power of the fourth lens unit increases, and it becomes difficult to correct spherical aberration and field curvature at the time of focusing, which is not preferable.
  • conditional expression (4) If the corresponding value of conditional expression (4) is less than the lower limit, the refractive power of the fifth lens unit becomes large, and correction of astigmatism becomes difficult, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.20. In order to further secure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.30.
  • variable magnification optical system of the present embodiment preferably satisfies the following conditional expression (5).
  • (5) 1.00 ⁇ f1 / ( ⁇ f2) ⁇ 4.50
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • Conditional expression (5) is a conditional expression for defining an appropriate value for the ratio between the focal length of the first lens group and the focal length of the second lens group.
  • conditional expression (5) If the corresponding value of the conditional expression (5) exceeds the upper limit value, the refractive power of the second lens group increases, and it becomes difficult to correct coma aberration in the wide-angle end state and spherical aberration in the telephoto end state. Absent.
  • conditional expression (5) If the corresponding value of conditional expression (5) is less than the lower limit, the refractive power of the first lens unit becomes large, and it becomes difficult to correct spherical aberration in the telephoto end state, which is not preferable.
  • variable magnification optical system of the present embodiment preferably satisfies the following conditional expression (6).
  • (6) 1.00 ⁇ f3 / ( ⁇ f2) ⁇ 4.20
  • f3 focal length of the third lens group
  • f2 focal length of the second lens group
  • Conditional expression (6) is a conditional expression for defining an appropriate value for the ratio between the focal length of the third lens group and the focal length of the second lens group.
  • conditional expression (6) If the corresponding value of conditional expression (6) exceeds the upper limit value, the refractive power of the second lens group becomes large, and it becomes difficult to correct coma aberration in the wide-angle end state and spherical aberration in the telephoto end state. Absent.
  • conditional expression (6) If the corresponding value of conditional expression (6) is less than the lower limit, the refractive power of the third lens group becomes large, and it becomes difficult to correct spherical aberration in the telephoto end state, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 1.10. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 1.20.
  • variable magnification optical system of the present embodiment preferably satisfies the following conditional expression (7).
  • (7) 0.60 ⁇ f1 / ( ⁇ f5) ⁇ 2.70
  • f1 Focal length of the third lens group
  • f5 Focal length of the second lens group
  • Conditional expression (7) is a conditional expression for defining an appropriate value for the ratio between the focal length of the first lens group and the focal length of the fifth lens group.
  • conditional expression (7) exceeds the upper limit value, the refractive power of the fifth lens unit becomes large, and correction of astigmatism becomes difficult, which is not preferable.
  • conditional expression (7) If the corresponding value of conditional expression (7) is less than the lower limit, the refractive power of the first lens unit becomes large, and it becomes difficult to correct spherical aberration in the telephoto end state, which is not preferable.
  • the optical device of the present embodiment has the variable magnification optical system having the above-described configuration. Therefore, it is possible to realize an optical device that can satisfactorily suppress aberration fluctuations during zooming.
  • the variable magnification optical system manufacturing method of the present embodiment includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive lens in order from the object side along the optical axis. And a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power.
  • the zoom lens is configured to satisfy the expressions (1) and (2), and is configured so that the first lens group is fixed with respect to the image plane and the interval between adjacent lens groups is changed during zooming. At the time of focusing, at least a part of the fourth lens group is configured to move along the optical axis.
  • FIG. 1 is a sectional view of the variable magnification optical system according to the first example of the present embodiment in the wide-angle end state.
  • the arrows in FIG. 1 and FIGS. 5 and 9 to be described later indicate the movement trajectory of each lens group during zooming from the wide-angle end state to the telephoto end state.
  • the variable magnification optical system according to the present example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction.
  • the lens unit includes a third lens group G3 having power, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having negative refractive power.
  • the first lens group G1 has, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative lens L22 having a biconcave shape, and a positive meniscus lens L23 having a convex surface directed toward the object side. And a biconcave negative lens L24.
  • the third lens group G3 has, in order from the object side along the optical axis, an aperture stop S, a biconvex positive lens L31, a planoconvex lens L32 having a convex surface facing the object side, and a convex surface facing the object side. It consists of a positive meniscus lens L33, a biconcave negative lens L34, and a cemented negative lens of a biconvex positive lens L35 and a biconcave negative lens L36.
  • the fourth lens group G4 includes a biconvex positive lens L41, a cemented positive lens including a negative meniscus lens L42 having a convex surface facing the object side and a positive meniscus lens L43 having a convex surface facing the object side.
  • the fifth lens group G5 includes a negative meniscus lens L51 having a convex surface directed toward the object side, a cemented negative lens composed of a biconvex positive lens L52 and a biconcave negative lens L53, and a flat surface having a concave surface directed toward the image side.
  • the lens includes a concave lens L54, a biconvex positive lens L55, and a positive meniscus lens L56 having a convex surface facing the object side.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • variable magnification optical system has a distance between the first lens group G1 and the second lens group G2 at the time of zooming from the wide-angle end state to the telephoto end state, and the second lens.
  • the distance between the group G2 and the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, and the distance between the fourth lens group G4 and the fifth lens group G5 are changed.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis. Specifically, the second lens group G2 moves to the image side, and the fourth lens group G4 once moves to the object side and then moves to the image side. Note that the positions of the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I during zooming.
  • variable power optical system performs focusing from an infinite object to a finite distance object by moving the fourth lens group G4 as the focusing lens group to the object side along the optical axis.
  • variable magnification optical system has a cemented negative lens of a biconvex positive lens L52 and a biconcave negative lens L53 of the fifth lens group G5 as an anti-vibration lens group, and a concave surface facing the image side.
  • Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
  • f indicates the focal length
  • BF indicates the back focus, that is, the distance on the optical axis between the lens surface closest to the image side and the image plane I
  • indicates the imaging magnification between the object and the image.
  • m is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface interval (interval between the nth surface (n is an integer) and the (n + 1) th surface)
  • nd is the d line ( Refractive index for wavelength 587.6 nm) and ⁇ d indicate Abbe numbers for d-line (wavelength 587.6 nm), respectively.
  • OP represents an object plane
  • variable represents a variable surface interval
  • S represents an aperture stop
  • I represents an image plane.
  • the description of the refractive index of air nd 1.00000 is omitted.
  • the secondary aspheric coefficient A2 is 0, and the description thereof is omitted.
  • X (y) (y 2 / r) / ⁇ 1+ (1 ⁇ ⁇ y 2 / r 2 ) 1/2 ⁇ + A4 ⁇ y 4 + A6 ⁇ y 6 (a)
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is “°”)
  • Y is the image height
  • TL is the total length of the variable magnification optical system, that is, the first surface from the first surface when focusing on an object at infinity.
  • the distance on the optical axis to dn, dn indicates the variable distance between the nth surface and the (n + 1) th surface.
  • d0 represents the distance from the object to the lens surface closest to the object.
  • W represents the wide-angle end state
  • M represents the intermediate focal length state
  • T represents the telephoto end state.
  • [Lens Group Data] indicates the start surface number ST and focal length f of each lens group.
  • K is an anti-vibration coefficient
  • [theta] is an angle of rotation blur or tilt angle (unit: "[deg.]")
  • Z is an amount of shift of the anti-vibration lens group
  • W represents the wide-angle end state
  • M represents the intermediate focal length state
  • T represents the telephoto end state.
  • [Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.
  • the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIGS. 2A, 2B, and 2C are graphs showing various aberrations of the variable magnification optical system according to Example 1 when focusing on an object at infinity.
  • FIG. 2A shows a wide-angle end state
  • FIG. 2B shows an intermediate focal length state.
  • FIG. 2C shows the telephoto end state.
  • 3A, 3B, and 3C are graphs showing various aberrations of the variable magnification optical system according to Example 1 when focusing on a finite distance object.
  • FIG. 3A shows a wide-angle end state
  • FIG. 3B shows an intermediate focal length state.
  • FIG. 3C shows the telephoto end state.
  • FIG. 4A, 4B, and 4C are meridional lateral aberration diagrams when image blur correction is performed at the time of focusing on an object at infinity of the variable magnification optical system according to the first example.
  • FIG. 4A illustrates a wide-angle end state.
  • 4B shows the intermediate focal length state
  • FIG. 4C shows the telephoto end state.
  • FNO is an F number
  • A is a light incident angle, that is, a half angle of view (unit is “°”)
  • NA is a numerical aperture
  • HO is an object height (unit: mm).
  • the spherical aberration diagram shows the value of the F number FNO or the numerical aperture NA with respect to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum value of the object height HO or the half field angle A
  • the coma aberration diagram The value of each object height or half angle of view is shown.
  • d indicates the aberration at the d-line (wavelength 587.6 nm)
  • g indicates the aberration at the g-line (wavelength 435.8 nm)
  • those without d and g indicate the aberration at the d-line.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the solid line represents the meridional coma aberration with respect to the d-line and the g-line
  • the broken line represents the meridional coma aberration.
  • the coma aberration diagram shows coma aberration at each object height HO or half angle of view A. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
  • variable magnification optical system satisfactorily suppresses fluctuations in aberrations at the time of zooming, and various aberrations are well corrected from the infinite object focusing state to the finite distance object focusing state. It can be seen that the optical performance is high. Furthermore, it can be seen that it has excellent imaging performance even during image stabilization.
  • FIG. 5 is a cross-sectional view of the variable magnification optical system according to the second example of the present embodiment in the wide-angle end state.
  • the variable magnification optical system according to the present example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction.
  • the lens unit includes a third lens group G3 having power, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having negative refractive power.
  • the first lens group G1 has, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative lens L22 having a biconcave shape, and a positive meniscus lens L23 having a convex surface directed toward the object side. And a negative meniscus lens L24 having a concave surface facing the object side.
  • the third lens group G3 includes, in order from the object side along the optical axis, an aperture stop S, a biconvex positive lens L31, a positive meniscus lens L32 having a convex surface on the object side, and a convex surface on the object side.
  • the fourth lens group G4 includes a cemented positive lens formed by a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface directed toward the object side, and a biconvex positive lens L43.
