WO2018072547A1 - 从含液晶铟精矿中回收铟的方法 - Google Patents

从含液晶铟精矿中回收铟的方法 Download PDF

Info

Publication number
WO2018072547A1
WO2018072547A1 PCT/CN2017/098087 CN2017098087W WO2018072547A1 WO 2018072547 A1 WO2018072547 A1 WO 2018072547A1 CN 2017098087 W CN2017098087 W CN 2017098087W WO 2018072547 A1 WO2018072547 A1 WO 2018072547A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
liquid crystal
leaching
concentrate
recovering
Prior art date
Application number
PCT/CN2017/098087
Other languages
English (en)
French (fr)
Inventor
汪洋
樊红杰
岳喜龙
朱炳龙
许振明
樊飞
Original Assignee
扬州宁达贵金属有限公司
江苏理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州宁达贵金属有限公司, 江苏理工学院 filed Critical 扬州宁达贵金属有限公司
Publication of WO2018072547A1 publication Critical patent/WO2018072547A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention belongs to the field of resource regeneration technology, and in particular to a technique for recovering metal indium in a liquid crystal indium concentrate which is physically concentrated in a waste liquid crystal display.
  • LCD Liquid crystal display
  • the waste is passed The two outer suction cups on the LCD screen separate the display.
  • This physical method divides the waste liquid crystal screen into glass, polarizer and indium concentrate containing liquid crystal.
  • the liquid crystal indium concentrate contains impurities such as liquid crystal, glass and tin.
  • the grade of the indium concentrate is improved, and the indium concentrate is re-leached, extracted, replaced, and electrolyzed to obtain crude indium.
  • the advantage is that the recovery rate of indium is high and the process is simple.
  • the gas which is decomposed by the calcining and decomposing liquid crystal needs to have a rinsing and exhaust gas treatment absorption device because of insufficient partial oxidation, which increases the environmental protection cost.
  • the recovery of indium is subjected to an extraction process, and the treatment pressure of COD in the sewage becomes large. Therefore, we need to continue to seek new technological improvements and breakthroughs.
  • the technical problem to be solved by the present invention is to propose a more environmentally friendly and efficient method for recovering indium from a liquid crystal indium concentrate.
  • the present invention includes the following steps:
  • the liquid crystal indium concentrate powder is mixed with caustic soda and calcined at a temperature of 800 to 850 ° C to obtain a calcined material;
  • Acid leaching Under stirring, the pressure filtration is immersed in a sulfuric acid aqueous solution of 90 to 95 ° C until the pH of the leaching solution is 1 to 2, then cooled, and separated by solid-liquid separation to obtain an acidic leach solution;
  • the invention has the advantages of high recovery rate of indium metal, simple process operation, small equipment investment, low production cost, and no secondary pollution.
  • the process of the invention adopts a combination of fire and wet process, high production efficiency, simple indium recovery process, low cost, and complete metal recovery, and the recovery rate of indium is more than 95%.
  • the invention has obvious cleaning characteristics: only caustic soda, sulfuric acid, zinc and the like are used in the auxiliary material, wherein the zinc-containing replacement residue is used for the production of by-product zinc sulfate. Moreover, the present invention does not require an indium extraction process, and eliminates the generation of pollutants such as water-soluble organic substances in the organic phase, so that the environmentally friendly treatment process of sewage is simpler.
