WO2018070411A1 - 粒子径分布測定装置及び粒子径分布測定装置用プログラム - Google Patents

粒子径分布測定装置及び粒子径分布測定装置用プログラム Download PDF

Info

Publication number
WO2018070411A1
WO2018070411A1 PCT/JP2017/036794 JP2017036794W WO2018070411A1 WO 2018070411 A1 WO2018070411 A1 WO 2018070411A1 JP 2017036794 W JP2017036794 W JP 2017036794W WO 2018070411 A1 WO2018070411 A1 WO 2018070411A1
Authority
WO
WIPO (PCT)
Prior art keywords
light intensity
particle size
particles
particle
distribution
Prior art date
Application number
PCT/JP2017/036794
Other languages
English (en)
French (fr)
Inventor
山口 哲司
啓二郎 櫻本
森 哲也
央昌 菅澤
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2018545017A priority Critical patent/JP6872557B2/ja
Priority to GB1906051.6A priority patent/GB2573655B/en
Priority to US16/341,758 priority patent/US11169068B2/en
Publication of WO2018070411A1 publication Critical patent/WO2018070411A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the present invention relates to a particle size distribution measuring device and a program for the particle size distribution measuring device.
  • Patent Document 1 As a particle size distribution measuring apparatus, as shown in Patent Document 1, light contained in a measurement object is irradiated with light, and diffracted light or scattered light (hereinafter also referred to as diffracted / scattered light) generated by the irradiation.
  • diffracted light or scattered light hereinafter also referred to as diffracted / scattered light
  • the particle size distribution calculated by this particle size distribution measuring device is a graph showing how much particles of a certain particle size are included in the whole, with one axis as the particle diameter and the other as a percentage. It is what is displayed. That is, the particle size distribution indicates the relative number of particles having a certain particle size.
  • the present invention has been made in view of such problems, and its main object is to provide a particle size distribution measuring apparatus capable of knowing the absolute number of particles of a certain particle size contained in a measurement object. To do.
  • the particle size distribution measuring apparatus irradiates a particle group as a measurement target with light, and calculates the particle size distribution of the particle group based on a light intensity signal indicating the light intensity of the diffracted / scattered light.
  • a particle size distribution measuring apparatus for measuring particles having a specific particle size included in the measurement target based on an actual light intensity distribution obtained from the light intensity signal and a theoretical light intensity distribution calculated from the particle diameter.
  • Specific particle diameter light intensity calculation unit for calculating the resulting light intensity, and data obtained using a plurality of known samples whose number of particles of the specific particle diameter is known, and the specific particles included in each known sample
  • a correlation data storage unit that stores particle number-light intensity correlation data indicating a correlation between the number of particles having a diameter and an integrated value of the light intensity distribution obtained from each of the known samples, and the specific particle diameter light intensity calculating unit.
  • the particle number-light intensity correlation data indicating the correlation between the number of particles and the integrated value of the light intensity distribution is obtained in advance using a known sample. It is possible to calculate the number of particles having a specific particle size included in the measurement object based on the number-light intensity correlation data and the light intensity caused by the particle having the specific particle diameter in the measurement object.
  • the particle size distribution is calculated from a distribution that relatively represents the number of particles of each particle size included in the measurement target. It is preferable to provide a distribution conversion unit for converting into a distribution that absolutely represents. If it is such, it can grasp
  • the correlation data storage unit stores the particle number-light intensity correlation data obtained for each of a plurality of types of particle diameters. In such a case, since the particle number-light intensity correlation data is obtained in advance for each of a plurality of types of particle diameters, at least one of these particle diameters is the particle diameter of the particles included in the measurement target. If they match, the absolute particle number can be calculated using the particle number-light intensity correlation data corresponding to the particle diameter.
  • the correlation between the integrated value of the light intensity distribution and the number of particles also changes when the refractive index changes. Therefore, based on the theoretical light intensity distribution calculated using the particle diameter and refractive index of the known sample, and the theoretical light intensity distribution calculated using a different refractive index at the same particle diameter as the known sample, It is preferable to further include a correlation data correction unit that corrects the particle number-light intensity correlation data. In such a case, since the correlation data correction unit corrects the particle number-light intensity correlation data according to the refractive index, even if the refractive index of the measurement object is different from the refractive index of the known sample.
  • the number of particles can be calculated using appropriate particle number-light intensity correlation data corrected according to the refractive index of the measurement object. Thereby, the difference between the number of particles having a certain particle diameter in the measurement target and the number of particles calculated with respect to the particle diameter can be reduced.
  • measurement objects include bubble particles contained in a liquid.
  • the particle size distribution measuring apparatus program irradiates the particle group to be measured with light, and the particle size distribution of the particle group based on a light intensity signal indicating the light intensity of the diffracted / scattered light.
  • a program installed in the particle size distribution measuring apparatus for calculating the light intensity distribution obtained from the light intensity signal and the theoretical light intensity distribution calculated from the particle diameter.
  • a correlation data storage unit for storing particle number-light intensity correlation data indicating the correlation between the number of particles of the specific particle size contained in the sample and the integrated value of the light intensity distribution obtained from each known sample;
  • the computer functions as a particle number calculation unit that calculates the number of particles having the specific particle diameter included in the measurement target.
  • the particle size distribution measuring apparatus irradiates the particle group to be measured with light, and calculates the particle size distribution of the particle group based on a light intensity signal indicating the light intensity of the diffracted / scattered light.
  • a particle size distribution measuring apparatus for measuring particles having a specific particle size included in the measurement target based on an actual light intensity distribution obtained from the light intensity signal and a theoretical light intensity distribution calculated from the particle diameter.
  • Specific particle diameter light intensity calculation unit for calculating the resulting light intensity, and data obtained using a plurality of known samples whose number of particles of the specific particle diameter is known, and the specific particles included in each known sample
  • a correlation data storage unit for storing particle number-light intensity correlation data indicating a correlation between the number of particles having a diameter and the light intensity at a specific spread angle in the light intensity distribution obtained from each known sample, and the specific particle diameter Calculated by the light intensity calculator
  • a particle number calculation unit for calculating the number of particles of the specific particle size included in the measurement object based on the measured light intensity and the particle number-light intensity correlation data.
  • the program for a particle size distribution measuring apparatus irradiates light to a particle group to be measured, and the particle size distribution of the particle group based on a light intensity signal indicating the light intensity of the diffracted / scattered light.
  • a program installed in the particle size distribution measuring apparatus for calculating the light intensity distribution obtained from the light intensity signal and the theoretical light intensity distribution calculated from the particle diameter.
  • the number of particles having a specific particle size included in the measurement target can be calculated, and thus the particle size distribution that absolutely represents the number of particles of each particle size included in the measurement target. Can be obtained.
  • the functional block diagram which shows the function structure of the arithmetic unit in the embodiment.
  • the light intensity distribution according to the diffracted / scattered light spreading angle generated when the particles are irradiated with light is determined by the particle size from the MIE scattering theory, the Fraunhofer diffraction theory, and the like.
  • the particle size distribution is measured by detecting the diffracted / scattered light.
  • the measurement target X include pharmaceuticals, foods, and chemical industrial products.
  • the measurement target X is bubble particles contained in a liquid.
  • the particle size distribution measuring apparatus 100 includes an apparatus main body 10 and an arithmetic unit 20 as schematically shown in FIG.
  • the apparatus main body 10 is generated by irradiating a laser beam serving as a light source 13 that irradiates a particle group in the cell 11 with a cell 11 that accommodates a particle group that is a measurement target X, and a laser beam through a lens 12. And a plurality of photodetectors 14 for detecting the light intensity of the diffracted / scattered light according to the spread angle.
  • a laser beam serving as a light source 13 that irradiates a particle group in the cell 11 with a cell 11 that accommodates a particle group that is a measurement target X, and a laser beam through a lens 12.
