WO2018068354A1 - 人源白细胞介素 6 的 siRNA 、重组表达 CAR-T 载体及其构建方法和应用 - Google Patents

人源白细胞介素 6 的 siRNA 、重组表达 CAR-T 载体及其构建方法和应用 Download PDF

Info

Publication number
WO2018068354A1
WO2018068354A1 PCT/CN2016/105263 CN2016105263W WO2018068354A1 WO 2018068354 A1 WO2018068354 A1 WO 2018068354A1 CN 2016105263 W CN2016105263 W CN 2016105263W WO 2018068354 A1 WO2018068354 A1 WO 2018068354A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
lentiviral
set forth
car
expression vector
Prior art date
Application number
PCT/CN2016/105263
Other languages
English (en)
French (fr)
Inventor
祁伟
康立清
俞磊
夏荣华
Original Assignee
上海优卡迪生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海优卡迪生物医药科技有限公司 filed Critical 上海优卡迪生物医药科技有限公司
Priority to JP2019538547A priority Critical patent/JP6903305B2/ja
Priority to EP16918621.0A priority patent/EP3505629A4/en
Priority to US16/331,142 priority patent/US10702552B2/en
Priority to KR1020197007212A priority patent/KR102266755B1/ko
Publication of WO2018068354A1 publication Critical patent/WO2018068354A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • A61K39/464412CD19 or B4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70517CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the invention belongs to the technical field of tumor immunotherapy, and particularly relates to a human interleukin 6 (IL-6) siRNA Recombinant expression of a CAR-T vector (especially a CAR-T transgenic vector for mitigating CRS by knockdown of IL-6) and its construction method and application.
  • IL-6 human interleukin 6
  • tumor immunotherapy The theoretical basis of tumor immunotherapy is that the immune system has the ability to recognize tumor-associated antigens and regulate the body's attack on tumor cells (highly specific cell lysis). 1950s, Burnet and Thomas The theory of 'immuno-monitoring' is put forward, and it is believed that the mutant tumor cells that often appear in the body can be cleared by the immune system and lay a theoretical foundation for tumor immunotherapy [Burnet FM.Immunological aspects of malignant disease.Lancet,1967;1: 1171-4] . Subsequently, various tumor immunotherapy including cytokine therapy, monoclonal antibody therapy, adoptive immunotherapy, vaccine therapy, and the like are successively applied to the clinic.
  • CAR-T the full name is Chimeric Antigen Receptor T-Cell Immunotherapy, chimeric antigen receptor T cell immunotherapy.
  • the most clinically advanced CAR-T therapy is Novartis CLT019, which uses CLT019 to treat patients with relapsed and refractory acute lymphoblastic leukemia.
  • the progression-free survival rate of tumors reached 67% in six months.
  • the longest response time is more than two years.
  • CAR-T Cell Therapy may be one of the most likely means of curing cancer and was named 2013 by Science magazine The top of the top ten technological breakthroughs of the year.
  • Cytokine release syndrome (Cytokine Release Syndrome, CRS). Its mechanism is due to the activation of T cells after antigen binding to T cell receptors, T When the cells are activated, a series of cytokines including IL-6 are released, resulting in a systemic inflammatory response.
  • the IL-6 signaling pathway is shown in Figure 1. Shown. If the treatment is not timely, it is likely to cause pulmonary edema and cause death.
  • anti-histamines such as chlorpheniramine
  • corticosteroids such as hydrocortisone
  • Tocilizumab is a humanized IL-6 receptor monoclonal antibody (Tocilizumab), which specifically binds to the IL-6 receptor and blocks IL-6.
  • Signal transduction which reduces acute phase reactants, reduces hepcidin products, reduces B cell activation, reduces bone resorption and cartilage turnover, and inhibits T lymphocytes to Th17 The differentiation of cells, thereby effectively controlling the inflammatory response.
  • tombumab also has some obvious shortcomings, the first is the high cost. The price of a 10kg body weight of tombuzumab is about 2,000 yuan. Adult patients generally use 5 sticks at a time, which is unbearable for ordinary families. Secondly, after the use of tocilizumab, the IL-6 receptor is blocked, which leads to infection at the end of the patient.
  • RNA double-stranded RNA
  • siRNA and RNA-induced silencing complex (RISC) Integration one or more helicases in the complex unwind the double-stranded siRNA, allowing the complementary antisense strand to direct target recognition. ⁇ Nykanen, Haley, & Zamore, ATP Requirements and small interfering RNA structure in the RNA interference Pathway, Cell 2001, 107:309 ⁇ .
  • One or more endonucleases in the RISC complex cleave target mRNA after binding to the corresponding target mRNA mRNA silencing.
  • Elbashir , Elbashir , Lendeckel , & Tuschl RNA interference is Mediated by 21-and 22-nucleotide RNAs, Genes Dev 2001, 15:188 ⁇ .
  • RNAi has very good sequence specificity [Kisielow, M. et al. (2002) Isoform-specific knockdown and expression of adaptor protein ShcA using small Interfering RNA, J. of Biochemistry 363: 1-5].
  • the RNAi system can specifically knock down one type of transcript without affecting other mRNAs with similar sequences. These properties make the siRNA system show potential and value in inhibiting gene expression, gene function research, and drug target validation.
  • siRNA systems can be used to treat related diseases, including (1) diseases caused by overexpression or misexpression of genes; (2) diseases caused by genetic mutations.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a human interleukin 6 siRNA. , recombinant expression vector and its construction method and application.
  • a first object of the present invention is to provide a human interleukin 6 siRNA, which is selected from the group consisting of Any pair of a-h:
  • SEQ ID NO. 45 and SEQ ID NO. The nucleotide sequence shown.
  • a second object of the present invention is to provide the use of the above siRNA for the preparation of a medicament for the treatment of a cytokine release syndrome.
  • a third object of the present invention is to provide a recombinant expression vector comprising the above siRNA.
  • the expression vector is a lentiviral expression vector, a retroviral expression vector, an adenovirus expression vector, an adeno-associated virus expression vector or a plasmid; preferably, a lentiviral expression vector comprising the above siRNA.
  • the lentiviral expression vector comprises: a prokaryotic replicon pUC Ori sequence for plasmid replication, such as SEQ ID NO.2; AmpR sequence containing ampicillin resistance gene for large-scale amplification of the target strain, as shown in SEQ ID NO. 1; viral replicon for enhancing replication in eukaryotic cells SV40 Ori sequence, as shown in SEQ ID NO. 3; lentiviral packaging cis-elements for lentiviral packaging; ZsGreen1 green fluorescent protein for eukaryotic expression of green fluorescence, such as SEQ ID NO. 11; an IRES ribosome binding sequence for co-transcription of a protein expressed, as set forth in SEQ ID NO.
  • a prokaryotic replicon pUC Ori sequence for plasmid replication such as SEQ ID NO.2
  • AmpR sequence containing ampicillin resistance gene for large-scale amplification of the target strain as shown in SEQ ID NO. 1
  • viral replicon
  • a human for eukaryotic transcription of a chimeric antigen receptor gene EF1 ⁇ promoter as shown in SEQ ID NO. 14
  • anti-CD19 for second-generation CAR or three-generation CAR that is used to assemble, transmit, and initiate a gene encoding a chimeric antigen receptor, as shown in SEQ ID NO. 52 or SEQ ID NO. 53
  • eWPRE for enhancing the efficiency of expression of the transgene Enhanced woodchuck hepatitis B virus post-transcriptional regulatory element, as shown in SEQ ID NO. 13
  • human RNA polymerase III promoter hU6 for intracellular transcription of siRNA, eg SEQ ID NO. 14 is shown.
  • the lentiviral packaging cis element adopts a second generation lentiviral vector comprising: lentivirus as shown in SEQ ID NO. 5 terminal LTR, lentivirus 3 terminal Self-Inactivating LTR as shown in SEQ ID NO. 6, such as SEQ ID a Gag cis element as shown in NO. 7 , an RRE cis element as shown in SEQ ID NO. 8, an env cis element as shown in SEQ ID NO. 9, such as SEQ cPPT cis component as shown in ID NO.10.
  • the lentiviral packaging cis element comprises a third generation lentiviral vector comprising: lentivirus as shown in SEQ ID NO. 5 terminal LTR, lentivirus 3 terminal Self-Inactivating LTR as shown in SEQ ID NO. 6, such as SEQ ID a Gag cis element as shown in NO. 7 , an RRE cis element as shown in SEQ ID NO. 8, an env cis element as shown in SEQ ID NO. 9, such as SEQ
  • the cPPT cis element shown in ID NO. 10 is a lentiviral packaging cis element, and the RSV promoter as shown in SEQ ID NO.
  • the eWPRE-enhanced woodchuck hepatitis B virus post-transcriptional regulatory element has a 6-nucleotide enhancing mutation, specifically: g.396G>A, g.397C>T, g.398T>C, g.399G>A, g.400A>T, g.411A>T.
  • the anti-CD19 chimeric antigen receptor comprises, in tandem, SEQ ID
  • Optimal Linker C shown CD19 single-chain antibody heavy chain VH as shown in SEQ ID NO. 19, CD8 as shown in SEQ ID NO. Hinge chimeric receptor hinge, CD8 Transmembrane chimeric receptor transmembrane region as set forth in SEQ ID NO. 21, as set forth in SEQ ID NO.
  • the CD137 chimeric receptor costimulatory factor, and the TCR chimeric receptor T cell activation domain as set forth in SEQ ID NO.
  • the anti-CD19 chimeric antigen receptor (third generation CAR) comprises SEQ ID SEQ ID:
  • a fourth object of the present invention is to provide a siRNA comprising the above
  • a method for constructing a lentiviral expression vector comprising the steps of:
  • an ampicillin-resistant gene AmpR sequence (as shown in SEQ ID NO. 1), prokaryotic replicon pUC Ori sequence (as shown in SEQ ID NO. 2), viral replicon SV40 Ori sequence (eg SEQ ID NO. 3) Lentiviral packaging cis-element for lentiviral packaging, ZsGreen1 green fluorescent protein (as shown in SEQ ID NO. 11), IRES ribosome binding sequence (eg SEQ) ID NO.12), eWPRE enhanced woodchuck hepatitis B virus post-transcriptional regulatory element (as shown in SEQ ID NO. 13), human RNA polymerase III promoter hU6 (as shown in SEQ ID NO. 14) is stored on a lentiviral backbone plasmid (pLenti-3G silencer);
  • the human EF1 ⁇ promoter eg SEQ ID NO. 15
  • the anti-CD19 chimeric antigen receptors used to assemble, transmit, and initiate a second generation CAR or three generations of CAR are combined into a second generation CAR or three generations of CAR.
  • the design protocol was cloned into lentiviral skeleton plasmid by restriction enzyme digestion, ligation and recombination reaction to obtain recombinant lentiviral plasmid pCAR19-silencer designed by second generation CAR or three generations of CAR.
  • HEK293T/17 cells were co-transfected with the lentiviral packaging plasmids pPac-GP, pPac-R and membrane protein granule pEnv-G, respectively, in HEK293T/17
  • the recombinantly packaged lentiviral vector is released into the cell culture supernatant, and the supernatant of the recombinant lentiviral vector contained is collected;
  • the obtained recombinant lentiviral supernatant was purified by ion filtration using suction filtration, adsorption and elution to obtain recombinant lentiviral vectors, respectively.
  • the lentiviral packaging cis element adopts a second generation lentiviral vector comprising: SEQ ID Lentivirus shown in NO.5 5 terminal LTR, lentivirus as shown in SEQ ID NO. 6 3 terminal Self-Inactivating LTR, a Gag cis element as shown in SEQ ID NO. 7, an RRE cis element as shown in SEQ ID NO. 8, as shown in SEQ ID NO.
  • the anti-CD19 for the second generation CAR which is used for composition identification, transmission and activation is integrated.
  • a chimeric antigen receptor comprising a CD8 leader chimeric receptor signal peptide as shown in SEQ ID NO. 16 in sequence, such as CD19 as shown in SEQ ID NO. Single-chain antibody light chain VL, Optimal Linker C as shown in SEQ ID NO. 18, CD19 single-chain antibody heavy chain as shown in SEQ ID NO. VH, CD8 Hinge chimeric receptor hinge as shown in SEQ ID NO. 20, CD8 Transmembrane as shown in SEQ ID NO. Chimeric receptor transmembrane region, CD137 chimeric receptor costimulatory factor as set forth in SEQ ID NO.
  • TCR chimeric receptor T as set forth in SEQ ID NO. a cell activation domain; the anti-CD19 chimeric antigen receptor for the three generations of CAR constituting the set recognition, delivery, and initiation, including the CD8 as shown in SEQ ID NO. Leader chimeric receptor signal peptide, CD19 single-chain antibody light chain VL as shown in SEQ ID NO. 17, Optimality as shown in SEQ ID NO. Linker C, CD19 single-chain antibody heavy chain VH as shown in SEQ ID NO. 19, CD8 Hinge as shown in SEQ ID NO. Chimeric receptor hinge, CD8 Transmembrane chimeric receptor transmembrane region as shown in SEQ ID NO. 21, CD28 as shown in SEQ ID NO. A chimeric receptor costimulatory factor, a CD137 chimeric receptor costimulatory factor as set forth in SEQ ID NO. 22, and a TCR chimeric receptor T as set forth in SEQ ID NO. Cell activation domain.
  • the eWPRE enhanced type ground rat hepatitis B virus post-transcriptional regulatory element has 6 Enhancement mutations of nucleotides, specifically: g.396G>A, g.397C>T, g.398T>C, g.399G>A, g.400A>T , g.411A>T .
  • step (2) the entire CAR gene expression is initiated by the human EF1 ⁇ promoter; CD8
  • the leader chimeric receptor signal peptide is located at the N-terminus of the CAR coding sequence and is used to direct the CAR protein to the cell membrane; CD19 single-chain antibody light chain VL, Optimal Linker C, CD19 single-chain antibody heavy chain VH group synthesis scfv region for recognition of CD19 antigen; CD8 Hinge chimeric receptor hinge for scfv Anchored to the outside of the cell membrane; CD8 Transmembrane chimeric receptor transmembrane region is used to immobilize the entire chimeric receptor on the cell membrane; CD137 chimeric receptor costimulatory factor is used to stimulate T Cell proliferation and cytokine secretion; TCR chimeric receptor T cell activation domain is used to activate expression of downstream signaling pathways; when scfv region and CD20 When the antigen binds, the signal is transmitted to the cell through the chimeric receptor, thereby
  • the lentiviral vector has a fluorescent label zsGreen1 version and no fluorescent label
  • the zsGreen1 version a fluorescent-labeled version for in vitro experiments, and a non-fluorescent label version for clinical trials.
