WO2018070805A1 - 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물 - Google Patents

원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물 Download PDF

Info

Publication number
WO2018070805A1
WO2018070805A1 PCT/KR2017/011257 KR2017011257W WO2018070805A1 WO 2018070805 A1 WO2018070805 A1 WO 2018070805A1 KR 2017011257 W KR2017011257 W KR 2017011257W WO 2018070805 A1 WO2018070805 A1 WO 2018070805A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
mixed
far
infrared
pigment
Prior art date
Application number
PCT/KR2017/011257
Other languages
English (en)
French (fr)
Inventor
오세현
Original Assignee
오세현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오세현 filed Critical 오세현
Priority to US16/328,725 priority Critical patent/US11015074B2/en
Priority to JP2019534624A priority patent/JP6848065B2/ja
Priority to CN201780050937.1A priority patent/CN109641476B/zh
Priority to EP17859409.9A priority patent/EP3527397B1/en
Priority claimed from KR1020170132359A external-priority patent/KR101908861B1/ko
Publication of WO2018070805A1 publication Critical patent/WO2018070805A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes

Definitions

  • the present invention relates to a printing ink, a method for manufacturing the same, and a printed matter printed by the same, and in particular, by including a far-infrared radiation substance in the printing ink, the user can use the printed matter without any objection by deodorizing various harmful gases generated in the printed matter.
  • the mixed ink mixed with the far-infrared radiation substance and its manufacturing method which can maintain the cleanliness by maximizing the antibacterial function and prevent the decay when used in food packaging, and the printed matter, the printed ink is printed It is about.
  • a printed matter is a product in which printing ink is buried on a plate surface and letters, pictures, etc. are printed on the plate surface.
  • the printing ink is excellent in adhesive strength when printed on paper, and is not harmful to the human body, and is mainly produced by synthesizing resins and pigments such as varnish, varnish, rosin, and the like.
  • Far-infrared rays are a kind of electromagnetic waves that warm materials and penetrate into organic materials and are called life or growth rays, and emit thermal energy of long wavelengths of approximately 3.6 to 16 microns ( ⁇ m). It penetrates and expands the capillaries of the human body through the thermal action to facilitate blood circulation, and plants and plants are also known to have excellent growth promotion when they receive a lot of this far infrared rays.
  • books contain far-infrared radiation in the manufacturing process of the paper itself, or the far-infrared radiation in the raw material itself in the production of PET bottles.
  • the raw material itself contains far-infrared radiating material
  • it must be uniformly mixed with the whole raw material, so a large amount of far-infrared radiating material is required, thus increasing the manufacturing cost, and far-infrared ray in the manufacturing process of the object itself.
  • the existing manufacturing process has to be modified and changed in order to mix the radioactive material, there is a problem in that a delay or modification cost of the manufacturing process is added.
  • an object of the present invention by mixing the far-infrared radiation material in the mixed ink printed on the object, by maintaining a high far-infrared emissivity of 0.88 or more, it is possible to deodorize 60% or more of the various harmful gases generated in the printed matter so that the user It can be used without any objection, and it can maintain cleanliness by reducing staphylococcus and pneumococci by more than about 90%, and mixed ink mixed with far-infrared radiation material that can prevent contamination and pathogen transmission due to the use of printed matter and its manufacture
  • the method and the mixed ink provide a printed printed matter.
  • the object of the present invention is to prevent the harmful harmful substances generated in the printed material itself and at the same time can exhibit various beneficial effects of the far-infrared itself, and to clean the food simply by printing or storing the printed matter in a food packaging container
  • the present invention provides a mixed ink containing a mixture of far-infrared radiation, a method for producing the same, and a printed matter on which the mixed ink is printed.
  • the object of the present invention is that it does not contain far-infrared radiation substance in the object itself to be printed or applied, such as conventional paper itself or wallpaper itself, it is possible to exert a higher radiation effect by simply using a mixed ink, significantly reducing the manufacturing cost
  • the present invention provides a mixed ink, a method of manufacturing the same, and a printed material on which the mixed ink is printed.
  • a mixed ink in which a far infrared ray emitting material is prepared by mixing a far infrared ray emitting material in the form of a powder powder with a pigment blend as a printing ink used for printing a printed matter according to an embodiment of the present invention.
  • the far infrared ray emitting material may be mixed in an amount of 3 to 10 wt% based on the total weight of the mixed ink.
  • the far-infrared radiating material may be provided in a diameter range of 1 ⁇ 5 ⁇ m.
  • the pigment mixture may comprise at least one of an ink binder or an ink adjuvant in the pigment.
  • the pigment mixture when the pigment mixture is yellow, 10 to 13 wt% of the pigment, 70 to 75 wt% of the ink binder, and 5 to 10 wt% of the ink adjuvant are provided, and when the pigment mixture is other than yellow, It may be provided with 18 to 22% by weight of the pigment, 65 to 70% by weight of the ink binder, and 5 to 10% by weight of the ink adjuvant.
  • the far-infrared radiating material may be mixed with the pigment mixture after first blending any one or two of the ink binder or the ink solvent.
  • the above object is a printed matter in which the mixed ink mixed with the above-mentioned far infrared ray radiating material is printed and has a far infrared ray emissivity in the range of 0.87 to 0.93 at 20 to 39 ° C., and the deodorization rate is 60 to 80 after 3 hours after printing. It is also achieved by printed matter printed with a mixed ink in which the far-infrared emitting material, which is%, is mixed.
  • the concentration decrease rate after 18 hours compared to the initial concentration of staphylococcus is 90% or more
  • the concentration decrease rate after 18 hours compared to the initial concentration of pneumococci can be 90% or more.
  • the mixed ink is applicable to paper, PET, vinyl or various kinds of fabrics used for books, wallpaper, or food packaging materials.
  • the object is, according to another embodiment of the present invention, the step of preparing a pigment mixture by blending the ink binder to the pigment and the blended ink binder to surround the pigment; Pulverizing the far-infrared radiating material to have a set diameter range, and blending the pulverized far-infrared radiating material with an ink binder to disperse the prepared far-infrared radiating material; Mixing the pigment blend and the far infrared radiation blend; It is also achieved by the method for producing a mixed ink mixed with a far-infrared emitting material, including the step of mixing any one or two or more of the ink adjuvant or ink solvent in the mixed pigment mixture and the far-infrared emitting material formulation.
  • the blending of the pigment and the ink binder and the blending of the far infrared ray emitting material and the ink binder may further include blending an ink solvent corresponding to the dispersion viscosity of the blend.
  • the printed matter printed with the mixed ink mixed with the far-infrared radiation material according to the present invention maintains a high far-infrared emissivity of 0.88 or more, so that it is possible to deodorize 60% or more of various harmful gases generated in the printed matter so that the user can use the printed material without objection. And, by reducing the staphylococcus and pneumococci by more than about 90% can maintain cleanliness, there is an effect that can prevent the transmission of contamination and pathogens due to the use of printed matter.
  • the mixed ink mixed with the far-infrared radiation material according to the present invention can be applied to various fields such as IT, automobiles, home appliances, and construction fields in which ink or paint can be used, such as printing, coating, deposition, or bonding. It can maximize the scalability and contribute to the development of related industries.
  • the mixed ink in which the far-infrared radiation material is mixed according to the present invention does not contain the far-infrared radiation material in the object itself to be printed or applied, such as the paper itself or the wallpaper itself, and has a higher radiation effect by simply using the mixed ink. Because of this, it is possible to maximize the effect while significantly reducing the manufacturing cost.
  • FIG. 1 is a flow chart illustrating a method of manufacturing a mixed ink in which far-infrared radiation materials are mixed according to an embodiment of the present invention
  • FIG. 2 is a graph showing a far-infrared emissivity test of a printed matter printed with a mixed ink mixed with a far-infrared radiation material according to the present invention
  • FIG. 3 is a graph showing the results of a test for deodorization rate change of a printed matter mixed with a mixed ink containing a far infrared ray emitting material according to the present invention
  • Figure 4 is a photograph of staphylococcal antibacterial test results of printed matter printed with a mixed anti-ink mixed with a far-infrared radiation material according to the present invention
  • Figure 5 is a pneumococcal antimicrobial test results photograph of the printed matter printed with a mixed ink mixed with far-infrared radiation according to the present invention
  • 6 and 7 are photographs of the food preservation test results of the food packaging container or the printed container in which the printed matter is mixed with the mixed anti-ink ink mixed with the far-infrared radiation material according to the present invention.
  • the mixed ink in which the far-infrared radiating material is mixed is a printing ink used for printing a printed matter, and is prepared by mixing the far-infrared radiating material in the form of powder powder with a pigment blend.
  • the printed matter printed with the mixed ink according to the embodiment of the present invention refers to the printed matter printed with the mixed ink in which the far-infrared radiation material is mixed.
  • the range of the printed matter defined in the present invention is not limited to the printing method or the specific printed matter as long as it is produced using a conventional printing ink that is conventionally used.
