WO2018070369A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2018070369A1
WO2018070369A1 PCT/JP2017/036615 JP2017036615W WO2018070369A1 WO 2018070369 A1 WO2018070369 A1 WO 2018070369A1 JP 2017036615 W JP2017036615 W JP 2017036615W WO 2018070369 A1 WO2018070369 A1 WO 2018070369A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
idt electrode
thickness
piezoelectric substrate
frequency
Prior art date
Application number
PCT/JP2017/036615
Other languages
English (en)
French (fr)
Inventor
田中 宏行
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201780061020.1A priority Critical patent/CN110063024B/zh
Priority to US16/340,012 priority patent/US10938376B2/en
Priority to JP2018544998A priority patent/JP6788024B2/ja
Publication of WO2018070369A1 publication Critical patent/WO2018070369A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to an elastic wave device.
  • a SAW (Surface Acoustic Wave) element having a piezoelectric substrate and an IDT (InterDigital Transducer) provided on the main surface of the piezoelectric substrate is known (for example, Japanese Patent Application Laid-Open No. 2007-214902).
  • a SAW element is used, for example, as a duplexer reception filter or transmission filter.
  • a piezoelectric substrate is not used alone for a SAW element, but a bonded substrate obtained by bonding a piezoelectric substrate and a support substrate having a smaller thermal expansion coefficient than that of the piezoelectric substrate is used for the SAW element. .
  • a bonded substrate for example, a temperature change in the electrical characteristics of the SAW element is compensated.
  • the spurious that may not occur when the bonded substrate is not used may occur with respect to the electrical characteristics of the SAW element. Therefore, it is desirable to provide a surface acoustic wave device that can reduce such spurious.
  • An elastic wave device includes a piezoelectric substrate including a first surface and a second surface, a support substrate bonded to the second surface, a first filter located on the first surface, and a second filter. Provide a filter.
  • the second filter has a higher pass band than the first filter.
  • the first filter includes at least one first IDT electrode
  • the second filter includes at least one second IDT electrode
  • the thickness of the first IDT electrode is different from the thickness of the second IDT electrode
  • the elastic wave device according to one aspect of the present disclosure described above has reduced spurious.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. It is a diagram which shows the correlation with a piezoelectric substrate thickness and the frequency of a bulk wave spurious. It is a diagram which shows a frequency characteristic when the film thickness of an IDT electrode is varied.
  • FIG. 6A to FIG. 6C are conceptual diagrams showing an IDT electrode design method for an acoustic wave device.
  • any direction may be set to the upper side or the lower side.
  • the D1 direction, the D2 direction, and the D3 direction that are orthogonal to each other are defined for convenience and the positive side of the D3 direction is defined as follows.
  • the upper part terms such as an upper surface and a lower surface are used.
  • the orthogonal coordinate system defined by the D1, D2, and D3 directions described above is defined based on the shape of the acoustic wave device, and the crystal axis (X axis) of the piezoelectric crystal constituting the piezoelectric substrate. , Y axis, Z axis).
  • FIG. 1 is a plan view of an acoustic wave device 1 according to an embodiment of the present disclosure
  • FIG. 2 is a plan view showing a configuration of an IDT electrode 3
  • FIG. 3 is taken along a line III-III in FIG. It is arrow sectional drawing.
  • the acoustic wave device 1 includes a piezoelectric substrate 2 made of a piezoelectric crystal, a support substrate 6, a first filter 10a, and a second filter 10b.
  • the piezoelectric substrate 2 is composed of a single crystal (piezoelectric crystal) having piezoelectricity made of LN (lithium niobate: LiNbO 3 ) crystal or LT (lithium tantalate: LiTaO 3 ) crystal.
  • the piezoelectric substrate 2 is configured by a 36 ° to 48 ° YX cut LT substrate.
  • the planar shape and various dimensions of the piezoelectric substrate 2 may be set as appropriate.
  • the thickness (D3 direction) of the piezoelectric substrate 2 is 1 ⁇ m or more and 30 ⁇ m or less.
  • the piezoelectric crystal of the piezoelectric substrate 2 has XYZ axes as crystal axes, and when the X propagation substrate is used, the X axis and the D1 direction coincide with each other. That is, the X-axis direction and the D1 direction are the propagation directions of elastic waves. Further, the Y axis and the Z axis do not have a component in the D1 direction, but have components in the D2 direction and the D3 direction.
  • Such a piezoelectric substrate 2 includes a first surface 2A and a second surface 2B orthogonal to the D3 direction.
  • a support substrate 6 is disposed on the second surface (lower surface) 2 ⁇ / b> B of the piezoelectric substrate 2.
  • the piezoelectric substrate 2 and the support substrate 6 constitute an element substrate.
  • the support substrate 6 is not particularly limited as long as it has strength to support the thin piezoelectric substrate 2.
  • the support substrate 6 is formed of a material having a smaller thermal expansion coefficient than the material of the piezoelectric substrate 2. According to the element substrate having such a configuration, when a temperature change occurs, a thermal stress is generated in the piezoelectric substrate 2, and at this time, the temperature dependence and the stress dependence of the elastic constant cancel each other. The temperature change of the electrical characteristics is compensated. Examples of such materials include single crystals such as sapphire, semiconductors such as silicon, ceramics such as an aluminum oxide sintered body, and crystals.
  • the support substrate 6 may be configured by laminating a plurality of layers made of different materials.
  • the thickness of the support substrate 6 is, for example, constant, and the thickness may be appropriately set similarly to the thickness of the piezoelectric substrate 2.
  • the thickness of the support substrate 6 is set in consideration of the thickness of the piezoelectric substrate 2 so that temperature compensation is suitably performed.
  • the thickness of the support substrate 6 is 75 to 300 ⁇ m while the thickness of the piezoelectric substrate 2 is 1 to 30 ⁇ m.
  • the piezoelectric substrate 2 and the support substrate 6 are bonded to each other through an adhesive layer (not shown), for example.
  • the material of the adhesive layer may be an organic material or an inorganic material.
  • the organic material include a resin such as a thermosetting resin.
  • An example of the inorganic material is SiO2.
  • the two substrates may be bonded by so-called direct bonding, in which the bonding surfaces are bonded together without an adhesive layer after activation treatment with plasma, ion gun, neutron gun or the like.
  • a first filter 10a and a second filter 10b having a different pass band from the first filter 10a are located on the first surface (upper surface) 2A of the piezoelectric substrate 2.
  • the first filter 10 a and the second filter 10 b are each configured by an electrode group including the IDT electrode 3. More specifically, the first filter 10a includes at least one first IDT electrode 3A, and the second filter 10b includes at least one second IDT electrode 3B. As will be described later, since the basic structure of the first IDT electrode 3A and the second IDT electrode 3B is the same, the common part will be described without distinguishing both as the IDT electrode 3.
  • each of the first filter 10a and the second filter 10b includes a plurality of resonators 11 (11a to 11e) each including the IDT electrode 3, and these are connected to each other to form a ladder type filter.
  • the IDT electrode 3 constituting a part of the resonator 11 will be described with reference to FIG.
  • the IDT electrode 3 includes a first comb electrode 30a and a second comb electrode 30b.
  • the first comb-teeth electrode 30a and the second comb-teeth electrode 30b are simply referred to as the comb-teeth electrode 30 and may not be distinguished from each other.
