WO2018068581A1 - 双壁板板壳式换热器及其专用双壁换热板 - Google Patents

双壁板板壳式换热器及其专用双壁换热板 Download PDF

Info

Publication number
WO2018068581A1
WO2018068581A1 PCT/CN2017/098078 CN2017098078W WO2018068581A1 WO 2018068581 A1 WO2018068581 A1 WO 2018068581A1 CN 2017098078 W CN2017098078 W CN 2017098078W WO 2018068581 A1 WO2018068581 A1 WO 2018068581A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
plate
double
wall
escape
Prior art date
Application number
PCT/CN2017/098078
Other languages
English (en)
French (fr)
Inventor
黄兴存
俞伟德
Original Assignee
恒丰工程(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒丰工程(香港)有限公司 filed Critical 恒丰工程(香港)有限公司
Publication of WO2018068581A1 publication Critical patent/WO2018068581A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Definitions

  • the invention relates to a double-wall plate-shell heat exchanger and a special double-wall heat exchanger plate thereof, in particular to a double-wall heat exchanger plate with escape holes suitable for a shell-and-shell heat exchanger and using the same A fully welded double-wall plate-and-shell heat exchanger with an escape passage for a double-wall heat exchanger plate.
  • Shell-and-tube heat exchangers (STHE), plate heat exchangers (PHE), and plate-and-shell heat exchangers (PSHE) are all heat exchanger types well known to those skilled in the art, in which plate and shell heat exchangers can be viewed It is a structural form between the shell-and-tube heat exchanger and the plate heat exchanger, which takes into account the advantages of both: 1 the plate is the heat transfer surface, the heat transfer performance is good; the hot and cold medium flow channel is changing The internals of the heat exchanger are alternately arranged, and the resulting turbulent flow and complete counterflow pattern ensure extremely high heat transfer performance between the plates, and the heat transfer coefficient can be several times higher than that of the shell-and-tube heat exchanger. 2 compact structure and small size.
  • the maximum working temperature can reach 800 ° C
  • the maximum working pressure can reach 6.3 MPa
  • the special form can also be applied to higher temperature and pressure.
  • 4 corrugated board surface results in high surface shear stress and is not easy to scale.
  • the plate-and-shell heat exchanger with special end cap flange structure can be used to disassemble the cleaning heat exchange channel.
  • the plate-and-shell heat exchanger is especially suitable for the process where the flow rate of the heat exchange medium on both sides is different.
  • the flexibility of the shell side passage allows the large flow rate to pass through, and the small flow heat exchange medium enters the plate side passage of the heat exchanger. .
  • the plate-and-shell heat exchanger has become a high-performance heat exchange device widely used in various industrial fields due to the combination of the advantages of the plate and shell-and-tube heat exchangers.
  • the popularity of this heat exchanger is attributed to its many unique and advantageous product attributes, including high heat transfer coefficient, all-welded construction, No or very few gasket materials, suitable for high temperature, high pressure, low temperature, low pressure various working conditions and high flexibility that can be accurately selected according to operating conditions.
  • FIG. 1A is a partial cross-sectional structural view of a plate-and-shell heat exchanger as a prior art
  • FIG. 1B is a schematic cross-sectional view of a single-flow plate-and-shell heat exchanger corresponding to FIG. 1A
  • a conventional plate-and-shell heat exchanger mainly comprises: a nozzle Ai, Ao for the plate side fluid (A fluid) entering and leaving the heat exchanger; and a shell side fluid (B fluid) for entering and leaving the heat exchanger.
  • a fluid plate side fluid
  • B fluid shell side fluid
  • Fig. 1B The front and rear end caps F, G disposed at the front and rear ends of the shell and tube heat exchanger housing C are further schematically shown in Fig. 1B, which are welded together with the heat exchanger housing C to form a pressure bearing and sealing capability. It can be seen in Fig. 1B that the flow directions of the two hot and cold fluids A and B are exactly opposite, thereby forming a countercurrent to achieve the maximum heat exchange potential.
  • each double-wall heat exchanger plate is composed of two identical independent plates which are welded together around a corner hole instead of a single plate, in the case of cracks or perforations in the plate.
  • the leaking fluid will flow to the outside from the Escape Path between the double-walled panels, so that leaks can be easily detected and taken to avoid contamination or production due to mixing of the two media. Harmful reactions.
  • Double-walled safety plate heat exchangers are widely used in the nuclear industry, heating drinking water, food industry, metallurgical industry, power industry, pharmaceutical industry, petrochemical industry and so on.
  • the plate side flow passages in the plate and shell heat exchanger are completely surrounded by the shell side fluid and isolated from the external environment. If the two conventional circular heat exchanger plates are simply welded together around the end holes as a double-wall heat exchanger plate as in the case of plate heat exchange, once the double-wall heat exchanger plates are partially leaked, the double-wall heat transfer occurs. The gap between the plates is not directly connected to the external environment, and the leakage cannot be detected in time. Furthermore, the fluid accumulated between the double-wall heat exchange plates accelerates the corrosion rate of the heat exchange plates until a larger area of the two heat exchange plates breaks, eventually causing one side of the fluid to contaminate the other side of the fluid. Therefore, how to realize the leakage fluid escape passage in the plate-and-shell heat exchanger has become a technical problem that the inventors need to overcome first.
  • the conditions of the double-wall heat exchanger require that the leakage liquid that may occur between the double-walled plates must be brought together through some escape channel and reliably guided to the external environment of the heat exchanger. Therefore, the escape passage should be kept at a low pressure or normal pressure to avoid mixing of the leaking liquid with the other working medium.
  • the double wall solution should facilitate automatic or manual visual monitoring of leaking media.
  • the valve of the medium flow circuit can be manually or manually shut off by the operator to stop the operation of the heat exchanger and isolate it.
  • the structural design of the double wall panels should allow for one press forming to minimize the gap between the two panels of the double wall panels, thereby reducing the surface contact heat transfer resistance.
  • the structural design of the double-walled panels must take into account the feasibility of the welding process and minimize the welding process and reduce costs.
  • the welding process is implemented to connect each heat exchanger plate in the double-wall heat exchanger plate group, it is necessary to prevent the welding material from entering between the double-wall heat exchanger plate groups as desired, or the welding material may block the leaking leakage fluid. .
  • the object of the present invention is to solve the technical problems existing in the prior art mentioned above, and in particular to solve the structural requirements and technical challenges of implementing the double-wall panel in the shell-and-shell heat exchanger described above: (1) The side flow channel is completely surrounded by the shell side fluid; (2) the leakage liquid escape passage is realized in the all welded structure; (3) the automatic or manual monitoring of the leakage is facilitated.
  • the technical solution of the present invention provides a double-wall heat exchange plate for a plate-and-shell heat exchanger, wherein the non-heat exchange zone of the double-wall heat exchanger plate comprises a heat exchanger plate periphery (3) and an end hole region (4) And an escape aperture region (20), wherein the escape aperture region (20) is an annular plane (20-A), a circular plane (20-B), and a cone-shaped speckle structure composed of frustoconical surfaces (20-AB) connecting the two, and an annular plane (20-A) of the escape aperture region (20) is used to form a large escape aperture and with the end aperture region ( 4) Located on the first plane; the circular plane (20-B) of the escape aperture region (20) is used to form a small escape aperture and is located on the second plane with the periphery (3) of the heat exchange plate.
  • the pair of plates of the double-wall heat exchanger plate are separately opened on the basis of the cone-shaped plaque structure
  • the first plate (A plate) of the large escape hole (21) and the second plate (B plate) with the small escape hole (22) are formed.
  • the cone-shaped speckle structure is disposed at a center position on the surface of the double-wall heat exchanger plate or the end hole
  • the axis of symmetry of the zone is such that the double wall heat exchanger plates can be pressed in pairs by the same mold.
  • the double-wall heat exchanger plate is a circular heat exchanger plate, a square heat exchanger plate, a rectangular heat exchanger plate, an ellipse Any one of the heat exchanger plates.
  • the double-wall heat exchanger plate for a plate-and-shell heat exchanger according to the above technical solution, can obtain different thermal performance by changing geometric characteristics, the geometric features including Smooth surfaces, V-shaped fish waves, round or irregular pits, studs, and other structures used to enhance heat transfer.
  • Another technical solution of the present invention provides a double-wall plate-and-shell heat exchanger, which adopts a double-wall heat exchanger according to the above technical solution, wherein the double-wall plate-shell heat exchanger has a plate side a leakage fluid escape passage completely separated from the flow passage and the shell side flow passage, the escape passage passing through a series
  • the double-wall heat exchange plates are assembled in a certain order and are respectively formed by welding at the large escape hole welding position, the end hole welding position, the small escape hole welding position, and the welding position around the heat exchange plate.
  • the escape passage may be directly communicated to the outside of the heat exchanger, or the escape passage may be maintained in a vacuum state by a closed structure.
  • the sealing interface of the double-wall heat exchanger plate may be realized by different welding processes or welding forms, the welding process including laser welding, brazing Welding, brazing, plasma welding, argon arc welding and electric resistance welding, the welding forms include penetration welding and butt welding.
  • the welding of the sealing interface of the double-walled heat exchanger plate may be partially or completely replaced by an elastic sealing gasket.
  • the double-walled plate-and-shell heat exchanger supports more than one escape passage.
  • the mutual contamination between the heat exchange liquids in the case of accidental breakage of the heat exchanger sheet can be avoided.
  • the double-wall heat exchanger plate for a plate-and-shell heat exchanger according to the present invention two different diameter escape holes can be opened at the center position, and the geometry of the heat exchanger plate allows two different diameter escape circles.
  • the heat exchange plates of the holes can be formed by the same mold, so that the double wall heat exchange plates can be pressed in pairs. This avoids local gaps that may occur between adjacent plates. Minimize the surface contact heat transfer resistance between the double wall panels and improve heat transfer efficiency.
  • the plate-and-shell heat exchanger configured with the double-wall heat exchanger plate according to the present invention has a leakage completely separated from the plate side flow passage and the shell side flow passage Escape channel.
  • the escape channel allows the leakage fluid to be directly drained to the external environment of the heat exchanger, thereby completely avoiding the possibility of mutual contamination of the hot and cold fluids.
  • the escape passage can be kept in a vacuum state due to its closed structure, thereby realizing possible leakage according to pressure, chemical composition, radiation element or other principles.
  • the event realizes real-time monitoring and alarming by electronic or numerical control, and automatically cuts off the flow channel valve at the moment of the event. Timely avoid mutual contamination between fluids on both sides, or leakage of fluids to the external environment.