  • the printed matter may be used in various printing methods including an offset, and the kind may be used without limitation for various kinds of books, study papers, magazines, advertisement leaflets, newspapers, and the like.
  • the material of the printed material as well as the paper material used as a book, wallpaper, food packaging material, as well as synthetic resin material such as PET or vinyl, natural resin or fabric material such as curtain can be applied without limitation. Furthermore, it can be applied to paints used on walls, desks, furniture, vehicles, and the like.
  • the printed matter is a booklet
  • Far infrared ray emitting material refers to a material that emits far infrared rays, and various kinds of known ones can be used, for example, kaolin, germanium, ocher, elvan, bio ceramics, illite, mica, feldspar, etc. One or two or more may be used in combination, and in addition, silica, alumina, iron oxide, magnesium oxide, or the like may also be used.
  • Far infrared rays are a kind of electromagnetic waves that warm materials and penetrate into organic materials and are called life or growth rays. They emit thermal energy of about 3.6 to 16 microns ( ⁇ m) long. In particular, this heat energy penetrates up to 40mm in the skin and extends the capillaries of the human body through the thermal action to facilitate blood circulation, and when plants and plants receive this far-infrared ray, it promotes growth and is effective when applied to crops such as plastic houses. Is known to be large.
  • the mixed ink in which the far-infrared radiating material is mixed various materials may be additionally mixed, for example, an anion is emitted such as a tourmaline.
  • the anion is known to have various effects such as blood purification, mental stability, autonomic nervous system, immune enhancing, pulmonary function, analgesic, allergy (allergy) improving effect on the human body.
  • the far infrared ray emitting material or the anion emitting material is used after being pulverized into a powder in powder form and then mixed with the printing ink.
  • the mixing ratio of the far-infrared radiating material may be provided in various ways, but is preferably mixed in 3 to 10% by weight based on the total weight of the mixed ink.
  • Far-infrared emissivity varies depending on the type of radiation, the dose of radiation, and the wavelength of the far-infrared radiation. In the case of printing, the difference in the thickness of the printed film is important.
  • the far infrared ray emitting material is 10 wt% or more, the printing quality is affected and the quality is lowered. Even though the value of the far-infrared emission amount does not increase significantly, the additional effect is insignificant, while the material cost of the far-infrared radiation material increases significantly, resulting in an increase in manufacturing cost.
  • the far-infrared emissive material gradually decreases within the range of 3 to 10% by weight, the far-infrared emissivity shows a gentle downward curve, but at less than 3% by weight, it is relatively abruptly downward to achieve the target far-infrared emissivity. It is preferable to maintain the content within the above range.
  • the applicant of the present application by applying the mixed ink according to the present invention to the printed matter by requesting the Korea Far Infrared Association of Korea Corporation, the emissivity is 0.88 when the mixed ink per unit area of the printed matter is applied 1 ⁇ 25% (to area)
  • the emissivity is 0.884
  • the mixed ink is applied to 50 to 100%, the emissivity is 0.894.
  • the application of the mixed ink to the printed matter varies depending on the printing type. It can be seen that the emissivity of 0.88 or more can be maintained even with a small coating area.
  • Far-infrared radiation is preferably provided in the diameter range of 1 ⁇ 5 ⁇ m. If the particle size of far-infrared radiation material is too small, the grinding work is not easy and the time, equipment, and cost required for grinding are increased. On the contrary, when the particle size is too large, the mixing with the pigment is not uniform, This is very important as it can affect you. Therefore, the results of the applicant's repeated experiments to derive the optimum range to ensure the ease of grinding and print quality.
  • the far-infrared radiating material may be mixed with the pigment mixture after first blending any one or two of the ink binder or the ink solvent.
  • the ink binder may be provided in various kinds, for example, may be provided as a resin (Regin), a vegetable binder, an ink solvent (Ink Solvent).
  • the pigment mixture may be prepared by including one or more of an ink binder or an ink adjuvant in the pigment.
  • the ink adjuvant may be provided in various kinds, for example, may be provided as a backing inhibitor, a slip, a drying agent, a drying inhibitor or an ink solvent.
  • the pigment when the pigment mixture is yellow, the pigment may be provided in 10 to 13% by weight, ink binder 70 to 75% by weight, ink adjuvant 5 to 10% by weight, when the pigment mixture is other than yellow It may be prepared in 18 to 22% by weight of the pigment, 65 to 70% by weight of the ink binder, 5 to 10% by weight of the ink adjuvant.
  • an ink binder is added to a pigment (S11), and the blended ink binder is dispersed (S13) to surround the pigment to prepare a pigment mixture.
  • the primary primary particles have a small particle size of, for example, 1 ⁇ m or less, but aggregate with each other in the process of making the powder to form secondary particles having a larger diameter.
  • the pigment particles are made back to the basic particle state, and at the same time, the ink binder becomes a structure that surrounds the dispersed pigment so that the pigment becomes a stable state as a whole.
  • the far-infrared radiation substance is pulverized (S21) to have a set diameter range, and the pulverized far-infrared radiation substance is combined with an ink binder (S23) and then dispersed (S25) to prepare a far-infrared radiation substance formulation.
  • the far-infrared radiating material has, for example, a raw material having a particle diameter of 3 to 20 ⁇ m, and is pulverized to a diameter of 5 ⁇ m or less through a grinder.
  • an ink solvent may be further blended corresponding to the dispersion viscosity of the blend.
  • step of adjusting (S33) by mixing any one or two or more of the ink adjuvant or the ink solvent to the mixed pigment mixture and the far-infrared radiant formulation.
  • the adjusting step (S33) is a process of making a mixed ink in the final state by adding an ink adjuvant and an ink solvent to achieve a stable printing in the printing process and the post-printing process.
  • the mixed ink mixed with the far-infrared radiating material according to the present invention prepared according to the content ratio and preparation method as described above has the following effects.
  • the mixed ink containing the far-infrared radiation material according to the present invention has a far-infrared emissivity ranging from 0.87 to 0.93 at 20 to 39 ° C., and the deodorization rate is 60 to 80% after 3 hours after printing. .
  • Figure 2 is a graph included in the test report of the emissivity of the printed matter printed with the mixed ink mixed with the far infrared radiation material according to the present invention tested by the Korea Far Infrared Association.
  • Test conditions are measured at an ambient temperature of about 37 °C, looking at Figure 2 can be seen that far-infrared emissivity (5 ⁇ 20 ⁇ m) exhibits a range of about 0.87 ⁇ 0.93.
  • Figure 3 is a graph showing the deodorization rate (sample gas is ammonia) over time of the printed matter and the print (Blank) using the printing ink containing the far-infrared radiation according to the present invention, after about 2 hours Deodorization rate from 60 to 80% can be seen from.
  • the mixed ink mixed with the far-infrared radiation material according to the present invention has a concentration reduction rate of 90% or more after 18 hours compared to the initial concentration of Staphylococcus aureus, and a concentration reduction rate of 90% or more after 18 hours compared to the initial concentration of pneumococci.
  • Far infrared ray emitting material may be included in the printing ink.
  • FIG. 4 shows an antibacterial test for Staphylococcus aureus ATCC 6538 printed on a mixed ink mixed with a far-infrared radioactive material according to the present invention, compared with the initial (right) and after 18 hours (left).
  • Test Items Sample classification Initial concentration (CFU / ml) Concentration after 18 hours Bacteriostatic reduction rate (%) Antibacterial test by Staphylococcus Standard gun 3.4 ⁇ 10 4 1.7 ⁇ 10 6 - Far Infrared Offset Printing 6.4 ⁇ 10 4 96.2 Antibacterial test by pneumococcal Standard gun 4.2 ⁇ 10 4 2.4 ⁇ 10 6 - Far Infrared Offset Printing 7.0 ⁇ 10 4 97.1
  • Figure 5 shows the results of the antibacterial test for pneumonia (Klebsiella pneumoniae ATCC 4352), it can be seen that the pneumococcus was reduced by more than 97.1% after 18 hours (left) compared to the initial (right). (See Table 2)
  • 6 and 7 are put in a food packaging container printed with a mixed ink mixed with far-infrared radiation material according to the present invention and put the fruit in a normal food packaging container not tested the preservation state of the food over time.
  • the yellow box on the left side is printed with a mixed ink mixed with far-infrared radiation substances, and in the right case, mixed ink prints mixed with far-infrared radiation substances are placed in a box.
  • the difference of preservation state begins to appear after about 2 weeks (2017. 06.13.), As shown in Figure 7, about a month At the time of passing (June 29, 2017), the preservation status is remarkably different.
  • the printed matter printed with the mixed ink mixed with the far-infrared radiation material according to the present invention maintains a high far-infrared emissivity of 0.88 or more, so that it is possible to deodorize 60% or more of various harmful gases generated in the printed matter so that the user can use the printed material without objection. And, by reducing the staphylococcus and pneumococci by more than about 90% can maintain cleanliness, there is an effect that can prevent the transmission of contamination and pathogens due to the use of printed matter.
  • the mixed ink mixed with the far-infrared radiation material according to the present invention can be applied to various fields such as IT, automobiles, home appliances, and construction fields in which ink or paint can be used, such as printing, coating, deposition, or bonding. It can maximize the scalability and contribute to the development of related industries.
  • the mixed ink in which the far-infrared radiation material is mixed according to the present invention does not contain the far-infrared radiation material in the object itself to be printed or applied, such as the paper itself or the wallpaper itself, and has a higher radiation effect by simply using the mixed ink. Because of this, it is possible to maximize the effect while significantly reducing the manufacturing cost.