  • the moisture content of the material after drying is less than 2%.
  • the purpose of controlling moisture is to facilitate the subsequent ball milling (dry grinding).
  • the moisture content below 2% can avoid the agglomeration of the material ball mill and enhance the effect of dry grinding.
  • the liquid crystal indium concentrate-containing powder is sieved through 150 mesh.
  • the liquid crystal indium concentrate powder is sieved through 150 mesh to achieve a uniform mixing effect of the powder and the granular caustic soda; the powder particle size is too large, the mixing uniformity is insufficient; the particle size is too small, and the ball milling efficiency is low.
  • the mixing weight ratio of the liquid crystal indium concentrate powder to the granular caustic soda is 1:0.8 ⁇ 0.9
  • This ratio is the theoretical value plus the minimum margin, and has been verified by many tests.
  • the ratio can fully decompose and convert the liquid crystal and glass in the material, and ensure that the amount of caustic soda is the smallest; the amount of caustic soda is lower than this ratio. Material decomposition and conversion are incomplete; higher than this ratio, resulting in waste.
  • the mass percentage of sulfuric acid in the aqueous sulfuric acid solution used for leaching is 12 ⁇ 3 ⁇ 4 ⁇ 20%. This ratio is obtained from the test data. Below this concentration, the leaching of indium is incomplete, and above this concentration, waste of sulfuric acid is caused.
  • the mixing weight ratio of the caustic soda and the dehydrated indium block is 0.4 to 0.5:1. This ratio is verified by multiple tests.
  • the purpose of caustic soda addition In the process of indium casting, an alkali layer protective layer is formed on the surface of indium, which absorbs the mixed floating enthalpy and protects the indium from being oxidized by air, thereby obtaining the maximum. Direct yield of cast indium. If the amount of caustic soda is lower than this ratio, the direct yield of indium decreases; above this ratio, waste is caused.
  • crude indium is taken after step 8) for refining and purification.
  • the specific method of refining and purifying is: using a mixed solution of sodium chloride and indium sulfate as the electrolyte, the indium concentration of the electrolyte is 70 ⁇ 80g / L, the pH of the electrolyte is 1.5 ⁇ 2.5, the electrolyte The concentration of sodium chloride is 70 ⁇ 100g/L; the crude indium is used as the anode and the titanium plate is used as the cathode; the anode and the anode are immersed in the electrolytic cell with the electrolyte, the voltage is less than 150mV, and the current density is 70 ⁇ 100A/m 2
  • Processing raw materials The liquid crystal indium concentrate containing the liquid crystal display after physical enrichment is tested, wherein the mass percentage of indium is 4 to 6%.
  • the operation steps are: low temperature drying, ball milling, alkali baking, water leaching, pressure filtration, acid leaching, zinc plate replacement, melt casting, and indium purification.
  • liquid crystal indium concentrate is used in an electric drying oven for low temperature drying, control temperature 80 ⁇ 9
  • Ball milling The dried material is dry-milled by a ball mill, and after grinding, 150 mesh is obtained, and a liquid crystal indium concentrate powder is obtained.