  • the comb-teeth electrode 30 includes two bus bars 31 (first bus bar 31 a and second bus bar 31 b) facing each other, and a plurality of electrode fingers 32 extending from each bus bar 31 to the other bus bar 31 side. (First electrode finger 32a, second electrode finger 32b).
  • the pair of comb-shaped electrodes 30 are arranged so that the first electrode fingers 32a and the second electrode fingers 32b mesh with each other in the elastic wave propagation direction.
  • the first bus bar 31a and the second bus bar 31b are connected to different potentials.
  • the comb electrode 30 has dummy electrode fingers 33 facing the respective electrode fingers 32.
  • the first dummy electrode finger 33a extends from the first bus bar 31a toward the second electrode finger 32b.
  • the second dummy electrode finger 33b extends from the second bus bar 31b toward the first electrode finger 32a.
  • the plurality of electrode fingers 32 of the pair of comb electrodes 30 constituting the IDT electrode 3 are set to have a pitch Pt1.
  • the pitch Pt1 is provided, for example, so as to be equal to a half wavelength of the wavelength ⁇ of the elastic wave at the frequency to be resonated.
  • the wavelength ⁇ (that is, 2 ⁇ Pt1) is, for example, not less than 1.4 ⁇ m and not more than 6 ⁇ m.
  • the IDT electrode 3 is arranged so that most of the plurality of electrode fingers 32 have a pitch Pt1, so that the plurality of electrode fingers 32 have a constant period, and therefore elastic waves can be generated efficiently. Can do.
  • the pitch Pt1 indicates a distance from the center of the first electrode finger 32a to the center of the second electrode finger 32b adjacent to the first electrode finger 32a in the propagation direction (D1 direction, X direction). .
  • the IDT electrode 3 is composed of, for example, a metal conductive layer 15.
  • the metal include Al or an alloy containing Al as a main component (Al alloy), an alloy containing Cu, Mg, and the like, and a combination thereof.
  • the Al alloy is, for example, an Al—Cu alloy.
  • the IDT electrode 3 may be composed of a plurality of metal layers. Various dimensions of the IDT electrode 3 are appropriately set according to electrical characteristics required for the SAW element 1. The thickness (D3 direction) of the IDT electrode 3 will be described later.
  • the IDT electrode 3 may be directly disposed on the first surface 2A of the piezoelectric substrate 2 or may be disposed on the first surface 2A of the piezoelectric substrate 2 via a base layer made of another member.
  • Another member is made of, for example, Ti, Cr, or an alloy thereof.
  • the thickness of another member has a thickness that does not substantially affect the electrical characteristics of the IDT electrode 3 (for example, in the case of Ti, IDT 5% of the thickness of the electrode 3).
  • a mass-added film may be laminated on the electrode fingers 32 constituting the IDT electrode 3 in order to improve the temperature characteristics of the SAW element 1.
  • the mass addition film for example, SiO 2 can be used.
  • the IDT electrode 3 excites an elastic wave propagating in the D1 direction in the vicinity of the upper surface 2A of the piezoelectric substrate 2 when a voltage is applied.
  • the excited elastic wave is reflected at the boundary with the non-arranged region of the electrode fingers 32 (the long region between the adjacent electrode fingers 32).
  • the standing wave which makes the pitch Pt1 of the electrode finger 32 a half wavelength is formed.
  • the standing wave is converted into an electric signal having the same frequency as that of the standing wave, and is taken out by the electrode finger 32.
  • the reflector 4 is disposed so as to sandwich the IDT electrode 3 in the propagation direction of the elastic wave.
  • the reflector 4 is generally formed in a slit shape. That is, the reflector 4 includes reflector bus bars 41 facing each other in a direction intersecting the propagation direction of the elastic wave, and a plurality of reflective electrode fingers 42 extending between the bus bars 41 in a direction orthogonal to the propagation direction of the elastic wave.
  • the reflector bus bar 41 is formed in an elongated shape extending in a straight line with a substantially constant width, and is disposed in parallel with the propagation direction of the elastic wave.
  • a protective layer (not shown) covers the IDT electrode 3 and the reflector 4, and the protective layer provided on the piezoelectric substrate 2 is made of an insulating material, for example, a material such as SiO 2.
  • the generation frequency of the bulk wave spurious in the elastic wave device 1 is examined.
  • the modes in the vibration direction are, for example, a mode that vibrates in the D3 axis direction, a mode that vibrates in the D2 axis direction, and a mode that vibrates in the D1 axis direction.
  • Each mode in each vibration direction has a plurality of order modes. This order mode is defined, for example, by the number of nodes and antinodes in the depth direction (D3 axis direction).
  • the generation frequency of bulk wave spurious is determined by the pitch of the IDT electrodes 3 and the thickness of the piezoelectric substrate 2.
  • the influence of the thickness of the piezoelectric substrate 2 on the frequency of the bulk wave in each mode was examined assuming a plurality of acoustic wave devices 1 having different thicknesses ts of the piezoelectric substrate 2. Specifically, the frequency of the bulk wave of each mode generated in the piezoelectric substrate 2 having various thicknesses was calculated by simulation calculation.
  • FIG. 4 is a diagram showing the result of the simulation calculation as described above at a certain pitch.
  • the horizontal axis (ts) indicates the thickness of the piezoelectric substrate 2.
  • the vertical axis (f) indicates the frequency of the bulk wave.
  • a plurality of lines L11 to L17 indicate frequencies of a plurality of types of bulk waves in which at least one of the vibration direction mode and the order mode is different from each other.
  • the thickness of the piezoelectric substrate 2 is 20 ⁇ m.
  • the frequency band to be used that is, a thicker side than the thickness range shown in FIG. 4 crosses innumerable lines (L11 to L17, etc.). Therefore, bulk wave spurious occurs throughout the frequency band to be used.
  • the bulk wave of any mode increases in frequency when the thickness of the piezoelectric substrate 2 is reduced.
  • the frequency interval of the bulk wave spurious also increases.
  • the region surrounded by the lines L11, L12, and L13 there is a region where bulk wave spurious is not generated over a relatively wide range.
  • FIG. 5 shows the frequency characteristics of the resonator when the film thickness of the IDT electrode 3 is changed.
  • the horizontal axis is frequency
  • the vertical axis is impedance.
  • Lines L51 to L57 are lines showing frequency characteristics when the thickness of the IDT electrode when normalized with the wavelength of the elastic wave is changed by 0.06 from 0.075 to 0.111.
  • Rr surrounded by a dotted line indicates a region where a resonance point appears
  • Ra indicates a region where an anti-resonance point appears
  • R1 to R4 indicated by arrows indicate regions where bulk wave spurious occurs.
  • the resonance frequency fr and the antiresonance frequency fa are shifted by changing the film thickness. Specifically, when the film thickness is increased, the resonance frequency fr and the antiresonance frequency fa are shifted to the lower frequency side. On the other hand, it can be seen that the frequency position of the bulk wave spurious is not shifted.
  • FIG. 4 can be regarded as a frequency characteristic of only bulk wave spurious. That is, when the thickness of a certain piezoelectric substrate 2 is viewed, by changing the film thickness of the IDT electrode 3, the resonant frequency fr and the anti-resonant frequency fa that can be realized have a wide range without changing the frequency position of the bulk wave spurious. It can show that
  • the frequency at which the bulk wave frequency is generated is controlled by the pitch of the IDT electrode 3, and it can be adjusted to have a desired resonance characteristic by the film thickness.