  • the fifth lens group G5 includes a cemented negative lens composed of a biconvex positive lens L51 and a biconcave negative lens L52, a biconcave negative lens L53, a biconvex positive lens L54, and an object side. And a positive meniscus lens L55 having a convex surface.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • variable magnification optical system has a distance between the first lens group G1 and the second lens group G2 at the time of zooming from the wide-angle end state to the telephoto end state, and the second lens.
  • the distance between the group G2 and the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, and the distance between the fourth lens group G4 and the fifth lens group G5 are changed.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis. Specifically, the second lens group G2 moves to the image side, and the fourth lens group G4 once moves to the object side and then moves to the image side. Note that the positions of the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I during zooming.
  • variable power optical system performs focusing from an infinite object to a finite distance object by moving the fourth lens group G4 as the focusing lens group to the object side along the optical axis.
  • variable magnification optical system includes a cemented negative lens of a biconvex positive lens L51 and a biconcave negative lens L52 of the fifth lens group G5 as an anti-vibration lens group, and a biconcave negative lens.
  • L53 By moving L53 so as to include a component in a direction orthogonal to the optical axis, image plane correction at the time of image blurring, that is, image stabilization is performed.
  • Table 2 below provides values of specifications of the variable magnification optical system according to the present example.
  • FIG. 6A, 6B, and 6C are graphs showing various aberrations of the variable magnification optical system according to Example 2 when focusing on an object at infinity.
  • FIG. 6A shows a wide-angle end state
  • FIG. 6B shows an intermediate focal length state.
  • FIG. 6C shows the telephoto end state.
  • 7A, 7B, and 7C are graphs showing various aberrations of the variable magnification optical system according to Example 2 when focusing on a finite distance object.
  • FIG. 7A shows a wide-angle end state
  • FIG. 7B shows an intermediate focal length state.
  • FIG. 7C shows the telephoto end state.
  • FIG. 8A, 8B, and 8C are meridional lateral aberration diagrams when image blur correction is performed at the time of focusing on an object at infinity of the variable magnification optical system according to Example 2, and FIG. 8A shows a wide-angle end state. 8B shows an intermediate focal length state, and FIG. 8C shows a telephoto end state.
  • variable magnification optical system satisfactorily suppresses fluctuations in aberrations at the time of zooming, and various aberrations are well corrected from the infinite object focusing state to the finite distance object focusing state. It can be seen that the optical performance is high. Furthermore, it can be seen that it has excellent imaging performance even during image stabilization.
  • FIG. 9 is a sectional view of the variable magnification optical system according to the third example of the present embodiment in the wide-angle end state.
  • the variable magnification optical system according to the present example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction.
  • the lens unit includes a third lens group G3 having power, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a biconvex shape.
  • Positive lens L13 positive lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative lens L22 having a biconcave shape, and a positive meniscus lens L23 having a convex surface directed toward the object side. And a negative meniscus lens L24 having a concave surface facing the object side.
  • the third lens group G3 includes, in order from the object side along the optical axis, an aperture stop S, a positive meniscus lens L31 having a convex surface facing the object side, a positive lens L32 having a biconvex shape, and a convex surface facing the object side. And a negative meniscus lens L33.
  • the positive meniscus lens L31 has an aspheric lens surface on the object side.
  • the fourth lens group G4 includes a cemented positive lens formed by a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface directed toward the object side, and a biconvex positive lens L43.
  • the fifth lens group G5 includes a negative meniscus lens L51 having a convex surface directed toward the object side, a cemented negative lens composed of a biconvex positive lens L52 and a biconcave negative lens L53, and a biconcave negative lens L54. And a positive meniscus lens L55 having a concave surface facing the object side, and a positive meniscus lens L55 having a convex surface facing the object side.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • variable magnification optical system has a distance between the first lens group G1 and the second lens group G2 at the time of zooming from the wide-angle end state to the telephoto end state, and the second lens.
  • the distance between the group G2 and the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, and the distance between the fourth lens group G4 and the fifth lens group G5 are changed.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis. Specifically, the second lens group G2 moves to the image side, and the fourth lens group G4 once moves to the object side and then moves to the image side. Note that the positions of the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane I during zooming.
  • variable power optical system performs focusing from an infinite object to a finite distance object by moving the fourth lens group G4 as the focusing lens group to the object side along the optical axis.
  • variable magnification optical system includes a cemented negative lens of a biconvex positive lens L52 and a biconcave negative lens L53 of the fifth lens group G5 as an anti-vibration lens group, and a biconcave negative lens.
  • L52 a cemented negative lens of a biconvex positive lens L52 and a biconcave negative lens L53 of the fifth lens group G5 as an anti-vibration lens group
  • a biconcave negative lens By moving the L54 so as to include a component in a direction orthogonal to the optical axis, image plane correction at the time of image blurring, that is, image stabilization is performed.
  • Table 3 below lists values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 10A, 10B, and 10C are graphs showing various aberrations of the zoom optical system according to the third example when focusing on an object at infinity.
  • FIG. 10A shows a wide-angle end state
  • FIG. 10B shows an intermediate focal length state.
  • FIG. 10C shows the telephoto end state.
  • 11A, 11B, and 11C are graphs showing various aberrations of the variable magnification optical system according to Example 3 when focusing on a finite distance object.
  • FIG. 11A shows a wide-angle end state
  • FIG. 11B shows an intermediate focal length state.
  • FIG. 11C shows the telephoto end state.
  • FIG. 12A, 12B, and 12C are meridional lateral aberration diagrams when image blur correction is performed at the time of focusing on an object at infinity of the variable magnification optical system according to the third example.
  • FIG. 12B shows the intermediate focal length state
  • FIG. 12C shows the telephoto end state.
  • variable magnification optical system satisfactorily suppresses fluctuations in aberrations at the time of zooming, and various aberrations are well corrected from the infinite object focusing state to the finite distance object focusing state. It can be seen that the optical performance is high. Furthermore, it can be seen that it has excellent imaging performance even during image stabilization.
  • variable magnification optical system having excellent optical performance by satisfactorily suppressing aberration fluctuations during variable magnification.
  • variable magnification optical system of the present embodiment has a variable magnification ratio of about 2.0 to 5.0 times.
  • the focal length in the wide-angle end state is about 60 to 80 mm in terms of 35 mm.
  • the F number is about f / 2.0 to f / 4.0.
  • variable magnification optical system is shown as having a five-group configuration.
  • the present embodiment is not limited to this, and variable-magnification optics having other group configurations (for example, six groups, seven groups, etc.).
  • a system can also be constructed. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present embodiment may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • the entire fourth lens group is a focusing lens group.
  • a part of any lens group, any lens group, or a plurality of lens groups may be combined.
  • the focusing lens group may be moved in the optical axis direction.
  • at least part of the first lens group, at least part of the second lens group, at least part of the third lens group, at least part of the fourth lens group, at least part of the fifth lens group, or combinations thereof It is also possible to use a focusing lens group.
  • Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
  • a part of the fifth lens group is an anti-vibration lens group, but either the entire lens group or a part thereof is an anti-vibration lens group with respect to the optical axis. It is also possible to adopt a configuration in which image blur caused by camera shake or the like is corrected by moving so as to include a component in a vertical direction, or by rotating (swinging) in an in-plane direction including the optical axis.
  • at least a part of the second lens group, at least a part of the third lens group, at least a part of the fourth lens group, or at least a part of the fifth lens group A group is preferred.
  • the aperture stop is preferably disposed between the second lens group and the third lens group, and the role of the lens frame is substituted for the aperture stop without providing a member. It is good also as composition to do.
  • the lens surface of the lens constituting the variable magnification optical system of the present embodiment may be a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • an antireflection film having a high transmittance in a wide wavelength range may be provided on the lens surface of the lens constituting the variable magnification optical system of the present embodiment. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • FIG. 13 is a diagram illustrating a configuration of a camera including the variable magnification optical system according to the present embodiment.
  • the camera 1 is an interchangeable lens type camera that includes the variable magnification optical system according to the first example as the photographing lens 2.
  • the camera 1 light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown).
  • OLPF Optical low pass filter
  • This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1.
  • EVF Electronic view finder
  • the photographer can observe the subject via the EVF 4.
  • the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • variable magnification optical system according to the first example mounted as the photographing lens 2 in the camera 1 is a variable magnification optical system that satisfactorily suppresses aberration fluctuations during zooming and has high optical performance. Therefore, the camera 1 can satisfactorily suppress aberration fluctuations during zooming and realize high optical performance. Even if the camera having the variable magnification optical system according to the second or third example mounted as the taking lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.
  • variable magnification optical system manufacturing method of the present embodiment shown in FIG. 14 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. , A fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power, and a method for manufacturing a variable power optical system, comprising the following steps S1, S2 , And S3.
  • Step S1 In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive refractive power
  • a fourth lens group and a fifth lens group having negative refractive power are prepared so as to satisfy the following conditional expressions (1) and (2), and each lens group is placed in the lens barrel from the object side. Arrange in order. (1) 1.20 ⁇ f5 / f2 ⁇ 3.60 (2) 0.80 ⁇ f3 / f4 ⁇ 2.20
  • f5 focal length of the fifth lens group
  • f2 focal length of the first second lens group
  • f3 focal length of the third lens group
  • f4 focal length of the fourth lens group
  • Step S2 By providing a known moving mechanism in the lens barrel, the first lens unit is fixed with respect to the image plane during zooming, and the interval between adjacent lens units is changed.
  • Step S3 A known moving mechanism is provided on the lens barrel so that at least a part of the fourth lens group is moved during focusing.
  • variable magnification optical system of the present embodiment it is possible to manufacture a variable magnification optical system having excellent optical performance while satisfactorily suppressing aberration fluctuation at the time of variable magnification.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、変倍に際し、第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化し、合焦に際し、前記第4レンズ群の少なくとも一部が移動し、所定の条件式を満足することにより、変倍時の収差変動を良好に抑えることができる。

