WO2018074168A1 - 車両用のバックアップ装置 - Google Patents

車両用のバックアップ装置 Download PDF

Info

Publication number
WO2018074168A1
WO2018074168A1 PCT/JP2017/035126 JP2017035126W WO2018074168A1 WO 2018074168 A1 WO2018074168 A1 WO 2018074168A1 JP 2017035126 W JP2017035126 W JP 2017035126W WO 2018074168 A1 WO2018074168 A1 WO 2018074168A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply unit
voltage
unit
charging
Prior art date
Application number
PCT/JP2017/035126
Other languages
English (en)
French (fr)
Inventor
皓 滕
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US16/341,487 priority Critical patent/US10910875B2/en
Priority to CN201780061507.XA priority patent/CN109804524B/zh
Publication of WO2018074168A1 publication Critical patent/WO2018074168A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a backup device for a vehicle.
  • the capacitor is used as an auxiliary power source during vehicle operation by charging the capacitor (power backup unit) after starting the vehicle operation to increase the charging voltage. At the end, the capacitor is discharged to lower the charging voltage and suppress the deterioration of the capacitor.
  • the present invention has been made based on the above circumstances, and can quickly increase the charging voltage of the second power supply unit to a target level after the vehicle operation starts, and the second power supply unit after the vehicle operation ends.
  • An object of the present invention is to realize a backup device for a vehicle that can suppress deterioration by reducing the charging voltage to an appropriate level.
  • the present invention Charging and discharging the second power supply unit in a vehicle power supply system comprising a first power supply unit and a second power supply unit serving as a power supply source when power supply from at least the first power supply unit is abnormal
  • a backup device for a vehicle to be controlled A charging circuit that performs a charging operation for charging the second power supply unit and a charging stop operation for stopping charging of the second power supply unit;
  • a first target voltage value that is a target voltage value of the second power supply unit when the start switch for starting the vehicle is in an OFF state, and a target voltage value of the second power supply unit when the start switch is in an ON state.
  • a determination unit configured to determine a value lower than the second target voltage value based on a second target voltage value, a value indicating the charging capability of the charging circuit, and a predetermined time limit; When the starting switch is turned on, the charging circuit is charged so that the charging voltage of the second power supply unit reaches the second target voltage value when the starting switch is turned on, and the starting switch is turned off.
  • a control unit that causes the discharge circuit to perform a discharge operation so that the charging voltage of the second power supply unit is the first target voltage value determined by the determination unit;
  • the backup device uses the first target voltage value that is the target voltage value of the charging voltage of the second power supply unit as the target voltage value in the on state (second Set lower than the target voltage value.
  • the target voltage value of the second power supply unit when the start switch is in the on state is not simply lowered the target voltage value (first target voltage value) of the charging voltage of the second power supply unit when the vehicle operation is stopped. It can be set based on a value (second target voltage value), a value indicating the charging capability of the charging circuit, and a predetermined time limit.
  • the target voltage value (first target voltage value) of the second power supply unit when the vehicle operation is stopped is more appropriately set in accordance with the charging state assumed when the vehicle is subsequently turned on and the required time limit. can do.
  • the charging voltage of the second power supply unit is quickly reached to the target level after the vehicle operation starts. After the vehicle operation is finished, the charging voltage of the second power supply unit can be lowered to an appropriate level to suppress deterioration.
  • FIG. 1 is a block diagram schematically illustrating a vehicle power supply system including a backup device according to a first embodiment.
  • 1 is a circuit diagram schematically showing a backup device of Example 1.
  • FIG. 3 is a flowchart illustrating the flow of charge control performed by the backup device according to the first embodiment.
  • 3 is a flowchart illustrating the flow of discharge control performed by the backup device according to the first embodiment.
  • 6 is a graph showing changes in charging voltage and changes in output current after the start of discharging of the second power supply unit in the backup device of Example 1; It is a graph which shows the relationship between the temperature correction coefficient of a capacity
  • the charging circuit steps down or boosts the voltage applied to the first conductive path electrically connected to the first power supply unit, and applies the voltage to the second conductive path electrically connected to the second power supply unit.
  • the backup device includes a voltage detection unit that detects the voltage of the first conductive path, a current detection unit that detects the current of the first conductive path, a temperature detection unit that detects the temperature of the second power supply unit, and a voltage detection An efficiency calculation unit that calculates the efficiency of the voltage conversion unit based on the voltage detected by the unit, and a capacity calculation unit that calculates the capacity of the second power supply unit based on the temperature detected by the temperature detection unit It may be.
  • the determination unit is configured to calculate the voltage of the first conductive path detected by the voltage detection unit, the current of the first conductive path detected by the current detection unit, the efficiency of the voltage conversion unit calculated by the efficiency calculation unit, and the capacity calculation.
  • the first target voltage value may be determined based on the capacity of the second power supply unit calculated by the unit, the second target voltage value, and the time limit.
  • the backup device configured in this manner provides the target voltage value (first target voltage value) of the second power supply unit when the start switch for starting the vehicle is in the off state, and the first voltage when the start switch is in the on state.
  • the target voltage value (second target voltage value) of the two power supply units and a predetermined time limit the voltage and current of the charging path (first conductive path) from the first power supply unit to the second power supply unit; This can be determined by reflecting the efficiency of the voltage conversion unit and the capacity of the second power supply unit. In other words, after more specifically and finely reflecting the charging state assumed after the start switch is turned on (after the vehicle is started), the target voltage value (first target) of the second power supply unit when the vehicle operation is stopped. Voltage value) can be set more appropriately.
  • the backup device has a predetermined continuous output time that is predetermined as a required value for the second power supply unit, a lower limit voltage that is predetermined as a lower limit value that can be discharged in the second power supply unit, and a value that indicates the discharge capability of the discharge circuit.
  • a second determination unit that determines the second target voltage value based on the above may be included.
  • the backup device configured as described above has not only the target voltage value (first target voltage value) of the second power supply unit when the start switch for starting the vehicle is in the OFF state, but also when the start switch is in the ON state.
  • This target voltage value (second target voltage value) can also be set more appropriately.
  • a predetermined continuous output time predetermined as a required value for the second power supply unit, a lower limit voltage predetermined as a lower limit value that can be discharged in the second power supply unit, and a discharge capacity of the discharge circuit are shown. Based on the value, it is possible to make an appropriate setting that specifically reflects the time and discharge environment required after the on state is entered.
  • FIG. 1 is a block diagram of a vehicle power supply system 100 (hereinafter also simply referred to as the power supply system 100) including the vehicle backup device 1 (hereinafter also simply referred to as the backup device 1) according to the first embodiment.
  • the power supply system 100 serves as a power supply source when power supply from at least the first power supply unit 91 is interrupted, and a first power supply unit 91 serving as a main power supply for supplying power to a load 94 (power supply target).
  • the system is configured to supply power to the load 94 using the unit 91 or the second power supply unit 92 as a power supply source.
  • the power supply system 100 shown in FIG. 1 applies a voltage based on the output voltage of the first power supply unit 91 to the wiring unit 81 configured as a wiring unit when the power supply from the first power supply unit 91 is in a normal state.
  • the power supply unit 91 is configured to supply power to the load 94 (power supply target) via the wiring unit 81. “When the power supply from the first power supply unit 91 is in a normal state” refers to a case where the output voltage of the first power supply unit 91 exceeds a predetermined value. For example, the second power supply unit 92 is not discharged. In this state, the voltage (potential) of the first conductive path 21 exceeds a predetermined threshold voltage.
  • the 1st power supply part 91 is a power supply for vehicles which can supply electric power to load 94 (electric power supply object), for example, is constituted as well-known in-vehicle batteries, such as a lead battery.
  • the first power supply unit 91 has a high potential side terminal electrically connected to the wiring unit 81, and applies a predetermined output voltage (hereinafter also referred to as + B voltage) to the wiring unit 81.
  • the terminal on the low potential side of the first power supply unit 91 is connected to the ground, for example.
  • the wiring unit 81 is a path for supplying power from the first power supply unit 91 to the load 94 (power supply target). When the power supply from the first power supply unit 91 is abnormal, the wiring unit 81 is transferred from the second power supply unit 92 to the load 94. It can function as a path for supplying power.
  • the wiring unit 81 is electrically connected to the first conductive path 21 of the backup device 1, and the output voltage of the first power supply unit 91 is applied to the first conductive path 21.
  • the second power supply unit 92 is configured by known power storage means such as an electric double layer capacitor (EDLC).
  • EDLC electric double layer capacitor
  • a terminal on the high potential side of the second power supply unit 92 is electrically connected to the wiring unit 82, and the wiring unit 82 is electrically connected to the second conductive path 22 of the backup device 1.
  • the terminal on the low potential side of the second power supply unit 92 is connected to, for example, the ground.
  • the second power supply unit 92 is electrically connected to the charge / discharge circuit unit 3 through the wiring unit 82 and the second conductive path 22, and is charged or discharged by the charge / discharge circuit unit 3.
  • the output voltage when the second power supply unit 92 is fully charged may be larger or smaller than the output voltage when the first power supply unit 91 is fully charged.
  • the load 94 corresponds to an example of a power supply target, and is configured as a known vehicle electrical component.
  • the load 94 is preferably an electrical component for which power supply is desired even when the first power supply unit 91 fails, such as an ECU or an actuator in a shift-by-wire system.
  • the load 94 operates based on the power supplied from the first power supply unit 91 in the normal state described above, and operates based on the power supplied from the second power supply unit 92 in the abnormal state.
  • the start switch 70 is configured as a known ignition switch.
  • the start switch 70 switches to an on state when a predetermined start operation (ignition switch on operation) for starting the engine is performed on an operation unit (not shown) provided in the vehicle, and stops the engine.
  • the switch is switched to an off state when a predetermined stop operation (ignition switch off operation) is performed.
  • an ignition on signal indicating that the start switch 70 is in the on state from the external device 72 provided outside the backup device 1 to the control unit 5 of the backup device 1.
  • IG ON signal an ignition on signal indicating that the start switch 70 is in an off state
  • an ignition off signal hereinafter also referred to as an IG off signal
  • the backup device 1 mainly includes a first conductive path 21, a second conductive path 22, a charge / discharge circuit unit 3, current detection units 31, 32, voltage detection units 41, 42, a temperature detection unit 50, a control unit 5, and the like. .
  • the first conductive path 21 is a wiring that conducts to a terminal on the high potential side of the first power supply unit 91, and a predetermined DC voltage corresponding to the output voltage of the first power supply unit 91 is applied.
  • the second conductive path 22 is a wiring that conducts to the high potential side terminal of the second power supply unit 92, and has a configuration in which a predetermined DC voltage corresponding to the output voltage of the second power supply unit 92 is applied.
  • the charging / discharging circuit unit 3 includes a function as a charging circuit 3A that charges the second power source unit 92 based on the power supplied from the first power source unit 91 via the first conductive path 21, and the second power source unit 92. What is necessary is just to have the function as the discharge circuit 3B which discharges and supplies the discharge current to the wiring part 81.
  • FIG. The charge / discharge circuit unit 3 has, for example, a configuration as shown in FIG.
  • the charge / discharge circuit unit 3 shown in FIG. 2 is configured as a bidirectional type step-up / step-down DCDC converter, and boosts or steps down a DC voltage applied to one of the first conductive path 21 or the second conductive path 22. A function of outputting to the other conductive path.
  • the voltage converter 3C has a function as the charging circuit 3A shown in FIG. 1 and a function as the discharging circuit 3B.
  • the voltage conversion unit 3C is provided between the first conductive path 21 and the second conductive path 22 so as to boost or step down the voltage input by the on / off operation of the switching elements T1, T2, T3, T4 and output the voltage.
  • the voltage conversion operation is performed.
  • the voltage conversion unit 3 ⁇ / b> C operates in a first mode in which a voltage applied to the first conductive path 21 is boosted or lowered to apply a desired voltage to the second conductive path 22, and applied to the second conductive path 22.
  • the operation of the second mode in which a desired voltage is applied to the first conductive path 21 by increasing or decreasing the voltage can be performed.
  • the first mode is a charge mode for charging the second power supply unit 92
  • the second mode is a discharge mode for discharging the second power supply unit 92.
  • the voltage conversion unit 3C includes switching elements T1, T2, T3, T4 arranged in an H bridge structure, and a coil L1. Further, the voltage conversion unit 3C includes a capacitor C1 interposed between the first conductive path 21 and the ground, and a capacitor C2 interposed between the second conductive path 22 and the ground.
  • the switching elements T1, T2, T3, and T4 are all configured as N-channel MOSFETs.
  • the first conductive path 21 is connected to the drain of the switching element T1, and the drain of the switching element T2 and one end of the coil 8 are connected to the source of the switching element T1.
  • the second conductive path 22 is connected to the drain of the switching element T3, and the drain of the switching element T4 and the other end of the coil 8 are connected to the source of the switching element T3.
  • the sources of the switching elements T2 and T4 are connected to the ground.
  • Each signal from a drive circuit 5B described later is input to each gate of the switching elements T1, T2, T3, and T4.
  • FIG. 2 illustration of individual signal lines connected to the gates of the switching elements T1, T2, T3, and T4 is omitted.
  • the current detectors 31 and 32 are both configured as known current detection circuits.
  • the current detection unit 31 is a current detection circuit that detects a current flowing through the first conductive path 21, for example, a shunt resistor provided in the first conductive path 21, and an analog voltage obtained by amplifying the voltage across the shunt resistor. And a differential amplifier that outputs a value to the control unit 5.