Abstract

본 발명은, 인쇄물의 인쇄에 사용되는 인쇄용 잉크로서, 안료 배합물에 분말파우더 형태의 원적외선 방사물질을 혼합하여 제조되는 원적외선 방사물질이 혼합된 혼합잉크와 그 제조방법 및 이에 의해 인쇄된 인쇄물에 대한 것이다. 이에 의해, 대상물에 인쇄되는 혼합잉크에 원적외선 방사물질을 혼합함으로써, 0.88 이상의 높은 원적외선 방사율을 유지함으로써, 인쇄물에서 발생되는 각종 유해 가스를 60% 이상 탈취가 가능하여 사용자가 인쇄물을 거부감 없이 사용할 수 있으며, 포도상구균 및 폐렴균을 약 90% 이상 감소시킴으로써 청결을 유지할 수 있고, 인쇄물의 사용에 따른 오염 및 병원균 전달을 미연에 방지할 수 있다.

Description

원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물
본 발명은 인쇄용 잉크와 그 제조방법 및 이에 의해 인쇄된 인쇄물에 대한 것으로, 특히, 인쇄용 잉크에 원적외선 방사물질을 포함함으로써, 인쇄물에서 발생되는 각종 유해 가스를 탈취하여 사용자가 인쇄물을 거부감 없이 사용할 수 있음은 물론, 항균기능을 극대화하여 청결을 유지할 수 있고 식품포장에 사용할 경우 부패를 방지하여 보존기간을 연장할 수 있는 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물에 관한 것이다.
일반적으로 인쇄물이라 함은 판면에 인쇄 잉크를 묻히고, 판면에 문자, 그림 등을 종이 등에 인쇄한 물품을 말한다.
상기 인쇄잉크는 종이 등에 인쇄했을 때 접착력이 우수하고, 인체에 유해성이 없으며 주로 유와니스 또는 바니스, 로진 등의 수지와 안료 등을 합성하여 제조한다.
그러나, 종래의 인쇄잉크를 사용하는 인쇄물의 경우, 인쇄 후에는 잉크 자체의 냄새 또는 사용 중 오염에 따른 냄새 때문에 사용자가 거부감을 느끼는 경우가 발생하며, 특히 사용에 따른 오염으로 인하여 사용자가 해로운 병원균에 노출되는 등의 문제점이 있었다.
한편, 원적외선은 전자파의 일종으로 물질을 따뜻하게 하고 유기물에 침투력이 강하여 생명 또는 생육의 광선이라 하며, 대략 3.6 ~ 16 미크론(㎛)의 긴 파장의 열에너지를 방사하는데, 특히 이 열에너지는 피부속 40mm까지 침투하여 온열작용을 통해 인체의 모세혈관을 확장시켜 혈액순환을 원활하게 하고 동식물도 이 원적외선을 많이 받으면 생장촉진이 우수하며, 비닐하우스 등 농작물에 응용될 경우 그 효과가 크다고 알려져 있다.
종래에는 이러한 원적외선을 활용하기 위해서는 대상물 자체에 원적외선 방사물질을 함유하는 방법이 사용되어 왔다. 예를 들어, 책의 경우 종이 자체의 제조공정에서 원적외선 방사물질을 함유하거나, PET 병의 제조시 원재료 자체에 원적외선 방사물질을 함유하는 것이 그것이다.
그러나, 상기와 같이 원재료 자체에 원적외선 방사물질을 함유할 때에는 원재료 전체에 균일하게 혼합되어야 하므로 많은 양의 원적외선 방사물질이 필요하게 되므로 그 만큼 제조원가가 상승하는 문제가 있으며, 대상물 자체의 제조공정에 원적외선 방사물질을 혼합하기 위하여 기존 제조공정을 수정 및 변경하여야 하므로 이에 따른 제조공정의 지연 또는 수정비용이 추가하게 되는 문제가 있었다.
따라서, 본 발명의 목적은, 대상물에 인쇄되는 혼합잉크에 원적외선 방사물질을 혼합함으로써, 0.88 이상의 높은 원적외선 방사율을 유지함으로써, 인쇄물에서 발생되는 각종 유해 가스를 60% 이상 탈취가 가능하여 사용자가 인쇄물을 거부감 없이 사용할 수 있으며, 포도상구균 및 폐렴균을 약 90% 이상 감소시킴으로써 청결을 유지할 수 있고, 인쇄물의 사용에 따른 오염 및 병원균 전달을 미연에 방지할 수 있는 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물을 제공하는 데 있다.
또한, 본 발명의 목적은, 인쇄물 자체에서 발생되는 해로운 각종 유해성분을 막고 원적외선 자체가 갖는 각종 유익한 효능을 동시에 발휘할 수 있으며, 식품포장용기에 인쇄하거나 인쇄물을 함께 넣어 보관하는 것만으로도 식품의 청결을 유지할 수 있으며, 부패를 방지하여 보존기간 및 유통기한을 늘릴 수 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물을 제공하는 데 있다.
또한, 본 발명의 목적은, 종래 종이 자체 또는 벽지 자체 등 인쇄나 도포되는 대상물 자체에 원적외선 방사물질을 함유하지 않고 단순히 혼합잉크를 사용하는 것만으로 보다 높은 방사효과를 발휘할 수 있으므로, 제조비용을 현저히 절감하면서도 그 효과를 극대화할 수 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물을 제공하는 데 있다.
상기 목적은, 본 발명의 일 실시예에 따라, 인쇄물의 인쇄에 사용되는 인쇄용 잉크로서, 안료 배합물에 분말파우더 형태의 원적외선 방사물질을 혼합하여 제조되는 원적외선 방사물질이 혼합된 혼합잉크에 의해 달성된다.
상기 원적외선 방사물질은 상기 혼합잉크 전체 중량 대비 3~10 중량%로 혼합될 수 있다.
상기 원적외선 방사물질은 1 ~ 5 ㎛ 의 직경범위 내에서 마련될 수 있다.
상기 안료배합물은 안료에 잉크 바인더 또는 잉크보조제 중 하나 이상을 포함할 수 있다.
예를 들어, 상기 안료배합물이 노랑색(Yellow)의 경우, 안료 10~13 중량%, 잉크 바인더 70~75 중량%, 잉크보조제 5 ~10 중량%로 마련되며, 상기 안료배합물이 노랑색 이외의 경우, 안료 18~22 중량%, 잉크 바인더 65~70 중량%, 잉크보조제 5~10 중량%로 마련될 수 있다.
상기 원적외선 방사물질은 잉크 바인더 또는 잉크 용매 중 어느 하나 또는 2개를 먼저 배합한 후에 상기 안료배합물과 혼합할 수 있다.
한편, 상기 목적은, 전술한 상기 원적외선 방사물질이 혼합된 혼합잉크가 인쇄된 인쇄물로서, 원적외선 방사율이 20 ~ 39℃에서 0.87 ~ 0.93의 범위를 가지며, 탈취율이 인쇄 후 3시간 경과 후에 60~80%가 되는 원적외선 방사 물질이 혼합된 혼합잉크로 인쇄된 인쇄물에 의해서도 달성된다.