  • the liquid crystal indium concentrate powder and the granular caustic soda are mixed in a weight ratio of 1:0.8 ⁇ 0.9, after being uniformly mixed, and then placed in a stainless steel tray, placed in a box type resistance furnace at 800 Under the temperature of ⁇ 850 °C, the temperature is reduced by 6 hours of high temperature roasting, and the glass is converted into sodium silicate by the addition of alkali roasting.
  • the tin oxide is converted into sodium stannate, and the liquid crystal is decomposed by high temperature and high alkali oxidation.
  • the calcined material is placed in the first leaching tank, heated by tap water, the mixing ratio of the material and water is 1:2.5, the temperature of the mixture reaches 90 to 95 ° C Under mechanical agitation The leaching treatment was carried out, and the daytime was 6 hours.
  • pressure filtration the leaching of the bottom of the pool liquid using a filter press for solid-liquid separation, respectively, the filtrate and pressure filtration.
  • Acid leaching The pressure filtration obtained in step 5 is placed in the second leaching tank, and added to the mixed leaching solution composed of water and 98% concentrated sulfuric acid to use the mass percentage of sulfuric acid in the leached sulfuric acid aqueous solution. It is 12% ⁇ 20%. The temperature is raised and the temperature is controlled at 90 ⁇ 95 °C, mechanically leached for 4 to 5 hours, and the end point of the control leaching is 1 ⁇ 2.
  • the mixture is cooled, and the acid leaching solution and the leaching solution are respectively obtained by solid-liquid separation.
  • the main component of the leaching is silicon, which can be used as a brick raw material.
  • zinc plate replacement first add sodium hydroxide to the acidic leachate to adjust the pH of the solution to 2 ⁇ 2.5, and then into the solution into the zinc plate or zinc block, heating controlled to a temperature of 85 ⁇ 90 ° C for the displacement reaction .
  • the displacement reaction is a chemical reaction in which the element reacts with the compound to form additional elements and compounds, including the reaction of the metal with the metal salt.
  • Metal replacement is a redox process in which a metal displaces another metal ion from solution. The metal as a displacer is oxidized into an ionic form into the solution, and the replaced metal ion is reduced to a metallic state.
  • the reaction of indium in the zinc plate displacement solution belongs to the metal displacement reaction, and the reaction formula is:
  • the displacement reaction is terminated in the liquid phase with an indium concentration of ⁇ 20 ug/mL, and after cooling, the layer is allowed to stand for separation, and the sponge indium and the residual liquid are respectively obtained.
  • the residual liquid can be recovered for sale of zinc sulfate.
  • the indium sulfate solution is disposed as an electrolyte, wherein the indium concentration is 70 to 80 g/L, the pH is 1.5 to 2.5, and the sodium chloride is 70 to 100 g/L.
  • the crude indium is used as the anode, the titanium plate is used as the cathode, the anode and the anode are immersed in the electrolytic cell having the electrolyte, and the electrolysis is performed under the condition of a voltage of less than 150 mV and a current density of 70 to 100 A/m 2 , and the electrolytic refining is carried out into the tank.
  • Week For 7 days the crude indium is subjected to a conventional electrolytic refining process to obtain 4N refined indium, and the product 4N indium ingot meets the requirements specified in the " YS/T2 -2009" standard.