  • the current detection unit 32 is a current detection circuit that detects a current flowing through the second conductive path 22, for example, a shunt resistor provided in the second conductive path 22, and an analog voltage obtained by amplifying the voltage across the shunt resistor. And a differential amplifier that outputs a value to the control unit 5.
  • the control unit 5 grasps the current value flowing through the first conductive path 21 based on the value input from the current detection unit 31 (the detection value of the current detection unit 31), and the value input from the current detection unit 32 (current The current value flowing through the second conductive path 22 is grasped based on the detection value of the detection unit 32.
  • the voltage detectors 41 and 42 are both configured as known voltage detection circuits.
  • the voltage detector 41 is a value indicating the voltage (potential) of the first conductive path 21 (for example, a voltage value of the first conductive path 21 or a value obtained by dividing the voltage value of the first conductive path 21 by a voltage dividing circuit). Is input to the control unit 5 as a detection value.
  • the voltage detector 42 is a value indicating the voltage (potential) of the second conductive path 22 (for example, a voltage value of the second conductive path 22 or a value obtained by dividing the voltage value of the second conductive path 22 by a voltage dividing circuit). Is input to the control unit 5 as a detection value.
  • the control unit 5 grasps the voltage value (potential) of the first conductive path 21 based on the value input from the voltage detection unit 41 (the detection value of the voltage detection unit 41), and the value input from the voltage detection unit 42 Based on (the detection value of the voltage detector 42), the voltage value (potential) of the second conductive path 22 is grasped.
  • the temperature detection unit 50 is configured by a known temperature sensor, and is disposed, for example, in contact with the surface of the second power supply unit 92 or in proximity to the second power supply unit 92.
  • the temperature detection unit 50 generates an analog voltage value indicating the temperature of the arrangement position (near the second power supply unit 92) and inputs the analog voltage value to the control unit 5.
  • the control unit 5 includes a control circuit 5A configured as, for example, a microcomputer and a drive circuit 5B that generates a drive signal to be supplied to the voltage conversion unit 3C, and controls a charging operation and a discharging operation by the charge / discharge circuit unit 3. .
  • the control circuit 5A includes an arithmetic device such as a CPU, a memory such as a ROM or a RAM, an AD converter, and the like.
  • the control circuit 5A performs feedback control by a known method based on the current value and voltage value input from the current detection units 31, 32 and the voltage detection units 41, 42 and the target voltage value set by the control circuit 5A.
  • the duty of the PWM signal given to the voltage conversion unit 6 is set.
  • the drive circuit 5B is a circuit that outputs a control signal for turning on and off the switching elements T1, T2, T3, and T4.
  • the drive circuit 5B selects a pair of elements to be PWM signal output from the switching elements T1, T2, T3, and T4, and outputs the PWM signal in a complementary manner to the selected pair of elements.
  • the drive circuit 5B outputs a signal for turning on or off the gate of the switching element that is not the output target of the PWM signal.
  • the charging voltage (output voltage) when the second power supply unit 92 is fully charged is lower than the charging voltage (output voltage) when the first power supply unit 91 is fully charged shown in FIG.
  • the charging voltage (output voltage) of the first power supply unit 91 is maintained near a predetermined value (for example, about 12 V) higher than the charging voltage (output voltage) of the second power supply unit 92. It has become.
  • the control unit 5 shown in FIG. 2 uses the first conductive path 21 as an input-side conductive path and the second conductive path 22 as an output-side conductive path.
  • the voltage converter 3C is caused to perform a step-down operation so that an output voltage having a desired target voltage value is applied to the path 22.
  • the controller 5 complementarily outputs a PWM signal in a form in which a dead time is set for each gate of the switching elements T1 and T2.
  • the controller 5 outputs an off signal to the gate of the switching element T2 while outputting the on signal to the gate of the switching element T1, and performs switching while outputting an on signal to the gate of the switching element T2.
  • An off signal is output to the gate of the element T1.
  • the control unit 5 continuously outputs an on signal to the gate of the switching element T3, and continuously outputs an off signal to the gate of the switching element T4. That is, the switching element T3 is maintained in the on state, and the switching element T4 is maintained in the off state.
  • the output voltage applied to the second conductive path 22 by the voltage converter 3C in the first mode is determined according to the duty of the PWM signal that the controller 5 gives to the gate of the switching element T1.
  • the voltage conversion unit 3C functions as the charging circuit 3A shown in FIG. 1 and functions to perform a charging operation for charging the second power supply unit 92 when the control unit 5 performs control in the first mode.
  • the control of the first mode is not performed (for example, when the operation of the voltage conversion unit 3C is stopped)
  • the charge stop operation for stopping the charging of the second power supply unit 92 is performed.
  • the control unit 5 When performing the operation in the second mode (discharge mode), the control unit 5 uses the second conductive path 22 as the input side conductive path and the first conductive path 21 as the output side conductive path, and the first conductive path 21 has a desired value.
  • the voltage converter 3C is caused to perform a boost operation so as to apply the output voltage of the target voltage value.
  • the controller 5 complementarily outputs a PWM signal in a form in which a dead time is set for each gate of the switching elements T1 and T2.
  • the control unit 5 outputs an OFF signal to the gate of the switching element T1 while the ON signal is output to the gate of the switching element T2, and performs switching while outputting an ON signal to the gate of the switching element T1.
  • An off signal is output to the gate of the element T2.
  • the control unit 5 continuously outputs an on signal to the gate of the switching element T3, and continuously outputs an off signal to the gate of the switching element T4. That is, the switching element T3 is maintained in the on state, and the switching element T4 is maintained in the off state.
  • the output voltage applied to the first conductive path 21 by the voltage conversion unit 3C in the second mode is determined according to the duty of the PWM signal that the control unit 5 applies to the gate of the switching element T2.
  • the voltage conversion unit 3C functions as the discharge circuit 3B illustrated in FIG. 1 and functions to perform a discharge operation for discharging the second power supply unit 92 when the control unit 5 performs the control of the second mode.
  • the second mode control is not performed (for example, when the operation of the voltage conversion unit 3C is stopped), it functions to perform a discharge stop operation for stopping the discharge of the second power supply unit 92.
  • the power supply system 100 shown in FIG. 1 operates with the first power supply unit 91 as a main power supply, and can operate the second power supply unit 92 as a power supply source when the power supply from the first power supply unit 91 is abnormal. It is configured as. Charging and discharging of the second power supply unit 92 are controlled by the backup device 1 as follows.
  • the control unit 5 can monitor the state of the start switch 70.
  • the start switch 70 when the user performs a start operation (on operation) for switching the start switch 70 (ignition switch) to the on state in the vehicle in which the vehicle power supply system 100 is mounted, the start switch 70 is turned on from the off state. Switch to state.
  • an IG off signal is continuously input from the external device 72 to the control unit 5.
  • the external device 72 inputs the control unit 5.
  • the signal to be switched is switched from the IG off signal to the IG on signal. Note that while the start switch 70 is in the ON state, the IG ON signal is continuously input to the control unit 5.
  • the control unit 5 When the control unit 5 detects that the signal input from the external device 72 to the control unit 5 is switched from the IG off signal to the IG on signal, the control unit 5 performs the charging control shown in FIG.
  • the control unit 5 first executes the process of step S1, and causes the voltage converting unit 3C to perform the above-described charging operation. Specifically, the control unit 5 starts the operation of the first mode (charging mode) described above in step S1, sets the first conductive path 21 as the input side conductive path and sets the second conductive path 22 as the output side conductive path.
  • the voltage conversion unit 3C performs a step-down operation so that an output voltage having a desired target voltage value is applied to the second conductive path 22.
  • the output voltage value (target voltage value) applied to the second conductive path 22 by the voltage conversion unit 3C may be, for example, about the output voltage value when the second power supply unit 92 is fully charged, or a value slightly larger than this. It may be.
  • the control unit 5 executes the process of step S1 to start the charging operation of the voltage conversion unit 3C, and then executes the process of step S2 to determine the second target voltage value Vt2.
  • the second target voltage value Vt2 is a target charging voltage value of the second power supply unit 92 when the start switch 70 is in the on state.
  • the control unit 5 corresponds to an example of a second determination unit that determines the second target voltage value Vt2, and a predetermined continuous output time T predetermined as a required value for the second power supply unit 92 and the second power supply
  • the second target voltage value Vt2 is set based on a lower limit voltage X that is predetermined as a lower limit value that can be discharged in the unit 92, and values that indicate the discharge capability of the discharge circuit 3B (output voltage value Vout, output current value Iout, etc.). decide.
  • the output voltage value Vout and the output current value Iout are a voltage value and a current value output from the voltage conversion unit 3C when the second power supply unit 92 performs a discharge operation in accordance with the occurrence of an abnormality.
  • the continuous output time T should continue to output the output voltage value Vout and the output current value Iout from the voltage conversion unit 3C when causing the voltage conversion unit 3C to perform the discharging operation of the second power supply unit 92 due to the occurrence of an abnormality. It is the minimum time.
  • the control unit 5 causes the voltage conversion unit 3C to perform a discharge operation in which the output voltage value is Vout and the output current value is Iout
  • the continuous output time from the discharge operation start time t (1).
  • Starting time t (1) calculated from the lower limit voltage X so that the charging voltage (output voltage) of the second power supply unit 92 becomes the predetermined lower limit voltage X at the time (t (n)) when T has elapsed.
  • the charging voltage (output voltage) of the second power supply unit 92 at is determined as the second target voltage value Vt2.
  • the control unit 5 sets the output voltage value for the first conductive path 21.
  • the second power source is at the time t (n) when the continuous output time T has elapsed from the start time t (1). This is because the charging voltage (output voltage) of the unit 92 becomes the lower limit voltage X.
  • the second target voltage value Vt2 is determined so as to satisfy such a relationship.
  • the second target voltage value Vt2 is a charging voltage (required in order to continue the discharge operation with the output voltage value Vout and the output current value Iout as the output voltage value Vout and the output current value Iout, respectively, for at least time T.
  • Required minimum charging voltage can be determined as follows.
  • V (t (n)) is the charging voltage value of the second power supply unit 92 at time t (n) when the discharging operation is performed with the output voltage value Vout and the output current value Iout.
  • the time t (n) is the continuous output time T
  • V (t (n)) is the lower limit voltage X.
  • Equation 1 defines the second target voltage value Vt2 by taking into account the lowering voltage X and the maximum voltage drop Vd due to the internal resistance of the second power supply unit 92 in addition to the decrease in charging voltage due to such energy loss.
  • ⁇ V (t (n)) in Equation 1 is calculated as follows.
  • the efficiency (converter efficiency) Y (t (n)) of the voltage conversion unit 3C at t (n) can be expressed as the following Expression 3.
  • A, B, and C are coefficients (fixed values) determined based on the specific configuration of the voltage conversion unit 3C.
  • This efficiency (converter efficiency) Y (t (n)) is such that the charging voltage value of the second power supply unit 92 is V (t (n)) when the voltage conversion unit 3C operates in the second mode (discharge mode). Is the efficiency of the voltage conversion unit 3C at the time, and is correlated by the equation of Equation 3 so that the efficiency is determined according to V (t (n)).
  • the current value I (t (n)) discharged from the second power supply unit 92 at time t (n) can be expressed as the following equation 4.
  • Equation 5 C is the capacity of the second power supply unit 92.
  • V (t (n)) can be calculated by the formulas 2 to 5 described above. Note that V (t (1)) in the case where the above-described decrease Va is calculated backward from the lower limit voltage X is expressed by the following equation (6).
  • V (t (1)) is the charging voltage at the discharge start time t (1) when the voltage drop due to the internal resistance of the second power supply unit 92 is not assumed.
  • the second target voltage value Vt2 in the case where the maximum voltage drop Vd due to the internal resistance is taken into consideration is as shown in Equation 1.
  • Equation 1 Vd is the maximum voltage drop and can be expressed by Equation 7 below.
  • Equation 7 R is the internal resistance of the second power supply unit 92 and can be expressed by Equation 8 below.
  • Kr is a temperature correction coefficient of resistance value
  • Rb is a reference value of internal resistance.
  • the temperature correction coefficient of the resistance value has a relationship as shown in FIG. 6, and data as shown in FIG. 6 (that is, data such as a table in which the temperature and the temperature correction coefficient of the resistance value are associated with each other, an arithmetic expression, etc.) And so on.
  • the temperature correction coefficient of the resistance value corresponding to the temperature detected by the temperature detection unit 50 at the time of step S2 in FIG. 3 is acquired from the data stored in the memory.
  • the internal resistance reference value Rb can be measured and calculated by the method shown in FIG. Specifically, when the charging control of FIG. 3 is performed and the charging operation is stopped in step S4, the amount of change ⁇ V2 in the charging voltage of the second power supply unit 92 immediately before and after the stop, and the second conductive path immediately before the stop. Based on 22 currents (charging current) Ib, it can be calculated as shown in Equation 9.
  • the capacity C of the second power supply unit 92 in Expression 5 can be obtained by the following Expression 10 based on the reference value Cb of capacity and the temperature correction coefficient Kc of capacity.
  • the control unit 5 corresponds to an example of a capacity calculation unit.
  • the reference value Cb of the capacity can be measured and calculated by a method as shown in FIG. Specifically, after the charging operation is started in FIG. 3, if the change in the charging voltage is ⁇ V1 when the charging operation is performed for a certain period ⁇ t1 with the constant current Ia, the capacity reference is expressed by the following equation (11).
  • the value Cb can be represented. It should be noted that the calculation of the capacity reference value Cb and the capacity C can be performed every time the process of step S2 in FIG. 3 is performed, and the latest capacity C can be used every time it is calculated.
  • Kc is a capacity temperature correction coefficient
  • the capacity temperature correction coefficient has a relationship as shown in FIG.
  • Data as shown in FIG. 6 (namely, a table in which temperature and capacity temperature correction coefficients are associated, data such as arithmetic expressions) is stored in a memory (not shown) or the like.