  • the suction filtration step controls the supernatant volume to be 200 ml to 2000 ml, and the vacuum degree is controlled at -0.5MPA ⁇ -0.9MPA to prevent carrier loss due to plugging;
  • the adsorption step controls the pH of the solution to 6 ⁇ 8, preventing PH The change causes the carrier to be inactivated;
  • the elution step controls the ionic strength of the eluate to be between 0.5 M and 1.0 M, preventing changes in ionic strength resulting in incomplete elution or inactivation of the carrier.
  • a fifth object of the present invention is to provide a recombinant expression vector comprising the above siRNA in the preparation of CAR-T treatment Application of inflammatory cytokine syndrome drugs caused by IL6 release.
  • a sixth object of the present invention is to provide a CART cell, wherein the CAR-T cell is modified by the above siRNA T lymphocytes.
  • a further object of the present invention is to provide the above CAR-T cells in the preparation of B The application of lymphoma, pancreatic cancer, glioma, and myeloma therapeutic drugs.
  • the present invention is a human RNA polymerase III promoter hU6, human EF1 ⁇ promoter, CD8 Leader chimeric receptor signal peptide, CD19 single chain antibody light chain VL, Optimal Linker C, CD19 single chain antibody heavy chain VH, CD8 Hinge Chimeric receptor hinge, CD8 Transmembrane chimeric receptor transmembrane region, CD137 chimeric receptor co-stimulatory factor, TCR chimeric receptor T
  • the cellular activation domain was constructed into a recombinant lentiviral vector, and the entire CAR gene expression was initiated by the human EF1 alpha promoter.
  • CAR protein localizes to the surface of the cell membrane, recognizes CD19 antigen, stimulates T Cell proliferation and cytokine secretion activate the expression of downstream signaling pathways.
  • the signal is transmitted to the cell through the chimeric receptor, thereby producing T A series of biological effects such as cell proliferation, increased secretion of cytokines, increased secretion of anti-apoptotic proteins, delayed cell death, and lysis of target cells.
  • Activation of siRNA by human RNA polymerase III promoter hU6 The expression, through the role of RISC complex, degrades IL-6 mRNA, inhibits the synthesis and secretion of IL-6, and achieves the effect of inhibiting CRS.
  • the expression vector used in the present invention includes a prokaryotic replicon (pUC ori ) for plasmid replication; a prokaryotic screening marker (AmpR) ) for large-scale amplification of the target strain; viral replicon (SV40 Ori) for enhancing replication in eukaryotic cells; lentiviral packaging cis-element (RSV, 5 terminal LTR, 3 Terminal Self-Inactivating LTR, Gag, RRE, env, cPPT) for lentiviral packaging; human RNA polymerase III Promoter ( hU6 ) for intracellular transcription of siRNA; eukaryotic fluorescent tagged protein ( ZsGreen1 ) for eukaryotic expression of green fluorescence; co-expression elements ( IRES ) for co-transcription of expressed proteins; eukaryotic promoter (EF1 ⁇ ) for eukaryotic transcription of chimeric antigen receptor genes; chimeric antigen receptors (CD8 leader, CD19 VL, Optimal
  • CD19 VH, CD8 Hinge, CD8 Transmembrane, CD137 and TCR are used to form the second and third generation CARs that integrate recognition, transmission and initiation.
  • the post-transcriptional regulatory element (eWPRE) is used to enhance the efficiency of transgene expression.
  • the invention relates to a pharmaceutical preparation containing a peptide, in particular to:
  • the TCR chimeric receptor T cell activation domain is constructed to form a recombinant lentiviral vector.
  • the recombinant lentiviral vector obtained by the method can express CD19 chimeric antigen receptor on human T lymphocytes, guide and activate T.
  • the killing effect of lymphocytes on CD19-positive cells is clinically used to treat B-lymphocytic leukemia, B-lymphoma and multiple myeloma.
  • Expression of interleukin-6 (IL-6) in human T lymphocytes The siRNA can effectively reduce the expression level of interleukin-6 and can be used clinically to relieve Cytokine Release Syndrome (CRS). .
  • the siRNA sequence designed by the invention contains 21 bp nucleotides, N2[CG]N8[AU]N8[AU]N2 Oligonucleotide arrangement pattern, stem-loop hairpin structure between complementary sequences, by siRNA pattern, GC Percentage , T or A or G in a row , consecutiver GC , 3'end nt pattern , Screening of conditions such as thermodynamic value, siRNA target, identity, alignment, etc., greatly improving siRNA Designed interference success rate.
  • the human RNA polymerase III promoter hU6 used in the present invention transcribes siRNA and inhibits IL-6
  • the expressed system in the T cell killing experiment, can effectively inhibit the transcription level of mRNA after QPCR detection, and can effectively reduce IL-6 in cell culture supernatant after CBA detection.
  • the level of expression can inhibit IL-6 expression levels in vivo and alleviate the symptoms of CRS.
  • the present invention delivers siRNA using a lentiviral vector (as shown in Figure 2). First of all, saving costs and avoiding The expensive cost of in vitro synthesis of siRNA. Secondly, the problem of inefficient delivery of siRNA in vivo is avoided. Third, use human RNA polymerase III promoter hU6 expression siRNA It can effectively utilize the intracellular RNA transcription system and express a large number of corresponding siRNAs, and achieve a good gene silencing effect through a series of enzymatic actions.
  • the vector backbone used in the present invention is a third generation lentiviral vector (as shown in Figure 3A), and the 3' SIN LTR is removed.
  • the U3 region eliminates the possibility of lentiviral vector self-replication, greatly improving safety; increasing cPPT and WPRE elements, improving transduction efficiency and transgene expression efficiency; using RSV
  • the promoter ensures sustained and efficient transcription of the core RNA during lentiviral vector packaging; the human EF1 ⁇ promoter enables the CAR gene to be expressed continuously in humans for extended periods of time.
  • the siRNA knockdown scheme adopted by the present invention can also be applied to the third generation CAR design scheme.
  • the third generation CAR design increased the CD28 chimeric receptor co-stimulatory factor (SEQ ID) compared to the second generation design. NO.24).
  • the lentiviral vector column purification system used in the invention (Fig. 8 Shown) is a large-scale production process of lentivirus developed by the company.
  • the commonly used ultracentrifugation method or high-speed centrifugation method uses the principle of centrifugal sedimentation to separate lentivirus particles, and inevitably, many impurities with similar sedimentation coefficients remain, which adversely affects subsequent experiments.
  • the tube loading process is complicated, the operation is cumbersome, and multiple conversion containers bring more pollution opportunities.
  • the purification process of the lentiviral vector column of the invention is semi-automatic operation, and all processes are completed in the 100-level experimental area, thereby avoiding the cumbersome and polluting probability of manual operation, and the recovered lentiviral vector completely reaches the clinical endotoxin and mycoplasma indexes. standard.
  • Follow-up can be followed up to develop a fully automated purification instrument.
  • the design can also be applied to the second generation of lentiviral vector structures.
  • the structural difference between the second and third generation lentiviral vectors (as shown in Figure 3B), mainly the third generation of lentiviral vectors carrying the second generation vector 5'LTR
  • the U3 region is replaced by the RSV promoter, which eliminates the dependence of T3 on U3 transcription and removes Tat from the structural genes of lentiviruses.
  • the sequence also increases the transcriptional level and transcriptional persistence of the lentiviral genome.
  • the second and third generation lentiviral vectors are mainly the difference in transcript transcription patterns, so the CAR used in the present invention
  • the design can be applied to both generations of lentiviral vectors.
  • the third generation lentiviral backbone plasmid of the present invention using an enhancedWPRE element, and the University of Pennsylvania Carl H. June et al. (Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen Receptormodified T cells in chronic lymphoid leukemia.N Engl J Med 2011;365:725 -33.)
  • WPRE element there are 6 nucleotide enhancement mutations (g.396G>A, g.397C>T, g.398T>C, g.399G>A, g.400A>T, g.411A>T)
  • the content of the transgene enhances the expression efficiency of the transgene.
  • the Lentival packaging system of the present invention is a four-plasmid packaging system without helper virus, which is co-transfected by four plasmids to HEK293T/17 In the cell, a recombinant lentiviral vector is produced.
  • the recombinant lentiviral vector is a replication-defective vector, which can integrate the exogenous fragment into the host gene, can be used once, cannot be replicated and propagated, and the safety is greatly improved.
  • the lentiviral vector used in the present invention has a fluorescent tag zsGreen1 version and no fluorescent tag zsGreen1 Version, version with fluorescent label for in vitro experiments, version without fluorescent label for clinical trials.
  • the Linker design of the scfv segment used in the present invention can significantly increase the secretion of cytokines, CAR-T The in vitro killing effect of cells and the clinical therapeutic effect.
  • the recombinant lentiviral vector of the present invention is administered to CAR-T of acute B lymphocytic leukemia (ALL). While providing reliable GM protection, treatment can greatly reduce the risk of developing CRS and alleviate the suffering of patients.
  • ALL acute B lymphocytic leukemia
  • the IL-6 knockdown siRNA expression cassette and the siRNA expression product thereof of the invention can be applied not only to the CAR19-T treatment of acute B lymphocytic leukemia (ALL) for eliminating or alleviating the symptoms of CRS, but also for relieving CAR-T treats CRS symptoms caused by all types of tumors such as B lymphoma, pancreatic cancer, glioma, myeloma, etc., and can even be used to alleviate CRS caused by other types of treatment. .
  • ALL acute B lymphocytic leukemia
  • FIG. 1 is a schematic diagram of the IL-6 signaling pathway of the present invention.
  • FIG. 2 is a schematic diagram of the lentiviral delivery siRNA method of the present invention.
  • Figure 3 is a schematic diagram showing the structure of the lentiviral vector of the present invention.
  • Figure 3 (A Is a schematic diagram of the structure of the third generation lentiviral vector used in the present invention
  • Fig. 3 (B) is a comparison of the structure of the second generation and the third generation lentiviral vector;
  • Figure 4 is a flow chart showing the construction of the recombinant lentiviral vector of the present invention.
  • A is a lentiviral backbone plasmid Schematic diagram of pLenti-3G silencer
  • B is a schematic diagram of the structure of pCAR19-silencer plasmid
  • C is Schematic representation of the pCAR19-1761 ⁇ pCAR19-1769 plasmid
  • D is a schematic representation of the lentiviral packaging plasmid pPac-GP
  • E is a lentiviral packaging plasmid Schematic diagram of pPac-R
  • F is a schematic diagram of the structure of membrane protein pEnv-G
  • A is a lentiviral backbone plasmid Schematic diagram of pLenti-3G silencer
  • B is a schematic diagram of the structure of pCAR19-silencer plasmid
  • C is Schematic representation of the pCAR19-1761 ⁇ p
  • Figure 5 is a lentiviral backbone plasmid pLenti-3G silencer The enzyme digestion prediction and enzymatic cleavage agarose gel electrophoresis map;
  • Figure 5A is a schematic diagram of the restriction enzyme digestion of the lentiviral backbone plasmid pLenti-3G silencer, wherein lane1 is 1 kb DNA ladder Marker: The bands are from top to bottom: 10kb, 8kb, 6kb, 5kb, 4kb, 3.5kb, 3kb, 2.5kb, 2kb, 1.5kb, 1kb, 750bp, 500bp, 250bp; lane2 is pLenti-3G silencer Cla I+BamH I digestion prediction: the bands are: 7381 bp, 23 bp from top to bottom;
  • Figure 5B is the lentiviral backbone plasmid pLenti-3G silencer Enzyme-cut agarose gel electrophoresis map, wherein
  • FIG. 6 is a restriction enzyme digestion and enzymatic cleavage agarose gel electrophoresis of recombinant lentiviral plasmid pCAR19-silencer;
  • 6A is a schematic diagram of the restriction enzyme digestion of the recombinant lentiviral plasmid pCAR19-silencer, wherein lane1 is 1 kb DNA ladder Marker : The bands are from top to bottom: 10kb, 8kb, 6kb, 5kb, 4kb, 3.5kb, 3kb, 2.5kb, 2kb, 1.5kb, 1kb, 750bp, 500bp, 250bp; lane2 is the Kpn I restriction of pCAR19-silencer: the bands are from top to bottom: 8335 bp and 1708 bp;
  • Figure 6B is an enzymatic cleavage agarose gel electrophoresis map of recombinant lentiviral plasm
  • Figure 7 is an IL-6 knockdown recombinant lentiviral plasmid pCAR19-1761 ⁇ pCAR19-1769 Sequencing alignment results; wherein A is the sequencing alignment of pCAR19-1761; B is the sequencing alignment of pCAR19-1762; C is pCAR19-1763 Sequencing alignment results; D is the sequencing alignment of pCAR19-1764; E is the sequencing alignment of pCAR19-1765; F is pCAR19-1766 Sequencing alignment results; G is the sequencing alignment of pCAR19-1767; H is the sequencing alignment of pCAR19-1768; I is pCAR19-1769 Sequencing alignment results;
  • Figure 8 is a flow chart of purification of recombinant lentiviral vector by ion exchange chromatography
  • Figure 9 is a titer detection result of a recombinant lentiviral vector
  • Figure 10 shows the results of mycoplasma detection in different purification methods of recombinant lentiviral vector
  • lane1 is DL2000 Marker, from top to bottom strips from top to bottom: 2kb, 1kb, 750 bp, 500 bp, 250 bp, 100bp
  • lane2 As a positive control
  • lane3 was a negative control
  • lane4 was PBS
  • lane5 was water
  • lane6 was lvCAR19-1761
  • lane7 was lvCAR19-1762
  • lane8 is lvCAR19-1763
  • lane9 is lvCAR19-1764
  • lane10 is lvCAR19-1765
  • lane11 is lvCAR19-1766
  • lane12 is lvCAR19-1767
  • lane13 is lvCAR19-1768
  • lane14 is lvCAR19-1769
  • Figure 11 is a histogram of the relative expression of mRNA
  • Figure 12 shows the WB detection of CAR protein expression; where, Figure 12A, lane1 is PBMC Empty cells, lane2 is the control virus MOCK, lane3 is lvCAR19-1761, lane4 is lvCAR19-1762, lane5 is lvCAR19-1763, lane6 is lvCAR19-1764, lane7 is lvCAR19-1765, lane8 is lvCAR19-1766, lane9 is lvCAR19-1767, lane10 is lvCAR19-1768, lane11 is lvCAR19-1769; Figure 12B, is a beta-actin internal reference strip;
  • Figure 13 shows IL-6 knockdown recombinant lentivirus lvCAR19-1761 ⁇ lvCAR19-1769 CBA results in supernatants after incubation with target cells at 4h and 24h;
  • Figure 13A shows CBA results for 4h;
  • Figure 13B shows CBA for 24h Test results;
  • Figure 14 shows IL-6 in supernatants of 4h and 24h under different co-culture conditions with different effector cells. The change in content
  • Figure 15 shows the changes of 24h mRNA transcription levels under different co-culture conditions of different effector cells and target cells
  • Figure 16 shows that different effector cells are co-cultured with target cells at a ratio of 10:1, 24h. After detection, the killing of the target cells, E is an effector cell, and T is a target cell.