  • the first IDT electrode 3A constituting the first filter 10a and the second IDT electrode 3B constituting the second filter 10b are bulked to a desired frequency.
  • the film thickness is varied to prevent wave spurious.
  • the thickness of the IDT electrode 3 is about 0.07, normalized by the wavelength, in consideration of the propagation loss of surface acoustic waves. For this reason, the optimum electrode thickness varies depending on the frequency. However, in the case of using a bonded substrate, the influence of such a loss can be ignored, so that it is usually unnecessary to change the thickness. Under such circumstances, in the present embodiment, the thickness of at least one IDT electrode 3 of the first filter 10a and the second filter 10b is changed in consideration of the bulk wave.
  • the thickness of the conductor layer 15 may be varied, or the base layer and the conductor layer 15 may be repeatedly laminated to be varied.
  • the electrode thickness is increased in the entire region of the resonator 11 (the IDT electrode 3 and the reflector 4 sandwiching it).
  • pitch of the IDT electrodes 3 of the first filter 10a and the pitch of the IDT electrodes 3 of the second filter 10b may be the same or different.
  • the thickness of the piezoelectric substrate 2 and the pitch of the IDT electrodes 3 are set to values that do not generate bulk wave spurious at a desired frequency. Just decide.
  • the resonance frequency fr and the anti-resonance frequency fa can be shifted by 100 MHz or more. Therefore, the two filters 10a and 10b having different pass bands can be realized with the same pitch. I understand.
  • the pitch of the IDT electrode 3 is the same in the first filter 10a and the second filter 10b, bulk filters spurious in the same mode are generated at the same frequency in both filters, and the design becomes easy.
  • the pitch of the IDT electrode 3 is determined to such a value that no bulk wave spurious is generated at the desired frequency by the two filters 10a and 10b, and then the IDT electrode 3 is obtained so as to obtain a desired frequency characteristic.
  • the film thickness may be adjusted. Such a configuration is preferable because an optimum design can be realized for both the filters 10a and 10b.
  • the filters 10 having two different pass bands can be formed on the same piezoelectric substrate 2 as described above, the acoustic wave device 1 can be downsized as compared with the case where the filters 10 are provided on separate substrates.
  • the relationship between the level of the pass band of the first filter 10a and the second filter 10b and the film thickness of each IDT electrode 3 is not specified, but the second filter 10b is not the first filter 10a.
  • the IDT electrode 3 may be thicker than the first filter 10a.
  • the pass bandwidths of the first filter 10a and the second filter 10b are substantially the same. If these are ladder filters, the relationship between the pitches of the IDT electrodes 3 of the resonators 11a to 11e constituting the first filter 10a, and the resonators 11a to 11e constituting the second filter 10b, respectively.
  • the pitch relationship of the IDT electrodes 3 is very similar.
  • the thickness of the IDT electrode 3 of the first filter 10a and that of the second filter 10b are the same, the thickness of the piezoelectric substrate 2 set to eliminate the influence of bulk wave spurious as the first filter 10a In the two-filter 10b, bulk wave spurious is generated on the relatively low frequency side.
  • the second filter 10b having a higher frequency has a shorter SAW wavelength, and therefore the thickness of the piezoelectric substrate 2 with respect to the wavelength is effectively thicker in the second filter 10b than in the first filter 10a. For this reason, the frequency of the bulk wave spurious on the waveform of the frequency characteristic of the second filter 10b is shifted to the low frequency side.
  • a bulk wave spurious control method for this will be described with reference to FIG.
  • the horizontal axis represents frequency and the vertical axis represents impedance.
  • a line L100 is a line showing the frequency characteristics of the first filter 10a
  • a line L200 is a diagram showing the frequency characteristics of the second filter 10b.
  • R10 and R20 indicate bulk wave spurious peaks.
  • B1 and B2 indicate the pass bands of the first filter 10a and the second filter 10b, respectively.
  • FIG. 6A shows the frequency characteristics of the filter 10 before adjustment.
  • the thickness of the piezoelectric substrate 2 is selected so that the bulk wave spurious R10 is positioned at the center of the pass band B1.
  • the bulk wave spurious R20 is lower than the center of the pass band B2, and is generated at the shoulder of the pass band B2. In this case, the transmission characteristics of the filter are significantly deteriorated.
  • the film thickness of the IDT electrode 3 of the second filter 10b is increased.
  • the frequency of the bulk wave spurious R20 does not change.
  • the bulk wave spurious R20 can be positioned at the center of the line L200 of the second filter 10b.
  • the pitch of the IDT electrodes 3 is reduced and shifted to the high frequency side.
  • the position of the bulk wave spurious R20 slightly shifts to the lower frequency side as the pitch is reduced, but the frequency shift amount of the waveform of the second filter 10b when the film thickness of the IDT electrode 3 is increased. Is larger and the impact is smaller.
  • the thickness of the piezoelectric substrate 2 is selected in accordance with the frequency on the second filter 10b side, the thickness of the IDT electrode 3 of the first filter 10a is reduced by performing the same adjustment as described above. In any case, the film thickness of the IDT electrode 3 of the second filter 10b is increased.
  • the IDT electrode 3 rather than adjusting the bulk wave spurious position by reducing the thickness of the IDT electrode 3 and increasing the pitch, adjusting the IDT electrode 3 by increasing the thickness and decreasing the pitch can reduce the element size. Therefore, from the viewpoint of miniaturization, it is preferable to increase the IDT electrode thickness of the high frequency filter. In order to confirm whether or not the thickness is increased, the frequency estimated from the pitch is compared with the frequency as an actual resonator, and when the former value is higher, it can be estimated that the thickness is increased.
  • the film thickness of the IDT electrode 3 is not mentioned in the same filter 10, but it may be constant or different. . That is, the IDT electrodes 3 having different film thicknesses may be provided in one filter 10.
  • the first filter 10a includes a plurality of resonators 11 (11a to 11e)
  • the resonators 11a to 11c are series resonators connected in series between the terminals T1 and T2.
  • the resonators 11d and 11e are parallel resonators connected between the wiring connecting the series resonators in series between the terminals T1 and T2 and the reference potential terminal Tg.
  • Such a ladder type filter is designed so that the resonance frequency of the series resonator and the anti-resonance frequency of the parallel resonator substantially coincide with each other, so that the resonance frequencies of the resonators are naturally different. Therefore, the difference in resonance frequency between the series resonator and the parallel resonator may be adjusted by adding the pitch of the IDT electrodes 3 to make the film thickness different. In this case, the thickness of the IDT electrode 3 of the series resonator having a high resonance frequency may be increased.
  • the frequencies of the bulk wave spurious generated at both resonators in the first filter 10a match.
  • the bulk wave spurious can be easily shifted from the frequency position where the bulk wave spurious is not desired to be generated only by setting the pitch of both resonators to a constant value.
  • the resonance frequency may be gradually changed between the plurality of series resonators, or the resonance frequency may be slightly changed between the plurality of parallel resonators. Even in such a case, the resonance frequency may be different by changing the film thickness between the series resonators, or the resonance frequency may be different by changing the film thickness between the parallel resonators.
  • resonators having different film thicknesses in the first filter are referred to as a first resonator and a second resonator.
  • the thickness of the IDT electrode 3 of the first resonator is thicker than the thickness of the IDT electrode of the second resonator.
  • the resonance frequency of the first resonator may be higher than the resonance frequency of the second resonator.