  • the temperature correction coefficient of the capacity corresponding to the temperature detected by the temperature detection unit 50 at the time of step S2 in FIG. 3 is acquired from the data stored in the memory.
  • the control unit 5 calculates the second target voltage value Vt2 by the calculation method as described above in step S2 of the control in FIG. After the second target voltage value Vt2 is determined, the control unit 5 monitors the charging voltage (output voltage) of the second power supply unit 92 while continuing the control for causing the voltage conversion unit 3C to perform the charging operation. Specifically, after step S2, the control unit 5 repeatedly determines whether or not the voltage of the second conductive path 22 has reached the second target voltage value Vt2 in step S3, and the voltage of the second conductive path 22 is determined. Specifically, when the potential at the detection position of the voltage detection unit 42 becomes the second target voltage value Vt2 (Yes in Step S3), the charging operation of the voltage conversion unit 3C is stopped in Step S4. .
  • the control unit 5 determines the charging voltage of the second power supply unit 92 when the start switch 70 is turned on (when the signal input from the outside is switched from the IG off signal to the IG on signal).
  • the charging / discharging circuit unit 3 (charging circuit) is charged so as to reach the second target voltage value Vt2, and the start switch 70 is in the ON state (that is, while the vehicle is in a travelable state). Maintains the charging voltage of the second power supply unit 92 in the vicinity of the second target voltage value Vt2.
  • the control unit 5 When the control unit 5 detects that the signal input from the external device 72 to the control unit 5 is switched from the IG on signal to the IG off signal, the control unit 5 performs the discharge control shown in FIG.
  • the control unit 5 first executes the process of step S21 to cause the voltage conversion unit 3C to perform the above-described discharge operation. Specifically, the control unit 5 starts the operation in the second mode (discharge mode) described above in step S21, sets the second conductive path 22 as the input side conductive path, and sets the first conductive path 21 as the output side conductive path.
  • the voltage converter 3 ⁇ / b> C performs a boosting operation so that an output voltage having a desired target voltage value is applied to the first conductive path 21.
  • the output voltage value (target voltage value) applied to the first conductive path 21 by the voltage conversion unit 3C may be, for example, about the output voltage value when the first power supply unit 91 is fully charged, or a value slightly larger than this. It may be.
  • the control unit 5 executes the process of step S21 to start the discharging operation of the voltage conversion unit 3C, and then executes the process of step S22 to determine the first target voltage value Vt1.
  • the first target voltage value Vt1 is a charge target voltage value of the second power supply unit 92 when the start switch 70 that starts the vehicle is in an OFF state.
  • the control unit 5 corresponds to an example of a determination unit, and the first target voltage value Vt1 is set to a second target voltage value Vt2 that is a target voltage value of the second power supply unit 92 when the switch is on. Based on a value indicating the charging capability of the charging circuit 3A and a predetermined time limit N, a value lower than the second target voltage value Vt2 is determined.
  • the control unit 5 corresponding to the determination unit includes the voltage of the first conductive path 21 detected by the voltage detection unit 41, the current of the first conductive path 21 detected by the current detection unit 31, and the efficiency.
  • the efficiency of the voltage conversion unit 3C calculated by the calculation unit the efficiency C of the second power supply unit 92 calculated by the capacity calculation unit, the second target voltage value Vt2, and the time limit N, the following number
  • the first target voltage value Vt1 is determined by the equation (12).
  • Is is an input current (charging current) that flows from the first power supply unit 91 to the voltage conversion unit 3C during the charging operation
  • Vs is the first conductive by the first power supply unit 91 during the charging operation. This is an input voltage (charge voltage) applied to the path 21.
  • the time limit N is a time limit until the second target voltage value Vt2 is reached after the start of charging (time to be suppressed within this time), and the second power source is used when the charging operation is performed with the input current Is and the input voltage Vs. This is the time required to raise the charging voltage of the unit 92 from the first target voltage value Vt1 to the second target voltage value Vt2.
  • Y (Vs) is the efficiency (converter efficiency) of the voltage converter 3C when the input voltage is the voltage Vs when the voltage converter 3C operates in the first mode (charging mode). May be obtained as the efficiency at the voltage Vs.
  • the converter efficiency (converter efficiency determined according to the input voltage) when the voltage conversion unit 3C performs the first mode operation (charging operation) is determined by table data or an arithmetic expression that determines the converter efficiency for each input voltage.
  • the converter efficiency Y (Vs) may be an efficiency determined as a value corresponding to the input voltage Vs in the table data or the arithmetic expression.
  • the control unit 5 corresponds to an example of an efficiency calculation unit. Note that Is, Vs, and Y (Vs) can be obtained every time the control of FIG. 3 is executed. In this case, the most recently detected Is, Vs, and Y (Vs) may be used in step S22. .
  • the control unit 5 calculates the first target voltage value Vt1 by the above calculation method in step S22 of the control of FIG. After the first target voltage value Vt1 is determined, the control unit 5 monitors the charging voltage (output voltage) of the second power supply unit 92 while continuing the control for causing the voltage conversion unit 3C to perform the discharging operation. Specifically, after step S22, the control unit 5 repeatedly determines whether or not the voltage of the second conductive path 22 has become equal to or lower than the first target voltage value Vt1 in step S23. When the voltage (specifically, the potential at the detection position of the voltage detection unit 42) is equal to or lower than the first target voltage value Vt1 (Yes in Step S23), the discharge operation of the voltage conversion unit 3C is performed in Step S24. Stop.
  • the control unit 5 determines the charging voltage of the second power supply unit 92 when the start switch is turned off (when the signal input from the outside is switched from the IG on signal to the IG off signal).
  • the charge / discharge circuit unit 3 discharge circuit
  • the charge / discharge circuit unit 3 is caused to perform a discharge operation so that the first target voltage value Vt1 set in step 1 is obtained.
  • the discharging operation of the charging / discharging circuit unit 3 is stopped.
  • the charging voltage of the second power supply unit 92 is set to the first target voltage while the start switch 70 is in the OFF state. It is maintained below the voltage value Vt1 and in the vicinity of the first target voltage value Vt1.
  • the start switch 70 When the start switch 70 is in an ON state, an abnormality in power supply from the first power supply unit 91 (for example, occurrence of a ground fault or disconnection in the vicinity of the first power supply unit 91) occurs, and the wiring unit 83 is connected from the first power supply unit 91.
  • the voltage (+ B voltage) applied to the first conductive path 21 changes from a value greater than the threshold value Vth to a value less than or equal to the threshold value Vth.
  • the control unit 5 continuously monitors the voltage of the first conductive path 21 when the start switch 70 is in the ON state.
  • the control unit 5 When the voltage of the first conductive path 21 becomes equal to or lower than the threshold value Vth, the control unit 5 Is determined to be in an abnormal state, and the second mode of operation is performed. Specifically, the voltage converter 3C is caused to perform the above-described discharge operation. Thereby, the load 94 can be backed up.
  • the switch which is not illustrated in the wiring part 83 you may interrupt
  • the backup device 1 uses the first target voltage value Vt1 that is the target voltage value of the charging voltage of the second power supply unit 92 as the target voltage value in the on state. It is set lower than (second target voltage value Vt2).
  • Vt1 the target voltage value of the charging voltage of the second power supply unit 92
  • the target voltage value (first target voltage value Vt1) of the charging voltage of the second power supply unit 92 when the vehicle operation is stopped is not simply lowered, but the second power supply unit 92 when the switch is in the on state is used.
  • the target voltage value (second target voltage value Vt2) a value indicating the charging capability of the charging circuit 3A
  • a predetermined time limit N the target voltage value (first target voltage value Vt1) of the second power supply unit 92 when the vehicle operation is stopped is set to match the charging state assumed when the vehicle is subsequently turned on and the required time limit N. It can be set appropriately.
  • the input current Is, the input voltage Vs, and the converter efficiency Y (Vs) are values indicating the charging ability of the charging circuit 3A.
  • the charging voltage of the second power supply unit 92 is targeted after the vehicle operation starts. It can be quickly raised to the level, and after the vehicle operation is finished, the charging voltage of the second power supply unit 92 can be lowered to an appropriate level to suppress deterioration.
  • the charging circuit 3 ⁇ / b> A steps down or boosts the voltage applied to the first conductive path 21 electrically connected to the first power supply unit 91, and the second conductive path 22 electrically connected to the second power supply unit 92.
  • the voltage conversion part 3C applied to is provided.
  • the backup device 1 includes a voltage detection unit 41 that detects the voltage of the first conductive path 21, a current detection unit 31 that detects the current of the first conductive path 21, and a temperature that detects the temperature of the second power supply unit 92.
  • the detection unit 50 an efficiency calculation unit that calculates the efficiency of the voltage conversion unit 3C based on the voltage detected by the voltage detection unit 41, and the capacity of the second power supply unit 92 based on the temperature detected by the temperature detection unit 50
  • a capacity calculation unit for calculating C uses the above-described equation (12), the voltage Vs of the first conductive path 21 detected by the voltage detection unit 41 (for example, the voltage Vs of the first conductive path 21 at the start of step S22), and the current The current Is of the first conductive path 21 detected by the detection unit 31 (for example, the current Is of the first conductive path 21 at the start of step S22) and the efficiency (voltage) of the voltage conversion unit 3C calculated by the efficiency calculation unit.
  • the converter efficiency Y (Vs) determined by the voltage Vs), the capacitance C of the second power supply unit 92 calculated by the capacitance calculation unit, and the second target voltage value Vt2
  • the first target voltage value Vt1 is determined based on the time limit N.
  • the backup device 1 configured as described above indicates the target voltage value (first target voltage value Vt1) of the second power supply unit 92 when the start switch 70 is in the off state, and the second voltage when the switch is in the on state.
  • the charging path (first conductive path 21) of the first power supply unit 91 to the second power supply unit 92 This can be determined by reflecting the voltage and current, the efficiency of the voltage conversion unit 3C, and the capacitance C of the second power supply unit 92. That is, after more specifically and finely reflecting the assumed charging state after the switch is turned on (after starting the vehicle), the target voltage value (first target value) of the second power supply unit 92 when the vehicle operation is stopped.
  • the voltage value Vt1) can be set even more appropriately.
  • the backup device 1 includes a predetermined continuous output time T that is predetermined as a required value for the second power supply unit 92, a lower limit voltage X that is predetermined as a lower limit value that can be discharged in the second power supply unit 92, and a discharge circuit 3B.
  • a second determination unit that determines the second target voltage value based on the values (Vout and Iout in Equation 4) indicating the discharge capacity of Specifically, in FIG. 5, Va is the voltage drop (the output voltage Vout and the output current Iout) determined based on the continuous output time T and the values (Vout and Iout in Equation 4) indicating the discharge capability of the discharge circuit 3B.
  • Vt2 is based on Va, the lower limit voltage X, and the maximum voltage drop Vd due to the internal resistance of the second power supply unit 92 (voltage drop when the current flowing from the second power supply unit 92 is the current I (t (n))).
  • Vt2 Vd + X + Va.
  • the target voltage value at that time can also be set more appropriately.
  • a predetermined continuous output time T that is predetermined as a required value for the second power supply unit 92
  • a lower limit voltage X that is predetermined as a lower limit value that can be discharged in the second power supply unit 92
  • the discharge circuit 3B Based on the value indicating the discharge capacity, it is possible to appropriately set the time and the discharge environment required after the on state is specifically reflected.
  • Example 1 although the lead battery is used for the 1st power supply part 91, it is not limited to this structure, In any example of this specification, it replaces with a lead battery or uses together with a lead battery.
  • Other power supply means other known power storage means such as a lithium ion battery, power generation means, etc.
  • the number of power supply means configuring the first power supply unit 91 is not limited to one, and may be configured by a plurality of power supply means.
  • an electric double layer capacitor (EDLC) is used for the second power supply unit 92.
  • the present invention is not limited to this configuration, and in any example of the present specification, the second power supply unit 92 includes lithium. You may use other electrical storage means, such as an ion battery, a lithium ion capacitor, and a nickel hydride rechargeable battery. Further, the number of power storage means configuring the second power supply unit 92 is not limited to one, and may be configured by a plurality of power storage means.
  • the configuration in which the second power supply unit 92 is provided outside the backup device 1 is illustrated, but the second power supply unit 92 may be configured as a part of the backup device 1.
  • the voltage conversion unit 3C has a function as the charging circuit 3A and a function as the discharging circuit 3B.
  • the charging circuit 3A and the discharging circuit 3B may be configured as separate circuits.
  • the second target voltage value Vt2 that is the target voltage value of the second power supply unit 92 when the start switch 70 is in the on state is calculated by the above-described calculation method has been described.
  • the voltage value Vt2 may be a fixed value lower than the charging voltage when the second power supply unit 92 is fully charged.
  • the second target voltage value Vt2 that is the target voltage value of the second power supply unit 92 when the start switch 70 is in the on state is calculated based on the equation 1 is shown.
  • a method other than the calculation method described in the first embodiment may be used.
  • the output voltage Vout and the output current Iout are discharged until the lower limit voltage X is reached by the voltage conversion unit 3C at a predetermined time, and the relationship between the elapsed time during the discharge and the charging voltage of the second power supply unit is monitored.
  • the charging voltage of the second power supply unit 92 at a time point that is back by the time T from the time when the lower limit voltage X is reached is obtained, and this charging voltage is Va + X, that is, V (t (1) ).
  • the value of Va may be determined in advance as a fixed value based on the continuous output time T and values (Vout, Iout in Equation 4) indicating the discharge capability of the discharge circuit 3B.
  • V (t (1)) when the output voltage of the second power supply unit 92 before starting discharge is V (t (1)), the output voltage Vout and the output are output by the voltage conversion unit 3C under a predetermined temperature condition.
  • V (t (1)) in such a relationship that the output voltage of the second power supply unit 92 becomes X when the time T elapses when the current Iout is discharged only for the time T corresponds to the above-described X + Va. It may be used as a fixed value (approximate value).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