  • a plurality of photodetectors 14 for detecting the light intensity of the diffracted / scattered light according to the spread angle.
  • the cell 11 uses the batch type cell in this embodiment, you may use a circulation type cell.
  • the arithmetic unit 20 is a general-purpose or dedicated computer equipped with a CPU, a memory, an input / output interface, and the like, and receives the light intensity signal output from each photodetector 14 to calculate the particle size distribution. Is to be calculated.
  • the arithmetic unit 20 cooperates with a CPU and peripheral devices in accordance with a predetermined program stored in a predetermined area of the memory, so that an actual light intensity distribution acquisition unit 21, an ideal light intensity, as shown in FIG. Functions as the distribution storage unit 22 and the particle size distribution calculation unit 23 are provided.
  • the actual light intensity distribution acquisition unit 21 receives the light intensity signal output from each photodetector 14, and, as shown in FIG. 3, the light intensity distribution with respect to the channel of each photodetector 14, that is, the diffracted / scattered light. Real light intensity distribution data indicating the light intensity distribution with respect to the spread angle is acquired.
  • the ideal light intensity distribution storage unit 22 stores ideal light intensity distribution data indicating an ideal light intensity distribution that should be obtained when a group of particles having the same particle diameter is irradiated with light. ing.
  • This ideal light intensity distribution is calculated based on a predetermined calculation formula (theoretical formula) using at least the particle diameter, and may be calculated in advance using an information processing device different from the calculation device 20.
  • the arithmetic unit 20 may be provided with a function for calculating the ideal light intensity distribution.
  • the ideal light intensity distribution storage unit 22 of the present embodiment stores each ideal intensity distribution data calculated for each of a plurality of types of particle diameters.
  • ideal light intensity distribution data calculated for particle sizes of at least 10 nm, 500 nm, and 1 ⁇ m are stored.
  • the particle size distribution calculation unit 23 is based on the actual light intensity distribution data acquired by the actual light intensity distribution acquisition unit 21 and a plurality of ideal light intensity distribution data stored in the ideal light intensity distribution storage unit 22. Particle size distribution data indicating the particle size distribution of the particle group as the measurement target X is calculated.
  • This particle size distribution represents the ratio (hereinafter also referred to as frequency) of particles having a certain particle size to the entire particle group, with one axis representing the particle size and the other axis. Is represented on a graph set to frequency.
  • the frequency is expressed as a percentage, and in other words, the particle size distribution can be said to relatively represent the number of particles of each particle size.
  • the calculation device 20 of the present embodiment further functions as a correlation data storage unit 24, a specific particle diameter light intensity calculation unit 25, a particle number calculation unit 26, and a distribution conversion unit 27. Prepare.
  • the correlation data storage unit 24 is composed of particles having the same particle diameter, and includes integrated values of light intensity distributions obtained by irradiating a plurality of known samples with different numbers of particles, Stores particle number-light intensity correlation data indicating the correlation with the number of particles of a known sample (here, the number concentration expressed in [number / ml]), specifically, the light intensity for each number of particles. It is a calibration curve obtained by plotting the integrated value of the distribution.
  • the known sample is a monodispersed sample in which the particle diameters of contained particles are uniform to some extent.
  • polystyrene latex spheres having a known particle number (number concentration) per unit volume and having a uniform particle diameter are used as the known sample. That is, the above-described calibration curve is obtained by irradiating each of the monodispersed samples having the same particle diameter with different numbers of particles and irradiating light, and calculating the integrated value of the obtained light intensity distribution for each number of particles. It was created by plotting.
  • the number-of-particles-light intensity correlation data is obtained in advance by experiments and stored in the correlation data storage unit 24.
  • the correlation data storage unit 24 of the present embodiment stores particle number-light intensity correlation data obtained for each of a plurality of types of particle diameters.
  • three particle number-light intensity correlation data obtained using known samples of at least 500 nm, 10 nm, and 1 ⁇ m are stored.
  • FIG. 5 shows the experimental results obtained in advance for the above-mentioned particle number-light intensity correlation data.
  • polystyrene latex spheres (PSL) having a particle diameter of 10 ⁇ m were used as known samples, and nine known samples having different number concentrations were used.
  • FIG. 5 is a graph in which the integrated values of the light intensity distributions obtained by irradiating each known sample with light and the respective number concentrations are plotted. From this experimental result, it can be seen that there is a good linearity correlation between the number of particles and the integrated value of the light intensity distribution.
  • the specific particle diameter light intensity calculation unit 25 calculates the light intensity caused by the particles having the specific particle diameter included in the measurement target X based on the actual light intensity distribution data and the ideal light intensity distribution data described above.
  • the particles having a specific particle diameter here are not limited to particles having a certain particle diameter (for example, 500 nm), and may be particles included in a certain range (for example, 450 nm to 550 nm).
  • the actual light intensity distribution can be considered as an overlap of ideal light intensity distributions corresponding to various particle sizes, as shown in FIG. That is, the actual light intensity distribution data includes ideal light intensity distribution data corresponding to a plurality of types of particle diameters at a certain ratio. Therefore, the specific particle diameter light intensity calculation unit 25 multiplies the above ratio by the integrated value I0 of the actual light intensity distribution to thereby determine the light intensity depending on the particles having the specific particle diameter (hereinafter referred to as the specific particle diameter light intensity integrated value). ) Is calculated. In other words, as shown in FIG. 6, the specific particle diameter light intensity calculation unit 25 calculates the integrated value of the ideal light intensity distribution of the specific particle diameter included in the actual light intensity distribution as the specific particle diameter light intensity. .
  • the frequency calculated by the particle size distribution calculating unit 23 is used as the above ratio, and the value obtained by multiplying the frequency of the specific particle size by the integrated value I0 of the actual light intensity distribution is used as the specific particle size light.
  • Intensity integrated value is not necessarily a value obtained by integrating the light intensity over all channels. For example, for some channels (channels having a smaller or larger spread angle than the first bottom). A value obtained by integrating the light intensity or a value obtained by integrating the light intensity excluding a channel where noise is generated may be used.
  • the particle number calculation section 26 determines the specific particle diameter included in the measurement target X.
  • the number of particles is calculated. Specifically, as shown in FIG. 7, for example, when the specific particle diameter light intensity calculation unit 25 calculates the specific particle diameter light intensity integrated value Ia caused by the 500 nm particles included in the measurement target X, the number of particles is calculated.
  • the unit 26 obtains the particle number Na corresponding to the specific particle diameter light intensity integrated value Ia using the particle number-light intensity correlation data obtained using the 500 nm known sample.
  • the particle number calculation unit 26 does not need to calculate the number of particles for each of a plurality of types of particle diameters, and may be any unit that calculates the number of particles for at least one type of particle diameter.
  • the distribution conversion unit 27 calculates the particle size distribution indicated by the particle size distribution data based on the number of particles calculated by the particle number calculation unit 26 and the above-described particle size distribution data.
  • a distribution that relatively represents the number of particles of a diameter is converted into a distribution that absolutely represents the number of particles of each particle size.
  • the distribution conversion unit 27 converts the other axis in the distribution relatively representing the number of particles from the frequency (percentage) to the number of particles (number concentration).
  • the distribution shape is such that the number of particles set as the other axis becomes the number of particles Na, Nb, and Nc of each particle diameter (here, 500 nm, 10 nm, and 1 ⁇ m) calculated by the particle number calculation unit 26. Deform.
  • the number of particles having a particle diameter other than the particle diameter calculated by the particle number calculation unit 26 is calculated by interpolation, for example. Thereby, the distribution that relatively represents the number of particles of each particle size is converted into a distribution that absolutely represents the number of particles of each particle size, and the converted particle size distribution is output to a display or the like, for example.