  • the second filter 10b may include resonators having different film thicknesses.
  • the resonators having different film thicknesses are referred to as a third resonator and a fourth resonator.
  • the thickness of the IDT electrode 3 of the third resonator is thicker than the thickness of the IDT electrode of the fourth resonator.
  • the resonance frequency of the third resonator may be higher than the resonance frequency of the fourth resonator.
  • the thickness of the IDT electrode 3 of the first filter 10a refers to the average of the thicknesses of the plurality of IDT electrodes 3.
  • the thickness of the IDT electrode 3 of the second filter 10b refers to the thickness of the IDT electrode 3 of the second filter 10b.
  • the example in which the relationship between the frequency of the bulk wave spurious and the passband as a filter (or the resonance / antiresonance frequency as a resonator) is adjusted by the thickness and pitch of the IDT electrode 3 has been described. The same adjustment may be made according to the duty and the pitch.
  • the first filter 10a and the second filter 10b are provided with separate terminals, but some of the terminals may be shared. For example, a terminal connected to the antenna may be shared.
  • the piezoelectric substrate 2 may be a separate piezoelectric substrate 2 having the same thickness.
  • Elastic wave device 2 Piezoelectric substrate 10: Filter 10a: First filter 10b: Second filter 3: IDT electrode 32: Electrode finger 32a: First electrode finger 32b: Second electrode finger 6: Support substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

第1面2Aと第2面2Bとを備える圧電基板2と、圧電基板2の第2面2Bに貼り合わされた支持基板6と、圧電基板2の第1面2Aに配置された第1フィルタ10aおよび第1フィルタ10aより高い通過帯域を備える第2フィルタ10と、を備える。第1フィルタ10aおよび第2フィルタ10bは、それぞれIDT電極3を含み、第1フィルタ10aのIDT電極3の厚みと第2フィルタ10bのIDT電極3の厚みとが異なる、弾性波装置1である。

Description

弾性波装置
 本発明は、弾性波装置に関するものである。
 圧電基板と、圧電基板の主面上に設けられたIDT(InterDigital Transducer)とを有するSAW(Surface Acoustic Wave:弾性表面波)素子が知られている(例えば特開2007-214902号公報)。このようなSAW素子は、例えば、デュプレクサの受信フィルタまたは送信フィルタに利用されている。特許文献1では、圧電基板を単体でSAW素子に用いるのではなく、圧電基板と当該圧電基板に比較して熱膨張係数の小さい支持基板とを貼り合せた貼り合せ基板をSAW素子に用いている。このような貼り合せ基板を利用することによって、例えば、SAW素子の電気特性の温度変化が補償される。
 しかし、上述のように貼り合せ基板を用いると、SAW素子の電気特性に関して、貼り合せ基板を用いていないときには生じないスプリアスが生じることがある。従って、このようなスプリアスを低減できる弾性表面波装置が提供されることが望ましい。
 本開示の一態様の弾性波装置は、第1面と第2面とを備える圧電基板と、前記第2面に貼り合わされた支持基板と、前記第1面に位置する第1フィルタおよび第2フィルタを備える。
 前記第2フィルタは、前記第1フィルタより高い通過帯域を備える。
 前記第1フィルタは少なくとも1つの第1IDT電極を含み、前記第2フィルタは少なくとも1つの第2IDT電極を含み、前記第1IDT電極の厚みと前記第2IDT電極の厚みとが異なる。
 上述の本開示の一態様に係る弾性波装置は、スプリアスを低減したものとなる。
本開示にかかる弾性波装置の一実施形態を示す平面図である。 図1に示す弾性波装置に含まれるIDT電極の構成を示す要部拡大平面図である。 図1のIII-III線における断面図である。 圧電基板厚みとバルク波スプリアスの周波数との相関を示す線図である。 IDT電極の膜厚を異ならせたときの周波数特性を示す線図である。 図6(a)~図6(c)は弾性波装置のIDT電極設計方法を示す概念図である。
 以下、本開示の弾性波装置にかかる実施の形態を図面を用いて詳細に説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。
 また、変形例等の説明において、既に説明された実施形態の構成と同一または類似する構成については、既に説明された実施形態と同一の符号を付し、説明を省略することがある。また、基本構成が類似しているものは、第1、第2等の記載を省略してこれらを区別せずに説明することがある。
 弾性波装置は、いずれの方向が上方または下方とされてもよいものであるが、以下では、便宜的に、互いに直交するD1方向、D2方向、D3方向を定義するとともにD3方向の正側を上方として、上面、下面等の用語を用いるものとする。なお、上述のD1方向,D2方向およびD3方向で定義される直交座標系は、弾性波装置の形状に基づいて定義されているものであり、圧電基板を構成する圧電結晶の結晶軸(X軸,Y軸,Z軸)を指すものではない。
 <弾性波装置>
 図1は、本開示の一実施形態に係る弾性波装置1の平面図であり、図2は、IDT電極3の構成を示す平面図であり、図3は、図1のIII-III線における矢視断面図である。
 弾性波装置1は、圧電結晶からなる圧電基板2と、支持基板6と、第1フィルタ10aおよび第2フィルタ10bを備える。
 圧電基板2は、LN(ニオブ酸リチウム:LiNbO)結晶またはLT(タンタル酸リチウム:LiTaO)結晶からなる圧電性を有する単結晶(圧電結晶)によって構成されている。具体的には、例えば、圧電基板2は、36°~48°Y-XカットのLT基板によって構成されている。圧電基板2の平面形状および各種寸法は適宜に設定されてよい。一例として、圧電基板2の厚み(D3方向)は、1μm以上30μm以下である。
 圧電基板2の圧電結晶は結晶軸としてXYZ軸を有し、X伝搬基板を用いる場合はX軸とD1方向とが一致する。すなわち、X軸およびD1方向が弾性波の伝搬方向となる。さらにY軸、Z軸はD1方向の成分を備えず、D2方向,D3方向の成分を備える。
 このような圧電基板2はD3方向に直交する第1面2Aおよび第2面2Bを備える。圧電基板2の第2面(下面)2Bには支持基板6が配置されている。この圧電基板2と支持基板6とで素子基板を構成している。