여기서, 포도상구균의 초기 농도 대비 18시간 후 농도감소율이 90% 이상이며, 폐렴균의 초기 농도 대비 18시간 후 농도감소율이 90% 이상이 되도록 할 수 있다.
또한, 상기 혼합잉크는 책, 벽지, 또는 식품포장재에 사용되는 종이와, PET, 비닐류 또는 각종 원단류에 적용이 가능하다.
한편, 상기 목적은, 본 발명의 다른 실시예에 따라, 안료에 잉크 바인더를 배합하고 배합된 상기 잉크 바인더가 안료를 감싸도록 분산시켜 안료배합물을 준비하는 단계와; 원적외선 방사물질을 설정된 직경범위를 갖도록 분쇄하고, 분쇄된 상기 원적외선 방사물질을 잉크 바인더와 배합한 후에 분산시켜 원적외선 방사물질 배합물을 준비하는 단계와; 상기 안료배합물과 상기 원적외선 방사물질 배합물을 혼합하는 단계와; 상기 혼합된 안료배합물과 원적외선 방사물질 배합물에 잉크 보조제 또는 잉크 용매 중 어느 하나 또는 2 이상을 혼합하여 조정하는 단계;를 포함하는 원적외선 방사물질이 혼합된 혼합잉크의 제조방법에 의해서도 달성된다.
여기서, 상기 안료와 잉크 바인더를 배합하는 단계와, 상기 원적외선 방사물질과 잉크 바인더를 배합하는 단계는, 상기 배합물의 분산 점도에 대응하여 잉크 용매를 추가로 배합하는 단계를 더 포함할 수 있다.
따라서, 본 발명에 따른 원적외선 방사 물질이 혼합된 혼합잉크로 인쇄된 인쇄물은 0.88 이상의 높은 원적외선 방사율을 유지함으로써, 인쇄물에서 발생되는 각종 유해 가스를 60% 이상 탈취가 가능하여 사용자가 인쇄물을 거부감 없이 사용할 수 있으며, 포도상구균 및 폐렴균을 약 90% 이상 감소시킴으로써 청결을 유지할 수 있고, 인쇄물의 사용에 따른 오염 및 병원균 전달을 미연에 방지할 수 있다는 효과가 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크로 학습지나 책등을 인쇄하는 경우, 인쇄물 자체에서 원적외선이 방사되므로 인체에 해로운 각종 유해성분을 막아줄 뿐 아니라, 원적외선 자체가 갖는 각종 유익한 효능을 동시에 발휘할 수 있다는 장점이 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크로 식품포장용기에 인쇄하거나, 인쇄물을 함께 넣어 보관하는 것 만으로도 식품의 청결을 유지할 수 있으며, 부패를 방지하여 보존기간 및 유통기한을 늘릴 수 있어 관련 산업의 발전 및 경쟁력을 강화할 수 있다는 장점이 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크는 잉크나 도료등이 사용될 수 있는 IT, 자동차, 가전 및 건설분야 등 다양한 분야에 인쇄, 도포, 증착 또는 접착 등의 방법으로 적용이 가능하므로 확장성을 극대화할 수 있어 관련산업분야의 발전에 기여할 수 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크는, 종래 종이 자체 또는 벽지 자체 등 인쇄나 도포되는 대상물 자체에 원적외선 방사물질을 함유하지 않고 단순히 혼합잉크를 사용하는 것만으로 보다 높은 방사효과를 발휘할 수 있으므로, 제조비용을 현저히 절감하면서도 그 효과를 극대화할 수 있다.
도 1은, 본 발명의 일실시예에 따른 원적외선 방사물질이 혼합된 혼합잉크의 제조방법 흐름도,
도 2는, 본 발명에 따른 원적외선 방사 물질이 혼합된 혼항잉크로 인쇄된 인쇄물의 원적외선 방사율 시험결과 그래프,
도 3은, 본 발명에 따른 원적외선 방사 물질이 혼합된 혼항잉크로 인쇄된 인쇄물의 탈취율 변화시험결과 그래프,
도 4는, 본 발명에 따른 원적외선 방사 물질이 혼합된 혼항잉크로 인쇄된 인쇄물의 포도상구균 항균시험 결과사진,
도 5는, 본 발명에 따른 원적외선 방사 물질이 혼합된 혼항잉크로 인쇄된 인쇄물의 폐렴균 항균시험 결과사진,
도 6 및 7은, 본 발명에 따른 원적외선 방사 물질이 혼합된 혼항잉크로 인쇄된 식품포장용기 또는 인쇄물이 투입된 포장용기의 식품 보존 시험 결과 사진이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.
본 발명의 일실시예에 따른 원적외선 방사물질이 혼합된 혼합잉크는, 인쇄물의 인쇄에 사용되는 인쇄용 잉크로서, 안료 배합물에 분말파우더 형태의 원적외선방사물질을 혼합하여 제조되는 것을 요지로 한다.
또한, 본 발명의 일실시예에 따른 혼합잉크로 인쇄된 인쇄물은 상기 원적외선 방사물질이 혼합된 혼합잉크로 인쇄된 인쇄물을 말한다.
본 발명에서 정의하는 인쇄물의 범위는 종래 사용되고 있는 일반적인 인쇄용 잉크를 사용하여 제작하는 한, 그 인쇄방식이나 구체적인 인쇄물의 종류에 한정되지 않는다.
예를 들어, 인쇄물은 옵셋(Offset)을 포함하는 다양한 인쇄방식이 사용될 수 있으며, 그 종류는 책자, 학습지, 잡지, 광고용 전단지, 신문 등 다양한 종류에 제한 없이 사용될 수 있다.
그리고 상기 인쇄물의 재질 또한, 책, 벽지, 식품포장재 등으로 사용되는 종이재질은 물론, PET나 비닐과 같은 합성수지 재질이나, 커튼과 같은 천연수지 또는 직물재질 등 제한 없이 적용될 수 있음은 물론이다. 더 나아가서, 벽이나 책상, 가구, 차량 등에 사용되는 페인트에도 적용이 가능하다.
한편, 인쇄물이 책자인 경우, 표지 또는 본문 등 모두 사용이 가능하며, 표지나 내지의 재질이나 종류에 상관없이 적용되며, 인쇄 공정에 있어서 선처리 공정이나 후처리 공정 등 다양한 공정작업에 제한 없이 적용된다.
원적외선 방사 물질은 원적외선을 방출하는 물질을 말하며, 공지된 다양한 종류의 것이 사용될 수 있는 바, 예를 들어, 고령토, 게르마늄, 황토, 맥반석, 바이오 세라믹, 일라이트(illite), 운모, 장석 등이 어느 하나 또는 2 이상을 혼합하여 사용될 수 있으며, 이외에도 실리카, 알루미나, 산화철, 산화마그네슘 등도 사용될 수 있다.