  • the correlation between the integrated value of the light intensity distribution and the number of particles also changes if the refractive index is different. Accordingly, when the refractive index of the known sample used for obtaining the particle number-light intensity correlation data is different from the refractive index of the measurement object X, the particle number-light intensity correlation data is included in the measurement object X. It cannot be said that the data is appropriate for calculating the number of particles having a specific particle size. Therefore, when the number of particles is calculated using the particle number-light intensity correlation data, an error occurs between the calculated number of particles and the actual number of particles included in the measurement target X.
  • the arithmetic unit 20 of the present embodiment further includes a function as a correlation data correction unit 28 that corrects the particle number-light intensity correlation data stored in the correlation data storage unit 24, as shown in FIG. Yes.
  • the refractive index of the measurement target X is nx
  • the refractive index of the known sample is ny
  • the particle number-light intensity correlation data obtained in advance using a known sample of, for example, 500 nm is corrected will be described with reference to FIG. While explaining.
  • the correlation data correction unit 28 acquires ideal light intensity distribution data obtained using the refractive index nx of the measurement target X and the particle diameter of 500 nm from the ideal light intensity distribution storage unit 22, and the ideal light intensity distribution.
  • the integrated value Ix is calculated.
  • the correlation data correction unit 28 calculates the integrated value Iy of the ideal light intensity distribution obtained using the refractive index ny of the known sample and the particle diameter of 500 nm.
  • the correlation data correction unit 28 multiplies the above-mentioned ratio k by the light intensity corresponding to each particle number with respect to the pre-correction particle number-light intensity correlation data obtained in advance using a 500 nm known sample.
  • the correlation data storage unit 24 stores the corrected particle number-light intensity correlation data.
  • particle number-light intensity correlation data indicating a correlation between the number of particles and the integrated value of the light intensity distribution is obtained in advance using a known sample. Therefore, based on the particle number-light intensity correlation data and the specific particle diameter light intensity integrated value, the number of particles having a specific particle diameter (number concentration) included in the measurement target X can be calculated.
  • the number of particles (number concentration) in this way, for example, using a conversion formula or the like, the total number of particles having a specific particle diameter included in the entire measurement target X or the specific particles included in the measurement target X Absolute values for particles of a specific particle size such as turbidity or volume concentration of particles of a size can be known.
  • the distribution conversion unit 27 converts the particle size distribution from a distribution that relatively represents the number of particles of each particle size to a distribution that absolutely represents the number of particles of each particle size. By confirming the diameter distribution, the number of particles of each particle diameter included in the measurement target X can be grasped as a whole.
  • the particle number-light intensity correlation data is obtained in advance for each of a plurality of types of particle sizes, if at least one of these particle sizes matches the particle size of the particles included in the measurement target X
  • the number of particles can be calculated using particle number-light intensity correlation data corresponding to the particle size. This makes it possible to measure the particle size distribution in a flexible manner corresponding to various measurement objects X.
  • the particle number-light intensity correlation data that can be used to calculate a particle number or a distribution that absolutely represents the particle number more accurately. May be used, or particle number-light intensity correlation data corresponding to the particle diameter closest to the mode diameter (mode diameter) of the particle diameter distribution relatively representing the number of particles may be used.
  • the correlation data correction unit 28 corrects the particle number-light intensity correlation data according to the difference in the refractive index, even if the refractive index of the measurement target X is different from the refractive index of the known sample, the correction is performed.
  • the appropriate number of particles-light intensity correlation data can be used later to calculate the number of particles. Thereby, the error which arises between the number of particles actually contained in the measuring object X and the calculated number of particles can be reduced, and the measurement accuracy can be improved.
  • the present invention is not limited to the above embodiment.
  • the number-of-particles-light intensity correlation data includes the number of particles contained in a known sample and the light intensity at a specific spread angle in the light intensity distribution obtained from the known sample (that is, a specific channel). Data indicating the correlation with the light intensity detected by the light detector 14).
  • the specific spread angle may be appropriately changed, for example, a spread angle corresponding to the second peak or the first peak, or a spread angle at which the light intensity is maximized.
  • the particle number-light intensity correlation data is obtained in advance from an actual light intensity distribution obtained by irradiating light to a plurality of known samples that are composed of particles having the same particle diameter and different in number. Desired. Specifically, for example, each of three known samples having a particle diameter of 500 nm and a number of particles (number concentration) of C1, C2, and C3 is irradiated with light to measure the light intensity distribution, and specific channels of these light intensity distributions are measured.
  • three calibration curves obtained using known samples of at least 500 nm, 10 nm, and 1 ⁇ m are stored as particle number-light intensity correlation data.
  • FIG. 10 shows the experimental results obtained in advance for the above-mentioned particle number-light intensity correlation data.
  • polystyrene latex spheres (PSL) having a particle diameter of 10 ⁇ m were used as known samples, and nine known samples having different number concentrations were used.
  • FIG. 10 is a graph in which the light intensity of each specific channel corresponding to 10 ⁇ m obtained by irradiating each known sample with light and the number concentration thereof are plotted. From this experimental result, it can be seen that there is a good linearity correlation between the number of particles and the light intensity of a specific channel.
  • the specific particle diameter light intensity calculation unit 25 uses the light of the channel corresponding to the specific particle diameter in the actual light intensity distribution (for example, the channel corresponding to 500 nm is Ch1). The intensity is obtained as a light intensity depending on particles having a specific particle diameter (hereinafter referred to as a specific particle diameter light intensity).
  • the particle number calculation unit 26 determines the specific particle diameter of the measurement target X based on the specific particle diameter light intensity calculated by the specific particle diameter light intensity calculation unit 25 and the particle number-light intensity correlation data. Calculate the number of particles. Specifically, as shown in FIG. 11, for example, when the specific particle diameter light intensity calculation unit 25 calculates the specific particle diameter light intensity Ia caused by the 500 nm particles included in the measurement target X, the particle number calculation unit 26 Uses the particle number-light intensity correlation data obtained using a 500 nm known sample to determine the particle number Na corresponding to the specific particle diameter light intensity Ia.
  • the number of particles Na, Nb, and Nc of 500 nm, 10 nm, and 1 ⁇ m included in the measurement target X is obtained based on the specific particle diameter light intensities Ia, Ib, and Ic of 500 nm, 10 nm, and 1 ⁇ m, respectively.
  • the particle size distribution data indicated by the particle size distribution data is calculated by the distribution conversion unit 27 based on the particle numbers Na, Nb, and Nc calculated by the particle number calculation unit 26 and the particle size distribution data. The distribution is converted from a distribution that relatively represents the number of particles of each particle size to a distribution that absolutely represents the number of particles of each particle size.
  • the particle size distribution is converted from a distribution that relatively represents the number of particles of each particle size to a distribution that absolutely represents the number of particles of each particle size, and is output to a display or the like.
  • the arithmetic unit 20 does not necessarily have a function as the distribution conversion unit 27.
  • the particle number calculation unit 26 may calculate the number of particles having a specific particle diameter and output the calculated number of particles to a display or the like.
  • the distribution conversion unit 27 uses a plurality of particle numbers Na, Nb, and Nc, and converts the particle size distribution by interpolating and obtaining the number of particles between them. Using the number of particles, a distribution that relatively represents the number of particles may be transformed into a distribution that absolutely represents the number of particles.
  • the correlation data correction unit 28 calculates the integrated value Ix of the ideal light intensity distribution obtained by using the refractive index nx and the particle diameter of the measurement target X, the refractive index ny and the particle diameter of the known sample.
  • the number-of-particles-light intensity correlation data is corrected based on the integrated value Iy of the ideal light intensity distribution obtained by using the number of particles based on, for example, the ratio of the maximum light intensity in each of the above ideal light intensity distributions.
  • -Light intensity correlation data may be corrected.
  • the particle size distribution measuring apparatus which can know the absolute particle number of a certain particle diameter contained in a measuring object can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