  • Lentiviral backbone plasmid pLenti-3G silencer lentiviral packaging plasmid pPac-GP, pPac-R and membrane protein granules pEnv-G , HEK293T/17 cells, homologous recombinase, Oligo Annealing Buffer Provided by Shi Hao (Shanghai) Biomedical Technology Co., Ltd.;
  • Primers designed to amplify DNA fragments and target sites according to primer design principles, specifically:
  • CD8 leader-F 5'-ggtgtcgtgaggatccgccaccatggccttaccagtgaccgc-3' (SEQ ID NO.27)
  • CD8 leader-R 5'-GTGTCATCTGGATGTCCGGCCTGGCGGCGTG-3' (SEQ ID NO. 28)
  • VL-F 5'-cacgccgccaggccggacatccagatgacacacactacatc-3' (SEQ ID NO. 29)
  • VL-R 5'-TGTGATCTCCAGCTTGGTCC-3' (SEQ ID NO.30)
  • OLC-VH-F 5'-caagctggagatcacagggggcggtggctcgggcggtggtgggtcgggtggcggatctgaggtgaactgcaggagtca -3' (SEQ ID NO. 31)
  • VH-R 5'-TGAGGAGACGGTGACTGAGGT-3' (SEQ ID NO.32)
  • CD8 Hinge-F 5'-AGTCACCGTCTCCTCAACCACGACGCCAGCGCC-3' (SEQ ID NO. 33)
  • CD8 Hinge-R 5'-GTAGATATCACAGGCGAAGTCCA-3' (SEQ ID NO.34)
  • CD8 Transmembrane-F 5'-cgcctgtgatatctacatctgggcgcccttggc-3' (SEQ ID NO. 35)
  • CD8Transmembrane-R 5'-TCTTTCTGCCCCGTTTGCAGTAAAGGGTGATAACCAGTG-3' (SEQ ID NO.36)
  • CD137-F 5'-aaacggggcagaaagaaactc-3' (SEQ ID NO.37)
  • CD137-R 5'-TGCTGAACTTCACTCTCAGTTCACATCCTCCTTCTTCTTC-3' (SEQ ID NO. 38)
  • TCR-F 5'-agagtgaagttcagcaggagcg-3' (SEQ ID NO.39)
  • TCR-R 5'-GGAGAGGGGCGTCGACTTAGCGAGGGGGCAGGGC-3' (SEQ ID NO. 40)
  • siRNA1762-F 5'-CCGGGTGAAGCTGAGTTAATTTATGCTCGAGTAAATTAACTCAGCTTCACATTTTTTTG-3' (SEQ ID NO.43)
  • siRNA1762-R 5'-AATTCAAAAAAATGTGAAGCTGAGTTAATTTACTCGAGCATAAATTAACTCAGCTTCAC-3' (SEQ ID NO.44)
  • siRNA1763-F 5'-CCGGGCACAGAACTTATGTTGTTCTCTCGAGAACAACATAAGTTCTGTGCCCTTTTG-3' (SEQ ID NO.45)
  • siRNA1763-R 5'-AATTCAAAAAAGGGCACAGAACTTATGTTGTTCTCGAGAACAACATAAGTTCTGTGC-3' (SEQ ID NO.46)
  • siRNA1764-F 5'-CCGGCTCAGATTGTTGTTGTTAATGCTCGAGTTAACAACAACAATCTGAGGTTTTTTTG-3' (SEQ ID NO.47)
  • siRNA1764-R 5'-AATTCAAAAAACCTCAGATTGTTGTTGTTAACTCGAGCATTAACAACAACAATCTGAG-3' (SEQ ID NO.48)
  • siRNA1765-F 5'-CCGGGCAGCTTTAAGGAGTTCCTGCCTCGAGAGGAACTCCTTAAAGCTGCGCTTTTTTG-3' (SEQ ID NO.49)
  • siRNA1765-R 5'-AATTCAAAAAAGCGCAGCTTTAAGGAGTTCCTCTCGAGGCAGGAACTCCTTAAAGCTGC-3' (SEQ ID NO.50)
  • siRNA1766-F 5'-CCGGGTGTAGGCTTACCTCAAATAACTCGAGATTTGAGGTAAGCCTACACTTTTTTTTG-3' (SEQ ID NO.51)
  • siRNA1766-R 5'-AATTCAAAAAAAAGTGTAGGCTTACCTCAAATCTCGAGTTATTTGAGGTAAGCCTACAC-3' (SEQ ID NO.52)
  • siRNA1767-F 5'-CCGGCTCAAATAAATGGCTAACTTACTCGAGAGTTAGCCATTTATTTGAGGTTTTTTTG-3' (SEQ ID NO.53)
  • siRNA1767-R 5'-AATTCAAAAAACCTCAAATAAATGGCTAACTCTCGAGTAAGTTAGCCATTTATTTGAG-3' (SEQ ID NO.54)
  • siRNA1768-F 5'-CCGGGATGCTTCCAATCTGGATTCACTCGAGAATCCAGATTGGAAGCATCCATTTTTTG-3' (SEQ ID NO.55)
  • siRNA1768-R 5'-AATTCAAAAAATGGATGCTTCCAATCTGGATTCTCGAGTGAATCCAGATTGGAAGCATC-3' (SEQ ID NO.56)
  • siRNA1769-F 5'-CCGGCTTCCAATCTGGATTCAATGACTCGAGATTGAATCCAGATTGGAAGCATTTTTTG-3' (SEQ ID NO.57)
  • siRNA1769-R 5'-AATTCAAAAAATGCTTCCAATCTGGATTCAATCTCGAGTCATTGAATCCAGATTGGAAG-3' (SEQ ID NO.58)
  • WPRE-QPCR-F 5'-CCTTTCCGGGACTTTCGCTTT-3' (SEQ ID NO.59)
  • WPRE-QPCR-R 5'-GCAGAATCCAGGTGGCAACA-3' (SEQ ID NO.60)
  • CAR-QPCR-F 5'-GACTTGTGGGGTCCTTCTCCT-3' (SEQ ID NO.63)
  • IL6-QPCR-F 5'-GGATTCAATGAGGAGACTT-3' (SEQ ID NO.65)
  • IL6-QPCR-R 5'-ATCTGTTCTGGAGGTACT-3' (SEQ ID NO.66)
  • DNA as shown in SEQ ID NO. 15 to SEQ ID NO. The sequence was synthesized by Shanghai Jierui Bioengineering Co., Ltd. and stored as an oligonucleotide dry powder or plasmid;
  • the plasmid extraction kit and the agarose gel recovery kit were purchased from MN Company;
  • Competent cells TOP10 was purchased from tiangen;
  • Biotinylated protein L was purchased from GeneScript;
  • DNeasy kit was purchased from Shanghai Jierui Company;
  • Lymphocyte separation liquid was purchased from Shenzhen Dakco as the company;
  • S A-HRP was purchased from Shanghai Shengsheng Company;
  • the method for constructing the recombinant lentiviral vector of the present invention is as follows:
  • the lentiviral backbone plasmid pLenti-3G silencer uses Cla I and BamH I restriction endonuclease was double-digested, and the product was subjected to 1.5% agarose gel electrophoresis to confirm the 7381 bp fragment V1 (shown in Figure 5), and the tapping recovery was carried out in Eppendorf. In the tube, the corresponding fragment was recovered by MN's agarose gel recovery kit (see Table 1), and the purity and concentration of the product were determined;
  • sol The sol solution was added in a ratio of 200 ⁇ l NTI/100 mg gel and placed in a water bath at 50 °C for 5-10 minutes. 2, combined with DNA Centrifuge at 11,000 g for 30 seconds and discard the filtrate. 3, wash the film 700 ⁇ l of NT3 was added and centrifuged at 11,000 g for 30 seconds, and the filtrate was discarded. 4, wash the film Repeat the third step once 5, dry Centrifuge at 11000g for 1 minute, replace with a new collection tube and allow to stand at room temperature for 1 minute. 6, elution DNA Add 15-30 ⁇ l of NE, leave it at room temperature for 1 minute, centrifuge at 11,000 g for 1 minute, and collect the filtrate.
  • the PCR cycle conditions are: 98 ° C 3 min, (98 ° C 10 sec, 55 ° C 15 sec, 72 ° C 2 min) *35cycle, 72°C 10min.
  • the product was electrophoresed on a 1.5% agarose gel to confirm the 1208 bp fragment a and the tapping recovery was placed in Eppendorf. In the tube, the corresponding fragment was recovered by MN's agarose gel recovery kit (see Table 1), and the purity and concentration of the product were determined;
  • the PCR cycle conditions are: 98 °C 3 min, (98 °C 10 sec, 55 °C 15 sec, 72 °C 30 sec) *35cycle, 72 °C 5min.
  • the product was electrophoresed on a 1.5% agarose gel to confirm the 421 bp fragment d, and the tapping recovery was placed in an Eppendorf tube. MN's agarose gel recovery kit recovers the corresponding fragment (see Table 1) and determines the purity and concentration of the product;
  • the PCR cycle conditions are: 98 °C 3 min, (98 °C 10 sec, 55 °C 15 sec, 72 °C 30 sec) *35cycle, 72 °C 5min.
  • the product was electrophoresed on a 1.5% agarose gel to confirm the 142 bp fragment g, and the tapping recovery was placed in an Eppendorf tube.
  • MN's agarose gel recovery kit recovers the corresponding fragment (see Table 1) and determines the purity and concentration of the product;
  • the DNA fragments V1, a, i, j are in a total volume of 5 ⁇ l and a molar ratio
  • Add 1:1:1:1 ratio to the Eppendorf tube add 15 ⁇ l of the homologous recombinase reaction solution, mix and incubate at 42 °C for 30 minutes, transfer to ice and place 2-3
  • add the reaction solution to 50 ⁇ l of TOP10, gently rotate to mix the contents, place on ice for 30 minutes, and place the tube in a thermostatic water bath pre-warmed to 42 °C.
  • siRNA1761-F/R ⁇ siRNA1769-F/R with oligo The annealing buffer was dissolved to 20 ⁇ M, and the corresponding F and R were each mixed at 30 ⁇ l. Then siRNA1761-F&R ⁇ The siRNA 1769-F&R mixture was heated in a water bath at 95 °C for 5 minutes, then the water bath was opened and allowed to cool to room temperature at room temperature to form a double-stranded oligonucleotide fragment.
  • 2XHBS solution weigh 4.09g NaCl, 0.269g Na 2 HPO4, 5.96g Hepes, dissolved in 400ml Milli-Q grade ultrapure water; after calibrating the pH meter, adjust the pH of HBS solution to 7.05 with 2M NaOH solution. . Adjust the PH consumption of each bottle of HBS to about 2ml of 2M NaOH;
  • a DNA/CaCl 2 solution was prepared according to N+0.5.
  • the amount of HEK293T/17 cell transfection plasmid per dish was used in the following ratios: recombinant lentiviral plasmid (20 ⁇ g), pPac-GP (15 ⁇ g), pPac-R (10 ⁇ g), pEnv-G (7.5 ⁇ g).
  • the collected supernatant is subjected to a Thermo vacuum pump and passed through a 0.22 ⁇ m-0.8 ⁇ m PES.
  • the filter is suction filtered to remove impurities;
  • a 24-well plate was used to inoculate 293T cells.
  • the cell volume per well was 5 ⁇ 10 4 , the volume of the added medium was 500 ul, and the growth rate of different kinds of cells was different.
  • the cell fusion rate when the virus was infected was 40%-60%;
  • n number of reactions. For example: the total number of reactions is 40, will be 1ml 2 ⁇ TaqMan Universal PCR Master Mix , 4 ⁇ l forward primer , 4 ⁇ l reverse primer , 4 ⁇ l Probe is mixed with 788 ⁇ l H2O. Put on the ice after the shock;
  • the total number of reactions is 40, and 1 ml of 2 ⁇ TaqMan Universal PCR Master Mix, 100 ⁇ l of 10 ⁇ RNaseP primer/probe mix and 700 ⁇ l of H 2 O are mixed. Put on the ice after the shock;
  • the quantitative PCR instrument used is the ABI PRISM 7500 Quantitation System.
  • the loop condition is set to: 50 ° C for 2 minutes, 95 ° C for 10 minutes, then 95 ° C for 15 seconds, 60 ° C for 1 minute of 40 cycles.
  • the number of copies of the integrated lentiviral vector in the sample is calibrated using the number of genomes to obtain the viral copy number integrated per genome.
  • C average number of virus copies per genome integration
  • N number of cells at the time of infection (approximately 1 ⁇ 10 5 )
  • D dilution factor of the viral vector
  • V volume of diluted virus added
  • the endotoxin working standard is 15EU/piece;
  • Dilution factor Stock solution 5 10 20 40 80 160 Corresponding EU/ml 0.25 1.25 2.5 5 10 20 40
  • Step 4 is repeated once;
  • PCR cycle conditions are: 95 °C 30sec, (95 °C 30sec, 56 °C 30sec, 72 °C 30sec) *30cycle, 72 °C 5min.