원적외선은 전자파의 일종으로 물질을 따뜻하게 하고 유기물에 침투력이 강하여 생명 또는 생육의 광선이라 하며, 대략 3.6 ~ 16 미크론(㎛)의 긴 파장의 열에너지를 방사한다. 특히 이 열에너지는 피부속 40mm까지 침투하여 온열작용을 통해 인체의 모세혈관을 확장시켜 혈액순환을 원활하게 하고 동식물도 이 원적외선을 많이 받으면 생장촉진이 우수하며, 비닐하우스 등 농작물에 응용될 경우 그 효과가 크다고 알려져 있다.
본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크에는, 다양한 재료가 부가적으로 혼합될 수 있는데, 예를 들어, 전기석과 같이 음이온이 방사되는 물질을 첨가할 수 있다.
상기 음이온은 인체에 혈액 정화작용, 정신 안정작용, 자율신경 조절작용, 면역 강화작용, 폐기능 강화작용, 진통 작용, 알러지(Allergy) 개선 작용 등 여러 가지 효능이 있는 것으로 알려져 있다.
상기 원적외선 방사물질 또는 음이온 방사물질은 분말 형태의 파우더로 분쇄한 후에 인쇄용 잉크에 배합하여 사용한다.
본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크에서, 원적외선 방사물질의 혼합비는 다양하게 마련될 수 있으나, 상기 혼합잉크 전체 중량 대비 3 ~ 10 중량%로 혼합되는 것이 바람직하다.
원적외선 방사율은 방사물질의 종류, 방사물질의 투입량 그리고 원적외선의 파장에 따라 차이가 발생하며, 인쇄의 경우 인쇄도막 두께에 따라 차이가 발생할 수 있으므로 원적외선 방사물질의 함량은 중요한 요소이다.
이는 본 출원인의 반복적인 실험결과 가장 최적의 범위를 산출해 낸 것으로서, 상기 원적외선 방사물질이 10 중량% 이상이면 인쇄품질에 영향을 주어 품질이 저하되며,이 범위 이상에서는 원적외선 방사물질의 함량을 늘리더라도 원적외선 방출량의 수치는 크게 상승하지 않아 추가 효과는 미미한 반면, 원적외선 방사물질의 재료비용이 크게 증가하여 제조원가가 상승하는 단점이 있다.
한편, 원적외선 방사물질이 상기 3 ~ 10 중량% 범위 내에서 차차 감소함에 따라서 원적외선 방사율은 완만한 하향곡선을 그리지만 3 중량% 이하에서는 상대적으로 급한 하향세를 나타내므로 목표로 하는 원적외선 방사율을 달성하기 위해서는 상기 범위 내에서 함량을 유지하는 것이 바람직하다.
한편, 본원 출원인이 대한민국 사단법인 한국원적외선협회에 의뢰하여 본 발명에 따른 혼합잉크를 인쇄물에 도포하여 실험한 결과, 인쇄물의 단위 면적당 혼합잉크가 1 ~ 25 % (면적대비) 도포되는 경우 방사율이 0.88 , 혼합잉크가 30 ~ 50% 도포되는 경우 방사율이 0.884, 혼합잉크가 50 ~ 100% 도포되는 경우 방사율이 0.894의 방사율을 나타내는 것으로 확인한 바, 인쇄물에 혼합잉크를 도포하는 것은 인쇄 종류에 따라 달라지지만 적은 도포면적으로도 0.88 이상의 방사율을 유지할 수 있음을 알 수 있다.
원적외선 방사물질은 1 ~ 5 ㎛ 의 직경범위 내에서 마련되는 것이 바람직하다. 원적외선 방사물질의 입도는 너무 작을 경우 분쇄작업이 용이하지 않고 분쇄에 소요되는 시간, 장비 및 비용이 증가하는 문제가 있고, 반대로 입도가 너무 큰 경우에는 안료와의 배합이 균일하지 않으며, 인쇄품질에 영향을 줄 수 있으므로 매우 중요하다. 따라서, 본원 출원인의 반복적인 실험결과 분쇄용이성과 인쇄품질을 담보할 수 있는 최적의 범위를 도출해 낸 것이다.
상기 원적외선 방사물질은 잉크 바인더 또는 잉크 용매 중 어느 하나 또는 2개를 먼저 배합한 후에 상기 안료배합물과 혼합할 수 있다. 여기서, 잉크 바인더는 다양한 종류로 마련될 수 있으며, 예를 들어, 레진(Regin), 식물성 바인더, 잉크 용매(Ink Solvent)로 마련될 수 있다.
안료배합물은 안료에 잉크 바인더 또는 잉크보조제 중 하나 이상을 포함하여 마련될 수 있다. 여기서, 잉크 보조제는 다양한 종류로 마련될 수 있으며, 예를 들어, 뒷묻음 방지제, 슬립(Slip)제, 건조제, 건조억제제 또는 잉크용매로 마련될 수 있다.
구체적으로, 상기 안료배합물이 노랑색(Yellow)의 경우, 안료 10~13 중량%, 잉크 바인더 70~75 중량%, 잉크보조제 5 ~10 중량%로 마련될 수 있으며, 상기 안료배합물이 노랑색 이외의 경우, 안료 18~22 중량%, 잉크 바인더 65~70 중량%, 잉크보조제 5~10 중량%로 마련될 수 있다.
이하, 본 발명의 일실시예에 따른 원적외선 방사물질이 혼합된 혼합잉크의 제조방법을 설명한다.
도 1을 참조하면, 먼저, 안료에 잉크 바인더를 배합(S11)하고 배합된 상기 잉크 바인더가 안료를 감싸도록 분산(S13)시켜 안료배합물을 준비한다.
상기 분산(S13) 단계는, 안료의 경우 1차 기본입자는 예를 들어, 1 ㎛ 이하의 작은 입도를 가지나, 파우더로 만드는 과정에서 서로 응집되어 더 큰 직경의 2차 입자가 형성되게 되는데, 상기 분산(S13)하는 단계를 통하여, 안료 입자를 다시 기본입자 상태로 만들어주며, 동시에 잉크 바인더가 분산된 안료를 감싸는 구조가 되어 안료가 전체적으로 안정한 상태로 되도록 한다.
한편, 원적외선 방사물질을 설정된 직경범위를 갖도록 분쇄(S21)하고, 분쇄된 상기 원적외선 방사물질을 잉크 바인더와 배합(S23)한 후에 분산(S25)시켜 원적외선 방사물질 배합물을 준비한다.
원적외선 방사물질은 예를 들어, 3 ~ 20 ㎛의 입자직경을 갖는 원자재를 가지고 분쇄기를 통해 추가로 5 ㎛ 이하의 직경을 갖도록 분쇄한다.
여기서, 상기 안료와 잉크 바인더를 배합(S11)하는 단계와, 상기 원적외선 방사물질과 잉크 바인더를 배합(S23)하는 단계는, 상기 배합물의 분산 점도에 대응하여 잉크 용매를 추가로 배합할 수 있다.
다음, 상기 안료배합물과 상기 원적외선 방사물질 배합물을 혼합(S31)한다.
마지막으로, 상기 혼합된 안료배합물과 원적외선 방사물질 배합물에 잉크 보조제 또는 잉크 용매 중 어느 하나 또는 2 이상을 혼합하여 조정(S33)하는 단계를 수행한다.
상기 조정단계(S33)는, 인쇄과정 및 인쇄 후 공정에서 안정적인 인쇄가 이루어지도록 잉크 보조제 및 잉크 용매를 투입하여 최종 상태의 혼합잉크를 만드는 과정이다.