Description

変倍光学系、光学装置、変倍光学系の製造方法
 本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている。例えば、特開2013-3240号公報を参照。しかしながら、従来の変倍光学系は、変倍時の収差変動が大きいという問題があった。
特開2013-3240号公報
 本発明の第1の態様は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、変倍に際し、前記第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化し、合焦に際し、前記第4レンズ群の少なくとも一部が移動し、以下の条件式を満足する変倍光学系である。
  1.20 < f5/f2 < 3.60
  0.80 < f3/f4 < 2.20
 ただし、
 f5:前記第5レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 f3:前記第3レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
 また、本発明の第2の態様は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、以下の条件式を満足するように構成し、変倍に際し、前記第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化するように構成し、合焦に際し、前記第4レンズ群の少なくとも一部が移動するように構成する変倍光学系の製造方法である。
  1.20 < f5/f2 < 3.60
  0.80 < f3/f4 < 2.20
 ただし、
 f5:前記第5レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 f3:前記第3レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
図1は、第1実施例に係る変倍光学系の広角端状態における断面図である。A 図2A、図2B、および図2Cは、第1実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、図2Aは広角端状態を、図2Bは中間焦点距離状態を、図2Cは望遠端状態をそれぞれ示している。 図3A、図3B、および図3Cは、第1実施例に係る変倍光学系の有限距離物体合焦時の諸収差図であり、図3Aは広角端状態を、図3Bは中間焦点距離状態を、図3Cは望遠端状態をそれぞれ示している。 図4A、図4B、および図4Cは、第1実施例に係る変倍光学系の無限遠物体合焦時に像ブレ補正を行ったときのメリディオナル横収差図であり、図4Aは広角端状態を、図4Bは中間焦点距離状態を、図4Cは望遠端状態をそれぞれ示している。 図5は、本願の第2実施例に係る変倍光学系の広角端状態における断面図である。 図6A、図6B、および図6Cは、第2実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、図6Aは広角端状態を、図6Bは中間焦点距離状態を、図6Cは望遠端状態をそれぞれ示している。 図7A、図7B、および図7Cは、第2実施例に係る変倍光学系の有限距離物体合焦時の諸収差図であり、図7Aは広角端状態を、図7Bは中間焦点距離状態を、図7Cは望遠端状態をそれぞれ示している。 図8A、図8B、および図8Cは、第2実施例に係る変倍光学系の無限遠物体合焦時に像ブレ補正を行ったときのメリディオナル横収差図であり、図8Aは広角端状態を、図8Bは中間焦点距離状態を、図8Cは望遠端状態をそれぞれ示している。 図9は、第3実施例に係る変倍光学系の広角端状態における断面図である。 図10A、図10B、および図10Cは、第3実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、図10Aは広角端状態を、図10Bは中間焦点距離状態を、図10Cは望遠端状態をそれぞれ示している。 図11A、図11B、および図11Cは、第3実施例に係る変倍光学系の有限距離物体合焦時の諸収差図であり、図11Aは広角端状態を、図11Bは中間焦点距離状態を、図11Cは望遠端状態をそれぞれ示している。 図12A、図12B、および図12Cは、第3実施例に係る変倍光学系の無限遠物体合焦時に像ブレ補正を行ったときのメリディオナル横収差図であり、図12Aは広角端状態を、図12Bは中間焦点距離状態を、図12Cは望遠端状態をそれぞれ示している。 本願の変倍光学系を備えた光学装置の概略を示す断面図である。 本願の変倍光学系の製造方法の概略を示すフロー図である。
 以下、本願の実施形態に係る変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
 本実施形態の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、変倍に際し、前記第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化する。本実施形態の変倍光学系は、この構成により変倍を実現し、変倍時の諸収差の変動、特に球面収差の変動および像面湾曲の変動を抑えることができる。また、変倍に際し、第1レンズ群が固定されているので、レンズ群の駆動機構を簡素化し、鏡筒を小型化することができる。
 本実施形態の変倍光学系は、このような構成のもと、合焦に際し、前記第4レンズ群の少なくとも一部が移動する。この構成により、合焦時の合焦レンズ群の移動量を抑え、光学系全系の全長を抑えて小型化することができる。
 本実施形態の変倍光学系は、このような構成のもと、以下の条件式(1)を満足する。
(1) 1.20 < f5/f2 < 3.60
 ただし、
 f5:前記第5レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 条件式(1)は、第5レンズ群の焦点距離と第2レンズ群の焦点距離との比に関し、適切な値を規定するための条件式である。条件式(1)を満足することにより、コマ収差、球面収差、および非点収差を良好に補正することができる。
 条件式(1)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなり、広角端状態におけるコマ収差、および望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を3.30にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を3.00にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を2.80にすることが好ましい。
 条件式(1)の対応値が下限値を下回ると、第5レンズ群の屈折力が大きくなり、非点収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を1.35にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(1)の下限値を1.50にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(1)の下限値を1.60にすることが好ましい。
 本実施形態の変倍光学系は、このような構成のもと、以下の条件式(2)を満足する。
(2) 0.80 < f3/f4 < 2.20
 ただし、
 f3:前記第3レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
 条件式(2)は、第3レンズ群の焦点距離と第4レンズ群の焦点距離との比に関し、適切な値を規定するための条件式である。条件式(2)を満足することにより、合焦時における球面収差および像面湾曲を良好に補正することができる。
 条件式(2)の対応値が上限値を上回ると、第4レンズ群の屈折力が大きくなり、合焦時における球面収差および像面湾曲の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を2.00にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(2)の上限値を1.80にすることが好ましい。
 条件式(2)の対応値が下限値を下回ると、第3レンズ群の屈折力が大きくなり、望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を1.00にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を1.20にすることが好ましい。
 本実施形態の変倍光学系は、変倍に際し、前記第3レンズ群が像面に対して固定であることが好ましい。このような構成により、レンズ群の駆動機構を簡素化し、鏡筒を小型化することができる。
 本実施形態の変倍光学系は、変倍に際し、前記第5レンズ群が像面に対して固定であることが好ましい。このような構成により、レンズ群の駆動機構を簡素化し、鏡筒を小型化することができる。
 本実施形態の変倍光学系は、前記第2レンズ群と前記第4レンズ群との間に開口絞りを有することが好ましい。このような構成により、コマ収差と像面湾曲を良好に補正することができる。
 本実施形態の変倍光学系は、前記第5レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが好ましい。この構成により、手ブレ補正時の偏心コマ収差と像面湾曲を良好に補正できる。また、防振レンズ群の移動機構を小型化することができる。
 本実施形態の変倍光学系は、以下の条件式(3)を満足することが好ましい。
(3) 0.64 < f4/(-f2) < 2.20
 ただし、
 f4:前記第4レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 条件式(3)は、第4レンズ群の焦点距離と第2レンズ群の焦点距離との比に関し、適切な値を規定するための条件式である。条件式(3)を満足することにより、コマ収差、球面収差、および像面湾曲を良好に補正することができる。
 条件式(3)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなり、広角端状態におけるコマ収差、および望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を1.90にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(3)の上限値を1.50にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(3)の上限値を1.40にすることが好ましい。
 条件式(3)の対応値が下限値を下回ると、第4レンズ群の屈折力が大きくなり、合焦時における球面収差および像面湾曲の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の下限値を0.80にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を1.00にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を1.05にすることが好ましい。
 本実施形態の変倍光学系は、以下の条件式(4)を満足することが好ましい。
(4) 0.94 < (-f5)/f4 < 3.00
 ただし、
 f5:前記第5レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