車両動作開始後には第2電源部の充電電圧を必要なレベルまで迅速に上昇させることができ、車両動作終了後には第2電源部の充電電圧を適正なレベルまで低下させて劣化を抑制し得る車両用のバックアップ装置を実現する。 バックアップ装置(1)において、決定部(5)は、車両を始動させる始動スイッチがオフ状態であるときの第2電源部(92)の目標電圧値である第1目標電圧値Vt1を、オン状態であるときの目標電圧値である第2目標電圧値Vt2と、充電回路(3A)の充電能力を示す値と、制限時間とに基づき、第2目標電圧値Vt2よりも低い値で決定する。制御部(5)は、始動スイッチがオン状態となった場合に第2電源部(92)の充電電圧が第2目標電圧値Vt2に達するように充電回路(3A)に充電動作を行わせ、始動スイッチがオフ状態となった場合に第1目標電圧値Vt1とするように放電回路(3B)に放電動作を行わせる。

Description

車両用のバックアップ装置
 本発明は、車両用のバックアップ装置に関するものである。
 車両用の電源システムは、主電源の失陥が生じると負荷への電力供給が途絶えてしまい、電気的な動作(例えば各種電子制御など)が不能になってしまう。このような問題を解消し得る構成として、補助電源を搭載した構成が知られており、例えば、特許文献1の技術では、電気二重層コンデンサを複数個用いたキャパシタユニットを補助電源として用いている。
特開2004-322987号公報
 補助電源としてキャパシタを用いた場合、長時間にわたって高い充電電圧を維持するとキャパシタの劣化が進行してしまうという問題がある。この点に関し、特許文献1で開示される車両用電源装置では、車両動作開始後にキャパシタ(電源バックアップユニット)を充電して充電電圧を高めることで車両動作中にキャパシタを補助電源として用い、車両動作終了時にはキャパシタを放電することで充電電圧を低下させ、キャパシタの劣化を抑えている。
 しかし、特許文献1のように車両動作終了時に単にキャパシタを放電するだけでは、充電時間の増大又は劣化抑制効果の低減を招く虞がある。例えば、車両動作終了後にキャパシタの充電電圧を低下させすぎると、車両始動後に充電電圧を所望のレベルまで上昇させる際に充電時間が長くなってしまう。逆に、車両動作終了後のキャパシタの放電量が小さすぎると、劣化抑制効果が低減することになる。
 本発明は上記した事情に基づいてなされたものであり、車両動作開始後には第2電源部の充電電圧を目標とする水準まで迅速に上昇させることができ、車両動作終了後には第2電源部の充電電圧を適正なレベルまで低下させて劣化を抑制し得る車両用のバックアップ装置を実現することを目的とするものである。
 本発明は、
 第1電源部と少なくとも前記第1電源部からの電力供給が異常であるときに電力供給源となる第2電源部とを備えた車両用の電源システムにおいて前記第2電源部の充電及び放電を制御する車両用のバックアップ装置であって、
 前記第2電源部を充電する充電動作と前記第2電源部の充電を停止する充電停止動作とを行う充電回路と、
 前記第2電源部を放電する放電動作と前記第2電源部の放電を停止する放電停止動作とを行う放電回路と、
 車両を始動させる始動スイッチがオフ状態であるときの前記第2電源部の目標電圧値である第1目標電圧値を、前記始動スイッチがオン状態であるときの前記第2電源部の目標電圧値である第2目標電圧値と、前記充電回路の充電能力を示す値と、予め定められた制限時間とに基づいて、前記第2目標電圧値よりも低い値で決定する決定部と、
 前記始動スイッチがオン状態となった場合に前記第2電源部の充電電圧が前記第2目標電圧値に達するように前記充電回路に充電動作を行わせ、前記始動スイッチがオフ状態となった場合に前記第2電源部の充電電圧を前記決定部で決定した前記第1目標電圧値とするように前記放電回路に放電動作を行わせる制御部と、
を有する。
 このバックアップ装置は、車両を始動させる始動スイッチがオフ状態であるときに、第2電源部の充電電圧の目標電圧値である第1目標電圧値を、オン状態のときの目標電圧値(第2目標電圧値)よりも低く設定する。このように、車両動作停止中に第2電源部の充電電圧を相対的に低く抑えることができるため、第2電源部の劣化を抑制することができる。更には、車両動作停止中における第2電源部の充電電圧の目標電圧値(第1目標電圧値)を単に低くするのではなく、始動スイッチがオン状態であるときの第2電源部の目標電圧値(第2目標電圧値)と、充電回路の充電能力を示す値と、予め定められた制限時間とに基づいて設定することができる。つまり、車両動作停止中の第2電源部の目標電圧値(第1目標電圧値)を、その後にオン状態になったときに想定される充電状況や求められる制限時間に合わせてより適切に設定することができる。
 このように、オフ状態後の第2電源部の目標電圧値(第1目標電圧値)について適正化が図られるため、車両動作開始後には第2電源部の充電電圧を目標とする水準まで迅速に上昇させることができ、車両動作終了後には第2電源部の充電電圧を適正なレベルまで低下させて劣化を抑制することができる。
実施例1のバックアップ装置を備えた車両用電源システムを概略的に示すブロック図である。 実施例1のバックアップ装置を概略的に示す回路図である。 実施例1のバックアップ装置で行われる充電制御の流れを例示するフローチャートである。 実施例1のバックアップ装置で行われる放電制御の流れを例示するフローチャートである。 実施例1のバックアップ装置における第2電源部の放電開始後の充電電圧の変化及び出力電流の変化等を示すグラフである。 容量の温度補正係数と温度との関係、及び抵抗値の温度補正係数と温度との関係を示すグラフである。 抵抗値の基準値の測定方法を説明するグラフである。 容量の基準値の測定方法を説明するグラフである。
 ここで、本発明の望ましい例を示す。但し、本発明は以下の例に限定されない。
 充電回路は、第1電源部に電気的に接続された第1導電路に印加された電圧を降圧又は昇圧し、第2電源部に電気的に接続された第2導電路に印加する電圧変換部を備えていてもよい。更に、バックアップ装置は、第1導電路の電圧を検出する電圧検出部と、第1導電路の電流を検出する電流検出部と、第2電源部の温度を検出する温度検出部と、電圧検出部で検出された電圧に基づいて電圧変換部の効率を算出する効率算出部と、温度検出部で検出された温度に基づいて第2電源部の容量を算出する容量算出部と、を有していてもよい。決定部は、電圧検出部で検出された第1導電路の電圧と、電流検出部で検出された第1導電路の電流と、効率算出部で算出された電圧変換部の効率と、容量算出部で算出された第2電源部の容量と、第2目標電圧値と、制限時間とに基づいて第1目標電圧値を決定するように機能してもよい。
 このように構成されたバックアップ装置は、車両を始動させる始動スイッチがオフ状態であるときの第2電源部の目標電圧値(第1目標電圧値)を、始動スイッチがオン状態であるときの第2電源部の目標電圧値(第2目標電圧値)及び予め定められた制限時間に加えて、第1電源部から第2電源部への充電経路(第1導電路)の電圧及び電流と、電圧変換部の効率と、第2電源部の容量とを反映して決定することができる。つまり、始動スイッチがオン状態となった後(車両始動後)に想定される充電状況をより具体的且つ細かく反映した上で、車両動作停止中の第2電源部の目標電圧値(第1目標電圧値)をより一層適切に設定することができる。
 バックアップ装置は、第2電源部に対する要求値として予め定められた所定の継続出力時間と、第2電源部において放電可能な下限値として予め定められた下限電圧と、放電回路の放電能力を示す値とに基づいて第2目標電圧値を決定する第2決定部を有していてもよい。
 このように構成されたバックアップ装置は、車両を始動させる始動スイッチがオフ状態であるときの第2電源部の目標電圧値(第1目標電圧値)だけでなく、始動スイッチがオン状態であるときの目標電圧値(第2目標電圧値)についても、より適正に設定することができる。具体的には、第2電源部に対する要求値として予め定められた所定の継続出力時間と、第2電源部において放電可能な下限値として予め定められた下限電圧と、放電回路の放電能力を示す値とに基づき、オン状態となった後に要求される時間や放電環境を具体的に反映した適切な設定が可能となる。
 以下、本発明を具体化した実施例について説明する。
 <実施例1>
 図1に、実施例1に係る車両用のバックアップ装置1(以下、単にバックアップ装置1ともいう)を備えた車両用の電源システム100(以下、単に電源システム100ともいう)のブロック図を示す。
 電源システム100は、負荷94(電力供給対象)へ電力を供給するための主電源となる第1電源部91と、少なくとも第1電源部91からの電力供給が途絶えたときに電力供給源となる第2電源部92と、第1電源部91からの電力供給が途絶えたときに第2電源部92からの放電を迅速に行う機能を備えたバックアップ装置1とを有しており、第1電源部91又は第2電源部92を電力供給源として負荷94に電力を供給するシステムとして構成されている。
 図1で示す電源システム100は、第1電源部91からの電力供給が正常状態のときに第1電源部91の出力電圧に基づく電圧を配線部として構成される配線部81に印加し、第1電源部91から配線部81を介して負荷94(電力供給対象)に電力を供給する構成をなす。「第1電源部91からの電力供給が正常状態のとき」とは、第1電源部91の出力電圧が所定値を超える場合であり、例えば、第2電源部92からの放電がなされていない状態で第1導電路21の電圧(電位)が所定の閾値電圧を超える場合である。
 第1電源部91は、負荷94(電力供給対象)へ電力を供給し得る車両用電源であり、例えば、鉛バッテリ等の公知の車載バッテリとして構成されている。第1電源部91は、高電位側の端子が配線部81に電気的に接続され、配線部81に対して所定の出力電圧(以降、+B電圧ともいう。)を印加する。第1電源部91の低電位側の端子は例えばグランドに接続されている。
 配線部81は、第1電源部91から負荷94(電力供給対象)へ電力を供給する経路であり、第1電源部91からの電力供給が異常であるときには第2電源部92から負荷94へ電力を供給する経路として機能し得る。配線部81は、バックアップ装置1の第1導電路21に電気的に接続され、第1導電路21には、第1電源部91の出力電圧が印加される。
 第2電源部92は、例えば、電気二重層キャパシタ(EDLC)等の公知の蓄電手段によって構成されている。第2電源部92の高電位側の端子は配線部82に電気的に接続され、この配線部82は、バックアップ装置1の第2導電路22に電気的に接続されている。第2電源部92の低電位側の端子は例えばグランドに接続されている。第2電源部92は、配線部82及び第2導電路22を介して充放電回路部3に電気的に接続されており、充放電回路部3によって充電又は放電がなされる。第2電源部92の満充電時の出力電圧は、第1電源部91の満充電時の出力電圧よりも大きくてもよく、小さくてもよい。
 負荷94は電力供給対象の一例に相当し、公知の車両用電気部品として構成されている。負荷94は、例えば、シフトバイワイヤシステムにおけるECUやアクチュエータ等、第1電源部91が失陥した場合でも電力供給が望まれる電気部品が好適例である。負荷94は上述した正常状態のときには第1電源部91から供給される電力に基づいて動作し、異常状態のときには第2電源部92から供給される電力に基づいて動作する。