전술한 바와 같은 함량비 및 제조방법에 따라 제조된 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크는 다음과 같은 효과를 보유한다.
먼저, 본 발명에 따른 원적외선 방사물질이 포함된 혼합잉크는, 원적외선 방사율이 20 ~ 39℃에서 0.87 ~ 0.93의 범위를 가지며, 탈취율이 인쇄 후 3시간 경과 후에 60~80%가 감소하는 효과를 나타낸다.
도 2는, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크로 인쇄된 인쇄물의 방사율을 '사단법인 한국원적외선 협회'에서 시험한 시험성적서에 포함된 그래프이다.
시험조건은 약 37℃의 외기온도에서 측정된 것으로, 도 2을 살펴보면 원적외선 방사율(5 ~ 20㎛)이 약 0.87 ~ 0.93의 범위를 나타내는 것을 확인할 수 있다.
한편, 도 3은 본 발명에 따른 원적외선 방사물질이 포함된 인쇄잉크가 사용된 인쇄물과, 그렇지 않은 인쇄물(Blank)의 시간 경과에 따른 탈취율(시료가스는 암모니아)을 나타낸 그래프로서, 대략 2시간 이후부터는 탈취율이 60 ~ 80%에 이르는 것을 확인할 수 있다.
경과시간(분) Blank 농도(ppm) 시료농도(ppm) 탈취율(%)
초기 500 500 -
30 470 175 63
60 460 160 65
90 450 150 67
120 440 140 68
상기 표 1 및 도 3을 참조하면, 원적외선 방사물질을 혼합된 혼합잉크의 경우, 초기 30분 이내에 탈취율이 60%까지 급격히 증가하는 것을 확인할 수 있는 데, 즉, 원적외선 방사물질을 혼합된 혼합잉크의 경우, 탈취율 자체는 물론, 탈취에 소요되는 시간 또한 매우 짧다는 것을 확인할 수 있다.
한편, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크는, 포도상구균의 초기 농도 대비 18시간 후 농도감소율이 90% 이상이며, 폐렴균의 초기 농도 대비 18시간 후 농도감소율이 90% 이상이 되도록 상기 원적외선 방사물질을 상기 인쇄용 잉크에 포함할 수 있다.
도 4는 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크로 인쇄된 인쇄물에 대한 포도상구균(Staphylococcus aureus ATCC 6538) 항균 시험을 수행한 것으로, 초기(우측)와, 18시간 후(좌측)를 대비한 실험사진이다. 이 실험은 앞 선 실험과 마찬가지로 '사단법인 한국원적외선 협회'에서 실시한 것이다.
표 2를 참조하면, 18시간 후에 포도상구균이 약 96.2 %이상 감소한 것을 알 수 있다.
시험항목 시료구분 초기농도(CFU/ml) 18시간 후 농도 정균감소율(%)
포도상구균에 의한 항균시험 표준포 3.4 ×104 1.7 ×106 -
원적외선 옵셋인쇄물 6.4 ×104 96.2
폐렴균에 의한 항균 시험 표준포 4.2 ×104 2.4 ×106 -
원적외선 옵셋인쇄물 7.0 ×104 97.1
도 5는 폐렴균(Klebsiella pneumoniae ATCC 4352)에 대한 항균시험을 한 결과로서, 초기(우측)에 비해 18시간 후(좌측)에 폐렴균이 97.1%이상 감소한 것을 알 수 있다. (표 2 참조)
도 6과 도 7은 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크로 인쇄된 식품포장용기와 그렇지 않은 일반 식품포장용기에 과일을 넣고 시간에 따라 식품의 보존상태여부를 실험한 것이다.
도 6을 참조하면, 좌측의 노란박스는 원적외선 방사물질이 혼합된 혼합잉크로 인쇄한 것이고, 우측의 경우에는 일반 포장박스에 원적외선 방사물질이 혼합된 혼합잉크 인쇄물을 박스에 넣은 것이다.
원적외선 방사물질이 혼합된 혼합잉크로 인쇄되지 않은 흰박스와 그 보존상태를 살펴보면, 약 2주 (2017. 06.13.) 경과 후부터 보존상태의 차이가 나타나기 시작하며, 도 7에서 보는 바와 같이, 약 한달(2017. 06. 29.)이 경과한 시점에서는 그 보존상태가 현저히 차이가 나는 것을 확인할 수 있다.
따라서, 본 발명에 따른 원적외선 방사 물질이 혼합된 혼합잉크로 인쇄된 인쇄물은 0.88 이상의 높은 원적외선 방사율을 유지함으로써, 인쇄물에서 발생되는 각종 유해 가스를 60% 이상 탈취가 가능하여 사용자가 인쇄물을 거부감 없이 사용할 수 있으며, 포도상구균 및 폐렴균을 약 90% 이상 감소시킴으로써 청결을 유지할 수 있고, 인쇄물의 사용에 따른 오염 및 병원균 전달을 미연에 방지할 수 있다는 효과가 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크로 학습지나 책등을 인쇄하는 경우, 인쇄물 자체에서 원적외선이 방사되므로 인체에 해로운 각종 유해성분을 막아줄 뿐 아니라, 원적외선 자체가 갖는 각종 유익한 효능을 동시에 발휘할 수 있다는 장점이 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크로 식품포장용기에 인쇄하거나, 인쇄물을 함께 넣어 보관하는 것 만으로도 식품의 청결을 유지할 수 있으며, 부패를 방지하여 보존기간 및 유통기한을 늘릴 수 있어 관련 산업의 발전 및 경쟁력을 강화할 수 있다는 장점이 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크는 잉크나 도료등이 사용될 수 있는 IT, 자동차, 가전 및 건설분야 등 다양한 분야에 인쇄, 도포, 증착 또는 접착 등의 방법으로 적용이 가능하므로 확장성을 극대화할 수 있어 관련산업분야의 발전에 기여할 수 있다.
또한, 본 발명에 따른 원적외선 방사물질이 혼합된 혼합잉크는, 종래 종이 자체 또는 벽지 자체 등 인쇄나 도포되는 대상물 자체에 원적외선 방사물질을 함유하지 않고 단순히 혼합잉크를 사용하는 것만으로 보다 높은 방사효과를 발휘할 수 있으므로, 제조비용을 현저히 절감하면서도 그 효과를 극대화할 수 있다.