  • RT-QPCR assay showed that CAR after recombinant lentiviral vector infected PBMC The transcription level of the gene was significantly higher than that of the control viruses MOCK and empty cells (as shown in Figure 11 and Table 9), indicating that the transcription level of the CAR gene was successfully expressed.
  • MOI 15
  • the virus of lvCAR19-1761 ⁇ lvCAR19-1769 infects PBMC cells, and can be scheduled to start after 72-96h incubation;
  • the step of detecting IL-6 content by CBA is IL-6 50 ul of IL-6 capture microsphere suspension was added to the standard tube, sample tube and negative control tube, and the microspheres were mixed before the addition; 50 ul of PE signal antibody was added to each tube; IL-6 standard tube was added.
  • IL-6 standard dilution add diluted sample and negative control solution to the sample tube and negative control tube; incubate at room temperature for 3 hours in the dark; add 1ml wash solution to each tube, centrifuge at 200 xg for 5min Discard the supernatant; add 300 ul of lotion to each tube, resuspend the microspheres; analyze the sample using Attune® NxT flow cytometry, and mix on the machine for 3-5 s before the machine;
  • RT-QPCR assay showed that IL-6 knockdown recombinant lentiviral vector infects PBMC After incubation with target cells, the IL-6 gene mRNA was significantly lower than the control virus lvCAR19-1761 and empty cells (as shown in Figure 15), indicating IL-6 The level of transcription of the gene is significantly reduced.
  • MOI 15
  • the virus of lvCAR19-1761 ⁇ lvCAR19-1769 infects PBMC cells, and can be scheduled to start after 72-96h incubation;
  • target cells CD19+K562 4x10 5 cells and effector cells (CART cells) 2.8x10 6 cells , 800g, 6min centrifugation, discard the supernatant;
  • microplate reader detects 490nm absorbance
  • Step 15 The corrected values obtained in the equation are taken into the following formula to calculate the percentage of cytotoxicity produced by each target ratio.
  • the results are shown in Figure 16, where IL-6 knockdown recombinant lentiviral vector-transduced PBMC cells are The killing efficiency of the 10:1 target-target ratio was significantly higher than that of the PBMC empty cells, which was lower than the control virus lvCAR19-1761-transduced PBMC cells; The killing efficiency of lvCAR19-1763-PBMC was slightly lower than that of the control virus lvCAR19-1761-PBMC, but the expression level of IL-6 decreased by more than 70%. In the future, it can release less IL-6 while killing tumor cells, effectively alleviating CRS.
  • Killing efficiency (experimental well - effector cell hole - target cell well) / (target cell maximal well - target cell well) X100%
  • the IL-6 knockdown siRNA expression cassette and the siRNA expression product thereof of the present invention can be applied not only to CAR19-T is used in the treatment of acute B-lymphocytic leukemia (ALL) to eliminate or alleviate the symptoms of CRS and can also be used to alleviate CAR-T treatment such as B CRS symptoms caused by all types of tumors such as lymphoma, pancreatic cancer, glioma, myeloma, etc., can even be applied to alleviate CRS caused by other types of treatment.
  • ALL acute B-lymphocytic leukemia
  • Atgagtattc aacatttccg tgtcgccctt attccctttt Ttgcggcatt ttgccttcct 60
  • Ggtctctctg gttagaccag atctgagcct gggagctctc Tggctaacta gggaacccac 60
  • Ggttaaggcc agggggaaag aaaaatata aattaaaaca Tatagtatgg gcaagcaggg 120
  • Atacagtagc aaccctctat tgtgtgcatc aaaggataga Gataaaagac accaaggaag 300
  • Gacggcgccg tgtgcatctg caacgccgac atcaccgtga Gcgtggagga gaactgcatg 360
  • Atgtcgtgta ctggctccgc cttttccg agggtggggg Gaagaccgtat ataagtgcag 180
  • Atggccttac cagtgaccgc cttgctcctg ccgctggcct Tgctgctcca cgccgccagg 60
  • Tccctgcgcc cagaggcgtg ccggccagcg gcggggggcg Cagtgcacac gagggggctg 120

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Developmental Biology & Embryology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供一种人源白细胞介素6的siRNA、重组表达CAR-T载体及其构建方法和应用。该siRNA可应用于CAR19-T治疗急性B淋巴细胞白血病中用于消除或减轻细胞因子释放综合症(CRS)的症状,还可应用于缓解CAR-T治疗肿瘤时引起的CRS症状,甚至还可应用于缓解其他类型的治疗引起的CRS。

Description

人源白细胞介素 6 的 siRNA 、重组表达 CAR-T 载体及其构建方法和应用 技术领域
本发明属于肿瘤免疫治疗技术领域,具体涉及一种人源白细胞介素 6 ( IL-6 )的 siRNA 、重组表达 CAR-T 载体(尤其是一种 通过敲减 IL-6 的用于缓解 CRS 的 CAR-T 转基因载体 )及其构建方法和应用。
背景技术
肿瘤免疫治疗的理论基础是免疫系统具有识别肿瘤相关抗原、调控机体攻击肿瘤细胞(高度特异性的细胞溶解)的能力。 1950 年代, Burnet 和 Thomas 提出了'免疫监视'理论,认为机体中经常会出现的突变的肿瘤细胞可被免疫系统所识别而清除,为肿瘤免疫治疗奠定了理论基础 [Burnet FM.Immunological aspects of malignant disease.Lancet,1967;1: 1171-4] 。随后,各种肿瘤免疫疗法包括细胞因子疗法、单克隆抗体疗法、过继免疫疗法、疫苗疗法等相继应用于临床。
2013 年一种更先进的肿瘤免疫疗法 --- CAR-T 疗法成功用于临床,并表现了前所未有的临床疗效。 CAR-T ,全称是 Chimeric Antigen Receptor T-Cell Immunotherapy ,嵌合抗原受体 T 细胞免疫疗法。 CAR-T 疗法在临床上最领先的有诺华的 CLT019 ,采用 CLT019 治疗复发难治急性淋巴细胞白血病患者,六个月的肿瘤无进展生存率达到 67% ,其中最长的应答时间达到两年多。总部位于中国上海的上海优卡迪生物医药科技有限公司与医院合作,共治疗复发难治急性淋巴细胞白血病患者 36 例,其中完全 24 例,缓解比例达到 66.6% 。这是抗癌研究的颠覆性突破。 CAR-T 细胞疗法可能是最有可能治愈癌症的手段之一,并被《 Science 》杂志评为 2013 年度十大科技突破之首。
CAR-T 疗法虽然效果显著,但是在治疗过程中会出现一类特殊的临床综合症,临床常表现为发热,低血压,寒颤,以及出现与血清中一系列细胞因子水平显着升高有关的神经系统症状,被称为细胞因子释放综合症 (Cytokine Release Syndrome , CRS) 。其发生机制是由于抗原与 T 细胞受体结合后,激活了 T 细胞, T 细胞被激活后释放了包括 IL-6 在内的一系列细胞因子,造成了一种系统性的炎症反应, IL-6 信号通路如图 1 所示。如果治疗不及时,很可能引起肺水肿而导致患者死亡。
目前临床上可通过静脉注射抗组胺类药物 ( 如扑尔敏 ) 或皮质类固醇 ( 如氢化可的松 ) 来抑制炎症反应,但是相应的, CAR-T 细胞对肿瘤的杀伤作用也被抑制,使得这类患者,有较高的复发率,影响 CAR-T 治疗的疗效。
还有一个比较可行的方案是使用商品化的托珠单抗 ( 雅美罗® ) 来控制 CRS 的发生程度。托珠单抗是一种人源化的 IL-6 受体单克隆抗体 (Tocilizumab ),托珠单抗与 IL-6 受体发生特异性结合,阻断 IL-6 信号转导,从而减少急性时相反应物、降低铁调素产物、减少 B 细胞活化、减少骨吸收和软骨转化,以及抑制 T 淋巴细胞向 Th17 细胞的分化,从而有效控制炎症反应。但是托珠单抗也有一些很明显的缺点,首先是费用很高。一支 10kg 体重剂量的托珠单抗价格约为 2000 元 RMB ,成年患者一般一次要用 5 支,普通家庭难以承受。其次是使用托珠单抗后,由于封闭了 IL-6 受体,导致患者后期很容易遭受感染。
自从 20 世纪 90 年代以来,研究人员发现双链 RNA( ' dsRNA ' ) 可以用来抑制蛋白表达。这种沉默基因的能力在治疗人类疾病方面具有具有广泛的潜力,和许多研究人员和商业实体目前投入相当大的资源在发展中基于这种技术的治疗方法。
从机制的角度来看,当 dsRNA 进入植物和无脊椎动物细胞后,被 III 型核酸内切酶 Dicer 分解成 siRNA 。【 Sharp, RNA interference-2001, Genes Dev.2001, 15:485 】。 III 型核糖核酸酶 Dicer ,将 dsRNA 分解成带有 2 碱基凸出 3' 粘性末端的 19-23bp 的 siRNA 。【 Bernstein, Caudy, Hammond, & Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature 2001, 409:363 】。 siRNA 与 RNA 诱导的沉默复合体 (RISC) 整合,复合体中一个或多个解旋酶解开双链 siRNA ,使互补反义链引导靶点识别。【 Nykanen, Haley, & Zamore, ATP requirements and small interfering RNA structure in the RNA interference pathway, Cell 2001, 107:309 】。在结合相应的目标 mRNA 后, RISC 复合物中的一个或多个核酸内切酶切割目标 mRNA 引起 mRNA 沉默。【 Elbashir , Elbashir, Lendeckel, & Tuschl, RNA interference is mediated by 21-and 22-nucleotide RNAs, Genes Dev 2001, 15:188 】。
这种干扰效应可以持续很久,而且在细胞分裂后仍然有效。并且,RNAi具有非常好的序列特异性【Kisielow, M. et al. (2002) Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA, J. of Biochemistry 363: 1-5】。因此,RNAi系统可以特异性敲减一种类型的转录本,而不影响序列相近的其它mRNA。这些特性使siRNA系统在抑制基因表达、基因功能研究和药物靶点验证方面表现出潜力和价值。此外,siRNA系统可以用来治疗相关疾病,包括 (1) 基因过表达或错误表达引起的疾病; (2) 基因突变引起的疾病。
技术问题
本发明的目的在于克服现有技术的不足,提供了一种人源白细胞介素 6 的 siRNA 、重组表达载体及其构建方法和应用。
技术解决方案
本发明的目的通过以下技术方案来实现:
本发明的第一目的在于提供一种人源白细胞介素 6 的 siRNA ,所述 siRNA 选自下述中的 a-h 中的任一对:
a. SEQ ID NO.43 和 SEQ ID NO.44 所示的核苷酸序列;