 条件式(4)は、第5レンズ群の焦点距離と第4レンズ群の焦点距離との比に関し、適切な値を規定するための条件式である。条件式(4)を満足することにより、合焦時における球面収差および像面湾曲を良好に補正することができる。
 条件式(4)の対応値が上限値を上回ると、第4レンズ群の屈折力が大きくなり、合焦時における球面収差および像面湾曲の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の上限値を2.70にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(4)の上限値を2.50にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(4)の上限値を2.30にすることが好ましい。
 条件式(4)の対応値が下限値を下回ると、第5レンズ群の屈折力が大きくなり、非点収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の下限値を1.20にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を1.30にすることが好ましい。
 本実施形態の変倍光学系は、以下の条件式(5)を満足することが好ましい。
(5) 1.00 < f1/(-f2) < 4.50
 ただし、
 f1:前記第1レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 条件式(5)は、第1レンズ群の焦点距離と第2レンズ群の焦点距離との比に関し、適切な値を規定するための条件式である。条件式(5)を満足することにより、球面収差およびコマ収差を良好に補正することができる。
 条件式(5)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなり、広角端状態おけるコマ収差、および望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(5)の上限値を4.00にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(5)の上限値を3.50にすることが好ましい。
 条件式(5)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(5)の下限値を2.00にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を2.60にすることが好ましい。
 本実施形態の変倍光学系は、以下の条件式(6)を満足することが好ましい。
(6) 1.00 < f3/(-f2) < 4.20
 ただし、
 f3:前記第3レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 条件式(6)は、第3レンズ群の焦点距離と第2レンズ群の焦点距離との比に関し、適切な値を規定するための条件式である。条件式(6)を満足することにより、球面収差およびコマ収差を良好に補正することができる。
 条件式(6)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなり、広角端状態おけるコマ収差、および望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(6)の上限値を4.00にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(6)の上限値を3.00にすることが好ましい。
 条件式(6)の対応値が下限値を下回ると、第3レンズ群の屈折力が大きくなり、望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(6)の下限値を1.10にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(6)の下限値を1.20にすることが好ましい。
 本実施形態の変倍光学系は、以下の条件式(7)を満足することが好ましい。
(7) 0.60 < f1/(-f5) < 2.70
 ただし、
 f1:前記第3レンズ群の焦点距離
 f5:前記第2レンズ群の焦点距離
 条件式(7)は、第1レンズ群の焦点距離と第5レンズ群の焦点距離との比に関し、適切な値を規定するための条件式である。条件式(7)を満足することにより、非点収差および球面収差を良好に補正することができる。
 条件式(7)の対応値が上限値を上回ると、第5レンズ群の屈折力が大きくなり、非点収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(7)の上限値を2.50にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を2.00にすることが好ましい。
 条件式(7)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、望遠端状態における球面収差の補正が困難となってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(7)の下限値を0.80にすることが好ましい。本実施形態の効果をさらに確実にするために、条件式(7)の下限値を1.00にすることが好ましい。
 また、本実施形態の光学装置は、上述した構成の変倍光学系を有している。これにより、変倍時の収差変動を良好に抑えることができる光学装置を実現することができる。
 また、本実施形態の変倍光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、以下の条件式(1)、(2)を満足するように構成し、変倍に際し、前記第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化するように構成し、合焦に際し、前記第4レンズ群の少なくとも一部が光軸に沿って移動するように構成する。
(1) 1.20 < f5/f2 < 3.60
(2) 0.80 < f3/f4 < 2.20
 ただし、
 f5:前記第5レンズ群の焦点距離
 f2:前記1第2レンズq群の焦点距離
 f3:前記第3レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
 斯かる変倍光学系の製造方法により、変倍時の収差変動を良好に抑えることができる変倍光学系を製造することができる。
(数値実施例)
 以下、本実施形態の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
 図1は、本実施形態の第1実施例に係る変倍光学系の広角端状態における断面図である。図1、および後述する図5、図9中の矢印は、広角端状態から望遠端状態への変倍の際の各レンズ群の移動軌跡を示している。
 本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24とからなる。
 第3レンズ群G3は、光軸に沿って物体側から順に、開口絞りSと、両凸形状の正レンズL31と、物体側に凸面を向けた平凸レンズL32と、物体側に凸面を向けた正メニスカスレンズL33と、両凹形状の負レンズL34と、両凸形状の正レンズL35と両凹形状の負レンズL36との接合負レンズとからなる。
 第4レンズ群G4は、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42と物体側に凸面を向けた正メニスカスレンズL43との接合正レンズとからなる。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51と、 両凸形状の正レンズL52と両凹形状の負レンズL53との接合負レンズと、像側に凹面を向けた平凹レンズL54と、両凸形状の正レンズL55と、物体側に凸面を向けた正メニスカスレンズL56とからなる。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
 以上の構成のもと、本実施例に係る変倍光学系は、広角端状態から望遠端状態への変倍の際、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、および第4レンズ群G4と第5レンズ群G5との間隔がそれぞれ変化するように、第2レンズ群G2と、第4レンズ群G4とが光軸に沿って移動する。詳細には、第2レンズ群G2は像側へ移動し、第4レンズ群G4は一旦物体側へ移動した後、像側へ移動する。なお、変倍の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して位置が固定である。
 本実施例に係る変倍光学系は、合焦レンズ群として第4レンズ群G4を光軸に沿って物体側へ移動させることにより、無限遠物体から有限距離物体への合焦を行う。
 本実施例に係る変倍光学系は、防振レンズ群として第5レンズ群G5の両凸形状の正レンズL52と両凹形状の負レンズL53との接合負レンズと、像側に凹面を向けた平凹レンズL54とを光軸と直交する方向の成分を含むように移動させることにより像ブレ発生時の像面補正、すなわち防振を行う。
 以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
 表1において、fは焦点距離、BFはバックフォーカスすなわち最も像側のレンズ面と像面Iとの光軸上の距離、βは物体と像間の結像倍率を示す。
 [面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、可変は可変の面間隔、Sは開口絞り、Iは像面をそれぞれ示している。なお、曲率半径r=∞は平面を示している。空気の屈折率nd=1.000000の記載は省略している。レンズ面が非球面である場合には、面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。
 [非球面データ]には、[面データ]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離であるザグ量を、rは基準球面の曲率半径である近軸曲率半径を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/r)/{1+(1-κ×y2/r21/2}+A4×y4+A6×y6 …(a)
 [各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは変倍光学系の全長すなわち無限遠物体合焦時の第1面から像面Iまでの光軸上の距離、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。d0は、物体から最も物体側のレンズ面までの距離を示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
 [レンズ群データ]には、各レンズ群の始面番号STと焦点距離fを示す。
 [防振データ]において、Kは防振係数、θは本実施例に係る変倍光学系の回転ぶれの角度すなわち傾き角度(単位は「°」)、Zは防振レンズ群のシフト量即ち光軸に直交する方向への移動量をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
  [条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。      
 ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
(表1)第1実施例
[面データ]
m           r       d        nd       νd
 OP          ∞
 