測定対象に含まれるある粒子径の絶対的な粒子数を知ることのできる粒子径分布測定装置を提供すべく、光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、測定対象Xに含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部25と、特定粒子径の粒子数が既知である既知試料を用いて得られるデータであり、各既知試料に含まれる特定粒子径の粒子数と、各既知試料から得られた光強度分布の積算値との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部24と、特定粒子径光強度算出部25により算出された光強度と、粒子数-光強度相関データとに基づいて、測定対象に含まれる特定粒子径の粒子数を算出する粒子数算出部26とを備えるようにした。

Description

粒子径分布測定装置及び粒子径分布測定装置用プログラム
 本発明は、粒子径分布測定装置及び粒子径分布測定装置用プログラムに関するものである。
 従来、粒子径分布測定装置としては、特許文献1に示すように、測定対象に含まれる粒子に光を照射し、その照射により生じる回折光や散乱光(以下、回折/散乱光とも言う)の光強度分布に基づいて粒子の粒子径分布を算出するものが知られている。
 この粒子径分布測定装置によって算出された粒子径分布は、ある粒子径の粒子が全体に対してどの程度含まれているかを、一方の軸を粒子径、他方の軸をパーセンテージとしたグラフ上に表示されるものである。すなわち、この粒子径分布は、ある粒子径の粒子の相対的な粒子数を示したものである。
 ところで近年、測定対象に含まれる粒子の絶対的な粒子数と、例えばその測定対象により得られる効果との相関などを知りたいという要望があり、測定対象におけるある体積中の個数や単位体積あたりの個数(個数濃度)などといった絶対的な粒子数を測定することが求められている。
 絶対的な粒子数を測定する方法としては、顕微鏡などを用いて測定対象中の粒子をカウントしていく方法があるが、精度良く粒子数を測定しようとすると、統計的な誤差を防ぐために、数万個の粒子をカウントする必要があり、非常に時間がかかる。また、粒子が微小すぎて顕微鏡などで確認することができないと、この方法は採用できない。
特開2008-122208号公報
 そこで本発明は、かかる課題に鑑みてなされたものであって、測定対象に含まれるある粒子径の絶対的な粒子数を知ることのできる粒子径分布測定装置を提供することをその主たる目的とするものである。
 すなわち、本発明に係る粒子径分布測定装置は、測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置であって、前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布の積算値との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部とを備えることを特徴とするものである。
 このように構成された粒子径分布測定装置であれば、粒子数と光強度分布の積算値との相関を示す粒子数-光強度相関データを予め既知試料を用いて求めてあるので、この粒子数-光強度相関データと、測定対象中の特定粒子径の粒子に起因する光強度とに基づいて測定対象に含まれる特定粒子径の粒子数を算出することが可能となる。
 前記粒子数算出部により算出された前記特定粒子径の粒子数に基づいて、前記粒子径分布を、前記測定対象に含まれる各粒子径の粒子数を相対的に表した分布から、その粒子数を絶対的に表した分布に変換する分布変換部を備えることが好ましい。
 このようなものであれば、各粒子径の絶対的な粒子数を示す分布を確認することで、測定対象に含まれる各粒子径の粒子数を全体的に把握することができる。
 ところで、例えば500nmの既知試料を用いて粒子数-光強度相関データを予め求めてあったとしても、測定対象に500nmの粒子が含まれていなければ、粒子数-光強度相関データを用いて絶対的な粒子数を算出することはできない。
 そこで、前記相関データ記憶部が、複数種類の粒子径それぞれに対して得られた前記粒子数-光強度相関データを記憶していることが好ましい。
 このようなものであれば、複数種類の粒子径それぞれに対して粒子数-光強度相関データを予め求めているので、これらの粒子径の少なくとも1つが、測定対象に含まれる粒子の粒子径と一致していれば、その粒子径に対応する粒子数-光強度相関データを用いて絶対的な粒子数を算出することができる。
 光強度分布は、屈折率が変わるとその形状が変わるため、屈折率が変われば光強度分布の積算値と粒子数との相関も変わる。
 そこで、前記既知試料の粒子径及び屈折率を用いて算出された理論光強度分布と、前記既知試料と同じ粒子径で異なる屈折率を用いて算出された理論光強度分布とに基づいて、前記粒子数-光強度相関データを補正する相関データ補正部をさらに備えることが好ましい。
 このようなものであれば、相関データ補正部が粒子数-光強度相関データを屈折率に応じて補正するので、測定対象の屈折率が既知試料の屈折率と異なっている場合であっても、測定対象の屈折率に応じて補正された適切な粒子数-光強度相関データを用いて粒子数を算出することができる。これにより、測定対象中のある粒子径の粒子数と、その粒子径に対して算出された粒子数との差を小さくすることができる。
 具体的な測定対象としては、液体中に含まれる気泡粒子が挙げられる。
 また、本発明に係る粒子径分布測定装置用プログラムは、測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置に搭載されるプログラムであって、前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布の積算値との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部としての機能をコンピュータに発揮させることを特徴とするプログラムである。
 このような粒子径分布測定装置用プログラムであれば、上述した粒子径分布測定装置と同様の作用効果を発揮させることができる。
 また、本発明に係る粒子径分布測定装置は、測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置であって、前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布における特定の拡がり角度の光強度との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部とを備えることを特徴とするものである。