 支持基板6は、薄い圧電基板2を支持する強度があれば特に限定されないが、例えば、圧電基板2の材料よりも熱膨張係数が小さい材料によって形成されている。このような構成の素子基板によれば、温度変化が生じると圧電基板2に熱応力が生じ、この際、弾性定数の温度依存性と応力依存性とが打ち消し合い、ひいては、弾性波装置1の電気特性の温度変化が補償される。このような材料としては、例えば、サファイア等の単結晶、シリコン等の半導体および酸化アルミニウム質焼結体等のセラミック、水晶等を挙げることができる。なお、支持基板6は、互いに異なる材料からなる複数の層が積層されて構成されていてもよい。
 支持基板6の厚さは、例えば、一定であり、その厚さは、圧電基板2の厚さと同様に適宜に設定されてよい。例えば、支持基板6の厚さは、温度補償が好適に行われるように、圧電基板2の厚さを考慮して設定される。一例として、圧電基板2の厚さ1~30μmに対して、支持基板6の厚さは75~300μmである。
 圧電基板2および支持基板6は、例えば、不図示の接着層を介して互いに貼り合わされている。接着層の材料は、有機材料であってもよいし、無機材料であってもよい。有機材料としては、例えば、熱硬化性樹脂等の樹脂が挙げられる。無機材料としては、例えば、SiO2が挙げられる。また、両基板は、接着面をプラズマやイオンガン,中性子ガンなどで活性化処理した後に接着層無しに貼り合わせる、いわゆる直接接合によって貼り合わされていてもよい。
 圧電基板2の第1面(上面)2Aには、第1フィルタ10aと、第1フィルタ10aとは通過帯域の異なる第2フィルタ10bとが位置している。第1フィルタ10aおよび第2フィルタ10bは、それぞれIDT電極3を含む電極群で構成される。より具体的には、第1フィルタ10aは少なくとも1つの第1IDT電極3Aを含み、第2フィルタ10bは少なくとも1つの第2IDT電極3Bを含む。後述するが、第1IDT電極3Aと第2IDT電極3Bとは、その基本構造は同じあるため、共通する部分について説明するときには、IDT電極3として両者を区別せずに説明する。
 そして、この例では、第1フィルタ10aおよび第2フィルタ10bは、それぞれIDT電極3を含む共振子11(11a~11e)を複数備え、これらが互いに接続されてラダー型フィルタを構成している。
 ここで、共振子11の一部を構成するIDT電極3について図2を参照しつつ説明する。IDT電極3は、図2に示すように、第1櫛歯電極30aおよび第2櫛歯電極30bを有している。なお、以下の説明では、第1櫛歯電極30aおよび第2櫛歯電極30bを単に櫛歯電極30といい、これらを区別しないことがある。
 櫛歯電極30は、図2に示すように、互いに対向する2本のバスバー31(第1バスバー31a,第2バスバー31b)と、各バスバー31から他のバスバー31側へ延びる複数の電極指32(第1電極指32a,第2電極指32b)とを有している。そして、1対の櫛歯電極30は、第1電極指32aと第2電極指32bとが、弾性波の伝搬方向に互いに噛み合うように(交差するように)配置されている。第1バスバー31aと第2バスバー31bとは、互いに異なる電位に接続されている。
 また、櫛歯電極30は、それぞれの電極指32と対向するダミー電極指33を有している。第1ダミー電極指33aは、第1バスバー31aから第2電極指32bに向かって延びている。第2ダミー電極指33bは、第2バスバー31bから第1電極指32aに向かって延びている。
 IDT電極3を構成する一対の櫛歯電極30の複数の電極指32は、ピッチPt1となるように設定されている。ピッチPt1は、例えば、共振させたい周波数での弾性波の波長λの半波長と同等となるように設けられている。波長λ(すなわち2×Pt1)は、例えば、1.4μm以上6μm以下である。IDT電極3は、ほとんどの複数の電極指32がピッチPt1となるように配置することにより、複数の電極指32が一定の周期となるような配置となるため、弾性波を効率よく発生させることができる。
 ここでピッチPt1は、伝搬方向(D1方向,X方向)において、第1電極指32aの中心から、当該第1電極指32aに隣接する第2電極指32bの中心までの間隔を指すものである。
 このように電極指32を配置することで、複数の電極指32に直交する方向に伝搬する弾性波が発生する。
 IDT電極3は、例えば、金属の導電層15によって構成されている。この金属としては、例えば、AlまたはAlを主成分とする合金(Al合金)、Cu、Mg等を含む合金、およびこれらの組み合せが挙げられる。Al合金は、例えば、Al-Cu合金である。なお、IDT電極3は、複数の金属層から構成されてもよい。IDT電極3の各種寸法は、SAW素子1に要求される電気特性等に応じて適宜に設定される。IDT電極3の厚み(D3方向)については後述する。
 IDT電極3は、圧電基板2の第1面2Aに直接配置されていてもよいし、別の部材からなる下地層を介して圧電基板2の第1面2Aに配置されていてもよい。別の部材は、例えば、Ti、Cr、あるいはこれらの合金等からなる。下地層を介してIDT電極3を圧電基板2の上面2Aに配置する場合は、別の部材の厚みはIDT電極3の電気特性に殆ど影響を与えない程度の厚み(例えば、Tiの場合はIDT電極3の厚みの5%の厚み)に設定される。
 また、IDT電極3を構成する電極指32上には、SAW素子1の温度特性を向上させるために、質量付加膜を積層してもよい。質量付加膜としては、例えばSiO等を用いることができる。
 IDT電極3は、電圧が印加されると、圧電基板2の上面2A付近においてD1方向に伝搬する弾性波を励起する。励起された弾性波は、電極指32の非配置領域(隣接する電極指32間の長尺状の領域)との境界において反射する。そして、電極指32のピッチPt1を半波長とする定在波が形成される。定在波は、当該定在波と同一周波数の電気信号に変換され、電極指32によって取り出される。
 反射器4は、弾性波の伝搬方向においてIDT電極3を挟むように配置されている。反射器4は、概ねスリット状に形成されている。すなわち、反射器4は、弾性波の伝搬方向に交差する方向において互いに対向する反射器バスバー41と、これらバスバー41間において弾性波の伝搬方向に直交する方向に延びる複数の反射電極指42とを有している。反射器バスバー41は、例えば、概ね一定の幅で直線状に延びる長尺状に形成されており、弾性波の伝搬方向に平行に配置されている。
 不図示の保護層は、IDT電極3および反射器4上を覆うように、圧電基板2上に設けられている保護層は、絶縁性を有する材料からなり、例えばSiOなどの材料によって形成される。
 ここで、弾性波装置1における、バルク波スプリアスの発生周波数について検討する。
 IDT電極3によって圧電基板2に電圧を印加すると、振動方向のモードおよび次数のモードの少なくとも一方が互いに異なる複数種類のバルク波が生じる。振動方向のモードは、例えば、D3軸方向に振動するモード、D2軸方向に振動するモードおよびD1軸方向に振動するモードである。各振動方向のモードにはそれぞれ、複数の次数のモードがある。この次数のモードは、例えば、深さ方向(D3軸方向)における節および腹の数により規定される。なお、バルク波スプリアスはIDT電極3のピッチと圧電基板2の厚みとによって発生周波数が決まる。
 そこで、圧電基板2の厚みtsを互いに異ならせた複数の弾性波装置1を想定して、圧電基板2の厚みが各モードのバルク波の周波数に及ぼす影響を調べた。具体的には、シミュレーション計算によって、種々の厚みの圧電基板2において生じる各モードのバルク波の周波数を計算した。
 図4は、あるピッチにおいて、上記のようなシミュレーション計算を行なった結果を示す図である。
 この図において、横軸(ts)は、圧電基板2の厚みを示している。縦軸(f)は、バルク波の周波数を示している。複数の線L11~L17は、振動方向のモードおよび次数のモードの少なくとも一方が互いに異なる複数種類のバルク波の周波数を示している。
 なお、この図において、線L15,L16,L17のプロットは途中までとしたが、実際には線L11~L14と同様に厚みの増加とともに周波数が低下する線が続く。さらに、図示はしていないが、線L17以降(線L18、線L19・・・)もL11~L17と同様の傾向を有する線が無数に存在している。このため、ある厚みにおけるバルク波スプリアスは、縦軸(f)に平行な線分がこれらの線(L11~L19等)を横切る周波数において発生するものとなる。
 通常の貼り合せ基板において、圧電基板2の厚みは20μmが推奨されていることが多い。このため、通常の貼り合せ基板においては、使用する周波数帯(は、図4に示す厚み範囲よりもさらに厚い側において、無数に錯綜する線(L11~L17等)を横切ることとなる。その結果、使用する周波数帯にくまなくバルク波スプリアスが生じるのである。
 この図の矢印に示されているように、いずれのモードのバルク波も、圧電基板2の厚みを薄くすると、周波数が高くなる。そして、バルク波スプリアスの周波数間隔も広がっていく。特に線L11,L12,L13で囲まれた領域においては比較的広範囲でバルク波スプリアスが発生しない領域が存在する。しかしながら、例えこのような特異領域であっても、同じ圧電基板2の厚みにおいて、周波数帯の異なる2つフィルタ(10a,10b)の双方で所望の周波数のバルク波スプリアスを避けることは困難である。