Abstract

从含液晶铟精矿中回收铟的方法,属于资源再生技术领域,包括低温烘干、球磨、加碱焙烧、加水浸出、压滤、酸性浸出、锌板置换、熔铸、铟的提纯等过程,该方法具有铟的直收率高、工艺操作简单、设备投资小、生产成本低、不产生二次污染等优点。

Description

从含液晶铟精矿中回收铟的方法 技术领域
[0001] 本发明属于资源再生技术领域, 特别是对废液晶显示屏中物理富集的含液晶铟 精矿中的金属铟的回收技术。
背景技术
[0002] 液晶显示器 (LCD) 从 20世纪 90年代幵始迅速发展,并逐步走向成熟, 由于其 具有清晰度高、 图像色彩好、 环保、 省电、 轻薄及便于携带等优点, 已被广泛 应用于家用电器、 电脑和通信产品中。
[0003] 目前的液晶显示屏大多是利用环氧树脂将两片刻有铟电极的玻璃基板密封, 注 入液晶后, 在两块玻璃基板外侧压贴偏光片, 从而构成一个完整的液晶显示器 件。 因此回收和处理废液晶屏的关键在于如何将偏光片、 玻璃基板以及用于刻 制铟电极的 ITO膜三者有效地分离。
[0004] 对于废液晶显示屏的回收已经有了相关的报道, 例如台湾的秦文隆将废弃液晶 显示器面板破幵后, 置入密闭炉中进行处理, 分离镀膜氧化物和玻璃片。 但采 用秦文隆的分离方法铟的回收率低于 60%, 铟精矿的富集比低, 由于采用火法挥 发、 能耗过大, 生产工艺不经济, 无法实现工业化。
[0005] 日本的村谷利明则是将含有氧化铟锡的废 LCD粉碎, 利用酸将氧化铟锡溶解, 添加置换金属, 使铟析出; 台湾的学者 Kae-Long L in利用液晶显示器的玻璃废 物代替陶土, 制取生态砖。 村谷利明的分离方法是直接将废液晶屏作为铟生产 原料, 缺少前段的富集过程, 而废液晶屏中铟的含量仅为 300〜600ug/g, 所以直 接酸溶的结果就是铟收率低、 浸出液铟浓度低、 生产成本过高, 无法实现工业 化。
[0006] 台湾的学者 Kae-Long L in提出的方法利用显示器的玻璃废物代替陶土, 制取生 态砖是可行的, 但是对于铟的回收没有设计切实可行的方案, 未能将废液晶屏 实现全面的综合回收。
[0007] 在申请号为 201510551451.9的一种将废液晶显示屏进行分体的方法中通过在废 液晶显示屏的两个外侧布置的吸盘使显示屏分离。 这种物理的方法将废液晶屏 分为玻璃、 偏光片和含液晶的铟精矿, 含液晶铟精矿中因为含有液晶、 玻璃、 锡等杂质。 后续处理中如采用简单焙烧方式分解液晶的同吋提高铟精矿的品位 , 焙后铟精矿再浸出、 萃取、 置换、 电解得到粗铟, 优点是铟的回收率高, 工 艺简单。 但是其缺点一是焙烧吋分解液晶的气体因为部分氧化不充分需要有淋 洗和尾气处理吸收装置, 增加了环保成本, 二是铟的回收要经过萃取工序, 污 水中 COD的处理压力变大。 故需要继续寻求新的技术改进和突破。
技术问题
[0008] 本发明所要解决的技术问题是提出一种更环保、 高效的从含液晶铟精矿中回收 铟的方法。
问题的解决方案
技术解决方案
[0009] 本发明包括以下步骤:
[0010] 1) 低温烘干: 将含液晶的铟精矿经 80〜90°C温度进行烘干, 取得干燥后物料
[0011] 2) 球磨: 将干燥后物料干磨后过筛, 取得含液晶铟精矿粉料;
[0012] 3) 加碱焙烧: 将含液晶铟精矿粉料与烧碱混合后在 800〜850°C温度条件下进 行焙烧, 取得焙烧后的物料;
[0013] 4) 加水浸出: 将焙烧后的物料在 90〜95°C水中浸出后, 取得浸出池底的澄液
[0014] 5) 压滤: 将浸出池底的澄液压滤后, 取得压滤澄;