 さらに、本発明に係る粒子径分布測定装置用プログラムは、測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置に搭載されるプログラムであって、前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布における特定の拡がり角度の光強度との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部としての機能をコンピュータに発揮させることを特徴とするプログラムである。
 このような粒子径分布測定装置や粒子径分布測定装置用プログラムであれば、
粒子数と特定の拡がり角度の光強度との相関を示す粒子数-光強度相関データを予め既知試料を用いて求めてあるので、この粒子数-光強度相関データと、測定対象中の特定粒子径の粒子に起因する光強度とに基づいて、測定対象に含まれる特定粒子径の粒子数を算出することが可能となる。
 このように構成した本発明によれば、測定対象に含まれる特定粒子径の粒子数を算出することができ、ひいては測定対象に含まれる各粒子径の粒子数を絶対的に表した粒子径分布を得ることができる。
本発明の一実施形態における粒子径分布測定装置を示す概略図。 同実施形態における演算装置の機能構成を示す機能ブロック図。 同実施形態における実光強度分布及び粒子径分布を説明するための模式図。 同実施形態における粒子数-光強度相関データを説明するための模式図。 同実施形態における粒子数-光強度相関データを求めた実験結果。 同実施形態における特定粒子径光強度算出部の機能を説明するための模式図。 同実施形態における分布変換部の機能を説明するための模式図。 同実施形態における相関データ補正部の機能を説明するための模式図。 変形実施形態における粒子数-光強度相関データを説明するための模式図。 変形実施形態における粒子数-光強度相関データを求めた実験結果。 変形実施形態における分布変換部の機能を説明するための模式図。
100・・・粒子径分布測定装置
X  ・・・測定対象
21 ・・・実光強度分布取得部
22 ・・・理想光強度分布記憶部
23 ・・・粒子径分布算出部
24 ・・・相関データ記憶部
25 ・・・特定粒子径光強度算出部
26 ・・・粒子数算出部
27 ・・・分布変換部
28 ・・・相関データ補正部
 以下に本発明に係る粒子径分布測定装置の一実施形態について図面を参照して説明する。
 本実施形態に係る粒子径分布測定装置100は、粒子に光を照射した際に生じる回折/散乱光の拡がり角度に応じる光強度分布が、MIE散乱理論やフラウンホーファー回折理論等から粒子径によって定まることを利用し、前記回折/散乱光を検出することによって粒子径分布を測定するものである。測定対象Xとしては、医薬品、食品、化学工業品など種々挙げられるが、ここでは液体中に含まれる気泡粒子を測定対象Xとしている。
 粒子径分布測定装置100は、図1に模式的に示すように、装置本体10と演算装置20とを備えている。
 装置本体10は、測定対象Xである粒子群を収容するセル11と、そのセル11内の粒子群にレンズ12を介してレーザ光を照射する光源13たるレーザ装置と、レーザ光の照射により生じる回折/散乱光の光強度を拡がり角度に応じて検出する複数の光検出器14とを備えたものである。
 なお、セル11は、本実施形態では、バッチ式セルを用いているが、循環式セルを用いても構わない。
 演算装置20は、物理的に言えば、CPU、メモリ、入出力インターフェース等を備えた汎用乃至専用のコンピュータであり、各光検出器14から出力された光強度信号を受信して粒子径分布を算出するものである。
 この演算装置20は、前記メモリの所定領域に記憶させた所定のプログラムにしたがって、CPUや周辺機器を協働させることにより、図2に示すように、実光強度分布取得部21、理想光強度分布記憶部22、及び粒子径分布算出部23としての機能を備えたものである。
 実光強度分布取得部21は、各光検出器14から出力された光強度信号を受け付けて、図3に示すように、各光検出器14のチャンネルに対する光強度分布、すなわち回折/散乱光の拡がり角度に対する光強度分布を示す実光強度分布データを取得する。
 理想光強度分布記憶部22は、図3に示すように、同じ粒子径の粒子からなる粒子群に光を照射した場合に得られるはずの理想光強度分布を示す理想光強度分布データを記憶している。この理想光強度分布は、少なくとも粒子径を用いて所定の算出式(理論式)に基づき算出されるものであり、演算装置20とは別の情報処理装置を用いて予め算出しておいても良いし、演算装置20に理想光強度分布を算出する機能を備えさせておいても良い。
 本実施形態の理想光強度分布記憶部22は、複数種類の粒子径それぞれに対して算出された各理想強度分布データを記憶している。ここでは説明の便宜上、少なくとも10nm、500nm、及び1μmの粒子径に対して算出された理想光強度分布データが記憶されているものとする。
 粒子径分布算出部23は、実光強度分布取得部21により取得された実光強度分布データと、理想光強度分布記憶部22に記憶されている複数の理想光強度分布データとに基づいて、測定対象Xたる粒子群の粒子径分布を示す粒子径分布データを算出する。
 この粒子径分布は、図3に示すように、ある粒子径の粒子が粒子群全体に対して占める割合(以下、頻度ともいう)を表すものであり、一方の軸を粒子径、他方の軸を頻度に設定されたグラフ上に表される。ここでは、頻度をパーセンテージで表しており、言い換えれば粒子径分布は各粒子径の粒子数を相対的に表したものといえる。
 しかして、本実施形態の演算装置20は、図2に示すように、相関データ記憶部24、特定粒子径光強度算出部25、粒子数算出部26、及び分布変換部27としての機能をさらに備えてなる。
 相関データ記憶部24は、図4に示すように、同じ粒子径の粒子からなり、含まれる粒子数が互いに異なる複数の既知試料に光を照射して得られる光強度分布の積算値と、各既知試料の粒子数(ここでは、[個数/ml]で表される個数濃度)との相関を示す粒子数-光強度相関データを記憶したものであり、具体的には各粒子数に対する光強度分布の積算値をプロットして得られる検量線である。
 既知試料は、含まれる粒子の粒子径がある程度揃った単分散の試料である。ここでは既知試料として、単位体積当たりに含まれる粒子数(個数濃度)が既知で、且つ、粒子径のそろった例えばポリスチレンラテックス球(PSL)を用いている。すなわち、上述した検量線は、粒子径が同じ複数の単分散試料において、粒子数を互いに異ならせたものそれぞれに光を照射して、得られた光強度分布の積算値を各粒子数に対してプロットすることにより作成されたものである。