   1         127.304    2.800    1.950000    29.37
   2          89.338    9.900    1.497820    82.57
   3        -998.249    0.100
   4          92.013    7.700    1.433852    95.25
   5         696.987    可変
 
   6          67.306    2.400    1.719990    50.27
   7          33.224   10.250
   8        -131.888    2.000    1.618000    63.34
   9         100.859    2.000
  10          53.850    4.400    1.846660    23.83
  11         193.868    3.550
  12         -73.371    2.200    1.603000    65.44
  13         288.683    可変
 
  14(S)         ∞      2.500
  15         581.555    3.700    1.834810    42.73
  16        -130.482    0.200
  17          90.329    3.850    1.593190    67.90
  18            ∞      0.200
  19          52.765    4.900    1.497820    82.57
  20         448.658    2.043
  21        -118.745    2.200    2.001000    29.12
  22         173.228    4.550
  23         114.635    5.750    1.902650    35.73
  24         -66.799    2.200    1.581440    40.98
  25          41.996    可変
 
  26          57.835    4.800    1.497820    82.57
  27        -190.076    0.100
  28          44.190    2.000    1.950000    29.37
  29          28.478    5.550    1.593190    67.90
  30         166.406    可変
 
  31          52.698    1.800    1.804000    46.60
  32          31.187    5.150
  33         102.833    3.350    1.846660    23.83
  34        -102.758    1.600    1.719990    50.27
  35          42.059    2.583
  36            ∞      1.600    1.953750    32.33
  37          68.581    3.750
  38         101.229    3.850    1.593190    67.90
  39        -172.177    0.150
  40          47.985    3.900    1.719990    50.27
  41         137.994    BF
 
  I            ∞
 
[各種データ]
変倍比      2.74
 
            W         M          T
f         71.5       135.0       196.0
FNO      2.9         2.9         2.9
2ω       22.4        41.1        57.9
Y         21.6        21.6        21.6
TL      246         246         246
BF       54          54          54
 
         W         M         T          W         M         T
β                                       -0.09      -0.16      -0.23
d0     無限遠     無限遠     無限遠       754        754        754
d5      3.014     34.034     50.952       3.014     34.034     50.952
d13    50.598     19.577      2.660      50.598     19.577      2.660
d25    16.922     14.105     16.921      14.966      7.506      2.928
d30     1.903      4.720      1.903       3.858     11.318     15.897
 
[レンズ群データ]
群    ST        f
1       1      143.951
2       6      -45.574
3      14       94.464
4      26       58.195
5      31     -109.088
 
[防振データ]
        f       K      θ      Z
W     71.5    -1.21    0.3    -0.31
M    135.0    -1.21    0.3    -0.58
T    196.0    -1.21    0.3    -0.85
 
[条件式対応値]
(1) f5/f2= 2.39
(2) f3/f4= 1.62
(3) f4/(-f2)= 1.28
(4) (-f5)/f4= 1.87
(5) f1/(-f2)= 3.16
(6) f3/(-f2)= 2.07
(7) f1/(-f5)= 1.32
 
 図2A、図2B、および図2Cは、第1実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、図2Aは広角端状態を、図2Bは中間焦点距離状態を、図2Cは望遠端状態をそれぞれ示している。
 図3A、図3B、および図3Cは、第1実施例に係る変倍光学系の有限距離物体合焦時の諸収差図であり、図3Aは広角端状態を、図3Bは中間焦点距離状態を、図3Cは望遠端状態をそれぞれ示している。
 図4A、図4B、および図4Cは、第1実施例に係る変倍光学系の無限遠物体合焦時に像ブレ補正を行ったときのメリディオナル横収差図であり、図4Aは広角端状態を、図4Bは中間焦点距離状態を、図4Cは望遠端状態をそれぞれ示している。
 各収差図において、FNOはFナンバー、Aは光線入射角即ち半画角(単位は「°」)、NAは開口数、HOは物体高(単位:mm)をそれぞれ示す。詳しくは、球面収差図では最大口径に対するFナンバーFNOまたは開口数NAの値を示し、非点収差図および歪曲収差図では物体高HOまたは半画角Aの最大値をそれぞれ示し、コマ収差図では各物体高または半画角の値を示す。また、各収差図において、dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図において、実線はd線およびg線に対するメリディオナルコマ収差を表し、破線はメリディオナルコマ収差をそれぞれ示す。コマ収差図は、各物体高HOまたは半画角Aにおけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 各収差図より、本実施例に係る変倍光学系は、変倍時の収差変動を良好に抑え、また、無限遠物体合焦状態から有限距離物体合焦状態まで諸収差が良好に補正され、高い光学性能を有していることがわかる。さらに、防振時にも優れた結像性能を有していることがわかる。
(第2実施例)
 図5は、本実施形態の第2実施例に係る変倍光学系の広角端状態における断面図である。
 本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。
 第3レンズ群G3は、光軸に沿って物体側から順に、開口絞りSと、両凸形状の正レンズL31と、物体側に凸面を向けた正メニスカスレンズL32と、物体側に凸面を向けた正メニスカスレンズL33と、物体側に凸面を向けた負メニスカスレンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。
 第4レンズ群G4は、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズと、両凸形状の正レンズL43とからなる。
 第5レンズ群G5は、両凸形状の正レンズL51と両凹形状の負レンズL52との接合負レンズと、両凹形状の負レンズL53と、両凸形状の正レンズL54と、物体側に凸面を向けた正メニスカスレンズL55とからなる。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
 以上の構成のもと、本実施例に係る変倍光学系は、広角端状態から望遠端状態への変倍の際、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、および第4レンズ群G4と第5レンズ群G5との間隔がそれぞれ変化するように、第2レンズ群G2と、第4レンズ群G4とが光軸に沿って移動する。詳細には、第2レンズ群G2は像側へ移動し、第4レンズ群G4は一旦物体側へ移動した後、像側へ移動する。なお、変倍の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して位置が固定である。
 本実施例に係る変倍光学系は、合焦レンズ群として第4レンズ群G4を光軸に沿って物体側へ移動させることにより、無限遠物体から有限距離物体への合焦を行う。
 本実施例に係る変倍光学系は、防振レンズ群として第5レンズ群G5の両凸形状の正レンズL51と両凹形状の負レンズL52との接合負レンズと、両凹形状の負レンズL53とを光軸と直交する方向の成分を含むように移動させることにより像ブレ発生時の像面補正、すなわち防振を行う。
 以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表2)第2実施例
[面データ]
m           r       d        nd       νd
 OP          ∞
 