 始動スイッチ70は、公知のイグニッションスイッチとして構成されている。始動スイッチ70は、車両に設けられた操作部(図示せず)に対してエンジンを始動させるための所定の始動操作(イグニッションスイッチのオン操作)がなされた場合にオン状態に切り替わり、エンジンを停止させるための所定の停止操作(イグニッションスイッチのオフ操作)がなされた場合にオフ状態に切り替わるスイッチである。本構成では、始動スイッチ70がオン状態のときにバックアップ装置1の外部に設けられた外部装置72からバックアップ装置1の制御部5に対して始動スイッチ70がオン状態であることを示すイグニッションオン信号(以下、IGオン信号ともいう)が入力される。また、始動スイッチ70がオフ状態のときには、外部装置72から制御部5に対して始動スイッチ70がオフ状態であることを示すイグニッションオフ信号(以下、IGオフ信号ともいう)が入力される。
 バックアップ装置1は、主として、第1導電路21、第2導電路22、充放電回路部3、電流検出部31,32、電圧検出部41,42、温度検出部50、制御部5などを備える。
 バックアップ装置1において、第1導電路21は、第1電源部91の高電位側の端子に導通する配線であり、第1電源部91の出力電圧に応じた所定の直流電圧が印加される構成をなす。第2導電路22は、第2電源部92の高電位側の端子に導通する配線であり、第2電源部92の出力電圧に応じた所定の直流電圧が印加される構成をなす。
 充放電回路部3は、第1電源部91から第1導電路21を介して供給される電力に基づいて第2電源部92を充電する充電回路3Aとしての機能と、第2電源部92を放電させて放電電流を配線部81に供給する放電回路3Bとしての機能を有していればよい。この充放電回路部3は、例えば、図2のような構成をなす。
 図2で示す充放電回路部3は、双方向型の昇降圧DCDCコンバータとして構成され、第1導電路21又は第2導電路22の一方の導電路に印加された直流電圧を昇圧又は降圧して他方の導電路に出力する機能を備える。
 電圧変換部3Cは、図1で示す充電回路3Aとしての機能と、放電回路3Bとしての機能とを有する。電圧変換部3Cは、第1導電路21と第2導電路22との間に設けられ、スイッチング素子T1,T2,T3,T4のオンオフ動作により入力された電圧を昇圧又は降圧して出力するように電圧変換動作を行う。電圧変換部3Cは、第1導電路21に印加された電圧を昇圧又は降圧して第2導電路22に所望の電圧を印加する第1モードの動作と、第2導電路22に印加された電圧を昇圧又は降圧して第1導電路21に所望の電圧を印加する第2モードの動作とを行い得る。第1モードは、第2電源部92を充電する充電モードであり、第2モードは、第2電源部92を放電する放電モードである。
 電圧変換部3Cは、Hブリッジ構造で配置されたスイッチング素子T1,T2,T3,T4と、コイルL1とを備える。更に、電圧変換部3Cは、第1導電路21とグランドとの間に介在するコンデンサC1と、第2導電路22とグランドとの間に介在するコンデンサC2とを備える。スイッチング素子T1,T2,T3,T4は、いずれもNチャネル型のMOSFETとして構成されている。スイッチング素子T1のドレインには、第1導電路21が接続され、スイッチング素子T1のソースには、スイッチング素子T2のドレイン及びコイル8の一端が接続されている。スイッチング素子T3のドレインには、第2導電路22が接続され、スイッチング素子T3のソースには、スイッチング素子T4のドレイン及びコイル8の他端が接続されている。スイッチング素子T2,T4のそれぞれのソースはグラウンドに接続されている。スイッチング素子T1,T2,T3,T4のそれぞれのゲートには、後述する駆動回路5Bからの各信号がそれぞれ入力される。なお、図2では、スイッチング素子T1,T2,T3,T4のそれぞれのゲートに接続される個別の信号線の図示を省略している。
 電流検出部31,32はいずれも、公知の電流検出回路として構成されている。電流検出部31は、第1導電路21を流れる電流を検出する電流検出回路であり、例えば第1導電路21に介在して設けられたシャント抵抗と、シャント抵抗の両端電圧を増幅したアナログ電圧値を制御部5に出力する出力する差動増幅器とによって構成されている。電流検出部32は、第2導電路22を流れる電流を検出する電流検出回路であり、例えば第2導電路22に介在して設けられたシャント抵抗と、シャント抵抗の両端電圧を増幅したアナログ電圧値を制御部5に出力する差動増幅器とによって構成されている。制御部5は、電流検出部31から入力された値(電流検出部31の検出値)に基づいて第1導電路21を流れる電流値を把握し、電流検出部32から入力された値(電流検出部32の検出値)に基づいて第2導電路22を流れる電流値を把握する。
 電圧検出部41,42はいずれも、公知の電圧検出回路として構成されている。電圧検出部41は、第1導電路21の電圧(電位)を示す値(例えば第1導電路21の電圧値、又は第1導電路21の電圧値を分圧回路によって分圧した値等)を検出値として制御部5に入力する。電圧検出部42は、第2導電路22の電圧(電位)を示す値(例えば第2導電路22の電圧値、又は第2導電路22の電圧値を分圧回路によって分圧した値等)を検出値として制御部5に入力する。制御部5は、電圧検出部41から入力された値(電圧検出部41の検出値)に基づいて第1導電路21の電圧値(電位)を把握し、電圧検出部42から入力された値(電圧検出部42の検出値)に基づいて第2導電路22の電圧値(電位)を把握する。
 温度検出部50は、公知の温度センサによって構成されており、例えば、第2電源部92の表面に接触する形で、又は第2電源部92に近接する形で配置されている。温度検出部50は、配置位置(第2電源部92近傍)の温度を示すアナログ電圧値を生成し、制御部5に入力する。
 制御部5は、例えばマイクロコンピュータ等として構成された制御回路5Aと、電圧変換部3Cに与える駆動信号を生成する駆動回路5Bとを備え、充放電回路部3による充電動作及び放電動作を制御する。制御回路5Aは、CPU等の演算装置、ROM又はRAM等のメモリ、AD変換器等を有する。制御回路5Aは、電流検出部31,32及び電圧検出部41,42から入力される電流値及び電圧値と、制御回路5Aによって設定された目標電圧値とに基づいて公知の方法でフィードバック制御を行い、電圧変換部6に与えるPWM信号のデューティを設定する。そして、設定されたデューティのPWM信号を駆動回路5Bに出力する。駆動回路5Bは、スイッチング素子T1,T2,T3,T4をオンオフさせる制御信号を出力する回路である。駆動回路5Bは、スイッチング素子T1,T2,T3,T4の中からPWM信号の出力対象となる一対の素子を選択し、選択された一対の素子に対してPWM信号を相補的に出力する。また、駆動回路5Bは、PWM信号の出力対象ではないスイッチング素子のゲートに対しては、オン動作又はオフ動作させる信号を出力する。
 本実施例に関する以下の説明では、図1で示す第1電源部91の満充電時の充電電圧(出力電圧)よりも第2電源部92の満充電時の充電電圧(出力電圧)が低い例を代表例として説明する。図1で示す電源システム100では、第1電源部91の充電電圧(出力電圧)が第2電源部92の充電電圧(出力電圧)よりも高い所定値付近(例えば12V程度)で維持されるようになっている。
 図2で示す制御部5は、第1モード(充電モード)の動作を行う場合、第1導電路21を入力側導電路とし且つ第2導電路22を出力側の導電路とし、第2導電路22に所望の目標電圧値の出力電圧を印加するように電圧変換部3Cに降圧動作を行わせる。制御部5は、第1モードの動作を行う場合、スイッチング素子T1,T2の各ゲートに対してデッドタイムを設定した形でPWM信号を相補的に出力する。制御部5は、スイッチング素子T1のゲートにオン信号を出力している間は、スイッチング素子T2にゲートにオフ信号を出力し、スイッチング素子T2のゲートにオン信号を出力している間は、スイッチング素子T1にゲートにオフ信号を出力する。制御部5は、このようなPWM信号の出力と並行して、スイッチング素子T3のゲートにオン信号を継続的に出力し、スイッチング素子T4のゲートにはオフ信号を継続的に出力する。つまり、スイッチング素子T3はオン状態で維持され、スイッチング素子T4はオフ状態で維持される。第1モードのときに電圧変換部3Cによって第2導電路22に印加される出力電圧は、制御部5がスイッチング素子T1のゲートに与えるPWM信号のデューティに応じて定まる。
 このように、電圧変換部3Cは、図1で示す充電回路3Aとして機能し、制御部5が第1モードの制御を行う場合に第2電源部92を充電する充電動作を行うように機能し、第1モードの制御を行わない場合(例えば、電圧変換部3Cの動作を停止させる場合)に第2電源部92の充電を停止する充電停止動作を行うように機能する。
 制御部5は、第2モード(放電モード)の動作を行う場合、第2導電路22を入力側導電路とし且つ第1導電路21を出力側導電路とし、第1導電路21に所望の目標電圧値の出力電圧を印加するように電圧変換部3Cに昇圧動作を行わせる。制御部5は、第2モードの動作を行う場合、スイッチング素子T1,T2の各ゲートに対してデッドタイムを設定した形でPWM信号を相補的に出力する。制御部5は、スイッチング素子T2のゲートにオン信号を出力している間は、スイッチング素子T1にゲートにオフ信号を出力し、スイッチング素子T1のゲートにオン信号を出力している間は、スイッチング素子T2にゲートにオフ信号を出力する。制御部5は、このようなPWM信号の出力と並行して、スイッチング素子T3のゲートにオン信号を継続的に出力し、スイッチング素子T4のゲートにはオフ信号を継続的に出力する。つまり、スイッチング素子T3はオン状態で維持され、スイッチング素子T4はオフ状態で維持される。第2モードのときに電圧変換部3Cによって第1導電路21に印加される出力電圧は、制御部5がスイッチング素子T2のゲートに与えるPWM信号のデューティに応じて定まる。
 このように、電圧変換部3Cは、図1で示す放電回路3Bとして機能し、制御部5が第2モードの制御を行う場合に第2電源部92を放電する放電動作を行うように機能し、第2モードの制御を行わない場合(例えば、電圧変換部3Cの動作を停止させる場合)に第2電源部92の放電を停止する放電停止動作を行うように機能する。
 次に、バックアップ装置1による充電制御及び放電制御の具体的な流れについて説明する。
 図1で示す電源システム100は、第1電源部91を主電源として動作させ、第1電源部91からの電力供給が異常であるときに第2電源部92を電力供給源として動作させ得るシステムとして構成されている。第2電源部92の充電及び放電はバックアップ装置1によって以下のように制御される。
 図1、図2で示すバックアップ装置1は、制御部5が始動スイッチ70の状態を監視し得る。本構成では、車両用電源システム100が搭載された車両内において、ユーザにより始動スイッチ70(イグニッションスイッチ)をオン状態に切り替える始動操作(オン操作)がなされると、始動スイッチ70がオフ状態からオン状態に切り替わる。始動スイッチ70がオフ状態のときには外部装置72から制御部5に対してIGオフ信号が継続的に入力され、始動スイッチ70がオフ状態からオン状態に切り替わると、外部装置72から制御部5に入力される信号はIGオフ信号からIGオン信号に切り替わる。なお、始動スイッチ70がオン状態である間は、制御部5にIGオン信号が継続的に入力され続ける。
 まず、図3を参照して始動スイッチ70がオフ状態からオン状態に切り替わった場合の制御について説明する。
 制御部5は、外部装置72から制御部5に入力される信号がIGオフ信号からIGオン信号に切り替わったことを検知すると、図3で示す充電制御を実行する。制御部5は、図3で示す充電制御を開始した場合、まず、ステップS1の処理を実行し、電圧変換部3Cに対して上述した充電動作を行わせる。具体的には、制御部5はステップS1にて上述した第1モード(充電モード)の動作を開始し、第1導電路21を入力側導電路とするとともに第2導電路22を出力側導電路とし、第2導電路22に所望の目標電圧値の出力電圧を印加するように電圧変換部3Cに降圧動作を行わせる。電圧変換部3Cが第2導電路22に印加する出力電圧値(目標電圧値)は、例えば第2電源部92の満充電時の出力電圧値程度であってもよく、これよりも若干大きい値であってもよい。