[0015] 6) 酸性浸出: 搅拌条件下, 将压滤澄置于 90〜95°C的硫酸水溶液中浸出至浸 出液的 pH值为 1〜2后冷却, 经固液分离, 取得酸性浸出液;
[0016] 7) 锌板置换: 将酸性浸出液的 pH值调至 2〜2.5后与锌板或锌块混合加热至温 度 85〜90°C进行置换反应; 置换反应至液相中铟浓度≤20ug/mL吋终止, 降温后 静置分层, 取得海绵铟, 经压滤后, 取得去水铟块;
[0017] 8) 熔铸: 将片状烧碱和去水铟块混合置于 400〜450°C的温度条件下熔铸, 取 得粗铟。 发明的有益效果
有益效果
[0018] 本发明具有铟金属回收率高、 工艺操作简单、 设备投资小、 生产成本低、 不产 生二次污染等优点。
[0019] 具体优越性分析如下:
[0020] 1、 通过低温烘干、 球磨和加碱焙烧, 将玻璃和氧化锡等转化成能够水溶的锡 酸钠和硅酸钠; 并且在有氧气的作用下, 通过高温高碱将液晶安全分解, 既无 害化的分解了液晶, 又为后序铟、 锡的回收提供的更好的前提条件。
[0021] 2、 通过加水浸出、 压滤等工序, 将硅锡转化过程中加入的大量碱与铟进行有 效分离的同吋硅锡也与铟得到了有效分离, 大大的提高了水浸出澄中铟的品位 , 这样后序铟的提取就可以省去了 P204萃取铟的环节, 更加高效低本和环保。
[0022] 3、 本发明工艺采用火湿法联合工艺, 生产效率高, 铟回收工艺简单, 成本低 ; 且金属回收彻底, 铟的回收率大于 95%。
[0023] 4、 本发明具有明显的清洁特征: 辅材中仅使用烧碱、 硫酸、 锌等, 其中含锌 的置换残液用于副产品硫酸锌的生产。 而且本发明不需要铟的萃取工序, 杜绝 了萃取有机相中水溶性有机物等污染物的产生, 因此污水环保处理工艺更简单
[0024] 进一步地, 本发明所述步骤 1) 中, 干燥后物料的含水质量百分数低于 2%。 控 制水分的目的是为了便于后续的球磨 (干磨) , 含水分低于 2%可避免物料球磨 吋的出现结团现象, 增强干磨的效果。
[0025] 所述步骤 2) 中, 含液晶铟精矿粉料过筛 150目。 含液晶铟精矿粉料过筛 150目 可以达到均匀理想的粉料和粒状烧碱的混合效果; 粉料粒度过大, 混合均匀度 不够; 粒度过小, 球磨效率低。
[0026] 所述步骤 3) 中, 所述含液晶铟精矿粉料与粒状烧碱的混合重量比为 1:0.8〜0.9
。 此比例为理论值加上最小余量, 并通过多次试验验证, 使用此比例能充分将 物料中的液晶和玻璃等分解和转化, 同吋保证用烧碱量最小; 烧碱用量低于此 比例, 物料分解和转化不完全; 高于此比例, 造成浪费。
[0027] 所述步骤 6) 中, 用于浸出的硫酸水溶液中硫酸的质量百分数为 12<¾〜20%。 此比例为试验数据所得, 低于此浓度, 铟的浸出不完全, 高于此浓度, 造成硫 酸的浪费。
[0028] 所述步骤 8) 中, 所述烧碱和去水铟块的混合重量比为 0.4〜0.5:1。 此比例通过 多次试验验证而得, 烧碱加入的目的: 铟熔铸过程中会在铟的表面形成碱澄层 保护层, 吸收混合浮澄的同吋, 保护铟不被空气氧化, 从而得到最大的铸铟直 收率。 烧碱用量低于此比例, 铟的直收率下降; 高于此比例, 造成浪费。
[0029] 为了得到 4N精铟, 在步骤 8) 后取粗铟进行精炼提纯。
[0030] 精炼提纯的具体方法是: 以氯化钠和硫酸铟的混合溶液作为电解液, 所述电解 液中铟浓度为 70〜80g/L, 电解液的 pH值为 1.5〜2.5, 电解液中氯化钠浓度为 70 〜100g/L; 以粗铟作为阳极, 以钛板作为阴极; 将阴、 阳极浸入具有电解液的电 解槽中, 在电压小于 150mV, 电流密度为 70〜100A/m 2