   1         168.091    2.800    1.846660    23.80
   2         113.985    7.600    1.497820    82.57
   3       -1342.958    0.100
   4         105.542    6.500    1.497820    82.57
   5         756.079    可変
 
   6          93.277    1.800    1.713000    53.96
   7          35.899    7.963
   8        -123.058    1.800    1.517420    52.20
   9          88.115    0.100
  10          55.675    4.150    1.846660    23.80
  11         239.180    3.827
  12         -60.290    1.800    1.518230    58.82
  13        -401.012    可変
 
  14(S)         ∞      2.500
  15         125.380    3.570    1.834810    42.73
  16        -451.692    0.100
  17          60.877    4.360    1.593190    67.90
  18         373.299    0.100
  19          40.071    4.900    1.497820    82.57
  20         128.851    0.987
  21         370.600    1.800    1.688930    31.16
  22          32.352    0.100
  23          26.342    4.240    1.846660    23.80
  24          25.137    可変
 
  25          97.606    6.180    1.497820    82.57
  26         -39.284    2.000    1.903660    31.27
  27        -123.125    4.984
  28         183.032    3.720    1.883000    40.66
  29        -106.025    可変
 
  30          77.498    3.750    1.846660    23.80
  31        -155.434    1.500    1.902650    35.72
  32          37.559    2.958
  33       -5844.463    1.500    1.497820    82.57
  34          69.608    5.050
  35        5387.656    2.800    1.622990    58.12
  36        -112.327    0.100
  37          40.488    3.350    1.497820    82.57
  38          72.067    BF
 
  I           ∞
 
[各種データ]
変倍比      2.69
 
            W         M          T
f         72.0       135.0       194.0
FNO      2.9         2.9         2.9
2ω       21.5        39.9        57.9
Y         21.6        21.6        21.6
TL      239         239         239
BF       54          54          54
 
         W         M         T          W         M         T
β                                       -0.09      -0.16      -0.23
d0     無限遠     無限遠     無限遠       761        761        761
d5      1.500     37.617     56.701       1.500     37.617     56.701
d13    56.701     20.584      1.500      56.701     20.584      1.500
d24    24.968     21.322     24.968      22.209     12.365      6.511
d29     3.434      7.080      3.434       6.192     16.037     21.890
 
[レンズ群データ]
群    ST        f
1       1      157.007
2       6      -53.476
3      14       89.612
4      25       67.129
5      30     -136.615
 
[防振データ]
        f       K      θ      Z
W     72.0    -1.20    0.3    -0.31
M    135.0    -1.20    0.3    -0.59
T    194.0    -1.20    0.3    -0.85
 
[条件式対応値]
(1) f5/f2= 2.55
(2) f3/f4= 1.33
(3) f4/(-f2)= 1.26
(4) (-f5)/f4= 2.04
(5) f1/(-f2)= 2.94
(6) f3/(-f2)= 1.68
(7) f1/(-f5)= 1.15
 
 図6A、図6B、および図6Cは、第2実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、図6Aは広角端状態を、図6Bは中間焦点距離状態を、図6Cは望遠端状態をそれぞれ示している。
 図7A、図7B、および図7Cは、第2実施例に係る変倍光学系の有限距離物体合焦時の諸収差図であり、図7Aは広角端状態を、図7Bは中間焦点距離状態を、図7Cは望遠端状態をそれぞれ示している。
 図8A、図8B、および図8Cは、第2実施例に係る変倍光学系の無限遠物体合焦時に像ブレ補正を行ったときのメリディオナル横収差図であり、図8Aは広角端状態を、図8Bは中間焦点距離状態を、図8Cは望遠端状態をそれぞれ示している。
 各収差図より、本実施例に係る変倍光学系は、変倍時の収差変動を良好に抑え、また、無限遠物体合焦状態から有限距離物体合焦状態まで諸収差が良好に補正され、高い光学性能を有していることがわかる。さらに、防振時にも優れた結像性能を有していることがわかる。
(第3実施例)
 図9は、本実施形態の第3実施例に係る変倍光学系の広角端状態における断面図である。
 本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、両凸形状の正レンズL13とからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。
 第3レンズ群G3は、光軸に沿って物体側から順に、開口絞りSと、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32と、物体側に凸面を向けた負メニスカスレンズL33とからなる。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズと、両凸形状の正レンズL43とからなる。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と両凹形状の負レンズL53との接合負レンズと、両凹形状の負レンズL54と、物体側に凹面を向けた正メニスカスレンズL55と、物体側に凸面を向けた正メニスカスレンズL55とからなる。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
 以上の構成のもと、本実施例に係る変倍光学系は、広角端状態から望遠端状態への変倍の際、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、および第4レンズ群G4と第5レンズ群G5との間隔がそれぞれ変化するように、第2レンズ群G2と、第4レンズ群G4とが光軸に沿って移動する。詳細には、第2レンズ群G2は像側へ移動し、第4レンズ群G4は一旦物体側へ移動した後、像側へ移動する。なお、変倍の際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、像面Iに対して位置が固定である。
 本実施例に係る変倍光学系は、合焦レンズ群として第4レンズ群G4を光軸に沿って物体側へ移動させることにより、無限遠物体から有限距離物体への合焦を行う。
 本実施例に係る変倍光学系は、防振レンズ群として第5レンズ群G5の両凸形状の正レンズL52と両凹形状の負レンズL53との接合負レンズと、両凹形状の負レンズL54とを光軸と直交する方向の成分を含むように移動させることにより像ブレ発生時の像面補正、すなわち防振を行う。
 以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表3)第3実施例
[面データ]
m           r       d        nd       νd
 OP          ∞
 
   1         167.356    2.800    1.953747    32.32
   2          93.018    7.924    1.497820    82.57
   3        1434.067    0.200
   4         104.275    7.345    1.593190    67.90
   5      -12156.219    可変
 
   6          60.998    2.400    1.762000    40.11
   7          33.455    6.781
   8        -170.774    1.800    1.497820    82.57
   9          81.934    0.100
  10          47.360    4.035    1.846663    23.78
  11         111.622   12.340
  12         -65.553    1.800    1.593190    67.90
  13       -1952.577    可変
 
  14(S)         ∞      2.500
*15         123.030    3.035    1.772500    49.62
  16        2330.078    0.100
  17          51.250    6.876    1.497820    82.57
  18        -259.509    3.112
  19          55.078    2.400    1.728250    28.38
  20          36.743    可変
 
  21          67.767    6.370    1.497820    82.57
  22         -51.825    1.800    1.647690    33.72
  23        -532.680    0.100
  24          79.662    3.972    1.618000    63.34
  25        -166.555    可変
 
  26          49.657    1.800    1.903660    31.27
  27          30.960    5.571
  28         160.283    4.000    1.846663    23.78
  29         -52.297    1.500    1.744000    44.80
  30          35.836    6.845
  31         -74.563    1.500    1.603420    38.03
  32         108.157    4.512
  33      -15102.398    3.130    1.816000    46.59
  34         -89.747    0.200
  35          50.592    4.745    1.593190    67.90
  36        1672.813    BF
 