 制御部5は、ステップS1の処理を実行して電圧変換部3Cの充電動作を開始させた後、ステップS2の処理を実行し、第2目標電圧値Vt2を決定する。第2目標電圧値Vt2は、始動スイッチ70がオン状態であるときに目標とする第2電源部92の充電電圧値である。本構成では制御部5が第2目標電圧値Vt2を決定する第2決定部の一例に相当し、第2電源部92に対する要求値として予め定められた所定の継続出力時間Tと、第2電源部92において放電可能な下限値として予め定められた下限電圧Xと、放電回路3Bの放電能力を示す値(出力電圧値Vout、出力電流値Ioutなど)とに基づいて第2目標電圧値Vt2を決定する。出力電圧値Vout及び出力電流値Ioutは、異常発生に伴って第2電源部92に放電動作を行わせる場合に電圧変換部3Cから出力する電圧値及び電流値である。継続出力時間Tは、異常発生に伴って電圧変換部3Cに第2電源部92の放電動作を行わせる場合に、電圧変換部3Cから出力電圧値Vout及び出力電流値Ioutの出力を継続すべき最低時間である。
 具体的には、制御部5が出力電圧値をVoutとし出力電流値をIoutとする放電動作を電圧変換部3Cに行わせたときに、この放電動作の開始時間t(1)から継続出力時間Tが経過した時間(t(n))で第2電源部92の充電電圧(出力電圧)が予め定められた下限電圧Xとなるように、下限電圧Xから逆算して開始時間t(1)での第2電源部92の充電電圧(出力電圧)を第2目標電圧値Vt2として決定する。つまり、放電動作の開始時間t(1)で第2電源部92の充電電圧(出力電圧)が第2目標電圧値Vt2である場合、制御部5が、第1導電路21に対する出力電圧値をVoutとし出力電流値をIoutとする放電動作を電圧変換部3Cに継続出力時間Tだけ行わせたとき、開始時間t(1)から継続出力時間Tが経過した時間t(n)で第2電源部92の充電電圧(出力電圧)が下限電圧Xとなるのである。このような関係を満たすように第2目標電圧値Vt2を決定する。
 第2目標電圧値Vt2は、第1導電路21に対する出力電圧値及び出力電流値をそれぞれ出力電圧値Vout且つ出力電流値Ioutとする放電動作を少なくとも時間Tだけ継続するために必要な充電電圧(必要最低充電電圧)であり、以下の通りに定めることができる。
Figure JPOXMLDOC01-appb-M000001
 時間t(1)を放電開始時間として出力電圧値Vout且つ出力電流値Ioutで放電動作を行った場合、継続出力時間Tの間で電圧変換部3Cによって放電電流が流されることによる第2電源部92の充電電圧の低下は図5のようになる。なお、図5では、第2電源部92の内部抵抗による電圧降下の影響を除いている。図5において、V(t(n))は、出力電圧値Vout且つ出力電流値Ioutで放電動作を行った場合の時間t(n)のときの第2電源部92の充電電圧値である。ここでは、時間t(n)を継続出力時間Tとし、V(t(n))を下限電圧Xとする。図5の説明では、時間t(1)から時間t(n)までの時間Tの間に電圧変換部3Cの放電動作を継続した場合、第2電源部92から放出される放電電流によって充電電圧がVaの分だけ低下することを示している。つまり、放電によるエネルギーの損失分によって充電電圧がVaの分だけ低下することを意味する。
 数1は、このようなエネルギー損失分による充電電圧の低下に加え、下限電圧Xと、第2電源部92の内部抵抗による最大電圧降下Vdとを加味して第2目標電圧値Vt2を定めている。数1のΔV(t(n))は、以下の通りに算出する。
 まず、V(t(n))を下限電圧Xとするため、以下の数2の式となる。
Figure JPOXMLDOC01-appb-M000002
 そして、t(n)のときの電圧変換部3Cの効率(コンバータ効率)Y(t(n))は以下の数3のように表すことができる。数3においてA、B、Cは、電圧変換部3Cの具体的構成に基づいて定まる係数(固定値)である。この効率(コンバータ効率)Y(t(n))は、電圧変換部3Cが第2モード(放電モード)で動作を行う場合において第2電源部92の充電電圧値がV(t(n))のときの電圧変換部3Cの効率であり、V(t(n))に応じて効率が定まるように数3の式で対応付けられている。
Figure JPOXMLDOC01-appb-M000003
 更に、時間t(n)のときに第2電源部92から放出される電流値I(t(n))は、以下の数4のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 更に、時間t(n)と時間t(n-1)との差(時間間隔)は、以下の数5のように表すことができる。数5において、Cは、第2電源部92の容量である。
Figure JPOXMLDOC01-appb-M000005
 このような数2~数5の式によってΔV(t(n))を算出することができる。なお、下限電圧Xから上記低下分Vaを逆算した場合のV(t(1))は、以下の数6のようになる。
Figure JPOXMLDOC01-appb-M000006
 V(t(1))は、第2電源部92の内部抵抗による電圧降下分を想定しない場合の放電開始時間t(1)での充電電圧である。この関係式に加え、内部抵抗による最大電圧降下Vdを考慮した場合の第2目標電圧値Vt2は数1のようになる。
 数1において、Vdは、最大電圧降下であり、以下の数7で表すことができる。
Figure JPOXMLDOC01-appb-M000007
 数7において、Rは、第2電源部92の内部抵抗であり、以下の数8で表すことができる。
Figure JPOXMLDOC01-appb-M000008
 数8において、Krは、抵抗値の温度補正係数であり、Rbは、内部抵抗の基準値である。抵抗値の温度補正係数は、図6のような関係にあり、図6のようなデータ(即ち、温度と抵抗値の温度補正係数を対応付けたテーブル、演算式等のデータ)は図示しないメモリ等に記憶されている。抵抗値の温度補正係数を求める場合、図3のステップS2の時点で温度検出部50で検出される温度に対応する抵抗値の温度補正係数をメモリに記憶されたデータから取得する。
 内部抵抗の基準値Rbは、図7のような方法で測定、算出することができる。具体的には、図3の充電制御を行ってステップS4で充電動作を停止した場合に停止直前と停止後の第2電源部92の充電電圧の変化量ΔV2と、停止直前の第2導電路22の電流(充電電流)Ibとに基づいて数9のように算出することできる。
Figure JPOXMLDOC01-appb-M000009
 また、数5における第2電源部92の容量Cは、容量の基準値Cbと、容量の温度補正係数Kcとに基づいて以下の数10の式で求めることができる。なお、本構成では、制御部5が容量算出部の一例に相当する。
Figure JPOXMLDOC01-appb-M000010
 容量の基準値Cbは、図8のような方法で測定、算出することができる。具体的には、図3において充電動作を開始した後、定電流Iaで一定期間Δt1の充電動作を行ったときの充電電圧の変化がΔV1であった場合、以下の数11の式で容量基準値Cbを表すことができる。なお、容量基準値Cb及び容量Cの算出は、図3のステップS2の処理を行う毎に行うことができ、算出される毎に最新の容量Cを用いることができる。
Figure JPOXMLDOC01-appb-M000011
 数10において、Kcは、容量の温度補正係数であり、容量の温度補正係数は図6のような関係にある。図6のようなデータ(即ち、温度と容量の温度補正係数を対応付けたテーブル、演算式等のデータ)は図示しないメモリ等に記憶されている。容量の温度補正係数を求める場合、図3のステップS2の時点で温度検出部50で検出される温度に対応する容量の温度補正係数をメモリに記憶されたデータから取得する。
 制御部5は、図3の制御のステップS2において以上のような算出方法で第2目標電圧値Vt2を算出する。制御部5は、第2目標電圧値Vt2が決定した後、電圧変換部3Cに充電動作を行わせる制御を継続しつつ第2電源部92の充電電圧(出力電圧)を監視する。具体的には、制御部5は、ステップS2の後、ステップS3において第2導電路22の電圧が上記第2目標電圧値Vt2となったか否かを繰り返し判定し、第2導電路22の電圧(具体的には、電圧検出部42の検出位置の電位)が上記第2目標電圧値Vt2となった場合(ステップS3でYesの場合)、ステップS4において電圧変換部3Cの充電動作を停止する。
 このように、制御部5は、始動スイッチ70がオン状態となった場合(外部から入力される信号がIGオフ信号からIGオン信号に切り替わった場合)に、第2電源部92の充電電圧を、上記第2目標電圧値Vt2に達するように充放電回路部3(充電回路)に充電動作を行わせ、始動スイッチ70がオン状態の間(即ち、車両が走行可能状態となっている間)は、第2電源部92の充電電圧を第2目標電圧値Vt2付近で維持する。
 次に、始動スイッチ70がオン状態からオフ状態に切り替わった場合の制御について説明する。
 制御部5は、外部装置72から制御部5に入力される信号がIGオン信号からIGオフ信号に切り替わったことを検知すると、図4で示す放電制御を実行する。制御部5は、図4で示す放電制御を開始した場合、まず、ステップS21の処理を実行し、電圧変換部3Cに対して上述した放電動作を行わせる。具体的には、制御部5はステップS21にて上述した第2モード(放電モード)の動作を開始し、第2導電路22を入力側導電路とするとともに第1導電路21を出力側導電路とし、第1導電路21に所望の目標電圧値の出力電圧を印加するように電圧変換部3Cに昇圧動作を行わせる。電圧変換部3Cが第1導電路21に印加する出力電圧値(目標電圧値)は、例えば第1電源部91の満充電時の出力電圧値程度であってもよく、これよりも若干大きい値であってもよい。
 制御部5は、ステップS21の処理を実行して電圧変換部3Cの放電動作を開始させた後、ステップS22の処理を実行し、第1目標電圧値Vt1を決定する。第1目標電圧値Vt1は、車両を始動させる始動スイッチ70がオフ状態であるときの第2電源部92の充電目標電圧値である。本構成では、制御部5が決定部の一例に相当し、第1目標電圧値Vt1を、スイッチがオン状態であるときの第2電源部92の目標電圧値である第2目標電圧値Vt2と、充電回路3Aの充電能力を示す値と、予め定められた制限時間Nとに基づいて、第2目標電圧値Vt2よりも低い値で決定する。具体的には、決定部に相当する制御部5は、電圧検出部41で検出された第1導電路21の電圧と、電流検出部31で検出された第1導電路21の電流と、効率算出部で算出された電圧変換部3Cの効率と、容量算出部で算出された第2電源部92の容量Cと、第2目標電圧値Vt2と、制限時間Nとに基づいて、以下の数12の式で第1目標電圧値Vt1を決定する。数12において、Isは、充電動作のときに第1電源部91から電圧変換部3Cに流れ込む入力電流(充電電流)であり、Vsは、充電動作のときに第1電源部91によって第1導電路21に印加される入力電圧(充電電圧)である。制限時間Nは、充電開始後に第2目標電圧値Vt2に達するまでの制限時間(この時間内に抑えるべき時間)であり、入力電流Is及び入力電圧Vsで充電動作を行う場合に、第2電源部92の充電電圧を第1目標電圧値Vt1から第2目標電圧値Vt2まで上昇させる上で要する時間である。Y(Vs)は、電圧変換部3Cが第1モード(充電モード)で動作するときに入力電圧が電圧Vsのときの電圧変換部3Cの効率(コンバータ効率)であり、例えば、数3の式により電圧Vsのときの効率として求めてもよい。或いは、電圧変換部3Cが第1モードの動作(充電動作)を行う場合のコンバータ効率(入力電圧に応じて定まるコンバータ効率)が、入力電圧毎にコンバータ効率を定めるテーブルデータや演算式によって定められていてもよく、この場合、コンバータ効率Y(Vs)は、このようなテーブルデータや演算式において上記入力電圧Vsに対応する値として定められた効率を用いるようにしてもよい。なお、本構成では、制御部5が効率算出部の一例に相当する。なお、Is、Vs、Y(Vs)は、図3の制御を実行する毎に求めることができ、この場合、ステップS22では、直近で検出されたIs、Vs、Y(Vs)を用いればよい。