 粒子数-光強度相関データは、予め実験などで求めておき、相関データ記憶部24に記憶させてある。本実施形態の相関データ記憶部24は、複数種類の粒子径それぞれに対して得られた粒子数-光強度相関データを記憶している。ここでは説明の便宜上、少なくとも500nm、10nm、及び1μmの既知試料を用いて得られた3つの粒子数-光強度相関データが記憶されている。
 ここで、上述した粒子数-光強度相関データを予め求めた実験結果を図5に示す。
 この実験では、既知試料として粒子径が10μmのポリスチレンラテックス球(PSL)を用いており、個数濃度が互いに異なる9種類の既知試料を使用した。
 そして、各既知試料に光を照射して得られた光強度分布の積算値とそれぞれの個数濃度とをプロットしたものが、図5に示すグラフである。
 この実験結果から、粒子数と光強度分布の積算値との間には線形性の良い相関があることが分かる。
 特定粒子径光強度算出部25は、上述した実光強度分布データと理想光強度分布データとに基づいて、測定対象Xに含まれる特定粒子径の粒子に起因する光強度を算出する。なお、ここでいう特定粒子径の粒子とは、ある粒子径(例えば500nm)の粒子には限らず、粒子径がある特定の範囲(例えば450nm~550nm)に含まれる粒子としても構わない。
 ここで、実光強度分布は、図6に示すように、種々の粒子径に対応する理想光強度分布が重ね合わさったものと考えることができる。すなわち、実光強度分布データには、複数種類の粒子径に対応する理想光強度分布データが、とある割合で含まれていることになる。
 そこで、特定粒子径光強度算出部25は、上記の割合を実光強度分布の積算値I0に掛け合わせて、特定の粒子径の粒子に依存する光強度(以下、特定粒子径光強度積算値)を算出する。言い換えれば、特定粒子径光強度算出部25は、図6に示すように、実光強度分布に含まれる特定粒子径の理想光強度分布の積算値を、特定粒子径光強度として算出している。具体的にここでは、上記の割合として粒子径分布算出部23により算出された頻度を用いており、特定粒子径の頻度を実光強度分布の積算値I0に掛け合わせた値を特定粒子径光強度積算値としている。
 なお、実光強度分布の積算値は、必ずしも全チャンネルに亘って光強度を積算した値には限らず、例えば一部のチャンネル(ファーストボトムよりも拡がり角度が小さい又は大きい位置にあるチャンネル)の光強度を積算した値や、ノイズの生じているチャンネルを除いて光強度を積算した値としても良い。
 粒子数算出部26は、特定粒子径光強度算出部25により算出された特定粒子径光強度積算値と、粒子数-光強度相関データとに基づいて、測定対象Xに含まれる特定粒子径の粒子数を算出するものである。
 具体的には、図7に示すように、例えば特定粒子径光強度算出部25が測定対象Xに含まれる500nmの粒子に起因する特定粒子径光強度積算値Iaを算出した場合、粒子数算出部26は、500nmの既知試料を用いて得られた粒子数-光強度相関データを用いて、特定粒子径光強度積算値Iaに対応する粒子数Naを求める。
 本実施形態では、500nm、10nm、及び1μmそれぞれの特定粒子径光強度積算値Ia、Ib、Icに基づき、測定対象Xに含まれる500nm、10nm、及び1μmそれぞれの粒子数Na、Nb、Ncを求めている。
 なお、粒子数算出部26としては、複数種類の粒子径それぞれに対して粒子数を算出する必要はなく、少なくとも1種類の粒子径に対する粒子数を算出するものであれば良い。
 分布変換部27は、図7に示すように、粒子数算出部26により算出された粒子数と、上述した粒子径分布データとに基づいて、粒子径分布データが示す粒子径分布を、各粒子径の粒子数を相対的に表した分布から、各粒子径の粒子数を絶対的に表した分布に変換するものである。
 具体的にこの分布変換部27は、粒子数を相対的に表した分布における他方の軸を、頻度(パーセンテージ)から粒子数(個数濃度)に変換する。そして、この他方の軸として設定された粒子数が、粒子数算出部26により算出された各粒子径(ここでは、500nm、10nm、1μm)の粒子数Na、Nb、Ncとなるように分布形状を変形させる。なお、粒子数算出部26により算出された粒子径以外の粒子径の粒子数については、ここでは例えば補間により算出されている。
 これにより、各粒子径の粒子数を相対的に表した分布は、各粒子径の粒子数を絶対的に表した分布に変換され、変換後の粒子径分布は例えばディスプレイ等に出力される。
 ところで、粒子に光を照射して得られる光強度分布の形状は、粒子の屈折率によって変化するので、屈折率が異なれば光強度分布の積算値と粒子数との相関も変わる。
 このことから、粒子数-光強度相関データを得るために用いられた既知試料の屈折率と測定対象Xの屈折率とが異なる場合、その粒子数-光強度相関データは測定対象Xに含まれる特定粒子径の粒子数を算出するためには適切なデータであるとはいえない。したがって、この粒子数-光強度相関データを用いて粒子数を算出すると、算出された粒子数と測定対象Xに含まれる実際の粒子数との間で誤差が生じてしまう。
 そこで、本実施形態の演算装置20は、図2に示すように、相関データ記憶部24に記憶されている粒子数-光強度相関データを補正する相関データ補正部28としての機能をさらに備えている。
 以下では、測定対象Xの屈折率をnx、既知試料の屈折率をnyとし、例えば500nmの既知試料を用いて予め求めた粒子数-光強度相関データを補正する場合について、図8を参照しながら説明する。
 この場合、相関データ補正部28は、測定対象Xの屈折率nxと粒子径500nmを用いて得られた理想光強度分布データを理想光強度分布記憶部22から取得して、その理想光強度分布の積算値Ixを算出する。
 また、相関データ補正部28は、既知試料の屈折率nyと粒子径500nmを用いて得られる理想光強度分布の積算値Iyを算出する。
 次に、相関データ補正部28は、それぞれの積算値Ix、Iyの比率k(=Ix/Iy)を算出する。
 そして、相関データ補正部28は、500nmの既知試料を用いて予め求められている補正前の粒子数-光強度相関データに対して、上述した比率kを各粒子数に対応する光強度に掛け合わせることで、補正後の粒子数-光強度相関データとして相関データ記憶部24に記憶させる。
 このように構成された本実施形態に係る粒子径分布測定装置100によれば、粒子数と光強度分布の積算値との相関を示す粒子数-光強度相関データを予め既知試料を用いて求めてあるので、この粒子数-光強度相関データと特定粒子径光強度積算値とに基づいて、測定対象Xに含まれる特定粒子径の粒子数(個数濃度)を算出することが可能となる。