  I           ∞
 
[非球面データ]
第15面
κ   =    1.0000
A4   =   -1.26980E-06
A6   =   -9.34669E-11
 
[各種データ]
変倍比      2.69
 
            W         M          T
f         72.0       135.0       194.0
FNO      2.9         2.9         2.9
2ω       23.0        44.6        57.4
Y         21.6        21.6        21.6
TL      239         239         239
BF       54          54          54
 
         W         M         T          W         M         T
β                                       -0.09      -0.15      -0.22
d0     無限遠     無限遠     無限遠       761        761        761
d5      1.500     37.556     56.704       1.500     37.556     56.704
d13    56.704     20.648      1.500      56.704     20.648      1.500
d20    13.716     11.844     13.716      12.224      7.053      3.962
d25     2.000      3.872      2.000       3.492      8.663     11.754
 
[レンズ群データ]
群    ST        f
1       1      162.392
2       6      -53.478
3      14       80.590
4      21       60.086
5      26      -93.338
 
[防振データ]
        f       K      θ      Z
W     72.0    -1.55    0.3    -0.24
M    135.0    -1.55    0.3    -0.46
T    194.0    -1.55    0.3    -0.66
 
[条件式対応値]
(1) f5/f2= 1.75
(2) f3/f4= 1.34
(3) f4/(-f2)= 1.12
(4) (-f5)/f4= 1.55
(5) f1/(-f2)= 3.04
(6) f3/(-f2)= 1.51
(7) f1/(-f5)= 1.74
 
 図10A、図10B、および図10Cは、第3実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、図10Aは広角端状態を、図10Bは中間焦点距離状態を、図10Cは望遠端状態をそれぞれ示している。
 図11A、図11B、および図11Cは、第3実施例に係る変倍光学系の有限距離物体合焦時の諸収差図であり、図11Aは広角端状態を、図11Bは中間焦点距離状態を、図11Cは望遠端状態をそれぞれ示している。
 図12A、図12B、および図12Cは、第3実施例に係る変倍光学系の無限遠物体合焦時に像ブレ補正を行ったときのメリディオナル横収差図であり、図12Aは広角端状態を、図12Bは中間焦点距離状態を、図12Cは望遠端状態をそれぞれ示している。
 各収差図より、本実施例に係る変倍光学系は、変倍時の収差変動を良好に抑え、また、無限遠物体合焦状態から有限距離物体合焦状態まで諸収差が良好に補正され、高い光学性能を有していることがわかる。さらに、防振時にも優れた結像性能を有していることがわかる。
 上記各実施例によれば、変倍時の収差変動を良好に抑え、高い光学性能を有する変倍光学系を実現することができる。
 上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の実施形態に係る変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 なお、本実施形態の変倍光学系は、変倍比が2.0~5.0倍程度である。また、本実施形態の変倍光学系は、広角端状態における焦点距離が35mm換算で60~80mm程度である。さらに、本実施形態の変倍光学系は、Fナンバーがf/2.0~f/4.0程度である。
 本実施形態の変倍光学系の数値実施例として5群構成のものを示したが、本実施形態はこれに限られず、その他の群構成(例えば、6群、7群等)の変倍光学系を構成することもできる。具体的には、本実施形態の変倍光学系の最も物体側や最も像側にレンズまたはレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、上記各実施例の変倍光学系は、第4レンズ群全体を合焦レンズ群としているが、何れかのレンズ群の一部、何れかのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。例えば第1レンズ群の少なくとも一部または第2レンズ群の少なくとも一部または第3レンズ群の少なくとも一部または第4レンズ群の少なくとも一部または第5レンズ群の少なくとも一部またはそれらの組合せで合焦レンズ群とすることも可能である。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
 また、上記各実施例の変倍光学系は、第5レンズ群の一部を防振レンズ群としているが、何れかのレンズ群全体またはその一部を防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、または光軸を含む面内方向へ回転移動(揺動)させることにより、手ブレ等によって生じる像ブレを補正する構成とすることもできる。特に、本実施形態の変倍光学系では第2レンズ群の少なくとも一部または第3レンズ群の少なくとも一部または第4レンズ群の少なくとも一部または第5レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
 また、本実施形態の変倍光学系において、開口絞りは第2レンズ群と第3レンズ群との間に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
 また、本実施形態の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、本実施形態の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 次に、本実施形態の変倍光学系を備えたカメラを図13に基づいて説明する。
 図13は、本実施形態の変倍光学系を備えたカメラの構成を示す図である。
 図13に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式のカメラである。
 本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
 ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、変倍時の収差変動を良好に抑え、高い光学性能を有する変倍光学系である。したがって本カメラ1は、変倍時の収差変動を良好に抑え、高い光学性能を実現することができる。なお、上記第2実施例または第3実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 最後に、本実施形態の変倍光学系の製造方法の概略を図14に基づいて説明する。
 図14に示す本実施形態の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2、およびS3を含むものである。
 ステップS1:物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを準備し、以下の条件式(1)、(2)を満足するようにし、各レンズ群をレンズ鏡筒内に物体側から順に配置する。
(1)1.20 < f5/f2 < 3.60
(2)0.80 < f3/f4 < 2.20
 ただし、
 f5:前記第5レンズ群の焦点距離
 f2:前記1第2レンズ群の焦点距離
 f3:前記第3レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
 ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、変倍に際し、第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化するようにする。
 ステップS3:レンズ鏡筒に公知の移動機構を設ける等することで、合焦に際し、第4レンズ群の少なくとも一部が移動するようにする。
 斯かる本実施形態の変倍光学系の製造方法によれば、変倍時の収差変動を良好に抑え、高い光学性能を有する変倍光学系を製造することができる。

Claims (12)

  1.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、
     変倍に際し、前記第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化し、
     合焦に際し、前記第4レンズ群の少なくとも一部が移動し、
     以下の条件式を満足する変倍光学系。
      1.20 < f5/f2 < 3.60
      0.80 < f3/f4 < 2.20
     ただし、
     f5:前記第5レンズ群の焦点距離
     f2:前記1第2レンズ群の焦点距離
     f3:前記第3レンズ群の焦点距離
     f4:前記第4レンズ群の焦点距離
  2.  変倍に際し、前記第3レンズ群が像面に対して固定である請求項1に記載の変倍光学系。
  3.  変倍に際し、前記第5レンズ群が像面に対して固定である請求項1または2に記載の変倍光学系。
  4.  前記第2レンズ群と前記第4レンズ群との間に開口絞りを有する請求項1から3の何れか一項に記載の変倍光学系。
  5.  前記第5レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動可能な請求項1から4の何れか一項に記載の変倍光学系。
  6.  以下の条件式を満足する請求項1から5の何れか一項に記載の変倍光学系。
      0.64 < f4/(-f2) < 2.20
     ただし、
     f4:前記第4レンズ群の焦点距離
     f2:前記第2レンズ群の焦点距離
  7.  以下の条件式を満足する請求項1から6の何れか一項に記載の変倍光学系。
      0.94 < (-f5)/f4 < 3.00
     ただし、
     f5:前記第5レンズ群の焦点距離
     f4:前記第4レンズ群の焦点距離
  8.  以下の条件式を満足する請求項1から7の何れか一項に記載の変倍光学系。
      1.00 < f1/(-f2) < 4.50
     ただし、
     f1:前記第1レンズ群の焦点距離
     f2:前記第2レンズ群の焦点距離
  9.  以下の条件式を満足する請求項1から8の何れか一項に記載の変倍光学系。
      1.00 < f3/(-f2) < 4.20
     ただし、
     f3:前記第3レンズ群の焦点距離
     f2:前記第2レンズ群の焦点距離
  10.  以下の条件式を満足する請求項1から9の何れか一項に記載の変倍光学系。
      0.60 < f1/(-f5) < 2.70
     ただし、
     f1:前記第1レンズ群の焦点距離
     f5:前記第5レンズ群の焦点距離
  11.  請求項1から10の何れか一項に記載の変倍光学系を有する光学装置。
  12.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、
     以下の条件式を満足するように構成し、
     変倍に際し、前記第1レンズ群が像面に対して固定であり、隣り合う各レンズ群の間隔が変化するように構成し、
     合焦に際し、前記第4レンズ群の少なくとも一部が移動するように構成する変倍光学系の製造方法。
      1.20 < f5/f2 < 3.60
      0.80 < f3/f4 < 2.20
     ただし、
     f5:前記第5レンズ群の焦点距離
     f2:前記1第2レンズq群の焦点距離
     f3:前記第3レンズ群の焦点距離
     f4:前記第4レンズ群の焦点距離
PCT/JP2017/037354 2016-10-18 2017-10-16 変倍光学系、光学装置、変倍光学系の製造方法 WO2018074413A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018546323A JP6725000B2 (ja) 2016-10-18 2017-10-16 変倍光学系、光学装置、変倍光学系の製造方法
US16/338,736 US11079575B2 (en) 2016-10-18 2017-10-16 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
CN201780064546.5A CN109844603B (zh) 2016-10-18 2017-10-16 变倍光学系统以及光学装置
US17/359,927 US11899189B2 (en) 2016-10-18 2021-06-28 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US18/401,665 US20240231060A9 (en) 2016-10-18 2024-01-01 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-204448 2016-10-18
JP2016204448 2016-10-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/338,736 A-371-Of-International US11079575B2 (en) 2016-10-18 2017-10-16 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US17/359,927 Continuation US11899189B2 (en) 2016-10-18 2021-06-28 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Publications (1)