b. SEQ ID NO.45 和 SEQ ID NO.46 所示的核苷酸序列;
c. SEQ ID NO.47 和 SEQ ID NO.48 所示的核苷酸序列;
d. SEQ ID NO.49 和 SEQ ID NO.50 所示的核苷酸序列;
e. SEQ ID NO.51 和 SEQ ID NO.52 所示的核苷酸序列;
f. SEQ ID NO.53 和 SEQ ID NO.54 所示的核苷酸序列;
g. SEQ ID NO.55 和 SEQ ID NO.56 所示的核苷酸序列;
h. SEQ ID NO.57 和 SEQ ID NO.58 所示的核苷酸序列。
进一步的,优选 b. SEQ ID NO.45 和 SEQ ID NO.46 所示的核苷酸序列。
本发明的第二目的在于提供上述 siRNA 在制备 治疗缓解细胞因子释放综合症药物中的应用。
本发明的第三目的在于提供一种包含上述 siRNA 的重组表达载体。
进一步的,所述表达载体为慢病毒表达载体、逆转录病毒表达载体、腺病毒表达载体、腺相关病毒表达载体或质粒;优选的,包含上述 siRNA 的慢病毒表达载体。
进一步的,所述的慢病毒表达载体包括:用于质粒复制的原核复制子 pUC Ori 序列,如 SEQ ID NO.2 所示;用于目的菌株大量扩增的含氨苄青霉素抗性基因 AmpR 序列,如 SEQ ID NO.1 所示;用于增强真核细胞内的复制的病毒复制子 SV40 Ori 序列,如 SEQ ID NO.3 所示;用于慢病毒包装的慢病毒包装顺式元件;用于真核细胞表达绿色荧光的 ZsGreen1 绿色荧光蛋白,如 SEQ ID NO.11 所示;用于共同转录表达蛋白质的 IRES 核糖体结合序列,如 SEQ ID NO.12 所示;用于嵌合抗原受体基因的真核转录的人 EF1 α 启动子,如 SEQ ID NO.14 所示;用于组成集识别、传递、启动于一体的二代 CAR 或三代 CAR 的抗 CD19 嵌合抗原受体的编码基因,如 SEQ ID NO.52 或 SEQ ID NO.53 所示;用于增强转基因的表达效率的 eWPRE 增强型土拨鼠乙肝病毒转录后调控元件,如 SEQ ID NO.13 所示; 用于胞内转录 siRNA 的 人 RNA 聚合酶 III 启动子 hU6 ,如 SEQ ID NO.14 所示。
进一步的,所述慢病毒包装顺式元件采用第二代慢病毒载体包括:如 SEQ ID NO.5 所示的慢病毒 5 terminal LTR 、如 SEQ ID NO.6 所示的慢病毒 3 terminal Self-Inactivating LTR 、如 SEQ ID NO.7 所示的 Gag 顺式元件、如 SEQ ID NO.8 所示的 RRE 顺式元件、如 SEQ ID NO.9 所示的 env 顺式元件、如 SEQ ID NO.10 所示的 cPPT 顺式元件。
进一步的,所述慢病毒包装顺式元件采用第三代慢病毒载体包括:如 SEQ ID NO.5 所示的慢病毒 5 terminal LTR 、如 SEQ ID NO.6 所示的慢病毒 3 terminal Self-Inactivating LTR 、如 SEQ ID NO.7 所示的 Gag 顺式元件、如 SEQ ID NO.8 所示的 RRE 顺式元件、如 SEQ ID NO.9 所示的 env 顺式元件、如 SEQ ID NO.10 所示的 cPPT 顺式元件所述慢病毒包装顺式元件,以及如 SEQ ID NO.4 所示的 RSV 启动子。
进一步的,所述 eWPRE 增强型土拨鼠乙肝病毒转录后调控元件有 6 个核苷酸的增强突变,具体为: g.396G>A 、 g.397C>T 、 g.398T>C 、 g.399G>A 、 g.400A>T 、 g.411A>T 。
进一步的,所述抗 CD19 嵌合抗原受体(二代 CAR ),包括依次串联的如 SEQ ID NO.16 所示的 CD8 leader 嵌合受体信号肽、如 SEQ ID NO.17 所示的 CD19 单链抗体轻链 VL 、如 SEQ ID NO.18 所示的 Optimal Linker C 、如 SEQ ID NO.19 所示的 CD19 单链抗体重链 VH 、如 SEQ ID NO.20 所示的 CD8 Hinge 嵌合受体铰链、如 SEQ ID NO.21 所示的 CD8 Transmembrane 嵌合受体跨膜区、如 SEQ ID NO.22 所示的 CD137 嵌合受体共刺激因子,以及如 SEQ ID NO.23 所示的 TCR 嵌合受体 T 细胞激活域。
进一步的,所述抗 CD19 嵌合抗原受体(三代 CAR ),包括依次串联的如 SEQ ID NO.16 所示的 CD8 leader 嵌合受体信号肽、、如 SEQ ID NO.17 所示的 CD19 单链抗体轻链 VL 、如 SEQ ID NO.18 所示的 Optimal Linker C 、如 SEQ ID NO.19 所示的 CD19 单链抗体重链 VH 、如 SEQ ID NO.20 所示的 CD8 Hinge 嵌合受体铰链、如 SEQ ID NO.21 所示的 CD8 Transmembrane 嵌合受体跨膜区、如 SEQ ID NO.24 所示的 CD28 嵌合受体共刺激因子、如 SEQ ID NO.22 所示的 CD137 嵌合受体共刺激因子以及如 SEQ ID NO.23 所示的 TCR 嵌合受体 T 细胞激活域。
本发明的第四目的在于提供一种包含上述 siRNA 的慢病毒表达载体的构建方法,包括以下步骤:
( 1 )将含氨苄青霉素抗性基因 AmpR 序列(如 SEQ ID NO.1 所示)、原核复制子 pUC Ori 序列(如 SEQ ID NO.2 所示)、病毒复制子 SV40 Ori 序列(如 SEQ ID NO.3 所示)、用于慢病毒包装的慢病毒包装顺式元件、 ZsGreen1 绿色荧光蛋白(如 SEQ ID NO.11 所示)、 IRES 核糖体结合序列(如 SEQ ID NO.12 所示)、 eWPRE 增强型土拨鼠乙肝病毒转录后调控元件(如 SEQ ID NO.13 所示)、 人 RNA 聚合酶 III 启动子 hU6 (如 SEQ ID NO.14 所示) 存储于慢病毒骨架质粒( pLenti-3G silencer )上;
( 2 )将人 EF1 α 启动子(如 SEQ ID NO.15 所示)、用于组成集识别、传递、启动于一体的二代 CAR 或三代 CAR 的抗 CD19 嵌合抗原受体组合成二代 CAR 或三代 CAR 设计方案,经过酶切、连接、重组反应克隆至慢病毒骨架质粒中,得到二代 CAR 或三代 CAR 设计的重组慢病毒质粒 pCAR19-silencer ;
( 3 )将上述 siRNA 以及如 SEQ ID NO.41 和 SEQ ID NO.42 所示的 negative control 序列,分别克隆至步骤( 2 )所得的重组慢病毒质粒中,得到 IL-6 敲减重组慢病毒质粒( pCAR19-1762~pCAR19-1769 和 negative control 的 pCAR19-1761 );
( 4 )将步骤( 3 )得到的重组慢病毒质粒( pCAR19-1761~pCAR19-1769 )分别与慢病毒包装质粒 pPac-GP 、 pPac-R 以及膜蛋白质粒 pEnv-G 共同转染 HEK293T/17 细胞,在 HEK293T/17 细胞中进行基因转录表达后,包装成功重组慢病毒载体会释放到细胞培养上清中,收集包含的重组慢病毒载体的上清液;
( 5 )将得到的重组慢病毒上清采用抽滤、吸附、洗脱的离子交换方式进行纯化,分别得到重组慢病毒载体。
进一步的,步骤( 1 )中,所述慢病毒包装顺式元件采用第二代慢病毒载体包括:如 SEQ ID NO.5 所示的慢病毒 5 terminal LTR 、如 SEQ ID NO.6 所示的慢病毒 3 terminal Self-Inactivating LTR 、如 SEQ ID NO.7 所示的 Gag 顺式元件、如 SEQ ID NO.8 所示的 RRE 顺式元件、如 SEQ ID NO.9 所示的 env 顺式元件、如 SEQ ID NO.10 所示的 cPPT 顺式元件;所述慢病毒包装顺式元件采用第三代慢病毒载体包括:如 SEQ ID NO.5 所示的慢病毒 5 terminal LTR 、如 SEQ ID NO.6 所示的慢病毒 3 terminal Self-Inactivating LTR 、如 SEQ ID NO.7 所示的 Gag 顺式元件、如 SEQ ID NO.8 所示的 RRE 顺式元件、如 SEQ ID NO.9 所示的 env 顺式元件、如 SEQ ID NO.10 所示的 cPPT 顺式元件所述慢病毒包装顺式元件,以及如 SEQ ID NO.4 所示的 RSV 启动子。
进一步的,步骤( 2 )中,所述用于组成集识别、传递、启动于一体的二代 CAR 的抗 CD19 嵌合抗原受体,包括依次串联的如 SEQ ID NO.16 所示的 CD8 leader 嵌合受体信号肽、如 SEQ ID NO.17 所示的 CD19 单链抗体轻链 VL 、如 SEQ ID NO.18 所示的 Optimal Linker C 、如 SEQ ID NO.19 所示的 CD19 单链抗体重链 VH 、如 SEQ ID NO.20 所示的 CD8 Hinge 嵌合受体铰链、如 SEQ ID NO.21 所示的 CD8 Transmembrane 嵌合受体跨膜区、如 SEQ ID NO.22 所示的 CD137 嵌合受体共刺激因子,以及如 SEQ ID NO.23 所示的 TCR 嵌合受体 T 细胞激活域;所述用于组成集识别、传递、启动于一体的三代 CAR 的抗 CD19 嵌合抗原受体,包括依次串联的如 SEQ ID NO.16 所示的 CD8 leader 嵌合受体信号肽、、如 SEQ ID NO.17 所示的 CD19 单链抗体轻链 VL 、如 SEQ ID NO.18 所示的 Optimal Linker C 、如 SEQ ID NO.19 所示的 CD19 单链抗体重链 VH 、如 SEQ ID NO.20 所示的 CD8 Hinge 嵌合受体铰链、如 SEQ ID NO.21 所示的 CD8 Transmembrane 嵌合受体跨膜区、如 SEQ ID NO.24 所示的 CD28 嵌合受体共刺激因子、如 SEQ ID NO.22 所示的 CD137 嵌合受体共刺激因子以及如 SEQ ID NO.23 所示的 TCR 嵌合受体 T 细胞激活域。
进一步的,步骤( 1 )中,所述 eWPRE 增强型土拨鼠乙肝病毒转录后调控元件有 6 个核苷酸的增强突变,具体为: g.396G>A 、 g.397C>T 、 g.398T>C 、 g.399G>A 、 g.400A>T 、 g.411A>T 。
进一步的,步骤( 2 )中,由人 EF1 α 启动子启动整个 CAR 基因表达; CD8 leader 嵌合受体信号肽位于 CAR 编码序列的 N 端,用于引导 CAR 蛋白定位于细胞膜; CD19 单链抗体轻链 VL 、 Optimal Linker C 、 CD19 单链抗体重链 VH 组合成 scfv 区域,用于识别 CD19 抗原; CD8 Hinge 嵌合受体铰链用于将 scfv 锚定于细胞膜外侧; CD8 Transmembrane 嵌合受体跨膜区用于将整个嵌合受体固定于细胞膜上; CD137 嵌合受体共刺激因子用于刺激 T 细胞增殖和细胞因子分泌; TCR 嵌合受体 T 细胞激活域用于激活下游信号通路的表达;当 scfv 区域与 CD20 抗原结合时,信号通过嵌合受体传递至细胞内,从而产生包括 T 细胞增殖、细胞因子分泌增加、抗细胞凋亡蛋白分泌增加、细胞死亡延迟、裂解靶细胞的一系列生物学效应。
进一步的,步骤( 4 )中,所述慢病毒载体有带荧光标签 zsGreen1 的版本和不带荧光标签 zsGreen1 版本,带荧光标签的版本用于体外实验,不带荧光标签的版本用于临床实验。
进一步的,步骤( 4 )中,所述抽滤步骤控制上清体积在 200ml~2000ml ,真空度控制在 -0.5MPA~-0.9MPA ,防止由于堵孔带来的载体损失;所述吸附步骤控制溶液的 PH 值在 6~8 ,防止 PH 的变化导致载体失活;所述洗脱步骤控制洗脱液的离子强度在 0.5M~1.0M ,防止离子强度的变化导致洗脱不完全或者载体失活。
本发明的第五目的在于提供包含上述 siRNA 的重组表达载体在制备 CAR-T 治疗过程中由 IL6 释放引起的炎症细胞因子 综合症药物中的应用。
本发明的第六目的在于提供一种 CART 细胞,所述的 CAR-T 细胞是由上述 siRNA 修饰的 T 淋巴细胞。
本发明的再一目的在于提供上述 CAR-T 细胞在制备 B 淋巴瘤、胰腺癌、脑胶质瘤、骨髓瘤治疗药物中的应用。
本发明是将人 RNA 聚合酶 III 启动子 hU6 、人 EF1 α启动子、 CD8 leader 嵌合受体信号肽、 CD19 单链抗体轻链 VL 、 Optimal Linker C 、 CD19 单链抗体重链 VH 、 CD8 Hinge 嵌合受体铰链、 CD8 Transmembrane 嵌合受体跨膜区、 CD137 嵌合受体共刺激因子、 TCR 嵌合受体 T 细胞激活域构建进入重组慢病毒载体,由人 EF1 α启动子启动整个 CAR 基因表达。 CAR 蛋白定位于细胞膜表面,识别 CD19 抗原,刺激 T 细胞增殖和细胞因子分泌,激活下游信号通路的表达。当 scfv 区域与 CD19 抗原结合时,信号通过嵌合受体传递至细胞内,从而产生 T 细胞增殖、细胞因子分泌增加、抗细胞凋亡蛋白分泌增加、细胞死亡延迟、裂解靶细胞等一系列生物学效应。由人 RNA 聚合酶 III 启动子 hU6 启动 siRNA 的表达,通过 RISC complex 的作用,降解 IL-6 mRNA ,抑制 IL-6 的合成与分泌,达到抑制 CRS 的效果。
本发明所采用的表达载体包括原核复制子( pUC ori )用于质粒复制;原核筛选标记( AmpR )用于目的菌株大量扩增;病毒复制子( SV40 Ori )用于增强真核细胞内的复制;慢病毒包装顺式元件( RSV 、 5 terminal LTR 、 3 terminal Self-Inactivating LTR 、 Gag 、 RRE 、 env 、 cPPT )用于慢病毒包装;人 RNA 聚合酶 III 启动子( hU6 )用于胞内转录 siRNA ;真核荧光标签蛋白( ZsGreen1 )用于真核细胞表达绿色荧光;共表达元件( IRES )用于共同转录表达蛋白质;真核启动子( EF1 α)用于嵌合抗原受体基因的真核转录;嵌合抗原受体( CD8 leader 、 CD19 VL 、 Optimal Linker C ( SEQ ID NO.19 )、 CD19 VH 、 CD8 Hinge 、 CD8 Transmembrane 、 CD137 、 TCR )用于组成集识别、传递、启动于一体的二代和三代 CAR ;转录后调控元件( eWPRE )用于增强转基因的表达效率。
本发明涉及含肽的医药配置品,具体涉及:
一、人 RNA 聚合酶 III 启动子 hU6 、含氨苄青霉素抗性基因 AmpR 序列、原核复制子 pUC Ori 序列 , 、病毒复制子 SV40 Ori 序列、 RSV 启动子、人 EF1 α启动子、慢病毒 5 terminal LTR 、慢病毒 3 terminal Self-Inactivating LTR 、 Gag 顺式元件、 RRE 顺式元件、 env 顺式元件、 cPPT 顺式元件、 IRES 核糖体结合序列、 ZsGreen1 绿色荧光蛋白、 WPRE 土拨鼠乙肝病毒转录后调控元件的重组慢病毒载体骨架,这种重组慢病毒载体骨架可以搭载不同的治疗性基因并广泛的用于过继性细胞治疗领域,搭载不同的 siRNA 并广泛的用于基因过表达、错误表达和基因突变引起的疾病。