 そして、このように粒子数(個数濃度)を算出することで、例えば換算式などを用いて、測定対象Xの全体に含まれる特定粒子径の全粒子数や、測定対象Xに含まれる特定粒子径の粒子の濁度又は体積濃度など、特定粒子径の粒子に関する絶対的な値を知ることができる。
 また、分布変換部27が、粒子径分布を、各粒子径の粒子数を相対的に表した分布から、各粒子径の粒子数を絶対的に表した分布に変換するので、変換後の粒子径分布を確認することで、測定対象Xに含まれる各粒子径の粒子数を全体的に把握することができる。
 さらに、複数種類の粒子径それぞれに対して粒子数-光強度相関データを予め求めているので、これらの粒子径の少なくとも1つが、測定対象Xに含まれる粒子の粒子径と一致していれば、その粒子径に対応する粒子数-光強度相関データを用いて粒子数を算出することができる。これにより、種々の測定対象Xに柔軟に対応して、粒子径分布を測定することが可能となる。
 また、複数の粒子数-光強度相関データを用いることができる場合は、より正確に粒子数や粒子数を絶対的に表した分布を算出すべく、用いることのできる粒子数-光強度相関データを全て用いても良いし、粒子数を相対的に表した粒子径分布のモード径(最頻径)に最も近い粒子径に対応する粒子数-光強度相関データを用いても良い。
 そのうえ、相関データ補正部28が屈折率の違いに応じて粒子数-光強度相関データを補正するので、測定対象Xの屈折率が既知試料の屈折率と異なっている場合であっても、補正後の適切な粒子数-光強度相関データを用いて粒子数を算出することができる。これにより、測定対象Xに実際に含まれる粒子数と算出された粒子数との間に生じる誤差を小さくすることができ、測定精度の向上を図れる。
 なお、本発明は前記実施形態に限定されるものではない。
 例えば、粒子数-光強度相関データは、図9に示すように、既知試料に含まれる粒子数と、既知試料から得られた光強度分布における特定の拡がり角度の光強度(つまり、特定のチャンネルの光検出器14が検出した光強度)との相関を示すデータであっても良い。なお、特定の拡がり角度は、例えばセカンドピークやファーストピークに対応する拡がり角度や、光強度が最大となる拡がり角度など、適宜変更して構わない。
 この粒子数-光強度相関データは、図9に示すように、同じ粒子径の粒子からなり、含まれる粒子数が互いに異なる複数の既知試料に光を照射して得られる実光強度分布から予め求められる。
 具体的には、例えば粒子径が500nmで粒子数(個数濃度)がC1、C2、C3の3つの既知試料それぞれに光を照射して光強度分布を測定し、これらの光強度分布の特定チャンネル(例えばCh1)の光強度I11、I12、I13と、各既知試料の粒子数(個数濃度)C1、C2、C3とをプロットして得られる検量線が、500nmの既知試料を用いて得られる粒子数-光強度相関データに含まれている。
 ここでは、少なくとも500nm、10nm、及び1μmの既知試料を用いて得られた3つの検量線が粒子数-光強度相関データとして記憶されている。
 ここで、上述した粒子数-光強度相関データを予め求めた実験結果を図10に示す。
 この実験では、既知試料として粒子径が10μmのポリスチレンラテックス球(PSL)を用いており、個数濃度が互いに異なる9種類の既知試料を使用した。
 そして、各既知試料に光を照射して得られた10μmに対応する特定チャンネルの光強度とそれぞれの個数濃度とをプロットしたものが、図10に示すグラフである。
 この実験結果から、粒子数と特定チャンネルの光強度との間には線形性の良い相関があることが分かる。
 上述した粒子数-光強度相関データを用いる場合、特定粒子径光強度算出部25は、実光強度分布における特定の粒子径に対応するチャンネル(例えば500nmに対応するチャンネルはCh1である)の光強度を、特定の粒子径の粒子に依存する光強度(以下、特定粒子径光強度という)として得る。
 然して、粒子数算出部26は、特定粒子径光強度算出部25により算出された特定粒子径光強度と、粒子数-光強度相関データとに基づいて、測定対象Xに含まれる特定粒子径の粒子数を算出する。
 具体的には、図11に示すように、例えば特定粒子径光強度算出部25が測定対象Xに含まれる500nmの粒子に起因する特定粒子径光強度Iaを算出した場合、粒子数算出部26は、500nmの既知試料を用いて得られた粒子数-光強度相関データを用いて、特定粒子径光強度Iaに対応する粒子数Naを求める。ここでは、500nm、10nm、及び1μmそれぞれの特定粒子径光強度Ia、Ib、Icに基づき、測定対象Xに含まれる500nm、10nm、及び1μmそれぞれの粒子数Na、Nb、Ncを求めている。
 そして、前記実施形態と同様に、分布変換部27が、粒子数算出部26により算出された粒子数Na、Nb、Ncと、粒子径分布データとに基づいて、粒子径分布データが示す粒子径分布を、各粒子径の粒子数を相対的に表した分布から、各粒子径の粒子数を絶対的に表した分布に変換する。
 また、前記実施形態では、粒子径分布を各粒子径の粒子数を相対的に表した分布から、各粒子径の粒子数を絶対的に表した分布に変換してディスプレイ等に出力していたが、演算装置20は必ずしも分布変換部27としての機能を備えている必要はない。その場合の一例としては、粒子数算出部26が特定粒子径の粒子数を算出し、その算出された粒子数をディスプレイ等に出力するようにしても良い。
 さらに、前記実施形態では、分布変換部27が、複数の粒子数Na、Nb、Ncを用いるとともに、その間の粒子数は補間して求めることで、粒子径分布を変換していたが、1つの粒子数を用いて、粒子数を相対的に表した分布を粒子数を絶対的に表した分布に変形しても良い。
 加えて、前記実施形態では、相関データ補正部28が、測定対象Xの屈折率nxと粒子径を用いて得られる理想光強度分布の積算値Ixと、既知試料の屈折率nyと粒子径を用いて得られる理想光強度分布の積算値Iyとに基づいて粒子数-光強度相関データを補正していたが、上記の各理想光強度分布の例えば最大光強度の比率などに基づいて粒子数-光強度相関データを補正しても良い。
 その他、本発明は前記各実施形態に限られないし、その各部分構成を組み合わせて
も良く、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 本発明によれば、測定対象に含まれるある粒子径の絶対的な粒子数を知ることのできる粒子径分布測定装置を提供することができる。
 