Figure JPOXMLDOC01-appb-M000012
 制御部5は、図4の制御のステップS22において上記算出方法で第1目標電圧値Vt1を算出する。制御部5は、第1目標電圧値Vt1が決定した後、電圧変換部3Cに放電動作を行わせる制御を継続しつつ第2電源部92の充電電圧(出力電圧)を監視する。具体的には、制御部5は、ステップS22の後、ステップS23において第2導電路22の電圧が上記第1目標電圧値Vt1以下となったか否かを繰り返し判定し、第2導電路22の電圧(具体的には、電圧検出部42の検出位置の電位)が上記第1目標電圧値Vt1以下となった場合(ステップS23でYesの場合)、ステップS24において電圧変換部3Cの放電動作を停止する。
 このように、制御部5は、始動スイッチがオフ状態となった場合(外部から入力される信号がIGオン信号からIGオフ信号に切り替わった場合)に第2電源部92の充電電圧を上記方法で設定された第1目標電圧値Vt1とするように充放電回路部3(放電回路)に放電動作を行わせる。そして、第2電源部92の充電電圧が第1目標電圧値Vt1となった場合、充放電回路部3の放電動作を停止させる。このように第2電源部92の充電電圧が第1目標電圧値Vt1のときに放電動作が停止するため、始動スイッチ70がオフ状態の間は、第2電源部92の充電電圧が第1目標電圧値Vt1以下且つ第1目標電圧値Vt1付近で維持される。
 次に、始動スイッチ70(イグニッションスイッチ)がオン状態のときに正常状態から異常状態に変化した場合の動作について説明する。
 始動スイッチ70がオン状態のときに第1電源部91からの電力供給の異常(例えば、第1電源部91付近での地絡発生や断線など)が生じ、第1電源部91から配線部83を介して配線部81に正常な電圧が印加されなくなると、第1導電路21に印加された電圧(+B電圧)が閾値Vthよりも大きい値から閾値Vth以下の値に変化する。制御部5は、始動スイッチ70がオン状態のときに第1導電路21の電圧を継続的に監視し、第1導電路21の電圧が閾値Vth以下となった場合、第1電源部91からの電力供給が異常状態であると判断し、第2モードの動作を行う。具体的には、電圧変換部3Cに対し上述した放電動作を行わせる。これにより、負荷94をバックアップすることができる。なお、配線部83に図示しないスイッチが設けられる場合、このスイッチをオフ状態に切り替えるようにして、配線部81と第1電源部91との間の通電を遮断してもよい。
 次に、本構成の効果を例示する。
 バックアップ装置1は、車両を始動させる始動スイッチ70がオフ状態であるときに、第2電源部92の充電電圧の目標電圧値である第1目標電圧値Vt1を、オン状態のときの目標電圧値(第2目標電圧値Vt2)よりも低く設定する。このように、車両動作停止中に第2電源部92の充電電圧を相対的に低く抑えることができるため、第2電源部92の劣化を抑制することができる。更には、車両動作停止中における第2電源部92の充電電圧の目標電圧値(第1目標電圧値Vt1)を単に低くするのではなく、スイッチがオン状態であるときの第2電源部92の目標電圧値(第2目標電圧値Vt2)と、充電回路3Aの充電能力を示す値と、予め定められた制限時間Nとに基づいて設定することができる。つまり、車両動作停止中の第2電源部92の目標電圧値(第1目標電圧値Vt1)を、その後にオン状態になったときに想定される充電状況や求められる制限時間Nに合わせてより適切に設定することができる。なお、数13の式において、入力電流Isと入力電圧Vsとコンバータ効率Y(Vs)とが充電回路3Aによる充電能力を示す値である。
 このように、オフ状態後の第2電源部92の目標電圧値(第1目標電圧値Vt1)について適正化が図られるため、車両動作開始後には第2電源部92の充電電圧を目標とする水準まで迅速に上昇させることができ、車両動作終了後には第2電源部92の充電電圧を適正なレベルまで低下させて劣化を抑制することができる。
 充電回路3Aは、第1電源部91に電気的に接続された第1導電路21に印加された電圧を降圧又は昇圧し、第2電源部92に電気的に接続された第2導電路22に印加する電圧変換部3Cを備える。更に、バックアップ装置1は、第1導電路21の電圧を検出する電圧検出部41と、第1導電路21の電流を検出する電流検出部31と、第2電源部92の温度を検出する温度検出部50と、電圧検出部41で検出された電圧に基づいて電圧変換部3Cの効率を算出する効率算出部と、温度検出部50で検出された温度に基づいて第2電源部92の容量Cを算出する容量算出部とを有する。決定部は、上述した数12の式を用い、電圧検出部41で検出された第1導電路21の電圧Vs(例えば、ステップS22開始時点での第1導電路21の電圧Vs)と、電流検出部31で検出された第1導電路21の電流Is(例えば、ステップS22開始時点での第1導電路21の電流Is)と、効率算出部で算出された電圧変換部3Cの効率(電圧変換部3Cが第1モードで動作する場合に上記電圧Vsによって定まるコンバータ効率Y(Vs))と、容量算出部で算出された第2電源部92の容量Cと、第2目標電圧値Vt2と、制限時間Nとに基づいて第1目標電圧値Vt1を決定するように機能する。
 このように構成されたバックアップ装置1は、始動スイッチ70がオフ状態であるときの第2電源部92の目標電圧値(第1目標電圧値Vt1)を、スイッチがオン状態であるときの第2電源部92の目標電圧値(第2目標電圧値Vt2)及び予め定められた制限時間Nに加えて、第1電源部91から第2電源部92への充電経路(第1導電路21)の電圧及び電流と、電圧変換部3Cの効率と、第2電源部92の容量Cとを反映して決定することができる。つまり、スイッチがオン状態となった後(車両始動後)に想定される充電状況をより具体的且つ細かく反映した上で、車両動作停止中の第2電源部92の目標電圧値(第1目標電圧値Vt1)をより一層適切に設定することができる。
 バックアップ装置1は、第2電源部92に対する要求値として予め定められた所定の継続出力時間Tと、第2電源部92において放電可能な下限値として予め定められた下限電圧Xと、放電回路3Bの放電能力を示す値(数4におけるVout、Iout)とに基づいて第2目標電圧値を決定する第2決定部を有する。具体的には、図5においてVaは、継続出力時間Tと放電回路3Bの放電能力を示す値(数4におけるVout、Iout)とに基づいて定まる電圧低下分(出力電圧Vout及び出力電流Ioutの放電を時間t(1)から時間t(n)までの時間Tだけ行った場合に時間Tで低下する電圧)であり、数1における積分項に相当する。Vt2は、Vaと下限電圧Xと第2電源部92の内部抵抗による最大電圧降下Vd(第2電源部92から流れる電流が電流I(t(n))のときの電圧降下)とに基づいてVt2=Vd+X+Vaの式で求めることができる。
 このように構成されたバックアップ装置1は、車両を始動させるスイッチがオフ状態であるときの第2電源部92の目標電圧値(第1目標電圧値Vt1)だけでなく、スイッチがオン状態であるときの目標電圧値(第2目標電圧値Vt2)についても、より適正に設定することができる。具体的には、第2電源部92に対する要求値として予め定められた所定の継続出力時間Tと、第2電源部92において放電可能な下限値として予め定められた下限電圧Xと、放電回路3Bの放電能力を示す値とに基づき、オン状態となった後に要求される時間や放電環境を具体的に反映した適切な設定が可能となる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 上述した実施例1では、第1電源部91に鉛バッテリを用いているが、この構成に限定されず、本明細書のいずれの例においても、鉛バッテリに代えて又は鉛バッテリと併用して第1電源部91に他の電源手段(リチウムイオン電池などの公知の他の蓄電手段や発電手段など)を用いてもよい。第1電源部91を構成する電源手段の数は1つに限定されず、複数の電源手段によって構成されていてもよい。
 上述した実施例1では、第2電源部92に電気二重層キャパシタ(EDLC)を用いているが、この構成に限定されず、本明細書のいずれの例においても、第2電源部92にリチウムイオン電池、リチウムイオンキャパシタ、ニッケル水素充電池などの他の蓄電手段を用いてもよい。また、第2電源部92を構成する蓄電手段の数は1つに限定されず、複数の蓄電手段によって構成されていてもよい。
 実施例1では、第2電源部92がバックアップ装置1の外部に設けられた構成を例示したが、第2電源部92がバックアップ装置1の一部として構成されていてもよい。
 実施例1では、電圧変換部3Cが充電回路3Aとしての機能と放電回路3Bとしての機能を有していたが、充電回路3Aと放電回路3Bとが別々の回路として構成されていてもよい。
 実施例1では、始動スイッチ70がオン状態であるときの第2電源部92の目標電圧値である第2目標電圧値Vt2を、上述した算出方法によって算出する例を示したが、第2目標電圧値Vt2を第2電源部92の満充電時の充電電圧よりも低い固定値としてもよい。
 実施例1では、始動スイッチ70がオン状態であるときの第2電源部92の目標電圧値である第2目標電圧値Vt2を、数1に基づいて算出する例を示したが、数1において最大電圧降下Vd以外の項を固定値として第2目標電圧値Vt2を算出してもよい。即ち、図5で示すVa及びXを固定値として、Vt2=Vd+X+Vaの式によって第2目標電圧値Vt2を算出してもよい。つまり、Vaの値は、上述した手法によってリアルタイムに算出してもよく、予め定められた固定値で近似してもよい。Vaをリアルタイムで算出する場合、実施例1で上述した算出方法以外の方法を用いてもよい。例えば、所定の時期に電圧変換部3Cによって出力電圧Vout及び出力電流Ioutの放電を下限電圧Xに達するまで行うととともにその放電時の時間経過と第2電源部の充電電圧との関係を監視するような計測モードを実行した上で、下限電圧Xに達した時点から時間Tだけ遡った時点での第2電源部92の充電電圧を求め、この充電電圧をVa+X、即ちV(t(1))としてもよい。固定値を用いる場合、Vaの値は、継続出力時間Tと放電回路3Bの放電能力を示す値(数4におけるVout、Iout)とに基づく固定値として予め決定しておけばよい。例えば、製品出荷前のバックアップ装置1において、放電開始前の第2電源部92の出力電圧がV(t(1))であるときに所定温度条件下で電圧変換部3Cによって出力電圧Vout及び出力電流Ioutの放電を時間Tだけ行った場合に時間Tが経過した時点で第2電源部92の出力電圧がXとなるような関係にあるV(t(1))を、上述したX+Vaに相当する固定値(近似値)として用いてもよい。
 1…車両用のバックアップ装置
 3A…充電回路
 3B…放電回路
 3C…電圧変換部
 5…制御部(決定部、第2決定部、効率算出部、容量算出部)
 21…第1導電路
 22…第2導電路
 31…電流検出部
 41…電圧検出部
 50…温度検出部
 91…第1電源部
 92…第2電源部
 100…車両用の電源システム