的条件下进行电解得到 4N精铟。
实施该发明的最佳实施例
本发明的最佳实施方式
[0031] 处理原料: 将废液晶显示屏经物理富集后的含液晶铟精矿, 经测试, 其中含铟 质量百分数为 4〜6%。
[0032] 操作步骤有: 低温烘干、 球磨、 加碱焙烧、 加水浸出、 压滤、 酸性浸出、 锌板 置换、 熔铸、 铟的提纯。
[0033] 1、 低温烘干: 将含液晶铟精矿采用电热干燥箱进行低温干燥, 控制温度 80〜9
0°C, 吋间 4〜6h, 取得含水质量百分数低于 2%的干燥后物料。
[0034] 2、 球磨: 将干燥后物料采用球磨机干磨, 磨后过筛 150目, 取得含液晶铟精矿 粉料。
[0035] 3、 加碱焙烧: 将含液晶铟精矿粉料与粒状烧碱按 1:0.8〜0.9的重量比混合, 经 搅拌均匀后装入不锈钢料盘, 放入箱型电阻炉中在 800〜850°C温度条件下进行恒 温 6小吋高温焙烧转化分解, 通过加碱焙烧将玻璃转换成硅酸钠等, 氧化锡转化 成锡酸钠, 同吋液晶被高温高碱氧化分解。
[0036] 4、 加水浸出: 将焙烧后的物料放入第一浸出池中, 加入自来水加热, 物料和 水的混合重量比为 1:2.5, 在混合体的温度达 90〜95°C的条件、 机械搅拌的条件下 进行浸出处理, 吋间为 6小吋。
[0037] 将浸出处理后的溶液静置冷却 12小吋以上, 分别取得上清液和少量浸出池底的 澄液。
[0038] 5、 压滤: 将浸出池底的澄液使用压滤机进行固液分离, 分别取得滤出液和压 滤澄。
[0039] 6、 酸性浸出: 将步骤 5取得的压滤澄放入第二浸出池中, 加入由水和 98%浓硫 酸组成的混合浸出液中, 以使用于浸出的硫酸水溶液中硫酸的质量百分数为 12% 〜20%。 升温并控制温度为 90〜95°C, 机械搅拌浸出 4〜5小吋, 控制浸出终点 p H为 1〜2。
[0040] 浸出结束后冷却, 经固液分离分别得到酸性浸出液和浸出澄。
[0041] 浸出澄主成分为硅, 可作为制砖原料。
[0042] 7、 锌板置换: 先向酸性浸出液中加入氢氧化钠调整溶液的 pH至 2〜2.5, 然后 向溶液中投入锌板或锌块, 加热控至温度 85〜90°C进行置换反应。 置换反应是单 质与化合物反应生成另外的单质和化合物的化学反应, 包括金属与金属盐的反 应。 金属置换是一种金属从溶液中将另一种金属离子置换出来的氧化还原过程 。 此吋作为置换剂的金属被氧化呈离子形态进入溶液中, 被置换的金属离子被 还原呈金属态析出。 锌板置换溶液中铟的反应属于金属置换反应, 反应式为:
[0043] 3Zn十 2In 3+=3 Zn 2+十 2 In
[0044] 置换反应至液相中铟浓度≤20ug/mL吋终止, 降温后静置分层, 分别取得海绵 铟和残液。
[0045] 残液可回收硫酸锌出售。
[0046] 8、 熔铸: 将海绵铟用机械压板去水后, 加片碱覆盖熔铸, 其中片碱和去水后 的海绵铟的混合重量比为 0.4〜0.5:1, 熔铸控制温度 400〜450°C, 得到含铟量大 于 99.5%的粗铟。
[0047] 9、 粗铟的精炼提纯: 配置硫酸铟溶液作为电解液, 其中铟浓度为 70〜80g/L, pH值为 1.5〜2.5, 氯化钠 70〜100g/L。
[0048] 以粗铟作为阳极, 钛板作为阴极, 将阴、 阳极浸入具有电解液的电解槽中, 在 电压小于 150mV、 电流密度 70〜100A/m 2的条件下进行电解, 电解精炼进出槽周 为 7天, 粗铟经过传统的电解精炼工序得到 4N精铟, 产品 4N铟锭符合 《YS/T2-2009》 标准中规定的要求。