Claims (11)

  1. 인쇄물의 인쇄에 사용되는 인쇄용 잉크로서, 안료 배합물에 분말파우더 형태의 원적외선 방사물질을 혼합하여 제조되는 원적외선 방사물질이 혼합된 혼합잉크.
  2. 제1항에 있어서,
    상기 원적외선 방사물질은 상기 혼합잉크 전체 중량 대비 3~10 중량%로 혼합되는 것을 특징으로 하는 원적외선 방사물질이 혼합된 혼합잉크.
  3. 제1항에 있어서,
    상기 원적외선 방사물질은 1 ~ 5 ㎛ 의 직경범위 내에서 마련되는 것을 특징으로 하는 원적외선 방사물질이 혼합된 혼합잉크.
  4. 제1항에 있어서,
    상기 안료배합물은 안료에 잉크 바인더 또는 잉크보조제 중 하나 이상을 포함하여 마련되는 것을 특징으로 하는 원적외선 방사물질이 혼합된 혼합잉크.
  5. 제4항에 있어서,
    상기 안료배합물이 노랑색(Yellow)의 경우, 안료 10~13 중량%, 잉크 바인더 70~75 중량%, 잉크보조제 5 ~10 중량%로 마련되며,
    상기 안료배합물이 노랑색 이외의 경우, 안료 18~22 중량%, 잉크 바인더 65~70 중량%, 잉크보조제 5~10 중량%로 마련되는 것을 특징으로 하는 원적외선 방사물질이 혼합된 혼합잉크.
  6. 제5항에 있어서,
    상기 원적외선 방사물질은 잉크 바인더 또는 잉크 용매 중 어느 하나 또는 2개를 먼저 배합한 후에 상기 안료배합물과 혼합하는 것을 특징으로 하는 원적외선 방사물질이 혼합된 혼합잉크.
  7. 제1항의 상기 원적외선 방사물질이 혼합된 혼합잉크가 인쇄된 인쇄물로서, 원적외선 방사율이 20 ~ 39℃에서 0.87 ~ 0.93의 범위를 가지며, 탈취율이 인쇄 후 3시간 경과 후에 60~80%가 되는 원적외선 방사 물질이 혼합된 혼합잉크로 인쇄된 인쇄물.
  8. 제8항에 있어서,
    포도상구균의 초기 농도 대비 18시간 후 농도감소율이 90% 이상이며, 폐렴균의 초기 농도 대비 18시간 후 농도감소율이 90% 이상이 되는 것을 특징으로 하는 원적외선 방사 물질이 혼합된 혼합잉크로 인쇄된 인쇄물.
  9. 제8항에 있어서,
    상기 혼합잉크는 책, 벽지, 또는 식품포장재에 사용되는 종이와, PET, 비닐류 또는 각종 원단류에 적용이 가능한 것을 특징으로 하는 원적외선 방사 물질이 혼합된 혼합잉크로 인쇄된 인쇄물.
  10. 안료에 잉크 바인더를 배합하고 배합된 상기 잉크 바인더가 안료를 감싸도록 분산시켜 안료배합물을 준비하는 단계와;
    원적외선 방사물질을 설정된 직경범위를 갖도록 분쇄하고, 분쇄된 상기 원적외선 방사물질을 잉크 바인더와 배합한 후에 분산시켜 원적외선 방사물질 배합물을 준비하는 단계와;
    상기 안료배합물과 상기 원적외선 방사물질 배합물을 혼합하는 단계와;
    상기 혼합된 안료배합물과 원적외선 방사물질 배합물에 잉크 보조제 또는 잉크 용매 중 어느 하나 또는 2 이상을 혼합하여 조정하는 단계;를 포함하는 원적외선 방사물질이 혼합된 혼합잉크의 제조방법.
  11. 제10항에 있어서,
    상기 안료와 잉크 바인더를 배합하는 단계와, 상기 원적외선 방사물질과 잉크 바인더를 배합하는 단계는, 상기 배합물의 분산 점도에 대응하여 잉크 용매를 추가로 배합하는 단계를 더 포함하는 원적외선 방사물질이 혼합된 혼합잉크의 제조방법.
PCT/KR2017/011257 2016-10-12 2017-10-12 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물 WO2018070805A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/328,725 US11015074B2 (en) 2016-10-12 2017-10-12 Mixed ink mixed with far-infrared radiation material, method for preparing same, and printed matter with mixed ink printed thereon
JP2019534624A JP6848065B2 (ja) 2016-10-12 2017-10-12 遠赤外線放射物質が混合された混合インキ及びその製造方法と、該混合インキが印刷された印刷物
CN201780050937.1A CN109641476B (zh) 2016-10-12 2017-10-12 混合远红外线放射物质的混合油墨及其制造方法、该混合油墨印刷的印刷品
EP17859409.9A EP3527397B1 (en) 2016-10-12 2017-10-12 Mixed ink comprising far-infrared radiation material and method for preparing it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160132068 2016-10-12
KR10-2016-0132068 2016-10-12
KR10-2017-0132359 2017-10-12
KR1020170132359A KR101908861B1 (ko) 2016-10-12 2017-10-12 원적외선 방사물질이 혼합된 인쇄용 혼합잉크 및 그 혼합잉크가 인쇄된 인쇄물