  • this escape passage can maintain it in a vacuum due to its closed structure.
  • the escape channel is configured with a passive check valve to the external environment. Once the pressure of the escape channel is higher than the external pressure, the check valve will automatically open without any other control mechanism, and the leakage fluid will be dispatched to avoid mutual contamination between the fluids on both sides or the leakage of the fluid to the external environment. .
  • the vacuum state of the escape channel can increase the compressive stress between the double wall plates, thereby further reducing surface contact heat transfer resistance and improving heat exchange efficiency.
  • the cone-shaped speckle structure consisting of an annular flat surface, a tapered surface and a circular flat surface according to the present invention makes it possible to fabricate two heat exchange plates having different diameters and circular holes in different planes using the sheets pressed by the same mold.
  • the circular hole structure can realize the double wall escape passage by welding, and the space separation of the structure can effectively avoid the possibility that the weld seam blocks the escape passage, and the structure can realize the two heat exchanger plates to be formed once.
  • the effectiveness of this double-walled heat exchanger plate structure is not only applicable to circular plate-and-shell heat exchanger plates, but also to any other geometry heat exchanger plates, including square plates, rectangular plates and elliptical plates.
  • Flow patterns include parallel flow, retrograde flow, and cross flow.
  • the double-layer sealing interface of the heat exchanger plate can be realized by different welding processes, including but not limited to laser welding, brazing, brazing, plasma welding, argon arc welding, electric resistance welding, etc., or different structures. These variations include, but are not limited to, penetration welding and butt welding, etc., which do not affect the effectiveness of the dual wall heat exchanger operating principles described herein.
  • the welding of the double-walled sealing interface of the double-walled heat exchanger plate may be partially or completely achieved by an elastic sealing gasket.
  • the heat exchange surface of the heat exchange plate can enhance the heat transfer performance through different stencils, thereby realizing the change of thermal performance.
  • double-walled heat exchanger plate according to the present invention and the heat exchanger using the same also support more than one escape passage and the nozzle.
  • FIG. 1A is a partial cross-sectional structural view of a plate-and-shell heat exchanger as a prior art
  • FIG. 1B is a schematic cross-sectional view of a single-flow plate-and-shell heat exchanger corresponding to FIG. 1A.
  • FIG. 2 is a front view of a conventional heat exchange plate for a single-wall plate-and-shell heat exchanger in the prior art.
  • FIG. 3A is an A plate with a large escape hole in a double-wall heat exchanger plate for a plate-and-shell heat exchanger according to an embodiment of the present invention
  • FIG. 3B is a plate-shell heat exchanger according to an embodiment of the present invention.
  • a B-plate with a small escape hole is provided in the double-wall heat exchange plate.
  • FIG. 4 is a schematic view showing a sealing interface of a dedicated double-wall heat exchange plate that can realize a leakage fluid escape passage according to an embodiment of the present invention
  • Fig. 5A shows a pair of plates 1a, 1b for forming a double-walled heat exchanger plate for a plate-and-shell heat exchanger in one molding according to an embodiment of the present invention
  • Fig. 5B is a pair of plates 2a, 2b formed at one time.
  • Fig. 6 shows the assembly and welding procedure of the pair of plates 1a-2a of the double-walled heat exchanger plate for a plate-and-shell heat exchanger according to an embodiment of the present invention.
  • Figure 7 shows the assembly and welding process of the double plate pair 1b-1a-2a-2b for a double wall heat exchanger plate for a double wall plate and shell heat exchanger according to an embodiment of the present invention.
  • Figure 8 shows the assembly and welding of the plate sets 1b-1a-2a-2b and 3b-3a-4a-4b of a double-wall heat exchanger plate for a double-wall plate-and-shell heat exchanger according to an embodiment of the present invention. Process.
  • FIG. 9 is a partially enlarged schematic view showing an escape mechanism and an escape route of a leakage fluid of a double-wall plate-and-shell heat exchanger according to an embodiment of the present invention.
  • Figure 10 is a schematic illustration of a cross-sectional flow path of a double-wall plate-and-shell heat exchanger having a leakage fluid escape passage in accordance with an embodiment of the present invention.
  • Figure 11 is a perspective assembled view of a double-walled plate and shell heat exchanger according to an embodiment of the present invention.
  • 12A and 12B are schematic views of a double-walled side flow heat exchange plate in which an escape hole is opened at a non-central position according to a modification of the present invention.
  • the prior art double-wall plate heat exchanger has two double-wall heat exchanger plates composed of two identical independent plates for double wall exchange of plate heat exchangers.
  • the hot plate has no difference in appearance from the single-wall heat exchanger plate.
  • the double-walled circular heat exchanger plate is not only different in appearance from a conventional single-wall heat exchanger plate, but also has a circular change in pairs. There are also differences between the hot plates. Specifically, it is necessary to separately open escape holes of different diameters to realize the leakage fluid escape passage and the space separation of the weld.
  • a circular heat exchanger plate with a large escape hole is called an A plate
  • a circular heat exchange plate with a small escape hole is called a B plate
  • the A plate and the B plate are formed in pairs.
  • FIGS. 3A and 3B respectively show use according to an embodiment of the present invention.
  • a conventional circular heat exchange plate is composed of a heat exchange surface 1 and a planar periphery 3, and different forms of corrugations 2 formed by cold pressing are provided on the heat exchange surface 1 to promote local turbulence and enhance heat transfer. coefficient.
  • two end holes 6 are also opened on the circular heat exchange plate as the inlet and outlet of the plate side fluid, and the planar periphery 3 and the two end holes 6 constitute a non-heat exchange zone of the heat exchange plate.
  • two adjacent circular heat exchanger plates are first welded together along the planar periphery 3 in a back-to-back manner (ie, one of which needs to be reversed by 180 degrees) to form a plate-side flow path. Pair of boards. Then, the two pairs of plates are welded together along the end hole periphery 5 of the two end holes 6 to form a shell side flow path. In other words, the plate side fluid flows within the pair of plates and the shell side fluid flows between the pair of plates, thereby achieving isolation of the plate side flow passage from the shell side flow passage. Finally, the fully welded cylindrical heat exchange core is mounted in the envelope to form a shell side flow space.
  • the region in which the escape apertures 21, 22 are located together with the planar periphery 3 and the two end apertures 6 in FIG. 2 constitutes a non-heat exchange zone of the double-walled heat exchanger plate according to the present invention, which allows an effective change in consideration of the escape hole.
  • the planar periphery 3 and the two of the circular heat exchanger plates shown in Fig. 2 are required for the welding process (the separator side flow path and the shell side flow path).
  • the end hole perimeters 5 of the end holes 6 are geometrically in different planes.
  • the inventor creatively utilized This structure is such that the escape apertures 22, 22 of different diameters of the novel circular heat exchanger plates of Figures 3A and 3B are also geometrically identical in different planes, the ends of the two end holes 6 herein.
  • the plane in which the hole periphery 5 and the large diameter escape hole 21 (also simply referred to as the large hole 21) is called the A plane, and the plane where the plane periphery 3 and the small diameter escape hole 22 (also simply referred to as the small hole 22) are located
  • the large holes 21 and the small holes 22 are spatially located in the A and B planes respectively, which is another key structural feature of the present invention.
  • the innovative double-wall plate replacement will be described in detail below with reference to the accompanying drawings. The structure, implementation process and working principle of the hot plate.
  • FIG. 4 is a schematic structural view of a special double-wall heat exchange plate capable of realizing a leakage fluid escape passage according to an embodiment of the present invention.
  • the front view and a CC partial cross-sectional view thereof show the sealing interface of the new heat exchanger plate before the opening. Schematic, and a drawing scale different from the front view is employed in the cross-sectional view to clearly show the details of the sealing interface of the double-walled heat exchanger plate according to the present invention.
  • the surface of the entire heat exchange plate can be roughly divided into a heat exchange zone and a non-heat exchange zone, wherein the non-heat exchange zone includes an annular planar periphery (around the heat exchanger plate) 3, two circular ends The hole area 4 and a frustum-shaped escape hole area 20.
  • the escape hole region 20 located at the center of the circular heat exchange plate is further composed of an annular plane 20-A, a circular plane 20-B, and a truncated cone surface 20-AB connecting the two.
  • the annular plane 20-A and the end hole region 4 are located at the same plane position (A plane); the circular plane 20-B is located at the same plane position (B plane) as the plane periphery 3.
  • the opening process of the two circular end hole regions 4 is exactly the same as that of the conventional circular heat exchange plate, but the opening process of the circular escape hole region 20 belongs to the conventional circular heat exchanger plate at all. New processes exist.
  • the particular configuration of the circular escape aperture region 20 allows for different diameter escape apertures to be achieved by cutting or stamping in different ways at the center location.
  • the first mode cutting or punching a larger diameter escape hole 21 in the annular plane 20-A to realize the first plate type A plate (see FIG.
  • the second mode Cut on a circular plane 20-B A smaller diameter escape aperture 22 is cut or stamped to achieve a second plate B plate (see Figure 3B).
  • the heat exchange plates shown in Figure 4 should be formed in one press and in the subsequent welding process. The pairing operation is maintained so that the local gap between the double wall panels can be minimized.
  • FIG. 5A shows the pair of plates 1a, 1b which are formed at one time;
  • Fig. 5B shows the pair of plates 2a, 2b which are formed at one time.
  • Figure 6 is a process of assembling and welding the pair of plates 1a-2a.
  • Figure 7 is a process of assembling and welding the double plate pair 1b-1a-2a-2b.
  • Figure 8 is a process of assembling and welding the plate sets b-1a-2a-2b and 3b-3a-4a-4b.
  • the first group of plate pairs 1a'+1b' which are pressed once is separated into 1a' and 1b'. Then, a large hole 21 is opened in the 1a' plate to form the A plate 1a, and a small hole 22 is opened in the 1b' plate to form the B plate 1b.
  • the second set of plate pairs 2a'+2b' which are pressed once is separated into 2a' and 2b'. Then, a large hole 21 is opened in the 2a' plate to form the A plate 2a, and a small hole 22 is formed in the 2b' plate to form the B plate 2b.
  • the opening process of the two circular end hole regions is the same as that of the conventional circular heat exchange plate, the description is omitted here.
  • the separated and apertured A-plates 1a and 2a are paired in the next process, and one of the two plates is inverted by 180 degrees, thereby making the two plates round in a face-to-face manner.
  • the periphery of the shaped end hole region 4 forms a close contact.
  • the annular plane 20-A where the large holes 21 of the two plates are located and the circular end hole region 4 are in the same plane position (A plane)
  • the annular plane 20-A at the heart position also forms a close contact.
  • welding is performed at a position around or near the circumference of the annular plane 20-A to form a weld spot 23.