Claims

权利要求书
[权利要求 1] 从含液晶铟精矿中回收铟的方法, 其特征在于包括以下步骤:
1) 低温烘干: 将含液晶的铟精矿经 80〜90°C温度进行烘干, 取得干 燥后物料;
2) 球磨: 将干燥后物料干磨后过筛, 取得含液晶铟精矿粉料;
3) 加碱焙烧: 将含液晶铟精矿粉料与粒状烧碱混合后在 800〜850°C 温度条件下进行焙烧, 取得焙烧后的物料;
4) 加水浸出: 将焙烧后的物料在 90〜95°C水中浸出后, 取得浸出池 底的澄液;
5) 压滤: 将浸出池底的澄液压滤后, 取得压滤澄;
6) 酸性浸出: 搅拌条件下, 将压滤澄置于 90〜95°C的硫酸水溶液中 浸出, 浸出液的终点 pH值为 1〜2, 冷却后, 经固液分离, 取得酸性 浸出液;
7) 锌板置换: 将酸性浸出液的 pH值调至 2〜2.5后与锌板或锌块混合 加热至温度 85〜90°C进行置换反应; 置换反应至液相中铟浓度≤20ug/ mL吋终止, 降温后静置分层, 取得海绵铟, 经压滤后, 取得去水铟 块;
8) 熔铸: 将片状烧碱和去水铟块混合置于 400〜450°C的温度条件下 熔铸, 取得粗铟。
[权利要求 2] 根据权利要求 1所述从含液晶铟精矿中回收铟的方法, 其特征在于所 述步骤 1) 中, 干燥后物料的含水质量百分数低于 2%。
[权利要求 3] 根据权利要求 1所述从含液晶铟精矿中回收铟的方法, 其特征在于所 述步骤 2) 中, 含液晶铟精矿粉料过筛 150目。
[权利要求 4] 根据权利要求 1所述从含液晶铟精矿中回收铟的方法, 其特征在于所 述步骤 3) 中, 所述含液晶铟精矿粉料与粒状烧碱的混合重量比为 1:0.
[权利要求 5] 根据权利要求 1所述从含液晶铟精矿中回收铟的方法, 其特征在于所 述步骤 6) 中, 用于浸出的硫酸水溶液中硫酸的质量百分数为 12%〜2 0%。
根据权利要求 1所述从含液晶铟精矿中回收铟的方法, 其特征在于所 述步骤 8) 中, 所述烧碱和去水铟块的混合重量比为 0.4〜0.5:1。 根据权利要求 1或 2或 3或 4或 5或 6所述从含液晶铟精矿中回收铟的方法 , 其特征在于在步骤 8) 后取粗铟进行精炼提纯。
根据权利要求 7所述从含液晶铟精矿中回收铟的方法, 其特征在于粗 铟进行精炼提纯吋, 以氯化钠和硫酸铟的混合溶液作为电解液, 所述 电解液中铟浓度为 70〜80g/L, 电解液的 pH值为 1.5〜2.5, 电解液中 氯化钠浓度为 70〜100g/L; 以粗铟作为阳极, 以钛板作为阴极; 将阴 、 阳极浸入具有电解液的电解槽中, 在电压小于 150mV, 电流密度为 70〜 100A/m 2的条件下进行电解得到 4N精铟。
PCT/CN2017/098087 2016-10-17 2017-08-18 从含液晶铟精矿中回收铟的方法 WO2018072547A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610903763.6A CN106282610A (zh) 2016-10-17 2016-10-17 从含液晶铟精矿中回收铟的方法
CN201610903763.6 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018072547A1 true WO2018072547A1 (zh) 2018-04-26

Family

ID=57718401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098087 WO2018072547A1 (zh) 2016-10-17 2017-08-18 从含液晶铟精矿中回收铟的方法

Country Status (2)