二、重组慢病毒载体骨架、 IL6-siRNA 、 CD8 leader 嵌合受体信号肽、 CD19 单链抗体轻链 VL 、单链抗体铰链 LinkerA 、单链抗体铰链 Linker B 、单链抗体铰链 Linker C 、 CD19 单链抗体重链 VH 、 CD8 Hinge 嵌合受体铰链、 CD8 Transmembrane 嵌合受体跨膜区、 CD28 嵌合受体共刺激因子、 CD137 嵌合受体共刺激因子、 TCR 嵌合受体 T 细胞激活域构建形成重组慢病毒载体,该方法得到的重组慢病毒载体可以实现在人 T 淋巴细胞上表达 CD19 嵌合抗原受体,引导并激活 T 淋巴细胞对 CD19 阳性细胞的杀伤作用,在临床上用于治疗 B 淋巴细胞白血病、 B 淋巴瘤和多发性骨髓瘤。在人 T 淋巴细胞内表达白介素 -6(IL-6) 的 siRNA ,有效降低白介素 -6 的表达水平,临床上可用于缓解细胞因子释放综合症 (Cytokine Release Syndrome , CRS) 。
有益效果
本发明设计的 siRNA 序列含有 21 个 bp 的核苷酸,采用 N2[CG]N8[AU]N8[AU]N2 的寡核苷酸排列模式,互补序列之间采用 stem-loop 的发卡结构,通过 siRNA pattern 、 GC percentage 、 T or A or G in a row 、 consecutiver GC 、 3'end nt pattern 、 thermodynamic value 、 siRNA target 、 identity 、 alignment 等条件的筛选,大大提高 siRNA 设计的干扰成功率。
本发明所采用的人 RNA 聚合酶 III 启动子 hU6 转录 siRNA ,抑制 IL-6 表达的系统,在 T 细胞杀伤实验中,经过 QPCR 检测,能有效抑制 mRNA 的转录水平,经过 CBA 检测,能有效减少细胞培养上清中的 IL-6 表达水平,将来可以在体内抑制 IL-6 表达水平,减轻 CRS 的症状。
本发明采用慢病毒载体方式递送 siRNA( 如图 2 所示 ) 。首先,节约了成本,避免 siRNA 体外合成的昂贵费用。其次,避免了 siRNA 的在体递送效率低的问题。第三,使用人 RNA 聚合酶 III 启动子 hU6 表达 siRNA ,能够有效利用细胞内的 RNA 转录体系,大量表达出相应的 siRNA ,经过一系列的酶促作用,达到良好的基因沉默效果。
本发明所采用的载体骨架为第三代慢病毒载体(如图 3A 所示), 3' SIN LTR 去除了 U3 区域,消除了慢病毒载体自我复制的可能性,大大提高了安全性;增加了 cPPT 和 WPRE 元件,提高了转导效率和转基因的表达效率;采用 RSV 启动子保证了慢病毒载体包装时核心 RNA 的持续高效转录;采用人自身的 EF1 α启动子,使 CAR 基因能够在人体内长时间持续表达。
本发明所采用的siRNA敲减方案,同样可以应用于第三代CAR设计方案。第三代CAR设计与第二代设计相比,增加了CD28嵌合受体共刺激因子(SEQ ID NO.24)。
本发明所采用的慢病毒载体柱纯化系统(如图 8 所示),系本公司开发出的慢病毒规模化生产工艺。常用的超速离心法或者高速离心法,是利用离心沉降原理分离慢病毒颗粒,不可避免的会残留很多沉降系数相近的杂质,对后续实验带来不利影响。并且,装管过程复杂、操作繁琐、多次转换容器带来更多的污染机会。而本发明的慢病毒载体柱纯化工艺为半自动化操作,全部过程在百级实验区域完成,避免人工操作的繁琐和污染几率,所回收的慢病毒载体在内毒素、支原体等指标上完全达到临床标准。后续可跟进开发全自动纯化仪。
本发明所采用 CAR 设计方案也可以应用于第二代慢病毒载体结构上。第二代和第三代慢病毒载体在结构上的区别(如图 3B 所示),主要是第三代慢病毒载体把第二代载体 5'LTR 的 U3 区域替换为 RSV 启动子,这样就消除了 U3 转录时对 Tat 蛋白的依赖,既可以在慢病毒的结构基因里去除 Tat 序列,也提高了慢病毒基因组转录水平和转录持续性。第二代和第三代慢病毒载体主要是基因组转录方式的区别,因此本发明所采用 CAR 设计方案可以应用于这两代慢病毒载体。
本发明的第三代慢病毒骨架质粒,采用 enhancedWPRE 元件,与宾州大学 Carl H. June 等人( Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptormodified T cells in chronic lymphoid leukemia.N Engl J Med 2011;365:725 -33.)所采用的 WPRE 元件相比,有 6 个核苷酸的增强突变( g.396G>A 、 g.397C>T 、 g.398T>C 、 g.399G>A 、 g.400A>T 、 g.411A>T ),能够增强初级转录产物的多聚腺苷化,增加细胞内 mRNA 的含量,增强转基因的表达效率。
本发明的 Lentival 包装系统是无辅助病毒的四质粒包装系统,通过四种质粒共同转染至 HEK293T/17 细胞中,产生重组慢病毒载体。重组后的慢病毒载体是复制缺陷型载体,能将外源片段整合入宿主基因,一次性使用,无法复制和增殖,安全性有很大提高。
本发明采用的慢病毒载体有带荧光标签 zsGreen1 的版本和不带荧光标签 zsGreen1 版本,带荧光标签的版本用于体外实验,不带荧光标签的版本用于临床实验。
本发明采用的 scfv 段的 Linker 设计,能够显著提高细胞因子的分泌、 CAR-T 细胞的体外杀伤作用以及临床治疗效果。
可见,本发明所述的重组慢病毒载体在给急性 B 淋巴细胞白血病 (ALL) 的 CAR-T 治疗提供可靠转基因保障的同时,可以极大的降低发生 CRS 的风险,减轻患者的痛苦。
本发明所述的IL-6敲减siRNA表达框及其siRNA表达产物,不仅可以应用于CAR19-T治疗急性B淋巴细胞白血病(ALL)中用于消除或减轻CRS的症状,还可应用于缓解CAR-T治疗诸如B淋巴瘤、胰腺癌、脑胶质瘤、骨髓瘤等等所有类型肿瘤时引起的CRS症状,甚至还可以应用于缓解其他类型的治疗引起的CRS 。
附图说明
图 1 是本发明所述的 IL-6 信号通路示意图 ;
图 2 是本发明 所述的慢病毒递送 siRNA 方式示意图 ;
图 3 是 本发明所述的慢病毒载体结构示意图; 其中 , 图 3 ( A )是本发明采用的第三代慢病毒载体结 构示意图,图 3 ( B )是第二代和第三代慢病毒载体结构比较;
图 4 是本发明所述的重组慢病毒载体的构建流程图;其中,( A )图是慢病毒骨架质粒 pLenti-3G silencer 的结构示意图;( B )图是 pCAR19-silencer 质粒的结构示意图;( C )图是 pCAR19-1761~pCAR19-1769 质粒的示意图;( D )图是慢病毒包装质粒 pPac-GP 的结构示意图;( E )图是慢病毒包装质粒 pPac-R 的结构示意图;( F )图是膜蛋白 pEnv-G 的结构示意图;
图 5 是慢病毒骨架质粒 pLenti-3G silencer 的酶切预测及酶切琼脂糖凝胶电泳图;其中,图 5A 是慢病毒骨架质粒 pLenti-3G silencer 的酶切预测示意图,其中, lane1 是 1kb DNA ladder Marker :条带从上到下依次为: 10kb 、 8kb 、 6kb 、 5 kb 、 4kb 、 3.5kb 、 3kb 、 2.5kb 、 2kb 、 1.5kb 、 1kb 、 750bp 、 500bp 、 250bp ; lane2 是 pLenti-3G silencer 的 Cla I+BamH I 酶切预测:条带从上到下依次为: 7381bp , 23bp ;图 5B 是慢病毒骨架质粒 pLenti-3G silencer 的酶切琼脂糖凝胶电泳图,其中, lane1 是 pLenti-3G silencer 的 Cla I+BamH I 酶切电泳结果; lane2 是 1kb DNA ladder Marker 的电泳结果;
图 6 是重组慢病毒质粒 pCAR19-silencer 的酶切预测及酶切琼脂糖凝胶电泳图;其中,图 6A 是重组慢病毒质粒 pCAR19-silencer 的酶切预测示意图,其中, lane1 是 1kb DNA ladder Marker :条带从上到下依次为: 10kb 、 8kb 、 6kb 、 5 kb 、 4kb 、 3.5kb 、 3kb 、 2.5kb 、 2kb 、 1.5kb 、 1kb 、 750bp 、 500bp 、 250bp ; lane2 是 pCAR19-silencer 的 Kpn I 酶切预测:条带从上到下依次为: 8335bp 、 1708bp ;图 6B 是重组慢病毒质粒 pCAR19-silencer 的酶切琼脂糖凝胶电泳图,其中, lane1 是 1kb DNA ladder Marker 的电泳结果; lane2 是 pCAR19-silencer 的 Kpn I 酶切电泳结果;
图 7 是 IL-6 敲减重组慢病毒质粒 pCAR19-1761~pCAR19-1769 的测序比对结果;其中, A 是 pCAR19-1761 的测序比对结果; B 是 pCAR19-1762 的测序比对结果; C 是 pCAR19-1763 的测序比对结果; D 是 pCAR19-1764 的测序比对结果; E 是 pCAR19-1765 的测序比对结果; F 是 pCAR19-1766 的测序比对结果; G 是 pCAR19-1767 的测序比对结果; H 是 pCAR19-1768 的测序比对结果; I 是 pCAR19-1769 的测序比对结果;
图 8 是离子交换色谱法纯化重组慢病毒载体的流程图;
图 9 是重组慢病毒载体的滴度检测结果;
图 10 是重组慢病毒载体的不同纯化方式的支原体检测结果, lane1 为 DL2000 marker ,从上到下条带条带从上到下依次为: 2kb 、 1kb 、 750 bp 、 500 bp 、 250 bp 、 100bp ; lane2 为阳性对照; lane3 为阴性对照; lane4 为 PBS ; lane5 为水; lane6 为 lvCAR19-1761 ; lane7 为 lvCAR19-1762 ; lane8 为 lvCAR19-1763 ; lane9 为 lvCAR19-1764 ; lane10 为 lvCAR19-1765 ; lane11 为 lvCAR19-1766 ; lane12 为 lvCAR19-1767 ; lane13 为 lvCAR19-1768 ; lane14 为 lvCAR19-1769 ;
图 11 为 mRNA 相对表达量的柱状图;
图 12 为 CAR 蛋白表达量的 WB 检测图;其中,图 12A , lane1 为 PBMC 空细胞, lane2 为对照病毒 MOCK , lane3 为 lvCAR19-1761 , lane4 为 lvCAR19-1762 , lane5 为 lvCAR19-1763 , lane6 为 lvCAR19-1764 , lane7 为 lvCAR19-1765 , lane8 为 lvCAR19-1766 , lane9 为 lvCAR19-1767 , lane10 为 lvCAR19-1768 , lane11 为 lvCAR19-1769 ;图 12B ,是 beta-actin 内参条带;
图 13 为 IL-6 敲减重组慢病毒 lvCAR19-1761~lvCAR19-1769 与靶细胞孵育后, 4h 和 24h 上清中 CBA 的检测结果;图 13A 是 4h 的 CBA 检测结果;图 13B 是 24h 的 CBA 检测结果;
图 14 为不同效应细胞分别与靶细胞共培养条件下, 4h 和 24h 上清中 IL-6 含量的变化情况;
图 15 为不同效应细胞分别与靶细胞共培养条件下, 24h mRNA 转录水平的变化情况;
图 16 为不同效应细胞分别与靶细胞以 10:1 的比例共培养条件下, 24h 后检测对靶细胞的杀伤情况, E 为效应细胞, T 为靶细胞。
本发明的实施方式
以下实施例仅用于说明本发明而不用于限制本发明的范围。实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例 1 构建重组慢病毒载体
一、材料
1 、慢病毒骨架质粒 pLenti-3G silencer ,慢病毒包装质粒 pPac-GP 、 pPac-R 以及膜蛋白质粒 pEnv-G , HEK293T/17 细胞、同源重组酶、 Oligo Annealing Buffer 由世翱(上海)生物医药科技有限公司提供;
2 、引物:根据引物设计原则设计扩增DNA 片段和靶位点所需的引物,具体为:
EF1 α -F : 5'-attcaaaattttatcgatgctccggtgcccgtcagt-3' (SEQ ID NO.25)
EF1 α -R : 5'-TCACGACACCTGAAATGGAAGA-3' (SEQ ID NO.26)
CD8 leader-F : 5'-ggtgtcgtgaggatccgccaccatggccttaccagtgaccgc-3' (SEQ ID NO.27)
CD8 leader-R : 5'-GTGTCATCTGGATGTCCGGCCTGGCGGCGTG-3'(SEQ ID NO.28)
VL-F : 5'-cacgccgccaggccggacatccagatgacacagactacatc-3'(SEQ ID NO.29)
VL-R : 5'-TGTGATCTCCAGCTTGGTCC-3'(SEQ ID NO.30)
OLC-VH-F:5'-caagctggagatcacaggtggcggtggctcgggcggtggtgggtcgggtggcggcggatctgaggtgaaactgcaggagtca -3'(SEQ ID NO.31)
VH-R : 5'-TGAGGAGACGGTGACTGAGGT-3'(SEQ ID NO.32)
CD8 Hinge-F : 5'-AGTCACCGTCTCCTCAACCACGACGCCAGCGCC-3'(SEQ ID NO.33)
CD8 Hinge-R : 5'-GTAGATATCACAGGCGAAGTCCA-3'(SEQ ID NO.34)
CD8 Transmembrane-F : 5'-cgcctgtgatatctacatctgggcgcccttggc-3'(SEQ ID NO.35)
CD8Transmembrane-R:5'-TCTTTCTGCCCCGTTTGCAGTAAAGGGTGATAACCAGTG- 3'(SEQ ID NO.36)
CD137-F : 5'-aaacggggcagaaagaaactc-3'(SEQ ID NO.37)
CD137-R:5'-TGCTGAACTTCACTCTCAGTTCACATCCTCCTTCTTCTTC-3'(SEQ ID NO. 38)
TCR-F : 5'-agagtgaagttcagcaggagcg-3'(SEQ ID NO.39)
TCR-R : 5'-GGAGAGGGGCGTCGACTTAGCGAGGGGGCAGGGC-3'(SEQ ID NO.40)
siRNA1761-F(negative control):5'-CCGGTTCTCCGAACGTGTCACGTCTCGAGACGTGACACGTTCGGAGAATTTTTG-3'(SEQ ID NO.41)
siRNA1761-R(negative control):5'-AATTCAAAAATTCTCCGAACGTGTCACGTCTCGAGACGTGACACGTTCGGAGAA-3'(SEQ ID NO.42)
siRNA1762-F:5'-CCGGGTGAAGCTGAGTTAATTTATGCTCGAGTAAATTAACTCAGCTTCACATTTTTTTG-3'(SEQ ID NO.43)
siRNA1762-R:5'-AATTCAAAAAAATGTGAAGCTGAGTTAATTTACTCGAGCATAAATTAACTCAGCTTCAC-3'(SEQ ID NO.44)