  • a first seal is formed between the two plates by the weld location 23 as the first seal boundary of the leak escape port 24.
  • the separated and opened B plates 1b and 2b are respectively disposed on the left and right sides of the pair of plates 1a-2a formed in the previous process, thereby making adjacent ones
  • the periphery of the circular end hole region 4 of the four sheets 1a, 1b and 2a, 2b is brought into close contact.
  • welding is performed at the periphery of the circular end hole region 4 of the four plates or at a position close to the periphery to form a weld bit 25 to realize the complete flow of the shell side flow path of the double-wall heat exchanger plate for the plate-and-shell heat exchanger. seal.
  • the spatial separation of the A and B planes is a key structural feature of the present invention.
  • the circular planes 20-B where the small holes 22 on the two B plates 1b and 2b are located are respectively On the B plane on both sides of the A plane, the two previously formed weld positions 23 and 25 are located in the A plane.
  • two pairs of plates Ab-1a-2a-2b composed of two A-plates and two B-plates are formed.
  • the two sets of double-plate pairs 1b-1a-2a-2b and 3b-3a-4a-4b formed by repeating the above-described steps of FIGS. 5 to 7 are combined.
  • the two pairs of double-plate pairs have a bilaterally symmetrical shape, it is not necessary to strictly distinguish the combined directions of the two pairs of double-plate pairs as face-to-face or back-to-back as described above.
  • FIG. 8 shows that the two pairs of double-plate pairs have a bilaterally symmetrical shape, it is not necessary to strictly distinguish the combined directions of the two pairs of double-plate pairs as face-to-face or back-to-back as described above.
  • the combined two pairs of pairs of plates will form two tight planar contacts on the B plane, the first being the circular hole plane 20-B of the adjacent two B plates 2b, 3b, and the second It is the plane of the adjacent two pairs of plates 2a, 2b and the pair of plates 3a, 3b (around the heat exchanger plate) 3.
  • Welding is performed at the two places to form weld positions 26 and 27, respectively, thereby forming an escape passage for the leaking fluid, and finally achieving a double for the plate-and-shell heat exchanger Complete sealing of the plate side flow passage of the wall heat exchanger plate. After this process is completed, it can be clearly seen from Fig. 8 that in addition to the plate side flow path 30 and the case side flow path 31, an escape passage 32 for leaking fluid is formed.
  • the welding positions 23 and 26 for forming the leakage fluid escape path are completely separated in the physical space and the welding process, there is no sealing portion between the A plate and the B plate of the single double wall plate, so the double wall There is unimpeded full communication between the space between the plates and the escape channel.
  • the above welding process can ensure that the weld material does not enter between the double-walled heat exchanger plate groups and blocks the overflowing leakage fluid.
  • FIG. 9 is a partially enlarged schematic view showing an escape mechanism and an escape route of a leakage fluid of a double-walled plate-and-shell heat exchanger according to an embodiment of the present invention.
  • the space between the double-walled plates and the escape passage are directly Connection, in the normal operation of the shell-and-tube heat exchanger, the plate side fluid 34 and the shell side fluid 33 are completely isolated by the circular double-wall heat exchanger plate.
  • the escape passage 32 is directly connected to the external environment or is in a high vacuum state, once a partial leak of the heat exchange plate occurs due to material processing, stress fatigue, dielectric corrosion or other reasons, no matter which side of the fluid leaks, leakage
  • the fluid will start from the leak point 35 and flow to the escape passage 32 via the gap between the double wall plates, that is, along the leakage fluid plate transfer route 36 and the escape route 37, and finally flow out to the outside of the plate and shell heat exchanger, thereby thoroughly The possibility of mutual contamination of the media on both sides is avoided.
  • FIG. 10 is a schematic illustration of a cross-sectional flow path of a double-wall plate-and-shell heat exchanger having a leakage fluid escape passage in accordance with an embodiment of the present invention.
  • the double-wall plate-and-shell heat exchanger shown in FIG. 10 differs in overall structure in that: except for the inlet and outlet nozzles 13 for the fluid on both sides.
  • an escape socket 40 is further disposed on the front end cover. Either the leakage fluid from the shell side flow passage 31 or the plate side flow passage 30 can flow from the escape nozzle 40 to the plate and shell heat exchanger along the leakage fluid escape route 37 via the escape passage 32. external.
  • the escape nozzle 40 can be directly connected to the atmospheric environment, so that it can be found in time by a manual method in the event of a leak, or the escape socket 40 can be sealed according to the application requirements, and the escape passage 32 can be maintained in a high vacuum state to realize real-time monitoring of the leakage. .
  • the monitoring nozzle 41 connected to the escape channel 32 can be taken from the other side end cap as shown in Fig. 10, and a one-way valve 42 to the external environment can be arranged and the pressure can be applied according to different practical applications.
  • An electronic sensor 43 that measures the chemical composition or radiation element. Taking the pressure detection as an example, once the escape passage 32 causes the pressure to exceed the external ambient pressure due to the leakage, the check valve 42 will automatically open to avoid the possibility of mutual contamination of the fluid on both sides.
  • Figure 11 is a perspective assembled view of a double-walled plate-and-shell heat exchanger according to an embodiment of the present invention, schematically showing the leakage fluid discharged from the escape interface at the front end cover, wherein
  • the same components of the prior art are given the same reference numerals and the description is omitted, which is significantly different from that of FIG. 1 in that an escape interface for leaking fluid discharge shell-and-shell heat exchangers is added, based on FIG. It is not difficult to understand the working mode of Figure 11 on the basis of the schematic diagram of the flow path.
  • the double-wall heat exchanger plate for a plate-and-shell heat exchanger designed according to an embodiment of the present invention and the double-wall plate-shell heat exchanger (DWPSHE) configured accordingly have the following series of advantages:
  • the leakage fluid escape passage completely isolated from the plate side flow passage and the shell side flow passage can be formed using the double wall heat exchange plate described in the present invention.
  • the escape channel leads directly to the external environment of the plate-and-shell heat exchanger, thus completely avoiding the possibility of contamination of the hot and cold fluids.
  • the escape welding hole of the double-wall heat exchanger plate is completely separated from the sealing welding boundary of the plate side and the shell side, thereby ensuring that the connection between the gap between the double-wall heat exchanger plates and the escape passage is not caused by the welding process. Blocked to ensure smooth escape routes.
  • the leakage fluid can only flow out of the plate-and-shell heat exchanger from the nozzle located on the front end cover or the rear end cover, so that the leakage event can pass the vision, image and instrument in a timely, convenient and reliable manner. Perform manual or automatic observation alarms.
  • Escape hole is set at the center position
  • the escape aperture is placed in a symmetrical position of the centerline of the end hole as shown in FIG.
  • the two sets of heat exchanger plates need to be reversed and rotated 180 degrees during assembly.
  • the escape hole is disposed at the center position to ensure that after the reverse rotation and rotation, the escape holes on the adjacent two heat exchange plates are still in a concentric position so that close contact can be formed. Therefore, the two sets of heat exchanger plates can be realized by the same pressure-formed sheet material, and the double-wall heat exchanger plates can be pressed in pairs, thereby reducing the contact heat transfer resistance between the two plates and simplifying the process flow.
  • the heat exchange plates described in the present invention are pressed in pairs as shown in Figures 5A and 5B, and each pair of heat exchange plates is subjected to label tracking to ensure that the pairing of the heat exchange plates is not disturbed during the assembly of the welder.
  • a series of b-a-a-b double-plate pairs are assembled one after the other to complete the small escape welding and the welding around the heat exchange plate to form a complete double-wall heat exchange core.
  • the simplest escape channel is used to open the escape tube directly to the external environment or to a location that is convenient for excretion and easy to inspect. Once a leak occurs, it can be discovered in time through artificial vision.
  • Another type of escape channel is used to keep it in a high vacuum state. This type of use must be configured with a check valve to the external environment. Once the escape channel pressure is higher than the external pressure, the check valve will automatically open to expel the leaking fluid to avoid mutual contamination between the fluids on both sides.
  • Elemental measurements enable real-time monitoring of leaks and automatically shut off valves at the instant of a leak event, thereby preventing mutual contamination of the fluid on both sides and leakage of fluid to the external environment. 2) Keeping the escape channel in a high vacuum state while increasing the vertical pressure between the double wall plates further helps to reduce the surface contact heat transfer resistance, thereby improving the heat exchange efficiency.
  • the structure and working principle of the escape hole and the escape passage of the double-wall heat exchanger plate described in the present invention do not require that the escape port must be disposed at the center position or the symmetrical position of the circular heat exchanger plate, although it is disposed at the center position. Or symmetric position) has a range of manufacturing advantages.
  • escape holes may be disposed adjacent to each other. Between the inlet and outlet holes to maximize the area of the dead zone between the two end holes that does not participate in heat transfer. Further, if there are special application requirements, the escape hole can also be placed at any other asymmetrical position on the surface of the double-walled heat exchanger plate. It should be noted that placing the escape holes in an asymmetrical position would require more than one mold, which would increase the complexity of manufacturing and manufacturing costs.
  • the welding of the double-wall heat exchanger core described in the present invention requires reliable welding on four key sealing interfaces: the welding position around the heat exchanger plate 27; the end hole welding position 25; Escape hole weld position 23 and small escape hole weld position 26.
  • Welding at these locations can take different forms of welding (penetration, butt welding, etc.) and different welding processes (laser brazing, brazing, plasma welding, argon arc welding, resistance welding, etc.).
  • the welding sequence of the four key welds can be optimized according to the welding form, welding process and welding fixture design.
  • the welding procedure described above is merely an example of implementation and is not meant to be the only implementation. None of these changes affect the effectiveness of the working principle of the double-wall heat exchanger described in the present invention.
  • the outer casing, the escape hole, the end plate, and the heat exchange plate may have an elliptical shape or the like.
  • Such an elliptical shape is included in the term "circular" in the context of this specification.
  • the double-walled plate and shell heat exchanger according to the invention can also have a plurality of escape channels, and the plurality of end plates and the outer casing can thus have more than one respective access port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种适用于板壳式换热器的专用双壁换热板及其专用换热板,双壁换热板的非换热区包括换热板周边(3)、端孔区(4)以及逃逸孔区(20),其中所述逃逸孔区(20)为由环形平面(20-A)、圆形平面(20-B)以及连接两者的截头锥面(20-AB)组成的锥台式斑纹结构,所述逃逸孔区(20)的环形平面(20-A)用于形成大逃逸孔(21)且与所述端孔区(4)位于第一平面上,所述逃逸孔区(20)的圆形平面(20-B)用于形成小逃逸孔(22)且与所述换热板周边(3)位于第二平面上,泄漏流体通过逃逸接管直接排放到板壳式换热器外,从而可避免两种换热介质的相互污染。