Publications (1)

Publication Number Publication Date
WO2018070805A1 true WO2018070805A1 (ko) 2018-04-19

Family

ID=61906272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011257 WO2018070805A1 (ko) 2016-10-12 2017-10-12 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물

Country Status (1)

Country Link
WO (1) WO2018070805A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011909B1 (ko) * 1993-12-27 1996-09-04 박충구 다공질체 세라믹 함유 벽지 제조방법
JP3130775B2 (ja) * 1995-09-18 2001-01-31 美幸 徳田 超微粒状抗菌セラミックス粉体
KR20030067371A (ko) * 2002-02-08 2003-08-14 이병식 원적외선 방사 무늬층이 형성된 랩 필름 및 그 제조방법
KR20040077023A (ko) * 2003-02-27 2004-09-04 배수원 귀양석이 함유된 인쇄잉크조성물, 제지원료, 및 인쇄용지코팅액 조성물
KR20040094570A (ko) * 2003-05-03 2004-11-10 이성문 원적외선과 음이온 자장氣가 방사하는 분말 파우더를잉크,페인트 및 물감에 배합하여 문자식별과 그림형상이용이한 인쇄 표현방법.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011909B1 (ko) * 1993-12-27 1996-09-04 박충구 다공질체 세라믹 함유 벽지 제조방법
JP3130775B2 (ja) * 1995-09-18 2001-01-31 美幸 徳田 超微粒状抗菌セラミックス粉体
KR20030067371A (ko) * 2002-02-08 2003-08-14 이병식 원적외선 방사 무늬층이 형성된 랩 필름 및 그 제조방법
KR20040077023A (ko) * 2003-02-27 2004-09-04 배수원 귀양석이 함유된 인쇄잉크조성물, 제지원료, 및 인쇄용지코팅액 조성물
KR20040094570A (ko) * 2003-05-03 2004-11-10 이성문 원적외선과 음이온 자장氣가 방사하는 분말 파우더를잉크,페인트 및 물감에 배합하여 문자식별과 그림형상이용이한 인쇄 표현방법.

Similar Documents

Publication Publication Date Title
CN108697094A (zh) 抗病毒剂、涂料组合物、树脂组合物及抗病毒制品
CN102665404A (zh) 耐久性驱虫剂以及驱虫性树脂组合物
WO2018070805A1 (ko) 원적외선 방사물질이 혼합된 혼합잉크 및 그 제조방법과, 그 혼합잉크가 인쇄된 인쇄물
CN106590162A (zh) 水性凹版塑料薄膜表印油墨及其制备方法
JPS58148795A (ja) 昇華転写式カラ−ハ−ドコピ−用印画紙
KR100654185B1 (ko) 무독성 마이크로 은나노 항균필름 및 그의 제조방법
KR102233072B1 (ko) 블랙 잉크 조성물
JP6848065B2 (ja) 遠赤外線放射物質が混合された混合インキ及びその製造方法と、該混合インキが印刷された印刷物
CN110041759A (zh) 光子晶体油墨及其印刷方法和印刷品
KR20040084571A (ko) 원적외선 및 음이온을 방출하는 기능성 아크릴 수성도료
KR100887698B1 (ko) 유해성을 배제한 망점 인쇄 잉크 조성물
KR20080093615A (ko) 다기능성 인쇄용 잉크 조성물과 그 제조방법 및 이의사용방법
CN106009933A (zh) 一种木制品上色颜料及其制作方法
KR100730577B1 (ko) 전자기기 케이스 도장용 및 금속 재질의 건축용 자재용의기능성 도료 및 그 제조 방법
WO2015080334A1 (ko) 온도에 따라 변색되며 열경화가 가능한 공작용 고무찰흙
KR102031265B1 (ko) 원적외선 방사 코팅제용 조성물 및 그의 제조방법
KR101155429B1 (ko) 강도와 항균성이 향상된 책꽂이
JP2006063464A5 (ko)
JP2010163525A (ja) 透明赤外線カットフィルム形成用組成物
KR102453506B1 (ko) 향취 및 항균 성능을 갖는 인테리어용 실크 벽지
KR100899879B1 (ko) 인쇄물의 항균처리방법 및 상기 방법으로 처리한항균인쇄물
KR100254768B1 (ko) 신규의인테리어벽지및그제조방법
CN103436089A (zh) 一种热转印丝网油墨
JP3262433B2 (ja) 転写シート
KR20110137055A (ko) 항균 잉크 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017859409

Country of ref document: EP

Effective date: 20190513