Claims (8)

  1.  測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置であって、
     前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、
     前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布の積算値との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、
     前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部とを備える粒子径分布測定装置。
  2.  前記粒子数算出部により算出された前記特定粒子径の粒子数に基づいて、前記粒子径分布を、前記測定対象に含まれる各粒子径の粒子数を相対的に表した分布から、その粒子数を絶対的に表した分布に変換する分布変換部を備える請求項1記載の粒子径分布測定装置。
  3.  前記相関データ記憶部が、複数種類の粒子径それぞれに対して得られた前記粒子数-光強度相関データを記憶している請求項1記載の粒子径分布測定装置。
  4.  前記既知試料の粒子径及び屈折率を用いて算出された理論光強度分布と、前記既知試料と同じ粒子径で異なる屈折率を用いて算出された理論光強度分布とに基づいて、前記粒子数-光強度相関データを補正する相関データ補正部をさらに備える請求項1記載の粒子径分布測定装置。
  5.  前記測定対象が、液体中に含まれる気泡粒子である請求項1記載の粒子径分布測定装置。
  6.  測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置に搭載されるプログラムであって、
     前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、
     前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布の積算値との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、
     前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部としての機能をコンピュータに発揮させる粒子径分布測定装置用プログラム。
  7.  測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置であって、
     前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、
     前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布における特定の拡がり角度の光強度との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、
     前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部とを備える粒子径分布測定装置。
  8.  測定対象である粒子群に光を照射し、その回折/散乱光の光強度を示す光強度信号に基づいて前記粒子群の粒子径分布を算出する粒子径分布測定装置に搭載されるプログラムであって、
     前記光強度信号から得られる実光強度分布と、粒子径から算出される理論光強度分布とに基づいて、前記測定対象に含まれる特定粒子径の粒子に起因する光強度を算出する特定粒子径光強度算出部と、
     前記特定粒子径の粒子数が既知である複数の既知試料を用いて得られるデータであり、前記各既知試料に含まれる前記特定粒子径の粒子数と、前記各既知試料から得られた光強度分布における特定の拡がり角度の光強度との相関を示す粒子数-光強度相関データを記憶する相関データ記憶部と、
     前記特定粒子径光強度算出部により算出された光強度と、前記粒子数-光強度相関データとに基づいて、前記測定対象に含まれる前記特定粒子径の粒子数を算出する粒子数算出部としての機能をコンピュータに発揮させる粒子径分布測定装置用プログラム。
PCT/JP2017/036794 2016-10-14 2017-10-11 粒子径分布測定装置及び粒子径分布測定装置用プログラム WO2018070411A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018545017A JP6872557B2 (ja) 2016-10-14 2017-10-11 粒子径分布測定装置及び粒子径分布測定装置用プログラム
GB1906051.6A GB2573655B (en) 2016-10-14 2017-10-11 Particle size distribution measurement device and program for a particle size distribution measurement device
US16/341,758 US11169068B2 (en) 2016-10-14 2017-10-11 Particle size distribution measurement device and program for a particle size distribution measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016202200 2016-10-14
JP2016-202200 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070411A1 true WO2018070411A1 (ja) 2018-04-19

Family

ID=61906167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036794 WO2018070411A1 (ja) 2016-10-14 2017-10-11 粒子径分布測定装置及び粒子径分布測定装置用プログラム

Country Status (4)

Country Link
US (1) US11169068B2 (ja)
JP (1) JP6872557B2 (ja)
GB (1) GB2573655B (ja)
WO (1) WO2018070411A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046722A (ja) * 1998-07-31 2000-02-18 Shimadzu Corp 粒子濃度測定方法および装置並びに粒子計測装置
JP2000046719A (ja) * 1998-07-29 2000-02-18 Shimadzu Corp 粒子個数計測方法および粒子計測装置
JP2001033375A (ja) * 1999-07-21 2001-02-09 Shimadzu Corp レーザ回折・散乱式粒度分布測定装置
JP2007263876A (ja) * 2006-03-29 2007-10-11 Miyazaki Prefecture レーザ回折・散乱式粒度分布測定法における校正方法および液体中の気泡の体積濃度の測定方法
JP2008164539A (ja) * 2006-12-29 2008-07-17 Horiba Ltd 粒子径分布測定装置
JP2011085465A (ja) * 2009-10-15 2011-04-28 Shimadzu Corp 粒度分布測定装置
JP2013160514A (ja) * 2012-02-01 2013-08-19 Shimadzu Corp 粒子径計測装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021231A2 (en) * 2001-09-05 2003-03-13 Genicon Sciences Corporation Method and apparatus for normalization and deconvolution of assay data
JP2008122208A (ja) 2006-11-10 2008-05-29 Horiba Ltd データ互換型粒子径分布測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046719A (ja) * 1998-07-29 2000-02-18 Shimadzu Corp 粒子個数計測方法および粒子計測装置
JP2000046722A (ja) * 1998-07-31 2000-02-18 Shimadzu Corp 粒子濃度測定方法および装置並びに粒子計測装置
JP2001033375A (ja) * 1999-07-21 2001-02-09 Shimadzu Corp レーザ回折・散乱式粒度分布測定装置
JP2007263876A (ja) * 2006-03-29 2007-10-11 Miyazaki Prefecture レーザ回折・散乱式粒度分布測定法における校正方法および液体中の気泡の体積濃度の測定方法
JP2008164539A (ja) * 2006-12-29 2008-07-17 Horiba Ltd 粒子径分布測定装置
JP2011085465A (ja) * 2009-10-15 2011-04-28 Shimadzu Corp 粒度分布測定装置
JP2013160514A (ja) * 2012-02-01 2013-08-19 Shimadzu Corp 粒子径計測装置

Also Published As

Publication number Publication date
GB201906051D0 (en) 2019-06-12
JP6872557B2 (ja) 2021-05-19
GB2573655A (en) 2019-11-13
GB2573655B (en) 2021-12-22
US20210293686A1 (en) 2021-09-23
US11169068B2 (en) 2021-11-09
JPWO2018070411A1 (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
Mitzkus et al. Dominant dark matter and a counter rotating disc: MUSE view of the low luminosity S0 galaxy NGC 5102
JP2012514871A5 (ja)
JP5702762B2 (ja) 放射能測定装置
JPWO2018092462A1 (ja) 粒子径分布測定装置及び粒子径分布測定装置用プログラム
JP6015735B2 (ja) 微小粒子測定装置
US10408726B2 (en) Particle size distribution measuring apparatus
US9207530B2 (en) Analyses of measurement data
US9243989B2 (en) Particle size distribution measuring apparatus
JP6555164B2 (ja) 粒子径分布測定装置、データ処理方法及びデータ処理プログラム
WO2018070411A1 (ja) 粒子径分布測定装置及び粒子径分布測定装置用プログラム
CN104216000B (zh) 一种用于中子Soller准直器发散角测试方法
JP6277973B2 (ja) 気泡径分布測定方法及び気泡径分布測定装置
JP6112025B2 (ja) 粒度分布測定用データ処理装置及びこれを備えた粒度分布測定装置、並びに、粒度分布測定用データ処理方法及び粒度分布測定用データ処理プログラム
JP3266107B2 (ja) 粒子個数計測方法および粒子計測装置
Kopke et al. Determination of the Calibration Interval of Measuring Instruments: Which Method Should I Use?
CN109883896B (zh) 一种气溶胶检测方法及系统
JP2016211945A (ja) 粒子径分布測定装置、粒子径分布測定方法及び粒子径分布測定プログラム
CN103837484B (zh) 一种用于消除光谱乘性随机误差的角度化多变量分析方法
JP6543318B2 (ja) 粒子径分布測定装置
JP2008256576A (ja) 比表面積測定装置及びそれを用いた比表面積測定方法
JP6900789B2 (ja) 気泡径分布測定用のデータ処理方法、データ処理装置及びデータ処理プログラム
JP2019035713A (ja) 粒子径分布測定装置及び粒子径分布測定方法
WO2019235391A1 (ja) ビーム品質評価方法
JP6858875B2 (ja) 計測装置、計測方法、コンピュータプログラム及び記憶媒体
JP2017021045A (ja) 情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201906051

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20171011

122 Ep: pct application non-entry in european phase

Ref document number: 17859935

Country of ref document: EP

Kind code of ref document: A1