siRNA1763-F:5'-CCGGGCACAGAACTTATGTTGTTCTCTCGAGAACAACATAAGTTCTGTGCCCTTTTTTG-3'(SEQ ID NO.45)
siRNA1763-R:5'-AATTCAAAAAAGGGCACAGAACTTATGTTGTTCTCGAGAGAACAACATAAGTTCTGTGC-3'(SEQ ID NO.46)
siRNA1764-F:5'-CCGGCTCAGATTGTTGTTGTTAATGCTCGAGTTAACAACAACAATCTGAGGTTTTTTTG-3'(SEQ ID NO.47)
siRNA1764-R:5'-AATTCAAAAAAACCTCAGATTGTTGTTGTTAACTCGAGCATTAACAACAACAATCTGAG-3'(SEQ ID NO.48)
siRNA1765-F:5'-CCGGGCAGCTTTAAGGAGTTCCTGCCTCGAGAGGAACTCCTTAAAGCTGCGCTTTTTTG-3'(SEQ ID NO.49)
siRNA1765-R:5'-AATTCAAAAAAGCGCAGCTTTAAGGAGTTCCTCTCGAGGCAGGAACTCCTTAAAGCTGC-3'(SEQ ID NO.50)
siRNA1766-F:5'-CCGGGTGTAGGCTTACCTCAAATAACTCGAGATTTGAGGTAAGCCTACACTTTTTTTTG-3'(SEQ ID NO.51)
siRNA1766-R:5'-AATTCAAAAAAAAGTGTAGGCTTACCTCAAATCTCGAGTTATTTGAGGTAAGCCTACAC-3'(SEQ ID NO.52)
siRNA1767-F:5'-CCGGCTCAAATAAATGGCTAACTTACTCGAGAGTTAGCCATTTATTTGAGGTTTTTTTG-3'(SEQ ID NO.53)
siRNA1767-R:5'-AATTCAAAAAAACCTCAAATAAATGGCTAACTCTCGAGTAAGTTAGCCATTTATTTGAG-3'(SEQ ID NO.54)
siRNA1768-F:5'-CCGGGATGCTTCCAATCTGGATTCACTCGAGAATCCAGATTGGAAGCATCCATTTTTTG-3'(SEQ ID NO.55)
siRNA1768-R:5'-AATTCAAAAAATGGATGCTTCCAATCTGGATTCTCGAGTGAATCCAGATTGGAAGCATC-3'(SEQ ID NO.56)
siRNA1769-F:5'-CCGGCTTCCAATCTGGATTCAATGACTCGAGATTGAATCCAGATTGGAAGCATTTTTTG-3'(SEQ ID NO.57)
siRNA1769-R:5'-AATTCAAAAAATGCTTCCAATCTGGATTCAATCTCGAGTCATTGAATCCAGATTGGAAG-3'(SEQ ID NO.58)
WPRE-QPCR-F:5'-CCTTTCCGGGACTTTCGCTTT-3'(SEQ ID NO.59)
WPRE-QPCR-R:5'-GCAGAATCCAGGTGGCAACA-3'(SEQ ID NO.60)
Actin-QPCR-F:5'-CATGTACGTTGCTATCCAGGC-3'(SEQ ID NO.61)
Actin-QPCR-R:5'-CTCCTTAATGTCACGCACGAT-3'(SEQ ID NO.62)
CAR-QPCR-F:5'-GACTTGTGGGGTCCTTCTCCT-3'(SEQ ID NO.63)
CAR-QPCR-R:5'-GCAGCTACAGCCATCTTCCTC-3'(SEQ ID NO.64)
IL6-QPCR-F:5'-GGATTCAATGAGGAGACTT-3'(SEQ ID NO.65)
IL6-QPCR-R:5'-ATCTGTTCTGGAGGTACT-3'(SEQ ID NO.66)
3 、 SEQ ID NO.15~SEQ ID NO.66 所示的 DNA 序列由上海捷瑞生物工程有限公司合成,并以寡核苷酸干粉或者质粒形式保存;
4 、工具酶 BspE I 、 EcoR I 、 BamH I 、 Kpn I 、 Cla I 、 T4 DNA 连接酶均购自 NEB 公司;
5 、高保真酶 PrimeSTAR 、 RN 购自 Takara 公司;
6 、 0.22μm-0.8μm PES 滤器购自 millipore 公司;
7 、质粒抽提试剂盒、琼脂糖凝胶回收试剂盒均购自 MN 公司;
8 、感受态细胞 TOP10 购自 tiangen 公司;
9 、 NaCl 、 KCl 、 Na2HPO4.12H2O 、 KH2PO4 、 Trypsin 、 EDTA 、 CaCl2 、 NaOH 、 PEG6000 均购自上海生工;
10 、 Opti-MEM 、 FBS 、 DMEM 、 1640 、 Pen-Srep 、 Hepes 、购自 invitrogen 公司;
11 、 Biotinylated protein L 购自 GeneScript 公司;
12、辣根过氧化物酶标记的二抗、 DAB 工作液均购自北京中杉金桥;
13 、 ECL+plusTM Western blotting system 购自 Amersham 公司;
14 、 DNeasy 试剂盒购自上海捷瑞公司;
15 、 淋巴细胞分离液购自深圳达科为公司;
16 、 phycoerythrin(PE) -conjugated streptavidin 、 CBA kit 购自 BD Bioscience 公司;
17 、 S A-HRP 购自上海翊圣公司;
18 、 支原体检测试剂盒、内毒素检测试剂盒、 CD19+K562 细胞购自世翱(上海)公司;
19 、 LDH 检测试剂盒购自 promega 公司;
二、重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 的构建方法。
参见图 4 ,本发明所述重组慢病毒载体的构建方法如下:
1 、将人 EF1 α启动子、 CD8 leader 嵌合受体信号肽、 CD19 单链抗体轻链 VL 、 Optimal Linker C 、 CD19 单链抗体重链 VH 、 CD8 Hinge 嵌合受体铰链、 CD8 Transmembrane 嵌合受体跨膜区、 CD137 嵌合受体共刺激因子、 TCR 嵌合受体 T 细胞激活域片段克隆至慢病毒骨架质粒 pLenti-3G silencer ,得到重组慢病毒质粒 pCAR19-silencer ,再将 siRNA 片段分别连接到 pCAR19-silencer 中,得到 IL-6 敲减重组慢病毒质粒 pCAR19-1761~pCAR19-1769 。
( 1 )将慢病毒骨架质粒 pLenti-3G silencer 使用 Cla I 和 BamH I 限制性内切酶进行双酶切,产物经过 1.5% 的琼脂糖凝胶电泳,确认 7381bp 的片段 V1 (图 5 所示),并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
1 、溶胶 按 200 μl NTI/100 mg gel 比例加入溶胶液, 50 ℃水浴放置5-10分钟。
2 、结合 DNA 11000g 离心 30 秒,弃去滤液。
3 、洗膜 加入 700μl NT3 , 11000g 离心 30 秒,弃去滤液。
4 、洗膜 重复第三步一次
5 、晾干 11000g 离心 1 分钟,换新的收集管,室温放置 1 分钟。
6 、洗脱 DNA 加入 15-30 μl NE ,室温放置 1 分钟, 11000g 离心 1 分钟,收集滤液。
表 1 琼脂糖凝胶回收步骤
( 2 )用引物 EF1 α -F 和 EF1 α -R 以合成的 SEQ ID NO.15 为模板,使用表 2 中的体系, PCR 循环条件为: 98℃ 3min ,( 98℃ 10sec , 55℃ 15sec , 72℃ 2min ) *35cycle , 72℃ 10min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 1208bp 的片段 a ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
试剂 体积( μl )
H2O 32.5
5×Buffer ( with Mg2+ ) 10
dNTP (各 2.5mM ) 4
Primer1 (+)( 10μM ) 1
Primer2 (-)( 10μM ) 1
Template 1
PrimeSTAR 0.5
表 2 50 μl PCR 反应体系
( 3 )用引物 CD8 leader-F 和 CD8 leader-R 以合成的 SEQ ID NO.16 为模板,使用表 2 中的体系, PCR 循环条件为: 98℃ 3min ,( 98℃ 10sec , 55℃ 15sec , 72℃ 30sec ) *35cycle , 72℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 101bp 的片段 b ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 4 )用引物 VL-F 和 VL-R 以合成的 SEQ ID NO.17 为模板,使用表 2 中的体系, PCR 循环条件为: 98℃ 3min ,( 98℃ 10sec , 55℃ 15sec , 72℃ 30sec ) *35cycle , 72℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 336bp 的片段 c ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 5 )用引物 OLC-VH-F 和 VH-R 以合成的 SEQ ID NO.19 为模板,使用表 2 中的体系, PCR 循环条件为: 98 ℃ 3min ,( 98 ℃ 10sec , 55 ℃ 15sec , 72 ℃ 30sec ) *35cycle , 72 ℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 421bp 的片段 d ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 6 )用引物 CD8 Hinge-F 和 CD8 Hinge-R 以合成的 SEQ ID NO.20 为模板,使用表 2 中的体系, PCR 循环条件为: 98 ℃ 3min ,( 98 ℃ 10sec , 55 ℃ 15sec , 72 ℃ 30sec ) *35cycle , 72 ℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 147bp 的片段 e ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 7 )用引物 CD8 Transmembrane-F 和 CD8 Transmembrane-R 以合成的 SEQ ID NO.21 为模板,使用表 2 中的体系, PCR 循环条件为: 98 ℃ 3min ,( 98 ℃ 10sec , 55 ℃ 15sec , 72 ℃ 30sec ) *35cycle , 72 ℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 100bp 的片段 f ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 8 )用引物 CD137-F 和 CD137-R 以合成的 SEQ ID NO.22 为模板,使用表 2 中的体系, PCR 循环条件为: 98 ℃ 3min ,( 98 ℃ 10sec , 55 ℃ 15sec , 72 ℃ 30sec ) *35cycle , 72 ℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 142bp 的片段 g ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 9 )用引物 TCR-F 和 TCR-R 以合成的 SEQ ID NO.23 为模板,使用表 2 中的体系, PCR 循环条件为: 98 ℃ 3min ,( 98 ℃ 10sec , 55 ℃ 15sec , 72 ℃ 30sec ) *35cycle , 72 ℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 355bp 的片段 h ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 10 )将 DNA 片段 b 、 c 、 d 各 1μl 作为模板,使用表 3 中的体系,除引物外加入 Eppendorf 管内, PCR 循环条件为: 98 ℃ 3min ,( 98 ℃ 10sec , 60 ℃ 10sec , 72 ℃ 30sec ) *6cycle ,加入引物 CD8 leader-F/VH-R, ( 98 ℃ 10sec , 60 ℃ 10sec , 72 ℃ 40sec ) *24cycle , 72 ℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 814bp 的片段 i ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1),并测定产物的纯度和浓度;
试剂 体积( μl )
H2O 33.5-1* 模板数
5×Buffer ( with Mg2+ ) 10
dNTP (各 2.5mM ) 4
Primer1 (+)( 10μM ) 1
Primer2 (-)( 10μM ) 1
Template 1* 模板数
PrimeSTAR 0.5
表 3 50 μl 重叠 PCR 反应体系
( 11 )将 DNA 片段 e 、 f 、 g 、 h 各 1μl 作为模板,使用表 3 中的体系,除引物外加入 Eppendorf 管内, PCR 循环条件为: 98 ℃ 3min ,( 98 ℃ 10sec , 60 ℃ 10sec , 72 ℃ 30sec ) *6cycle ,加入引物 CD8 Hinge-F/TCR-R, ( 98 ℃ 10sec , 60 ℃ 10sec , 72 ℃ 30sec ) *24cycle , 72 ℃ 5min 。产物经过 1.5% 的琼脂糖凝胶电泳,确认 704bp 的片段 j ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 12 )将 DNA 片段 V1 、 a 、 i 、 j 以 5μl 总体积且摩尔比 1:1:1:1 的比例加入 Eppendorf 管内,加入同源重组酶反应液 15μl ,混匀后在 42℃ 孵育 30 分钟,转移至冰上放置 2-3 分钟,将反应液加入 50μl TOP10 中,轻轻旋转以混匀内容物,在冰中放置 30 分钟,将管放到预加温到 42 ℃的恒温水浴锅中热激 90 秒,快速将管转移到冰浴中,使细胞冷却 2-3 分钟,每管加 900 µl LB 培养液,然后将管转移到 37 ℃摇床上,温育 1 小时使细菌复苏,取 100μl 的转化菌液涂布于 Amp LB 琼脂平板上,倒置平皿,于恒温培养箱中 37 ℃培养, 16 小时。
挑取克隆进行菌落 PCR 鉴定,鉴定正确的克隆即为重组慢病毒质粒 pCAR19-silencer ,对正确的克隆进行酶切鉴定(见图 6 );
( 13 )将重组慢病毒质粒 pCAR19-silencer 使用 BspE I 和 EcoR I 限制性内切酶进行双酶切,产物经过 1.5% 的琼脂糖凝胶电泳,确认 10029bp 的片段 V2 ,并割胶回收置于 Eppendorf 管内,用 MN 公司的琼脂糖凝胶回收试剂盒回收相应的片段(见表 1 ),并测定产物的纯度和浓度;