Description

双壁板板壳式换热器及其专用双壁换热板 技术领域
本发明涉及一种双壁板板壳式换热器及其专用双壁换热板,特别是涉及一种适用于板壳式换热器的具有逃逸孔的双壁换热板以及使用了该双壁换热板的具有逃逸通道的全焊式双壁板板壳式换热器。
背景技术
管壳式换热器(STHE)、板式换热器(PHE)以及板壳式换热器(PSHE)都是本领域技术人员熟知的换热器类型,其中板壳式换热器可以被视为介于管壳式换热器和板式换热器之间的一种结构形式,它兼顾了二者的优点:①以板为传热面,传热效能好;冷热介质流道在换热器内部交替布置,产生的湍流和完全逆流型式确保了板片间极高的传热性能,传热系数可以比管壳式换热器高出几倍。②结构紧凑,体积小。③耐温、抗压,最高工作温度可达800℃,最高工作压力可达6.3兆帕,特殊形式的还可以应用于更高的温度和压力。④波纹板面导致较高的表面剪切应力,不易结垢。⑤采用特殊端盖法兰结构的板壳式换热器可以拆开清洗换热通道。板壳式换热器尤其适用于两侧换热介质流量差别较大的工艺场合,壳侧通道由于配置接管的灵活性允许大流量通过,小流量换热介质则进入换热器的板侧通道。如上所述,由于结合了板式和管壳式换热器的优点,板壳式换热器成为在各种工业领域得以广泛使用的高性能换热设备。这种换热器的普及性归因于其许多独特和有利的产品属性,其中包括高传热系数,全焊接结构, 无或极少垫片材料,适用于高温、高压、低温、低压各种工况条件以及可根据运行工况准确地选型定制的高度灵活性。
图1A是作为现有技术的板壳式换热器的局部剖视结构示意图,图1B是与图1A相对应的单流程板壳式换热器的流程截面示意图。如图1A所示,常规的板壳式换热器主要包括:用于板侧流体(A流体)进出换热器的接管Ai、Ao;用于壳侧流体(B流体)进出换热器的接管Bi、Bo;换热器壳体C以及位于换热器壳体C内的换热芯体D,其中换热芯体D是由一系列先后组装的冷压成型的圆形换热板E构成。图1B中进一步示意性地示出了设置在板壳式换热器壳体C前后端的前后端盖F、G,它们与换热器壳体C焊接在一起以形成承压和密封能力,从图1B中可以看出A、B两种冷热流体的流向正好相反,从而形成逆流以实现最大换热潜力。
对于某些特殊的工业应用而言,避免因换热板意外破裂而造成换热介质间的相互污染至关重要。比如在暖通行业,如果一侧流体是乙二醇或丙二醇而另一侧流体是饮用水,则相互污染将会导致灾难性的严重后果。其它存在类似需求的工业应用还包括换热介质混合可能导致工艺失效、环境污染或危险化学反应的情况,例如冷却油的冷却、酸碱液体的冷却、核应用中含辐射物质的液体冷却等等。在如上所述需要绝对防止两种介质混合的热交换场合下,实践中大多采用双壁换热板以确保安全换热。以板式换热器为例,每个双壁换热板由两张相同的独立板片组成,它们围绕角孔被焊接在一起以替代单张板片,在板片一旦有裂纹或穿孔时,泄漏流体将由双壁板之间的逃逸通道(Escape Path)流到外部,这样一来泄漏情况很容易被发现并采取措施,从而可避免因两种介质相互混合而导致污染或产 生有害反应。双壁安全型板式换热器被广泛应用在核工业、加热饮用水、食品工业、冶金行业、电力行业、医药行业、石油化工行业等。
目前,可拆板式换热器(Plate and Frame Heat Exchanger)和钎焊板式换热器(Brazed Plate Heat Exchanger)的双壁换热板的结构设计、制造技术以及应用已经日趋成熟。国内外许多专利文献已经公开了针对双壁板板式换热器改进泄漏流体的聚集、排出和实时监控(例如EP2435774A1、EP2630432A1和US7204297B2)。然而,与双壁板板式换热器相比,实现双壁板板壳式换热器却在结构上存在如下一系列特殊困难和技术挑战:
--与可拆/钎焊板式换热器不同,板壳式换热器中的板侧流道被壳侧流体完全包围而与外部环境隔离。如果只是简单地像板式换热那样将两块常规的圆形换热板围绕端孔焊接在一起作为双壁换热板,那么一旦双壁换热板片出现局部泄漏,则因双壁换热板间的间隙未能与外部环境直接连通,而造成泄漏无法被及时发现。进而,积存于双壁换热板间的流体会加速换热板片的腐蚀速度,直到两张换热板片出现更大面积破损,最终导致一侧流体对另一侧流体造成污染。因此,如何在板壳式换热器中实现泄漏流体逃逸通道就成为发明人需要首先克服的技术难题。
--双壁板换热器的工况条件要求在双壁板间可能发生的泄漏液体必须通过某种逃逸通道将其汇集在一起,并可靠地引导至换热器的外部环境。因此,逃逸通道应该保持在低压或常压状态,以避免泄漏液体与另一侧工作介质的相互混合。
--双壁板的解决方案应该便于对泄漏介质进行自动或人工视觉监控。在一旦出现泄漏的情况下,可以自动地或通过操作人员手动地切断介质流动回路的阀门,以停止换热器的运行并对其实施隔离。
--双壁板的结构设计应当允许一次压制成型,以最大程度地减小双壁板的两张板之间的间隙,从而减小表面接触传热阻力。
--双壁板的结构设计必须考虑焊接工艺的可行性,并最大程度地简化焊接流程,降低成本。当实施焊接工艺来连接双壁换热板组中的各换热板时,需要防止焊接料非如人所愿地进入双壁换热板组之间,否则焊接料就可能阻塞溢出的泄漏流体。
正是由于存在上述诸多困难和挑战,本领域技术人员在提及双壁板换热器时往往默认为是指双壁板板式换热器,甚至认为满足上述工况条件的双壁板板壳式换热器在技术上根本无法实现。
发明内容
本发明的目的就是为了解决上述现有技术中存在的诸多技术问题而完成的,尤其是解决以上描述的在板壳式换热器中实现双壁板的结构需求和技术挑战:(1)板侧流道被壳侧流体完全包围;(2)在全焊接结构中实现泄漏液体逃逸通道;(3)方便对泄漏的自动或手动监测。
本发明的技术方案提供一种用于板壳式换热器的双壁换热板,所述双壁换热板的非换热区包括换热板周边(3)、端孔区(4)以及逃逸孔区(20),其中所述逃逸孔区(20)为由环形平面(20-A)、圆形平面(20-B)以及 连接两者的截头锥面(20-AB)组成的锥台式斑纹结构,所述逃逸孔区(20)的环形平面(20-A)用于形成大逃逸孔且与所述端孔区(4)位于第一平面上;所述逃逸孔区(20)的圆形平面(20-B)用于形成小逃逸孔且与所述换热板周边(3)位于第二平面上。
优选地,在根据上述技术方案的用于板壳式换热器的双壁换热板中,所述双壁换热板的成对板片由在所述锥台式斑纹结构的基础上分别开设大逃逸孔(21)的第一板片(A板)和开设小逃逸孔(22)的第二板片(B板)构成。
优选地,在根据上述技术方案的用于板壳式换热器的双壁换热板中,所述锥台式斑纹结构设置在所述双壁换热板表面上的中心位置或者所述端孔区的对称轴线上,以使得所述双壁换热板可以由同一个模具成对压制。
优选地,在根据上述技术方案的用于板壳式换热器的双壁换热板中,所述双壁换热板为圆形换热板、方形换热板、矩形换热板、椭圆形换热板中的任意一种。
优选地,在根据上述技术方案的用于板壳式换热器的双壁换热板中,所述双壁换热板可通过几何特征的变化以取得不同的热力性能,所述几何特征包括平滑表面、V形鱼纹波、圆形或不规则的凹坑、钉柱以及其它用于加强换热的结构。