Claims (3)

  1.  第1電源部と少なくとも前記第1電源部からの電力供給が異常であるときに電力供給源となる第2電源部とを備えた車両用の電源システムにおいて前記第2電源部の充電及び放電を制御する車両用のバックアップ装置であって、
     前記第2電源部を充電する充電動作と前記第2電源部の充電を停止する充電停止動作とを行う充電回路と、
     前記第2電源部を放電する放電動作と前記第2電源部の放電を停止する放電停止動作とを行う放電回路と、
     車両を始動させる始動スイッチがオフ状態であるときの前記第2電源部の目標電圧値である第1目標電圧値を、前記始動スイッチがオン状態であるときの前記第2電源部の目標電圧値である第2目標電圧値と、前記充電回路による充電能力を示す値と、予め定められた制限時間とに基づいて、前記第2目標電圧値よりも低い値で決定する決定部と、
     前記始動スイッチがオン状態となった場合に前記第2電源部の充電電圧が前記第2目標電圧値に達するように前記充電回路に充電動作を行わせ、前記始動スイッチがオフ状態となった場合に前記第2電源部の充電電圧を前記決定部で決定した前記第1目標電圧値とするように前記放電回路に放電動作を行わせる制御部と、
    を有する車両用のバックアップ装置。
  2.  前記充電回路は、前記第1電源部に電気的に接続された第1導電路に印加された電圧を降圧又は昇圧し、前記第2電源部に電気的に接続された第2導電路に印加する電圧変換部を備え、
     更に、前記第1導電路の電圧を検出する電圧検出部と、
     前記第1導電路の電流を検出する電流検出部と、
     前記第2電源部の温度を検出する温度検出部と、
     前記電圧検出部で検出された電圧に基づいて前記電圧変換部の効率を算出する効率算出部と、
     前記温度検出部で検出された温度に基づいて前記第2電源部の容量を算出する容量算出部と、
    を有し、
     前記決定部は、前記電圧検出部で検出された前記第1導電路の電圧と、前記電流検出部で検出された前記第1導電路の電流と、前記効率算出部で算出された前記電圧変換部の効率と、前記容量算出部で算出された前記第2電源部の容量と、前記第2目標電圧値と、前記制限時間とに基づいて、前記第1目標電圧値を決定する請求項1に記載の車両用のバックアップ装置。
  3.  前記第2電源部に対する要求値として予め定められた所定の継続出力時間と、前記第2電源部において放電可能な下限値として予め定められた下限電圧と、前記放電回路の放電能力を示す値とに基づいて前記第2目標電圧値を決定する第2決定部を有する請求項1又は請求項2に記載の車両用のバックアップ装置。
PCT/JP2017/035126 2016-10-19 2017-09-28 車両用のバックアップ装置 WO2018074168A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/341,487 US10910875B2 (en) 2016-10-19 2017-09-28 Vehicle backup device
CN201780061507.XA CN109804524B (zh) 2016-10-19 2017-09-28 车辆用备用装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016204865A JP6673138B2 (ja) 2016-10-19 2016-10-19 車両用のバックアップ装置
JP2016-204865 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074168A1 true WO2018074168A1 (ja) 2018-04-26

Family

ID=62018337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035126 WO2018074168A1 (ja) 2016-10-19 2017-09-28 車両用のバックアップ装置

Country Status (4)

Country Link
US (1) US10910875B2 (ja)
JP (1) JP6673138B2 (ja)
CN (1) CN109804524B (ja)
WO (1) WO2018074168A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127412B2 (ja) * 2018-08-02 2022-08-30 株式会社オートネットワーク技術研究所 車載用のバックアップ電源制御装置及び車載用のバックアップ電源装置
CN109466478B (zh) * 2018-12-21 2020-10-09 鄂尔多斯市普渡科技有限公司 用于无人驾驶车的分散式供电系统
WO2021005924A1 (ja) * 2019-07-05 2021-01-14 パナソニックIpマネジメント株式会社 バックアップ電源システム
CN117944598A (zh) * 2022-10-28 2024-04-30 神基科技股份有限公司 车辆电力管理系统及其运作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166534A (ja) * 2004-12-03 2006-06-22 Densei Lambda Kk 電源装置
JP2008236910A (ja) * 2007-03-20 2008-10-02 Fuji Heavy Ind Ltd 蓄電デバイスの制御装置
JP2009171694A (ja) * 2008-01-15 2009-07-30 Nisshinbo Holdings Inc 充電装置
WO2013125170A1 (ja) * 2012-02-22 2013-08-29 パナソニック株式会社 バックアップ電源装置とそれを搭載した自動車
JP2015009792A (ja) * 2013-07-02 2015-01-19 本田技研工業株式会社 車両用電源装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298503A (ja) * 1994-04-20 1995-11-10 Fuji Electric Co Ltd 無停電電源装置用バッテリーの良否判定装置
JP2001268787A (ja) * 2000-01-13 2001-09-28 Toyota Motor Corp 電源回路
JP3969341B2 (ja) 2003-03-03 2007-09-05 松下電器産業株式会社 車両用電源装置
JP4873106B2 (ja) * 2009-06-30 2012-02-08 パナソニック株式会社 電源装置
JP2012249369A (ja) * 2011-05-26 2012-12-13 Toyota Industries Corp 二次電池電力供給起動回路及びセルバランス装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166534A (ja) * 2004-12-03 2006-06-22 Densei Lambda Kk 電源装置
JP2008236910A (ja) * 2007-03-20 2008-10-02 Fuji Heavy Ind Ltd 蓄電デバイスの制御装置
JP2009171694A (ja) * 2008-01-15 2009-07-30 Nisshinbo Holdings Inc 充電装置
WO2013125170A1 (ja) * 2012-02-22 2013-08-29 パナソニック株式会社 バックアップ電源装置とそれを搭載した自動車
JP2015009792A (ja) * 2013-07-02 2015-01-19 本田技研工業株式会社 車両用電源装置

Also Published As

Publication number Publication date
CN109804524B (zh) 2023-05-05
JP2018068019A (ja) 2018-04-26
JP6673138B2 (ja) 2020-03-25
US20190305587A1 (en) 2019-10-03
US10910875B2 (en) 2021-02-02
CN109804524A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2018074168A1 (ja) 車両用のバックアップ装置
US9444285B2 (en) Charge controller for vehicle
JP4807058B2 (ja) 車両用電源装置
JP6698599B2 (ja) 地絡検出装置
JP5682433B2 (ja) 充電制御システム
JP6113145B2 (ja) バランス補正装置及び蓄電システム
JP4967526B2 (ja) 電源装置の制御回路、電源装置及びその制御方法
CN108776244B (zh) 电子负载
WO2010138948A2 (en) Buck-boost control circuit
JP5814056B2 (ja) 電力変換装置
WO2018180333A1 (ja) 車載用電源システムの制御装置及び車載用電源装置
US8481220B2 (en) Fuel cell power supply
JP5984700B2 (ja) 直流電源装置、蓄電池の充電方法及び直流電源装置の監視制御装置
JP2019221063A5 (ja)
JP6187180B2 (ja) 電力変換システム
JP5445192B2 (ja) 電源装置
JP6969505B2 (ja) 車載用の電源制御装置および車載用電源システム
JP5050742B2 (ja) 瞬時低下電圧補償装置の直流待機電圧補償方法
JP7101506B2 (ja) 電池劣化判定装置
JP6635298B2 (ja) 充放電装置及び電源装置
JPWO2015190421A1 (ja) 電子制御装置
JP2019041497A (ja) 電源管理装置
JP5304279B2 (ja) 蓄電装置
JP7042413B2 (ja) 内部抵抗検出装置及び電源装置
JP2012105467A (ja) 充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863137

Country of ref document: EP

Kind code of ref document: A1