Publication Number Publication Date
WO2018074413A1 true WO2018074413A1 (ja) 2018-04-26

Family

ID=62018697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037354 WO2018074413A1 (ja) 2016-10-18 2017-10-16 変倍光学系、光学装置、変倍光学系の製造方法

Country Status (4)

Country Link
US (2) US11079575B2 (ja)
JP (1) JP6725000B2 (ja)
CN (1) CN109844603B (ja)
WO (1) WO2018074413A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071439A (ja) * 2018-11-02 2020-05-07 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP2020101736A (ja) * 2018-12-25 2020-07-02 株式会社シグマ 変倍結像光学系
JP2020101595A (ja) * 2018-12-20 2020-07-02 株式会社シグマ 変倍結像光学系

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114153105B (zh) * 2022-02-09 2022-04-22 嘉兴中润光学科技股份有限公司 一种防抖摄像装置和变焦镜头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224125A (ja) * 1992-02-13 1993-09-03 Minolta Camera Co Ltd ズームレンズ
JPH05273466A (ja) * 1992-03-26 1993-10-22 Canon Inc リヤーフォーカス式のズームレンズ
JPH08327903A (ja) * 1995-05-30 1996-12-13 Canon Inc 小型のズームレンズ
JPH08327904A (ja) * 1995-05-30 1996-12-13 Canon Inc 小型のズームレンズ
JPH09269452A (ja) * 1996-03-29 1997-10-14 Canon Inc リヤーフォーカス式のズームレンズ
JP2000121938A (ja) * 1998-10-20 2000-04-28 Canon Inc ズームレンズ
JP2006071993A (ja) * 2004-09-02 2006-03-16 Sony Corp ズームレンズ及び撮像装置
JP2007328306A (ja) * 2006-05-09 2007-12-20 Sony Corp ズームレンズ及び撮像装置
JP2011085653A (ja) * 2009-10-13 2011-04-28 Panasonic Corp ズームレンズ系、撮像装置及びカメラ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69223268T2 (de) 1991-03-29 1998-04-16 Canon Kk Zoomlinse mit Fokussierung durch die hinteren Linsengruppen
DE69630833T2 (de) 1995-05-30 2004-09-23 Canon K.K. Varioobjektiv mit Fokussierung durch das hintere Linsenglied
JP4655205B2 (ja) * 2005-05-26 2011-03-23 ソニー株式会社 ズームレンズ及び撮像装置
JP2007033879A (ja) * 2005-07-27 2007-02-08 Sony Corp 撮像レンズ装置及び撮像装置
JP4845492B2 (ja) 2005-11-29 2011-12-28 キヤノン株式会社 ズーム光学系
CN100516965C (zh) * 2006-05-09 2009-07-22 索尼株式会社 变焦镜头及成像设备
JP5115834B2 (ja) 2007-03-05 2013-01-09 株式会社ニコン ズームレンズ、光学機器、および結像方法
JP5000403B2 (ja) 2007-03-28 2012-08-15 富士フイルム株式会社 変倍光学系および撮像装置
US8320051B2 (en) * 2009-10-13 2012-11-27 Panasonic Corporation Zoom lens system, imaging device and camera
JP2011085654A (ja) 2009-10-13 2011-04-28 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP5415295B2 (ja) 2010-01-05 2014-02-12 富士フイルム株式会社 ズームレンズおよび撮像装置
JP5836654B2 (ja) 2011-06-14 2015-12-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6060616B2 (ja) * 2012-10-23 2017-01-18 株式会社ニコン 変倍光学系、光学装置、変倍光学系の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224125A (ja) * 1992-02-13 1993-09-03 Minolta Camera Co Ltd ズームレンズ
JPH05273466A (ja) * 1992-03-26 1993-10-22 Canon Inc リヤーフォーカス式のズームレンズ
JPH08327903A (ja) * 1995-05-30 1996-12-13 Canon Inc 小型のズームレンズ
JPH08327904A (ja) * 1995-05-30 1996-12-13 Canon Inc 小型のズームレンズ
JPH09269452A (ja) * 1996-03-29 1997-10-14 Canon Inc リヤーフォーカス式のズームレンズ
JP2000121938A (ja) * 1998-10-20 2000-04-28 Canon Inc ズームレンズ
JP2006071993A (ja) * 2004-09-02 2006-03-16 Sony Corp ズームレンズ及び撮像装置
JP2007328306A (ja) * 2006-05-09 2007-12-20 Sony Corp ズームレンズ及び撮像装置
JP2011085653A (ja) * 2009-10-13 2011-04-28 Panasonic Corp ズームレンズ系、撮像装置及びカメラ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071439A (ja) * 2018-11-02 2020-05-07 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP7218153B2 (ja) 2018-11-02 2023-02-06 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
US11841488B2 (en) 2018-11-02 2023-12-12 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2020101595A (ja) * 2018-12-20 2020-07-02 株式会社シグマ 変倍結像光学系
JP7148130B2 (ja) 2018-12-20 2022-10-05 株式会社シグマ 変倍結像光学系
JP2020101736A (ja) * 2018-12-25 2020-07-02 株式会社シグマ 変倍結像光学系
JP7217935B2 (ja) 2018-12-25 2023-02-06 株式会社シグマ 変倍結像光学系

Also Published As

Publication number Publication date
US20240134172A1 (en) 2024-04-25
US20210349294A1 (en) 2021-11-11
CN109844603A (zh) 2019-06-04
CN109844603B (zh) 2021-09-10
US20200257096A1 (en) 2020-08-13
US11079575B2 (en) 2021-08-03
JPWO2018074413A1 (ja) 2019-09-05
US11899189B2 (en) 2024-02-13
JP6725000B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
CN108490592B (zh) 变焦光学系统
CN107850763B (zh) 变倍光学系统以及光学装置
CN111492292B (zh) 变倍光学系统以及光学装置
JP6531766B2 (ja) 変倍光学系、及び、光学装置
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6725000B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2014112176A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5839062B2 (ja) ズームレンズ、光学装置
JP6354257B2 (ja) 変倍光学系及び撮像装置
JP6583420B2 (ja) ズームレンズおよび光学機器
JP6512226B2 (ja) 変倍光学系、及び光学装置
WO2014077120A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP7078135B2 (ja) 変倍光学系および光学機器
JPWO2017131223A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2020157801A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP6268792B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP6102269B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2017107065A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5906759B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5532402B2 (ja) ズームレンズおよび光学機器
JP2022103302A (ja) 変倍光学系および光学機器
JP6354256B2 (ja) 変倍光学系及び撮像装置
WO2019229817A1 (ja) 光学系、光学機器、および光学系の製造方法
JP6349801B2 (ja) ズームレンズ、光学装置
JP6511722B2 (ja) 変倍光学系及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862509

Country of ref document: EP

Kind code of ref document: A1