 具体的には、通過帯域が異なると、IDT電極3のピッチも異なり、バルク波スプリアスの周波数もシフトする。このため、ある周波数帯において2つフィルタ(10a,10b)の双方で同時にバルク波スプリアスを避けることは困難である。
 これに対応するために、2つフィルタ(10a,10b)のそれぞれに合わせて適切な圧電基板2の厚みを選択することが必要であった。
 これに対して、発明者が鋭意遂行を重ねた結果、IDT電極3の膜厚を変更すると、それに応じて共振周波数等の弾性表面波(SAW)の周波数特性は変化するが、バルク波スプリアス(BAW)の周波数特性は変化しないことが分かった。
 図5に、IDT電極3の膜厚を変えたときの共振子の周波数特性を示す。横軸は周波数であり、縦軸はインピーダンスである。線L51~L57は弾性波の波長で正規化したときのIDT電極の厚みを0.075~0.111まで0.06ずつ変化させたときの周波数特性を示す線である。点線で囲んだRrは共振点が現れている領域を、Raは反共振点が現れている領域を、矢印で示すR1~R4はバルク波スプリアスが生じる領域を示している。
 図5からも明らかなように、共振周波数frおよび反共振周波数faは膜厚を変更することで周波数がシフトする。具体的には膜厚を厚くすると共振周波数frおよび反共振周波数faは低周波数側にシフトする。一方で、バルク波スプリアスの周波数位置はシフトしていないことが分かる。
 このことは、図4をバルク波スプリアスのみの周波数特性とみることができることを示している。すなわち、ある圧電基板2の厚みにおいてみたときに、IDT電極3の膜厚を変化させることで、バルク波スプリアスの周波数位置はそのままで、実現できる共振周波数frおよび反共振周波数fa等に幅を持たせることができることを示している。
 逆に言うと、IDT電極3のピッチによりバルク波周波数が発生する周波数をコントロールし、膜厚により所望の共振特性を備えるよう調整できることを示している。
 以上を踏まえ、弾性波デバイス1においては、図3に示すように、第1フィルタ10aを構成する第1IDT電極3Aと、第2フィルタ10bを構成する第2IDT電極3Bとで、所望の周波数にバルク波スプリアスが発生しないよう、膜厚を異ならせている。
 通常、IDT電極3の膜厚は、弾性表面波の伝搬損失を考慮して、波長で正規化した厚みを0.07程度としている。このため、周波数に応じて最適な電極厚みは異なることになる。しかしながら、貼り合せ基板を用いる場合にはこのような損失の影響が無視できるため、通常は厚みを異ならせる必要がない。そのような中、本実施形態では、第1フィルタ10aおよび第2フィルタ10bの少なくとも一方のIDT電極3の厚みをバルク波を考慮して変更したものとなっている。
 なお、厚みを異ならせるには、導体層15の厚みを異ならせてもよいし、下地層と導体層15とを繰り返し積層して異ならせてもよい。また、共振子11(IDT電極3とそれを挟む反射器4)の全領域において電極厚みを厚くしている。
 これにより、全く通過帯域の異なる2つのフィルタ10a,10bを同一の厚みの基板(同一圧電基板2)に配置しても、双方ともバルク波スプリアスを避け、周波数特性の優れた弾性波装置1を提供することができる。
 なお、第1フィルタ10aのIDT電極3のピッチと、第2フィルタ10bのIDT電極3のピッチとは同じであっても異なっていてもよい。
 同じ場合には、2つのフィルタ10a、10bで同一の周波数にバルク波スプリアスが発生するため、圧電基板2の厚みやIDT電極3のピッチを所望の周波数においてバルク波スプリアスが発生しないような値に決定すればよい。なお、図4の例では、共振周波数frおよび反共振周波数faの周波数は、100MHz以上シフトさせることが可能であったことから、通過帯域の異なる2つのフィルタ10a、10bでもピッチ同一で実現できることが分かる。第1フィルタ10aと第2フィルタ10bとでIDT電極3のピッチが同一の場合には、両フィルタで同一の周波数に同一モードのバルク波スプリアスが発生するので、設計が容易となる。
 一方、異なる場合には、2つのフィルタ10a、10bでそれぞれ所望の周波数においてバルク波スプリアスが発生しないような値にIDT電極3のピッチを決定し、その後所望の周波数特性を得るようにIDT電極3の膜厚を調整すればよい。このような構成により、各フィルタ10a、10b双方に最適な設計を実現することができるので好ましい。
 また、このように、異なる2つの通過帯域を備えるフィルタ10を同一の圧電基板2に形成することができるので、別々の基板に設ける場合に比べ弾性波装置1を小型化することができる。
 (他の実施形態)
 上述の例では、第1フィルタ10aと第2フィルタ10bの通過帯域の高低と、各IDT電極3の膜厚の大きさとの関係について特定していないが、第2フィルタ10bが、第1フィルタ10aよりも高い通過帯域を備え、そのIDT電極3の厚みは第1フィルタ10aに比べ厚くしてもよい。
 一般には、第1フィルタ10aと第2フィルタ10bの通過帯域幅は略同一である。そしてこれらがラダー型フィルタである場合には、第1フィルタ10aを構成する共振子11a~11eのそれぞれのIDT電極3のピッチの関係と、第2フィルタ10bを構成する共振子11a~11eのそれぞれのIDT電極3のピッチの関係とは、相対的に酷似する。
 ここで、第1フィルタ10aと第2フィルタ10bとのIDT電極3の膜厚が同じ場合には、第1フィルタ10aとしてバルク波スプリアスの影響を無くすように設定した圧電基板2の厚みでは、第2フィルタ10bにおいては、バルク波スプリアスが相対的に低周波数側に発生する。これは、周波数が高い第2フィルタ10bの方がSAWの波長が短いため、波長に対する圧電基板2の厚みは、第1フィルタ10aよりも、第2フィルタ10bの方が実効的に厚くなる。このため、第2フィルタ10bの周波数特性の波形上のバルク波スプリアスの周波数が低周波数側にシフトするからである。
 これに対するバルク波スプリアス制御方法について、図6を用いて説明する。図6において横軸は周波数、縦軸はインピーダンスを示している。線L100は第1フィルタ10aの周波数特性を示す線であり、線L200は第2フィルタ10bの周波数特性を示す線図である。さらに、R10,R20はバルク波スプリアスのピークを示している。B1,B2は、それぞれ第1フィルタ10a,第2フィルタ10bの通過帯域を示している。
 図6(a)は調整前のフィルタ10の周波数特性である。図6(a)に示すように、第1フィルタ10aでは、通過帯域B1の中央にバルク波スプリアスR10を位置させるよう圧電基板2の厚みを選択する。一方、第2フィルタ10bでは、第2フィルタ10bに適した基板厚みではないため、バルク波スプリアスR20が通過帯域B2の中央よりも低くなり、通過帯域B2の肩部に発生する。この場合には、フィルタの透過特性を著しく劣化させてしまう。
 そこで、第2フィルタ10bにおいてもバルク波スプリアスの影響を無くすため、次の手法を取る。まず、図6(b)に示すように、第2フィルタ10bのIDT電極3の膜厚を厚くする。その場合、第2フィルタ10bの波形を示す線L200のみが低周波数側にシフトするが、バルク波スプリアスR20の周波数は変わらない。このため、第2フィルタ10bの線L200の中央にバルク波スプリアスR20を位置させることができる。
 次に、図6(c)に示すように、第2フィルタ10bの波形(線L200)を通過帯域B2の所望の周波数位置に戻すため、IDT電極3のピッチを小さくして高周波数側にシフトさせる。その際、ピッチを小さくした分、またバルク波スプリアスR20の位置は若干低周波数側にシフトしてしまうが、IDT電極3の膜厚を厚くする際の第2フィルタ10bの波形の周波数移動量の方が大きく、影響は小さくなる。
 このようにして、全く通過帯域の異なる2つのフィルタ10a,10bを同一の厚みの基板(同一圧電基板2)に配置しても、双方ともバルク波スプリアスを避け、周波数特性の優れた弾性波装置1を提供することができる。
 なお、第2フィルタ10b側の周波数に合わせて圧電基板2の厚みを選択した場合には、上述と同様の調整を行なうことにより、第1フィルタ10aのIDT電極3の厚みを薄くすることとなり、いずれにしても第2フィルタ10bのIDT電極3の膜厚が厚くなることなる。
 また、IDT電極3の厚みを薄くしてピッチを広げてバルク波スプリアス位置を調整するよりも、IDT電極3の厚みを厚くしてピッチを狭くして調整する方が素子サイズを小さくすることができるので、小型化の観点からも、高周波数側のフィルタのIDT電極厚みを厚くすることが好ましい。厚くしているかどうかを確認するためには、ピッチから推測される周波数と実際の共振子としての周波数を比較し、前者の値の方が高い場合に厚くしていると推定することができる。