本发明的另一技术方案提供一种双壁板板壳式换热器,采用了根据上述技术方案的双壁换热板,其中,所述双壁板板壳式换热器具有与板侧流道、壳侧流道完全隔离的泄漏流体逃逸通道,所述逃逸通道通过将一系列 所述双壁换热板按一定顺序组装并分别在大逃逸孔焊接位、端孔焊接位、小逃逸孔焊接位以及换热板周边焊接位实施焊接而形成。
优选地,在根据上述技术方案的双壁板板壳式换热器中,所述逃逸通道可以直接连通到换热器外部,或者所述逃逸通道可以采用封闭结构而保持于真空状态。
优选地,在根据上述技术方案的双壁板板壳式换热器中,所述双壁换热板的密封界面可以通过不同的焊接工艺或焊接形式实现,所述焊接工艺包括激光焊、钎焊、铜焊、等离子焊、氩弧焊和电阻焊,所述焊接形式包括穿透焊和对接焊。
优选地,在根据上述技术方案的双壁板板壳式换热器中,所述双壁换热板的密封界面的焊接可以部分或全部地由弹性密封垫片替代实现。
优选地,在根据上述技术方案的双壁板板壳式换热器中,所述双壁板板壳式换热器支持一个以上的逃逸通道。
根据本发明上述技术方案的用于全焊板壳式换热器的双壁换热板的结构和设计,就可以避免换热板片意外破损情况下换热液体间的相互污染。根据本发明的用于板壳式换热器的双壁换热板,在中心位置可以开出两种不同直径的逃逸圆孔,这种换热板的几何结构使得两种不同直径的逃逸圆孔的换热板可以由同一个模具成型实现,从而使双壁板换热板可以成对压制。这样可以避免相邻两张板之间可能出现的局部间隙。最大程度地减少双壁板之间表面接触传热阻力,提高传热效率。进而,配置了根据本发明的双壁换热板的板壳式换热器具有与板侧流道、壳侧流道完全隔离的泄漏 逃逸通道。逃逸通道使得泄漏流体可以直接排泄到换热器外部环境,从而完全避免冷热流体的互相污染的可能性。
根据上述具有逃逸通道的双壁板板壳式换热器,这种逃逸通道由于其封闭结构可以将其保持在真空状态,从而实现根据压力、化学成分、辐射元素或其它原理对可能发生的泄漏事件以电子或数控的方式实现实时监控、报警,并在事件发生瞬间自动切断流道阀门。及时避免两侧流体间互相污染,或泄漏流体排至外部环境的污染。
另外,这种逃逸通道由于其封闭结构可以将其保持在真空状态。逃逸通道配置有通往外部环境的被动单向阀。一旦逃逸通道的压力高于外部压力,在不依赖其它控制机制的条件下,单向阀会自动打开,将泄漏流体派出,及时避免两侧流体间互相污染,或泄漏流体排至外部环境的污染。此外,这种逃逸通道的真空状态可以增加双壁板之间的挤压应力,从而进一步减少表面接触传热阻力,提高换热效率。
根据本发明的由环形平面、锥面和圆形平面组成的锥台式斑纹结构,使得可以使用由同一模具压制的板片制作出两种具有不同直径,位于不同平面上圆孔的换热板。这种圆孔结构可以通过焊接实现双壁板逃逸通道,并通过结构上的空间分离有效地避免焊缝堵塞逃逸通道的可能性,而且这种结构可以实现两块换热板对一次成型。这种双壁换热板结构的有效性不只适用于圆形的板壳式换热板,而且适用于任何其它几何形状的换热板,包括方形板、矩形板和椭圆形板。流动方式包括平行流、逆行流和交叉流。
另外,这种换热板双层的密封界面可以通过不同的焊接工艺,包括但不限于激光焊、钎焊、铜焊、等离子焊、氩弧焊、电阻焊等等,或不同的结构实现,包括但不限于穿透焊和对接焊等等,这些变化不影响本发明所描述的双壁换热板工作原理的有效性。此外,这种双壁换热板双层密封界面的焊接可以部分或全部得由弹性密封垫片实现。此外,这种换热板换热表面可以通过不同的板纹增强换热能力,实现热力性能的变化。包括平滑表面、V形鱼纹波、圆形或不规则的凹坑、钉柱以及其它用于加强换热的结构。这些变化不影响本发明所描述的双壁换热板工作原理的有效性。进而,根据本发明的双壁换热板以及采用它的换热器还支持一个以上的逃逸通道和接管。
本发明的特征、技术效果和其他优点将通过下面结合附图的进一步说明而变得显而易见。
附图说明
现在将参考附图通过示例的方式来描述本发明,其中:
图1A是作为现有技术的板壳式换热器的局部剖视结构示意图;图1B是与图1A相对应的单流程板壳式换热器的流程截面示意图。
图2是现有技术中的用于单壁板板壳式换热器的常规换热板的主视图。
图3A是根据本发明实施例的用于板壳式换热器的双壁换热板中开设大逃逸孔的A板;图3B是根据本发明实施例的用于板壳式换热器的双壁换热板中开设小逃逸孔的B板。
图4是根据本发明实施例的可实现泄漏流体逃逸通道的专用双壁换热板的密封界面示意图;
图5A示出了根据本发明实施例的用于板壳式换热器的双壁换热板经过一次成型的板对1a、1b;图5B是一次成型的板对2a、2b。
图6示出了根据本发明实施例的用于板壳式换热器的双壁换热板的板对1a-2a的组装和焊接流程。
图7示出了根据本发明实施例的用于双壁板板壳式换热器的双壁换热板的双板对1b-1a-2a-2b的组装和焊接流程。
图8示出了根据本发明实施例的用于双壁板板壳式换热器的双壁换热板的板组1b-1a-2a-2b与3b-3a-4a-4b的组装和焊接流程。
图9是根据本发明实施例的双壁板板壳式换热器的泄漏流体的逃逸机制和逃逸路线局部放大示意图。
图10是根据本发明实施例的双壁板板壳式换热器的具有泄漏流体逃逸通道的截面流道示意图。
图11是根据本发明实施例的双壁板板壳式换热器的立体组装示意图。
图12A和图12B是根据本发明变形例的在非中心位置开设逃逸孔的双壁侧流程换热板的示意图。
具体实施方式
下面,结合附图详细地说明本发明优选实施例的技术内容、构造特征以及所达到的技术目的和技术效果。
如在背景技术部分所述那样,现有技术中的双壁板板式换热器其每个双壁换热板由两张完全相同的独立板片组成,用于板式换热器的双壁换热板在外形上与单壁换热板毫无差异。然而,在根据本发明实施例的双壁板板壳式换热器的情况下,其双壁圆形换热板不仅在外形上与常规的单壁换热板不同,而且成对圆形换热板之间亦有所不同,具体而言就是需要分别开设不同直径的逃逸孔以实现泄漏流体逃逸通道以及焊缝的空间分离。为区别起见,在本文中将开设大逃逸孔的圆形换热板称为A板,并将开设小逃逸孔的圆形换热板称为B板,A板和B板一起成对地构成用于双壁板板壳式换热器的专用双壁换热板。
首先,对照常规的单壁换热板来说明本发明的双壁换热板在外形上的改进之处。图2是用于单壁板板壳式换热器(single-wall plate and shell heat exchanger)的常规圆形换热板的正视图;图3A和图3B分别显示了根据本发明实施例的用于双壁板板壳式换热器(double-wall plate and shell heat exchanger)的A板和B板圆形换热板的正视图。
如图2所示,常规的圆形换热板由换热表面1和平面周边3组成,在换热表面1上设有通过冷压形成的不同形式的波纹2以促进局部湍流和增强换热系数。另外,在圆形换热板上还开设有两个端孔6作为板侧流体的进出口,平面周边3和两个端孔6构成换热板的非换热区。在单壁板板壳式换热器的情况下,两张相邻的圆形换热板首先以背靠背方式(即其中一张需要反转180度)沿平面周边3焊接在一起形成作为板侧流道的板对。 然后,两个板对之间再沿着两个端孔6的端孔周边5焊接在一起形成壳侧流道。换言之,板侧流体在板对内流动而壳侧流体在板对间流动,从而实现板侧流道与壳侧流道的隔离。最后,完全焊接好的圆柱形换热芯体安装在管壳中,形成壳侧流动空间。