Country Link
CN (1) CN106282610A (zh)
WO (1) WO2018072547A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282610A (zh) * 2016-10-17 2017-01-04 扬州宁达贵金属有限公司 从含液晶铟精矿中回收铟的方法
CN108796246A (zh) * 2017-04-26 2018-11-13 昆明寰世科技开发有限公司 一种从铜浮渣中提铟的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157646A (zh) * 2011-12-14 2013-06-19 深圳市格林美高新技术股份有限公司 一种废旧液晶显示器的综合处理方法
US20150292058A1 (en) * 2012-11-30 2015-10-15 Korea Research Institute Of Chemical Technology Method for recovering indium from indium containing solution or mixture
CN105063364A (zh) * 2015-09-02 2015-11-18 扬州宁达贵金属有限公司 从废液晶显示屏中回收铟的方法
CN105400957A (zh) * 2015-12-03 2016-03-16 四川长虹电器股份有限公司 从废液晶显示器中电解回收高纯铟的方法
CN106282610A (zh) * 2016-10-17 2017-01-04 扬州宁达贵金属有限公司 从含液晶铟精矿中回收铟的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946026B (zh) * 2008-02-12 2012-04-18 Jx日矿日石金属株式会社 从izo废料中回收有价值金属的方法
CN101525693B (zh) * 2009-04-17 2011-02-09 深圳市中金岭南有色金属股份有限公司韶关冶炼厂 含砷铟锗低品位物料的硫化及还原氧化富集方法
CN101705378B (zh) * 2009-12-01 2011-08-03 南京中锗科技股份有限公司 从含锑碲铟锗银的复杂合金中综合回收有价金属方法
CN103757438A (zh) * 2012-02-23 2014-04-30 永兴县华鑫铅锡有限责任公司 从锡铅渣中回收锡并富集铟的方法
JP6026332B2 (ja) * 2013-03-25 2016-11-16 Jx金属株式会社 IGZO系焼結体からのIn−Ga−Zn酸化物の回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157646A (zh) * 2011-12-14 2013-06-19 深圳市格林美高新技术股份有限公司 一种废旧液晶显示器的综合处理方法
US20150292058A1 (en) * 2012-11-30 2015-10-15 Korea Research Institute Of Chemical Technology Method for recovering indium from indium containing solution or mixture
CN105063364A (zh) * 2015-09-02 2015-11-18 扬州宁达贵金属有限公司 从废液晶显示屏中回收铟的方法
CN105400957A (zh) * 2015-12-03 2016-03-16 四川长虹电器股份有限公司 从废液晶显示器中电解回收高纯铟的方法
CN106282610A (zh) * 2016-10-17 2017-01-04 扬州宁达贵金属有限公司 从含液晶铟精矿中回收铟的方法

Also Published As

Publication number Publication date
CN106282610A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN109775678B (zh) 废旧磷酸铁锂电池中制备电池级磷酸铁和工业级磷酸锂的方法
CN107653378A (zh) 一种废旧镍钴锰锂离子电池中有价金属的回收方法
EP2312686B1 (en) Method for implementing full cycle regeneration of waste lead acid battery
CN102560535B (zh) 一种湿法回收废铅酸蓄电池填料中铅的方法
WO2008053617A1 (fr) Procédé pour recueillir un métal de valeur à partir de fragments d&#39;ito
CN104393364A (zh) 一种从废旧铅酸电池直接湿法制备PbO的方法
CN108823420A (zh) 一种冶金渣中脱除氯的方法
CN102515223A (zh) 一种高效综合利用高铁铝土矿的方法
CN103103356B (zh) 从ito废靶材中回收粗铟、锡的工艺
CN112110466B (zh) 一种去除粉煤灰及其中间产物中铁杂质的方法
CN109167118A (zh) 磷酸铁锂电池电极材料的综合利用方法
CN104694750A (zh) 一种环保型氧化钇免皂化萃取方法
CN109957655A (zh) 一种从ito废靶中提取铟和锡的工艺方法
WO2018072547A1 (zh) 从含液晶铟精矿中回收铟的方法
CN104711426A (zh) 一种ito废靶经还原电解提取铟锡的方法
CN109911909A (zh) 一种钴酸锂正极材料制备过程中废弃匣钵的回收处理方法
CN102628105B (zh) 一种综合回收利用精铝生产过程中含钡废渣的方法
CN106542506A (zh) 一种从沉碲废液中回收硒的方法
CN108950218A (zh) 一种从废旧印刷线路板中回收金、银和铜的方法
CN106756060A (zh) 一种金属铟的回收方法
CN110759364A (zh) 利用粗磷酸锂制备高纯碳酸锂的方法
CN106148690B (zh) 一种锗硅分离方法
CN101307470A (zh) 用含锂废弃物制备铝电解电解质添加剂的方法
CN108425017B (zh) 从铜铟镓硒废电池芯片中回收有价金属的方法
CN113603119B (zh) 一种从废旧磷酸铁锂材料回收锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861221

Country of ref document: EP

Kind code of ref document: A1