 (他の実施形態)
 上述の例では、1つのフィルタ10内で複数の共振子11がある場合に、同一フィルタ10内ではそのIDT電極3の膜厚に言及していないが、一定でもよいし、違っていてもよい。すなわち、1つのフィルタ10内で異なる膜厚のIDT電極3を備えていてもよい。
 例えば、図1に示すように、第1フィルタ10aが、複数の共振子11(11a~11e)を備える場合を例に説明する。共振子11a~11cは端子T1,T2の間に直列に接続された、直列共振子である。共振子11d,11eは、端子T1,T2間において直列共振子を直列接続する配線と基準電位端子Tgとの間に接続された並列共振子である。
 このようなラダー型フィルタでは、直列共振子の共振周波数と並列共振子の反共振周波数とが略一致するように設計されることから、当然互いの共振子の共振周波数は異なる。そこで、直列共振子と並列共振子との共振周波数の違いをIDT電極3のピッチに加え膜厚を異ならせることで調整してもよい。この場合には、共振周波数の高い直列共振子のIDT電極3の厚みを厚くしてもよい。
 特に、直列共振子と並列共振子とでIDT電極3のピッチを同じにして膜厚のみを異ならせた場合には、第1フィルタ10aにおいて両共振子で発生するバルク波スプリアスの周波数が一致する。これにより、両共振子のピッチを一定の値に設定するのみで、バルク波スプリアスを、バルク波スプリアスを発生させたくない周波数位置から容易にずらすことができる。
 また、ラダー型フィルタにおいては、複数の直列共振子間で少しずつ共振周波数を異ならせたり、複数の並列共振子間で少しずつ共振周波数を異ならせたりすることがある。このような場合においても直列共振子間で膜厚を異ならせて共振周波数を異ならせてもよいし、並列共振子間で膜厚を異ならせて共振周波数を異ならせてもよい。
 上述のように第1フィルタ内で膜厚の異なる共振子を第1共振子と第2共振子という。第1共振子のIDT電極3の厚みは第2共振子のIDT電極の厚みに比べて厚くなっている。第1共振子の共振周波数は、第2共振子の共振周波数よりも高くしてもよい。
 第1フィルタ10aと同様に、第2フィルタ10bにおいても膜厚の異なる共振子を備えていてもよい。この場合には、膜厚の異なる共振子を第3共振子と第4共振子という。第3共振子のIDT電極3の厚みは第4共振子のIDT電極の厚みに比べて厚くなっている。第3共振子の共振周波数は、第4共振子の共振周波数よりも高くしてもよい。
 なお、このように、第1フィルタ10aを構成する複数のIDT電極3の厚みが一定ではない場合、もしくは、第2フィルタ10bを構成する複数のIDT電極3の厚みが一定ではない場合、およびその両方の場合においては、第1フィルタ10aのIDT電極3の厚みとは、複数のIDT電極3の厚みの平均をいう。第2フィルタ10bのIDT電極3の厚みについても同様である。これにより、第1フィルタ10aのIDT電極3の厚みと第2フィルタ10bのIDT電極3の厚みとを比較可能となる。
 (他の実施形態)
 上述の例では、第1フィルタ10aおよび第2フィルタ10bともにラダー型のフィルタの例を説明したが、一方が多重モード型で他方がラダー型の組み合わせでもよいし、両方とも多重モード型でもよい。
 また、上述の例では、IDT電極3の厚みとピッチとでバルク波スプリアスの周波数とフィルタとしての通過帯域(または共振子としての共振・反共振周波数)との関係を調整した例を説明したが、デューティーとピッチとで同様の調整をしてもよい。
 また、上述の例では、第1フィルタ10aと第2フィルタ10bとで端子を個別に設けた例を示したが、一部の端子を共有としてもよい。例えば、アンテナに接続される端子を共有化してもよい。
 また、上述の例では、第1フィルタ10aと第2フィルタ10bとを一つの圧電基板2を共有する例を説明したが、厚みが同一で別体の圧電基板2としてもよい。
1:弾性波装置
2:圧電基板
10:フィルタ
10a:第1フィルタ
10b:第2フィルタ
3:IDT電極
32:電極指
32a:第1電極指
32b:第2電極指
6:支持基板

Claims (7)

  1.  第1面と第2面とを備える圧電基板と、
     前記圧電基板の前記第2面に貼り合わされた支持基板と、
     前記圧電基板の前記第1面に配置された第1フィルタおよび前記第1フィルタより高い通過帯域を備える第2フィルタと、を備え、
     前記第1フィルタおよび前記第2フィルタは、それぞれ少なくとも1つの第1IDT電極および少なくとも1つの第2IDT電極を含み、前記第1IDT電極の厚みと前記第2IDT電極の厚みとが異なる、弾性波装置。
  2.  前記第1IDT電極の厚みは、前記第2IDT電極の厚みよりも薄い、請求項1に記載の弾性波装置。
  3.  前記第1IDT電極は複数あり、その厚みは全て同じであり、
     前記第2IDT電極は複数あり、その厚みは全て同じである、請求項1または2に記載の弾性波装置。
  4.  前記第1フィルタは、前記第1IDT電極を含む複数の弾性波共振子を接続してなり、複数の前記弾性波共振子は、第1共振子と第2共振子とを備え、前記第1共振子の前記第1IDT電極は前記第2共振子に比べて厚い、請求項1または2に記載の弾性波装置。
  5.  前記第2フィルタは、前記第2IDT電極を含む複数の弾性波共振子を接続してなり、複数の前記弾性波共振子は、第3共振子と第4共振子とを備え、前記第3共振子の前記第2IDT電極は前記第4共振子に比べて厚い、請求項1または2に記載の弾性波装置。
  6.  前記第1フィルタは、前記第1IDT電極を含む複数の弾性波共振子を接続してなり、複数の前記弾性波共振子は、ラダー型フィルタを構成する直列共振子と並列共振子とを含み、前記直列共振子の前記第1IDT電極の厚みは前記並列共振子に比べて厚い、請求項1または2に記載の弾性波装置。
  7.  前記圧電基板は、タンタル酸リチウム基板であり、前記支持基板は、前記圧電基板よりも線膨張係数の小さい材料の結晶性材料からなる、請求項1乃至6のいずれかに記載の弾性波装置。
PCT/JP2017/036615 2016-10-11 2017-10-10 弾性波装置 WO2018070369A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780061020.1A CN110063024B (zh) 2016-10-11 2017-10-10 弹性波装置
US16/340,012 US10938376B2 (en) 2016-10-11 2017-10-10 Acoustic wave device
JP2018544998A JP6788024B2 (ja) 2016-10-11 2017-10-10 弾性波装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-199995 2016-10-11
JP2016199995 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018070369A1 true WO2018070369A1 (ja) 2018-04-19

Family

ID=61905568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036615 WO2018070369A1 (ja) 2016-10-11 2017-10-10 弾性波装置

Country Status (4)

Country Link
US (1) US10938376B2 (ja)
JP (1) JP6788024B2 (ja)
CN (1) CN110063024B (ja)
WO (1) WO2018070369A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020182137A (ja) * 2019-04-26 2020-11-05 京セラ株式会社 弾性波装置
WO2021006055A1 (ja) * 2019-07-05 2021-01-14 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
JPWO2021006056A1 (ja) * 2019-07-05 2021-01-14
US11916533B2 (en) 2019-09-16 2024-02-27 Tohoku University Surface acoustic wave devices and related methods