在根据本发明实施例的由A板和B板组成的双壁换热板的情况下,其大部分几何特征与常规的单壁圆形换热板相同,因此在图3A和图3B中省略有关部分的附图标记及其重复说明,并仅重点阐述较之于单壁圆形换热板的改进之处。从图3A和图3B可以清楚地看出,双壁换热板的成对圆形换热板(A板和B板)不同于常规的单壁圆形换热板之处是进一步分别在中心位置开设出两种不同直径逃逸圆孔21、22,这也正是本发明中解决上述现有技术中的技术问题的关键结构特征。需要特别指出的是,这种中心对称的几何结构使得具有不同直径逃逸圆孔21、22的两种换热板(A板和B板)可以由同一个模具成型实现,从而使得用于板壳式换热器的双壁换热板可以成对压制。这样一来就可以最大程度地改进双壁换热板的两张板之间紧密配合,避免了局部间隙,从而最大程度地减少双壁板之间表面接触传热阻力,提高了传热效率。另外,逃逸圆孔21、22所在的区域与图2中的平面周边3和两个端孔6一起构成根据本发明的双壁换热板的非换热区,考虑到逃逸孔会造成有效换热面积的损失,在加工和焊接工艺允许的条件下逃逸孔越小越好。
其次,在传统板壳式换热器的情况下,出于焊接工艺(隔离板侧流道与壳侧流道)上的需要,图2所示的圆形换热板的平面周边3和两个端孔6的端孔周边5在几何结构上处于不同的平面。本发明人创造性地利用了 这一结构,使图3A和图3B中的新型圆形换热板的不同直径的逃逸圆孔21、22在几何结构上也同样地处于不同的平面,本文中将两个端孔6的端孔周边5和大直径逃逸圆孔21(也简称为大孔21)所在的平面称之为A平面,并将平面周边3和小直径逃逸圆孔22(也简称为小孔22)所在的平面称之为B平面,大孔21和小孔22在空间上分别处于A、B平面正是本发明的另一关键结构特征,下面将进一步结合附图详细地描述这种创新性双壁板换热板的结构、实现工艺和工作原理。
图4是根据本发明实施例的可实现泄漏流体逃逸通道的专用双壁换热板的结构示意图,图中用主视图及其C-C局部剖视图显示了未开孔之前的新型换热板的密封界面示意图,并且在剖视图中采用了不同于主视图的制图比例以便清楚地显示根据本发明的双壁换热板的密封界面之细节。如左侧的主视图所示,整个换热板表面可以大致划分为换热区和非换热区,其中非换热区包括环状平面周边(换热板周边)3、两个圆形端孔区4以及一个锥台形逃逸孔区20。另外,如右侧的剖视图所示,位于圆形换热板中心位置的逃逸孔区20进一步由环形平面20-A、圆形平面20-B以及连接两者的截头锥面20-AB组成,其中环形平面20-A与端孔区4位于同一平面位置(A平面);圆形平面20-B与平面周边3位于同一平面位置(B平面)。需要说明的是,两个圆形端孔区4的开孔工艺与常规的圆形换热板完全相同,但是圆形逃逸孔区20的开孔工序则属于常规圆形换热板上根本不存在的新增工艺。具体而言,上述圆形逃逸孔区20的特殊结构允许在该中心位置以不同方式通过切割或冲压实现不同直径逃逸圆孔。具体而言,第一种方式:在环形平面20-A上切割或冲压出一个较大直径的逃逸圆孔21,以实现第一个板型A板(参见图3A);第二种方式:在圆形平面20-B上切 割或冲压出一个较小直径的逃逸圆孔22,以实现第二个板型B板(参见图3B)。需要指出的是,为了最大程度地减小双壁板之间的表面接触传热阻力(contact thermal resistance),图4所示的换热板应该成对一次压制成型,并在后续的焊接过程中保持配对操作,以便可以最大程度地消除双壁板之间的局部间隙。
以下,结合图5-图8详细地描述如何通过多组A板、B板的不同组合及配置,最终实现双壁板板壳式换热器的结构和功能。图5A显示了一次成型的板对1a、1b;图5B显示了一次成型的板对2a、2b。图6是板对1a-2a的组装和焊接流程。图7是双板对1b-1a-2a-2b的组装和焊接流程。图8是板组b-1a-2a-2b与3b-3a-4a-4b的组装和焊接流程。需要注意的是,在图6-图8表示双壁换热板组装方式的局部剖视图中,采用了不同于换热板实物或主视图的制图比例以便清楚地显示其组装和焊接过程之细节。
首先,如图5A所示,将一次压制而成的第一组板对1a’+1b’分离为1a’和1b’。然后在1a’板上开大孔21以形成A板1a,并且在1b’板上开小孔22以形成B板1b。同样地,如图5B所示,将一次压制而成的第二组板对2a’+2b’分离为2a’和2b’。然后在2a’板上开大孔21以形成A板2a,并且在2b’板上开小孔22以形成B板2b。附带指出,由于两个圆形端孔区的开孔工艺与常规的圆形换热板无异,这里省略说明。
接着,如图6所示,在下一工序中将分离且已开孔的A板1a和2a进行配对,并将二者中一张板反转180度,从而以面对面方式使两张板的圆形端孔区4的周边形成紧密接触。此时,由于两张板的大孔21所在的环形平面20-A与圆形端孔区4处于同一平面位置(A平面),所以两张板中 心位置处的环形平面20-A也形成紧密接触。然后,在环形平面20-A的周边或靠近周边的位置实施焊接形成焊接位23。通过焊接位23在两张板之间形成第一处密封,作为泄漏逃逸口24的首个密封边界。经过图6所示的工序形成了两张A板换热板组成的板对1a-2a。
接下来,如图7所示,在下一个工序中将分离且已开孔的B板1b和2b分别配置在上一工序中所形成的板对1a-2a的左右两侧,从而使相邻的四张板1a、1b和2a、2b的圆形端孔区4的周边形成紧密接触。然后,在四张板的圆形端孔区4的周边或靠近周边的位置实施焊接形成焊接位25,以实现用于板壳式换热器的双壁换热板的壳侧流道的完全密封。如上所述,A、B平面在空间上的分离正是本发明关键的结构特征,从图7可以看出,两张B板1b和2b上的小孔22所在的圆形平面20-B分别处于A平面两侧的B平面上,而之前形成的两个焊接位23和25均位于A平面。经过图7所示的工序最终形成了两张A板和两张B板共计四张换热板所组成的双板对1b-1a-2a-2b。
接下来,如图8所示,在下一个工序中将重复上述图5至图7的工序所形成的两组双板对1b-1a-2a-2b和3b-3a-4a-4b合并在一起,在这里因所述两组双板对呈左右对称的形状,因此无需如上文所述的面对面或背靠背那样严格地区分两组双板对的合并方向。如图8所示,合并后的两组双板对将在B平面上形成两处紧密平面接触,第一处为相邻的两张B板2b、3b的圆孔平面20-B,第二处为相邻的两组板对2a、2b和板对3a、3b的平面周边(换热板周边)3。在该两处分别实施焊接而分别形成焊接位26和27,从而形成泄漏流体的逃逸通道,并最终实现用于板壳式换热器的双 壁换热板的板侧流道的完全密封。在此工序完成后,从图8可以清楚地看到,除了板侧流道30和壳侧流道31之外,还形成了用于泄漏流体的逃逸通道32。需要说明的是,由于用于形成泄漏流体逃逸路径的焊接位23与26在物理空间上以及焊接工序上完全分离,单个双壁板的A板与B板之间不存在密封部位,因此双壁板之间的空间与逃逸通道存在无阻碍的完全连通。换言之,上述焊接工艺可以确保焊接料不会进入双壁换热板组之间而阻塞溢出的泄漏流体。
图9示出了根据本发明实施例的双壁板板壳式换热器的泄漏流体的逃逸机制和逃逸路线局部放大示意图,如图9所示,双壁板之间的空间与逃逸通道直接连接,在板壳式换热器正常运行状况下,板侧流体34与壳侧流体33通过圆形双壁换热板完全隔离。因为逃逸通道32直接连通至外部环境或处于高真空状态,所以一旦由于材料加工、应力疲劳、介质腐蚀或其它原因而出现换热板片的局部泄漏,则无论是哪一侧流体出现泄漏,泄漏流体都会自泄漏点35出发并经由双壁板之间的间隙流向逃逸通道32,也就是沿着泄漏流体板间转移路线36和逃逸路线37最终流出到板壳式换热器外部,从而彻底地避免了两侧介质相互污染的可能性。
图10是根据本发明实施例的双壁板板壳式换热器的具有泄漏流体逃逸通道的截面流道示意图。较之于常规的单壁板板壳式换热器,图10所示的双壁板板壳式换热器在整体结构上的不同之处在于:除了用于两侧流体的进出口接管13、14、15、16外,在前端盖上还设有一个逃逸接管40。无论是来自壳侧流道31还是来自板侧流道30的泄漏流体,均可以经由逃逸通道32沿着泄漏流体逃逸路线37从逃逸接管40流出到板壳式换热器 外部。逃逸接管40既可以直通大气环境,以便一旦发生泄漏就可通过人工方式及时发现,也可以根据应用需求将逃逸接管40密封起来,并且使逃逸通道32保持在高真空状态以实现对泄漏的实时监控。在后者情况下,可以如图10所示那样从另一侧端盖引出与逃逸通道32连接的监测接管41,并且配置一个通往外部环境的单向阀42以及根据不同的实际应用对压力、化学成分或辐射元素进行测量的电子传感器43。以压力检测为例,一旦逃逸通道32由于泄漏导致压力超过外部环境压力,单向阀42将自动打开从而避免了两侧流体相互污染的可能性。
图11是根据本发明实施例的双壁板板壳式换热器的立体组装示意图,图中示意性地表示了泄漏流体从位于前端盖的逃逸接口排出来的情形,其中与图1所示的现有技术相同的部件采用同样的附图标记并省略说明,明显不同于图1之处在于增设了用于泄漏流体排出板壳式换热器所用的逃逸接口,在基于图10所示的流道示意图的基础上不难理解图11的工作方式,本文从略说明。
根据本发明实施例所设计的用于板壳式换热器的双壁换热板及据此所配置的双壁板板壳式换热器(DWPSHE)具有以下一系列优点:
--使用本发明所描述的双壁换热板可以形成与板侧流道、壳侧流道完全隔离的泄漏流体逃逸通道。逃逸通道直接通往板壳式换热器的外部环境,从而完全避免冷热流体互相污染的可能性。
--双壁换热板的逃逸孔其板侧和壳侧的密封焊接边界在空间上完全分离,从而确保双壁换热板之间的间隙与逃逸通道之间连接不会因焊接过程而造成堵塞,以确保逃逸路线的畅通。
--由于逃逸通道可以是一封闭空间,泄漏流体只能从位于前端盖或后端盖上的接管流出板壳式换热器,因此泄漏事件可以及时、方便、可靠地通过视觉、图像和仪表进行手动或自动观测报警。
--构成本发明所描述的双壁换热板的两张结构略异的换热板对可以通过同一个模压成型的板料而实现。因此双壁换热板可以成对压制,这样可以避免相邻两张板之间可能出现的局部间隙,最大程度地减少了接触传热阻力。
以上详细地描述了根据本发明实施例的双壁换热板以及双壁板板壳式换热器的结构细节和工作原理,具体的应用例和变形例可能在结构细节和焊接工序上有不同的变化。
【应用例】逃逸孔设置在中心位置
在根据本发明的应用例中,如图3所示那样使逃逸孔处于端孔中心线的对称位置上。两组换热板对在组装时需要反转并旋转180度。逃逸孔设置在中心位置可以确保在反转和旋转后,相邻两张换热板上的逃逸孔仍然处于同心位置从而可以形成紧密接触。因此两组换热板对可以通过同一个压力成型的板料实现,双壁换热板可以成对压制,从而减少两张板之间的接触传热阻力,并简化工艺流程。
-如图5A和图5B所示成对压制本发明所描述的换热板,并对每对换热板实施标号跟踪,以确保在焊机组装过程中换热板的配对不被打乱。
-焊接图6所示的A板与A板之间的大逃逸孔,形成一系列a-a板对。
-焊接图7所示的两对双壁板对的端孔周边,形成一系列b-a-a-b双板对。
-将一系列b-a-a-b双板对先后组装在一起,完成小逃逸的焊接和换热板周边的焊接,形成完整的双壁板换热芯体。
-组装经过焊接的双壁板换热芯体、壳体、进出口接管和逃逸接管。
-最简单的逃逸通道的使用方式是直接将逃逸接管敞开至外部环境或延长至一个方便排泄且方便检查的位置。一旦发生泄漏可以通过人工视觉而及时发现。另一种逃逸通道的使用方式是接将其保持在高真空状态。这种使用方式必须配置一个通往外部环境的单向阀。一旦逃逸通道的压力高于外部压力,单向阀会自动打开将泄漏流体排出,以避免两侧流体间互相污染。保持逃逸通道处于高真空状态还有一系列其它优点:1)可以将逃逸通道在另一侧端板引出,并安装不同形式的电子传感器,以便可以根据不同的实际应用通过对压力、化学成分或辐射元素的测量来实现针对泄漏的实时监控,并可以在泄漏事件发生瞬间自动切断阀门,从而避免两侧流体间互相污染以及泄漏流体排至外部环境。2)保持逃逸通道处于高真空状态同时增加了双壁板之间的垂直压力,进一步帮助减少表面接触传热阻力,因而提高了换热效率。
【变形例】逃逸孔设置在非中心位置
本发明所描述的双壁换热板的逃逸孔以及逃逸通道的结构和工作原理并不要求逃逸口一定需要设置在圆形换热板的中心位置或对称位置),尽管将其设置在中心位置或对称位置)具有一系列加工制造方面的优势。
如图12所示,在一种特殊的侧流程板壳式换热板(专利申请号:CN201610607928.5)上,为了形成具有逃逸通道的双壁换热板,逃逸孔可以设置在相邻的进出端孔之间,以最大程度地利用两个端孔之间不参加传热的死区面积。进一步,如果有特殊应用需求,逃逸孔也可以设置在双壁换热板表面上任何其它不对称的位置。需要指出的是,将逃逸孔设置在非对称位置将需要一个以上的模具,从而会增加加工制造方面的复杂性和制造成本。
归纳而言,如图8所示本发明所描述的双壁换热板芯体的焊接需要可靠实现4个关键密封界面上的焊接:换热板周边焊接位27;端孔焊接位25;大逃逸孔焊接位23以及小逃逸孔焊接位26。这些位置的焊接可以采用不同的焊接形式(穿透焊、对接焊等等)以及不同的焊接工艺(激光焊钎焊、铜焊、等离子焊、氩弧焊、电阻焊等等)。另外,该4个关键焊接位的焊接顺序可根据焊接形式、焊接工艺以及焊接夹具设计的不同而优化。以上所描述的焊接流程仅仅是一实现样例而已,并不表示是唯一的实现方式。这些变化均不影响本发明所描述的双壁换热板工作原理的有效性。
从以上描述可知,虽然已描述和示出了本发明的各种实施例,但本发明不限于此,而是也可在所附权利要求限定的主题的范围内以其它方式体 现。例如外壳、逃逸孔、端板和换热板可具有椭圆形状等。这样的椭圆形状在本说明书的背景下包括在术语“圆形”中。根据本发明的双壁板板壳式换热器也可具有多个逃逸通道,并且多个端板和外壳可由此具有不止一个相应的出入接口。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。应当理解,以上的描述意图在于说明而非限制。例如,上述实施例(和/或其方面)可以彼此组合使用。此外,根据本发明的启示可以做出很多改型以适于具体的情形或材料而没有偏离本发明的范围。通过阅读上述描述,权利要求的范围和精神内的很多其它的实施例和改型对本领域技术人员是显而易见的。