JP7493306B2 (ja) 2019-04-26 2024-05-31 京セラ株式会社 弾性波装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128279B2 (en) * 2015-10-30 2021-09-21 Kyocera Corporation Acoustic wave resonator, acoustic wave filter, multiplexer, communication apparatus, and method designing acoustic wave resonator
WO2020261808A1 (ja) * 2019-06-28 2020-12-30 株式会社村田製作所 弾性波フィルタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005788A1 (fr) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Dispositif de traitement d'ondes acoustiques de surface et son procede de fabrication
JP2008508821A (ja) * 2004-08-04 2008-03-21 エプコス アクチエンゲゼルシャフト 損失の小さい電気音響素子
JP2010103920A (ja) * 2008-10-27 2010-05-06 Kyocera Corp 弾性表面波装置及びその製造方法
WO2016129662A1 (ja) * 2015-02-13 2016-08-18 京セラ株式会社 弾性波装置、分波器および通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317274B2 (ja) * 1999-05-26 2002-08-26 株式会社村田製作所 弾性表面波装置及び弾性表面波装置の製造方法
JP2007110342A (ja) * 2005-10-12 2007-04-26 Kyocera Corp 弾性表面波素子及びその製造方法
JP2007214902A (ja) 2006-02-09 2007-08-23 Shin Etsu Chem Co Ltd 弾性表面波素子
US8564172B2 (en) * 2009-04-22 2013-10-22 Panasonic Corporation Elastic wave element and electronic apparatus using same
CN103004085B (zh) * 2011-06-23 2015-04-15 天工松下滤波方案日本有限公司 梯型弹性波滤波器及使用该弹性波滤波器的天线双工器
KR101615081B1 (ko) * 2013-03-21 2016-04-22 엔지케이 인슐레이터 엘티디 탄성파 소자용 복합 기판 및 탄성파 소자
JP6390819B2 (ja) * 2016-04-25 2018-09-19 株式会社村田製作所 弾性波装置及びその製造方法
JP2018182354A (ja) * 2017-04-03 2018-11-15 株式会社村田製作所 弾性波装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005788A1 (fr) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Dispositif de traitement d'ondes acoustiques de surface et son procede de fabrication
JP2008508821A (ja) * 2004-08-04 2008-03-21 エプコス アクチエンゲゼルシャフト 損失の小さい電気音響素子
JP2010103920A (ja) * 2008-10-27 2010-05-06 Kyocera Corp 弾性表面波装置及びその製造方法
WO2016129662A1 (ja) * 2015-02-13 2016-08-18 京セラ株式会社 弾性波装置、分波器および通信装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020182137A (ja) * 2019-04-26 2020-11-05 京セラ株式会社 弾性波装置
JP7493306B2 (ja) 2019-04-26 2024-05-31 京セラ株式会社 弾性波装置
WO2021006055A1 (ja) * 2019-07-05 2021-01-14 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
JPWO2021006056A1 (ja) * 2019-07-05 2021-01-14
JPWO2021006055A1 (ja) * 2019-07-05 2021-01-14
WO2021006056A1 (ja) * 2019-07-05 2021-01-14 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
US11916533B2 (en) 2019-09-16 2024-02-27 Tohoku University Surface acoustic wave devices and related methods

Also Published As

Publication number Publication date
JPWO2018070369A1 (ja) 2019-07-25
US20200036360A1 (en) 2020-01-30
CN110063024A (zh) 2019-07-26
CN110063024B (zh) 2024-01-19
US10938376B2 (en) 2021-03-02
JP6788024B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
JP7169083B2 (ja) 弾性波デバイスおよびマルチプレクサ
CN109600125B (zh) 滤波器
WO2019138810A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6856825B2 (ja) 弾性波装置、分波器および通信装置
WO2018070369A1 (ja) 弾性波装置
US11128279B2 (en) Acoustic wave resonator, acoustic wave filter, multiplexer, communication apparatus, and method designing acoustic wave resonator
WO2015064238A1 (ja) 弾性波素子、フィルタ素子および通信装置
JP7278305B2 (ja) 弾性波装置、分波器および通信装置
US10958241B2 (en) Extractor
CN111937305A (zh) 弹性波元件、弹性波滤波器、分波器以及通信装置
WO2019107280A1 (ja) 弾性波フィルタ、分波器および通信装置
JP6530494B2 (ja) 弾性表面波素子
US11936359B2 (en) Acoustic wave device and multiplexer
JP2019201345A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
JPWO2019138811A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
US20220393665A1 (en) Acoustic wave device
CN115549639B (zh) 一种声波滤波器
US11569433B2 (en) Acoustic wave resonator, filter, and multiplexer
CN114270707A (zh) 弹性波装置
CN110710106A (zh) 弹性波装置、分波器及通信装置
JP2020182130A (ja) フィルタおよびマルチプレクサ
WO2021085609A1 (ja) 弾性波フィルタ
US11863155B2 (en) Surface acoustic wave element
JP2010193135A (ja) Sawデバイス
CN115360994A (zh) 梯形滤波器及多工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018544998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859489

Country of ref document: EP

Kind code of ref document: A1