Claims (10)

  1. 一种用于板壳式换热器的双壁换热板,其特征在于:所述双壁换热板的非换热区包括换热板周边(3)、端孔区(4)以及逃逸孔区(20),其中所述逃逸孔区(20)为由环形平面(20-A)、圆形平面(20-B)以及连接两者的截头锥面(20-AB)组成的锥台式斑纹结构,所述逃逸孔区(20)的环形平面(20-A)用于形成大逃逸孔(21)且与所述端孔区(4)位于第一平面上,所述逃逸孔区(20)的圆形平面(20-B)用于形成小逃逸孔(22)且与所述换热板周边(3)位于第二平面上。
  2. 根据权利要求1所述的用于板壳式换热器的双壁换热板,其特征在于,所述双壁换热板的成对板片由在所述锥台式斑纹结构的基础上分别开设了所述大逃逸孔(21)的第一板片和开设了所述小逃逸孔(22)的第二板片构成。
  3. 根据权利要求2所述的用于板壳式换热器的双壁换热板,其特征在于,所述锥台式斑纹结构设置在所述双壁换热板表面上的中心位置或者所述端孔区的对称轴线上,以使得所述双壁换热板可以由同一个模具成对压制而成。
  4. 根据权利要求3所述的用于板壳式换热器的双壁换热板,其特征在于,所述双壁换热板为圆形换热板、方形换热板、矩形换热板、椭圆形换热板中的任意一种。
  5. 根据权利要求4所述的用于板壳式换热器的双壁换热板,其特征在于,所述双壁换热板可通过几何特征的变化以取得不同的热力性能,所述 几何特征包括平滑表面、V形鱼纹波、圆形或不规则的凹坑以及钉柱之中任意一种用于加强换热的结构。
  6. 一种双壁板板壳式换热器,采用了权利要求1-5中任意一项所述的双壁换热板,其特征在于,所述双壁板板壳式换热器具有与板侧流道、壳侧流道完全隔离的泄漏流体逃逸通道,所述逃逸通道通过将一系列所述双壁换热板按一定顺序组装并分别在大逃逸孔焊接位、端孔焊接位、小逃逸孔焊接位以及换热板周边焊接位实施焊接而形成。
  7. 根据权利要求6所述的双壁板板壳式换热器,其特征在于,所述逃逸通道可以直接连通到换热器外部,或者可以采用封闭结构而保持于真空状态。
  8. 根据权利要求6所述的双壁板板壳式换热器,其特征在于,所述双壁换热板的密封界面可以通过不同的焊接工艺或焊接形式实现,所述焊接工艺包括激光焊、钎焊、铜焊、等离子焊、氩弧焊和电阻焊,所述焊接形式包括穿透焊和对接焊。
  9. 根据权利要求8所述的双壁板板壳式换热器,其特征在于,所述双壁换热板的密封界面的焊接可以部分或全部地由弹性密封垫片替代实现。
  10. 根据权利要求6-9中任意一项所述的双壁板板壳式换热器,其特征在于,所述双壁板板壳式换热器支持一个以上的逃逸通道。
PCT/CN2017/098078 2016-10-11 2017-08-18 双壁板板壳式换热器及其专用双壁换热板 WO2018068581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610887775.4A CN107917629B (zh) 2016-10-11 2016-10-11 双壁板板壳式换热器及其专用双壁换热板
CN201610887775.4 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018068581A1 true WO2018068581A1 (zh) 2018-04-19

Family

ID=61891923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098078 WO2018068581A1 (zh) 2016-10-11 2017-08-18 双壁板板壳式换热器及其专用双壁换热板

Country Status (2)

Country Link
CN (1) CN107917629B (zh)
WO (1) WO2018068581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344774A (zh) * 2020-11-30 2021-02-09 江苏埃米诺装备制造有限公司 多片组合式管壳换热器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113883929B (zh) * 2021-09-28 2023-10-17 浙江搏克换热科技有限公司 一种智能温度监控的换热设备
CN116738623B (zh) * 2023-08-14 2023-10-17 中国航发四川燃气涡轮研究院 一种带接触热阻的零部件过渡态热分析方法及系统
CN117147344B (zh) * 2023-10-31 2024-03-29 宁德时代新能源科技股份有限公司 电池包换热板疲劳测试设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291945A (en) * 1990-05-02 1994-03-08 Alfa-Laval Thermal Ab Brazed plate heat exchanger
CN1550745A (zh) * 2003-04-14 2004-12-01 ���Ͷ�ר���ϻ﹫˾ 具有双壁传热板的板式热交换器
CN1847767A (zh) * 2003-05-08 2006-10-18 Geawtt有限责任公司 板式热交换器
CN101004329A (zh) * 2006-01-20 2007-07-25 弗拉特普莱特股份有限公司 双壁泄流换热器
CN102027306A (zh) * 2008-03-13 2011-04-20 丹佛斯公司 双板热交换器
CN206399257U (zh) * 2016-10-11 2017-08-11 恒丰工程(香港)有限公司 双壁板板壳式换热器及其专用双壁换热板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180893A (ja) * 1985-02-04 1986-08-13 Hitachi Ltd 溝付管板
JP2670224B2 (ja) * 1992-03-09 1997-10-29 株式会社日阪製作所 プレート式熱交換器用ガスケット
JP2002107089A (ja) * 2000-09-29 2002-04-10 Hisaka Works Ltd プレート式熱交換器
US20100300651A1 (en) * 2009-05-28 2010-12-02 Spx Apv Danmark A/S Double-walled plate heat exchanger
CN102620581B (zh) * 2012-04-01 2014-08-13 东莞埃欧热能技术有限公司 一种换热器
CN203259037U (zh) * 2013-04-08 2013-10-30 中国船舶重工集团公司第七一一研究所 带温度补偿板的三股流板壳式换热器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291945A (en) * 1990-05-02 1994-03-08 Alfa-Laval Thermal Ab Brazed plate heat exchanger
CN1550745A (zh) * 2003-04-14 2004-12-01 ���Ͷ�ר���ϻ﹫˾ 具有双壁传热板的板式热交换器
CN1847767A (zh) * 2003-05-08 2006-10-18 Geawtt有限责任公司 板式热交换器
CN101004329A (zh) * 2006-01-20 2007-07-25 弗拉特普莱特股份有限公司 双壁泄流换热器
CN102027306A (zh) * 2008-03-13 2011-04-20 丹佛斯公司 双板热交换器
CN206399257U (zh) * 2016-10-11 2017-08-11 恒丰工程(香港)有限公司 双壁板板壳式换热器及其专用双壁换热板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344774A (zh) * 2020-11-30 2021-02-09 江苏埃米诺装备制造有限公司 多片组合式管壳换热器

Also Published As

Publication number Publication date
CN107917629B (zh) 2020-12-18
CN107917629A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2018068581A1 (zh) 双壁板板壳式换热器及其专用双壁换热板
EP2508831B1 (en) Plate heat exchanger
EP2435774B1 (en) Double-walled plate heat exchanger
US5443115A (en) Plate heat exchanger
JP4267823B2 (ja) 3回路プレート熱交換器
JP4913725B2 (ja) プレート熱交換器
US5435383A (en) Plate heat exchanger assembly
CN101124450A (zh) 用于板式热交换器的垫片组件
WO2010150878A1 (ja) 熱交換器
EP2672215B1 (en) Plate heat exchanger
CN206399257U (zh) 双壁板板壳式换热器及其专用双壁换热板
FI84659C (fi) Vaermevaexlare.
CN202719904U (zh) 一种耐高压的圆形波纹板板壳式换热器
US6186223B1 (en) Corrugated folded plate heat exchanger
JP2001099590A (ja) プレート式熱交換器
KR101603466B1 (ko) 포트 영역에서 개선된 강도를 갖는 판형 열 교환기
JP2016099093A (ja) プレート式熱交換器およびそのペアプレート
CN104101237B (zh) 一种板式换热器
CN210567456U (zh) 机油冷却器结构
CN112923759A (zh) 立式热交换器
CN115302167B (zh) 不锈钢管内多层环形微流道的焊接结构
JP4212254B2 (ja) プレート式熱交換器
US11933547B2 (en) Double plate heat exchanger
JP2002107088A (ja) プレート式熱交換器
CN216620745U (zh) 安装稳定性高的换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17860449

Country of ref document: EP

Kind code of ref document: A1