( 14 )将合成好的 siRNA1761-F/R~siRNA1769-F/R 分别用 oligo annealing buffer 溶解成 20μM ,对应的 F 和 R 各取 30μl 混合。然后将 siRNA1761-F&R~ siRNA1769-F&R 混合物在水浴锅中 95 ℃ 加热 5 分钟,然后水浴锅开盖置室温中自然冷却至室温,形成双链寡核苷酸片段。取 1μl 用于的连接反应(见表 4 ), 4℃ 连接 16h ,转移至冰上放置 2-3 分钟,将反应液加入 50μl TOP10 中,轻轻旋转以混匀内容物,在冰中放置 30 分钟,将管放到预加温到 42 ℃的恒温水浴锅中热激 90 秒,快速将管转移到冰浴中,使细胞冷却 2-3 分钟,每管加 900 µl LB 培养液,然后将管转移到 37 ℃摇床上,温育 1 小时使细菌复苏,取 100μl 的转化菌液涂布于 Amp LB 琼脂平板上,倒置平皿,于恒温培养箱中 37 ℃培养, 16 小时。
挑取克隆进行菌落 PCR 鉴定,鉴定正确的克隆即为 IL-6 敲减重组慢病毒质粒 pCAR19-1761~pCAR19-1769 ,对正确的克隆进行测序鉴定(见图 7 )。
试剂 体积( μl )
H2O 13
V2 3
10 × T4 DNA ligase Buffer 2
T4 DNA ligase 1
退火的双链寡核苷酸 1
表 4 20 μl 连接反应体系
2 、重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 的包装。
( 1 )完全培养基:取出预热好的新鲜培养基,加入 10%FBS +5ml Pen-Srep ,上下颠倒混匀即可;
( 2 ) 1XPBS 溶液:称量 NaCl 8g , KCl 0.2 , Na2HPO4.12H2O 3.58g , KH2PO4 0.24g置于 1000ml 烧杯中,加入 900ml Milli-Q grade 超纯水溶解,溶解完成后,使用 1000ml 量筒定容至 1000ml , 121 ℃高温湿热灭菌 20min ;
( 3 ) 0.25%Trypsin 溶液 : 称量 Trypsin 2.5g , EDTA 0.19729g 置于 1000ml 烧杯中,加入 900ml 1XPBS 溶解,溶解完成后,使用 1000ml 量筒定容至 1000ml , 0.22 μ M 过滤除菌,长期使用可保存至 -20 ℃冰箱;
( 4 ) 0.5M CaCl2 溶液:称量 36.75g CaCl2 用 400ml Milli-Q grade 超纯水溶解;用 Milli-Q grade 超纯水将总体积定容至 500ml ,混匀; 0.22μm 过滤除菌,分装保存到 50ml 离心管中,每管 45ml 左右, 4 ℃保存。
( 5 ) 2XHBS 溶液:称量 4.09g NaCl , 0.269g Na2HPO4 , 5.96g Hepes ,用 400ml Milli-Q grade 超纯水溶解;校准 pH 仪后,用 2M NaOH 溶液将 HBS 溶液的 pH 调到 7.05 。调整每瓶 HBS 的 PH 消耗 2M NaOH 为 3ml 左右;
( 6 )从液氮罐中取出冻存的 HEK293T/17 细胞,迅速转移到 37 ℃ 水浴中, 1~2min 后转移到超净台中,无菌操作将冻存管中的液体全部转移至 10cm2 培养皿中,补足含 10%FBS 的 DMEM 至 8mL/10cm2 dish , 24h 后显微镜观察细胞,细胞汇合的程度大于 80% 进行传代;
( 7 )选择细胞状态良好、无污染的 HEK293T/17 细胞,每 2-6 个培养皿为一组,将细胞胰酶消化后,用电动移液器吸取 4-12ml 完全培养基,向每个消化后的培养皿中加 2ml ,避免培养皿变干;使用 1ml 移液器将所有细胞吹打成单细胞悬液,转移到培养基瓶中;
( 8 )将上述 2-6 个培养皿中的剩余细胞转移到培养基瓶中,并用培养基再冲洗一便培养皿;
( 9 )盖紧培养基瓶盖,上下颠倒 10 次左右充分混匀细胞悬液,将细胞传到 8-24 个 10cm2 培养皿中,每皿的细胞密度应当约 4 × 106 个 /10ml 完全培养基左右。如果细胞密度和预期的相差较大,则需要对细胞进行计数,然后按照 4× 106 个 / 皿的量接种;
( 10 )每 6 个培养皿整理为一摞,注意保持上下皿之间的配合。将培养皿左右,前后晃动数次,使细胞充分铺开,然后放入 5% CO2 培养箱。剩余细胞做同样处理;
( 11 )检查所传代细胞,细胞汇合度应当为 70-80% ,轮廓饱满,贴壁良好,在细胞培养皿中均匀分布;
( 12 )为细胞换液,将培养基替换为新鲜完全培养基 , 每皿 9ml ,并将培养箱的 CO2 浓度设定值提高到 8% ;
( 13 )按照 N+0.5 配 DNA/CaCl2 溶液。每皿 HEK293T/17 细胞转染质粒量按照下列比例使用:重组慢病毒质粒 (20μg), pPac-GP (15μg) , pPac-R (10μg), pEnv-G (7.5μg) 。取一个新的 5ml 离心管,加入 0.5M CaCl2 : 0.25ml ,重组慢病毒质粒 20μg : pPac-GP 15μg : pPac-R 10μg : pEnv-G 7.5μg ,补充超纯水至 0.5ml 盖上盖子,充分混匀;
( 14 )另取一支 5ml 离心管,加入 0.5ml DNA/CaCl2 溶液。打开涡旋振荡器,一只手拿住 5ml 离心管的上端,使管底接触振荡头,使液体在管壁上散开流动,另一只手拿一把 1mL 移液枪,吸取 0.5mL 2×HBS 溶液,缓慢滴加进入离心管,控制流速,以半分钟滴完为宜。 2×HBS 加入后,继续振荡 5 秒钟,停止振荡,可直接加入需要转染的细胞中;
( 15 )取一皿细胞,将离心管中的 1mL 钙转液滴加进去,尽可能使钙转试剂分布到整个培养皿中;
( 16 )钙转液加入后,在皿盖上做好标记,将培养皿放还到另一个 5% CO2 培养箱中。确保培养皿水平放置,每摞培养皿不要超过 6 个。在 5% CO2 培养箱中放置 (6-8 h) ;
( 17 )将第一个培养箱的 CO2 浓度设定值调回到 5% ;
( 18 ) 24 小时后,检查细胞状态。细胞汇合度应当为 80-85% 左右,状态良好。将培养基吸走,更换 10ml 新鲜的 DMEM 完全培养基;
( 19 ) 48 小时后,观察转染效率。绝大多数细胞仍然是贴壁的。可以看到超过 95% 细胞都会带有绿色荧光。将同一个病毒包装上清液收集到一起,并向培养皿中继续添加 10mL 新鲜培养基;
( 20 ) 72 小时后,再次将同一个病毒上清液收集到一起,两次收集的病毒可以放在一起,丢弃培养皿;此时收集的上清里包含了重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 。
实施例 2 重组慢病毒载体的浓缩及检测
一、离子交换色谱法纯化重组慢病毒载体 ( 如图 8 所示 ) ;
( 1 )将收集的上清液使用 Thermo 真空泵,经 0.22μm-0.8μm 的 PES 滤器抽滤,除去杂质;
( 2 )按 1:1~1:10 的比例往上清中加入 1.5M NaCl 250 mM Tris-HCl (pH 6-8);
( 3 )将 2 个离子交换柱串联放置,用 4ml 1M NaOH 、 4ml 1M NaCl 、 5ml 0.15M NaCl 25 mM Tris-HCl ( pH 6-8 )溶液依次过柱;
(4)将步骤 2中获得的溶液通过蠕动泵以1-10ml/min的速度给离子交换柱上样;
( 5 )全部上清液过柱后,使用 10ml 0.15M NaCl 25 mM Tris-HCl ( pH 6-8 )溶液清洗一遍;
( 6 )根据上样量使用 1-5ml 1.5M NaCl 25 mM Tris-HCl ( pH 6-8 )进行洗脱,收集洗脱液;
( 7 )将洗脱液分成 25 到 50μl 一管,冻存到 -80℃ 冰箱,进行长期保存;
二、滴度测定;
( 1 )取 24 孔板接种 293T 细胞。每孔细胞为 5×104 个,所加培养基体积为 500ul, 不同种类的细胞生长速度有所差异,进行病毒感染时的细胞融合率为 40%-60% ;
( 2 )准备 3 个无菌 EP 管,在每个管中加入 90ul 的新鲜完全培养基(高糖 DMEM+10%FBS )接种细胞 24 小时后,取两个孔的细胞用血球计数板计数,确定感染时细胞的实际数目,记为 N ;
( 3 )取待测定的病毒原液 10ul 加入到第一个管中,轻轻混匀后,取 10ul 加入到第二个管中,然后依次操作直到最后一管;在每管中加入 410ul 完全培养基(高糖 DMEM+10%FBS ) , 终体积为 500ul ;
( 4 )感染开始后 20 小时,除去培养上清,更换为 500μl 完全培养基(高糖 DMEM+10%FBS ), 5%CO2 继续培养 48 小时;
( 5 ) 72 小时后,观察荧光表达情况,正常情况下,荧光细胞数随稀释倍数增加而相应减少 , 并拍照;
( 6 )用 0.2ml 0.25% 胰酶 -EDTA 溶液消化细胞,在 37℃ 放置 1 分钟。用培养基吹洗整个细胞面,离心收集细胞。按照 DNeasy 试剂盒的说明抽提基因组 DNA 。每个样品管中加入 200μl 洗脱液洗下 DNA 并定量;
( 7 )准备目的 DNA 检测 qPCRmix 总管 Ⅰ ( QPCR 引物序列为 SEQ ID NO.59 --- SEQ ID NO.60 ):
2× TaqMan Master Mix 25 μl × n
Forward primer (100 pmol ml-1) 0.1μl × n
Reverse primer (100 pmol ml-1) 0.1μl × n
Probe (100 pmol ml-1) 0.1μl × n
H2O 19.7μl × n
n = number of reactions. 例如:总反应数为 40 ,将 1ml 2× TaqMan Universal PCR Master Mix , 4μl forward primer , 4μl reverse primer , 4μl probe 和 788μl H2O 混和。震荡后放在冰上;
( 8 )准备内参 DNA 检测 qPCRmix 管 Ⅱ ( QPCR 引物序列为 SEQ ID NO.61--- SEQ ID NO.62 ):
2× TaqMan Master Mix 25 μl × n
10×RNaseP primer/probe mix 2.5 μl × n
H2O 17.5μl × n
n = number of reactions. 例如:总反应数为 40 ,将 1ml 2× TaqMan Universal PCR Master Mix , 100μl 10×RNaseP primer/probe mix 和 700μl H2O 混和。震荡后放在冰上;
( 9 )在预冷的 96 孔 PCR 板上完成 PCR 体系建立。从总管 Ⅰ 中各取 45μl 加入到 A-D 各行的孔中,从总管 Ⅱ 中各取 45μl 加入到 E-G 各行的孔中。
( 10 )分别取 5μl 质粒标准品和待测样品基因组 DNA 加入到 A-D 行中,每个样品重复 1 次。另留 1 个孔加入 5μl 的水做为无模板对照(no-template control)。
(11)分别取 5μl 基因组标准品和待测样品基因组 DNA 加入到 E-G 行中,每个样品重复 1 次。另留 1 个孔加入 5μl 的水做为无模板对照(no-template control)。
( 12 )所使用定量 PCR 仪为 ABI PRISM 7500 定量系统。循环条件设定为: 50℃ 2 分钟, 95℃ 10 分钟,然后是 95℃ 15 秒, 60℃ 1 分钟的 40 个循环。
数据分析:测得的 DNA 样品中整合的慢病毒载体拷贝数用基因组数加以标定,得到每基因组整合的病毒拷贝数。
滴度( integration units per ml , IU ml-1 )的计算公式如下:
IU ml-1 = (C ×N× D×1000)/V
其中: C = 平均每基因组整合的病毒拷贝数
N = 感染时细胞的数目(约为 1×105
D = 病毒载体的稀释倍数
V = 加入的稀释病毒的体积数
( 13 )重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 的滴度结果(如图 9 所示);
三、内毒素测定;
( 1 )、内毒素工作标准品为 15EU/ 支;
( 2 )、鲎试剂灵敏度λ= 0.25EU/ml, 0.5ml/ 管
( 3 )、内毒素标准品稀释:取内毒素标准品一支,分别用 BET 水按比例稀释成 4 λ和 2 λ的溶解,封口膜封口,震荡溶解 15min ;稀释时每稀释一步均应在漩涡混合器上混匀 30s ;
( 4 )、加样:取鲎试剂若干支,每支加入 BET 水 0.5ml 溶解,分装至若干支无内毒素试管中,每管 0.1ml 。其中 2 支为阴性对照管,加入 BET 水 0.1ml ;
2 支为阳性对照管,加入 2λ 浓度的内毒素工作标准品溶液 0.1ml ;
2 支为样品阳性对照管,加入 0.1ml 含 2λ 内毒素标准品的样品溶液(稀释 20 倍的待测样品 1ml + 4λ 的内毒素标准品溶液 1ml=2ml 含 2λ 内毒素标准品的稀释 40 倍样品)。
样品管中加入 0.1ml 样品,稀释比例见表 5 , 37 ± 1 ℃水浴(或培养箱)保温 60 ± 1min ;
稀释倍数 原液 5 10 20 40 80 160
对应 EU/ml 0.25 1.25 2.5 5 10 20 40
表 5 内毒素稀释比例及对应内毒素含量
( 5 )、重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 的内毒素检测结果(如表 6 所示),内毒素含量在 0~2.5 EU/ml 之间,符合要求;
稀释倍数 原液 5 10 20 40 80 160
对应 EU/ml 0.25 1.25 2.5 5 10 20 40
lvCAR19-1761 ( + ) ( + ) ( - ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1762 ( + ) ( + ) ( + ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1763 ( + ) ( + ) ( - ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1764 ( + ) ( + ) ( - ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1765 ( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1766 ( + ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1767 ( + ) ( + ) ( - ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1768 ( + ) ( + ) ( - ) ( - ) ( - ) ( - ) ( - )
lvCAR19-1769 ( + ) ( + ) ( + ) ( - ) ( - ) ( - ) ( - )
表 6 内毒素检测结果
四、支原体测定及比较;
( 1 )在实验前三日,细胞样品用无抗生素培养基进行培养;
( 2 )收集 1ml 细胞悬浮液(细胞数大于 1*105 ),置于 1.5ml 离心管中;
( 3 ) 13000 × g 离心 1min ,收集沉淀,弃去培养基;
( 4 )加入 500ul PBS 用枪头吹吸或涡旋振荡,重悬沉淀。 13000 × g 离心 5min ;
( 5 )步骤 4 重复一次;
( 6 )加入 50μl Cell Lysis Buffer ,用枪头吹吸,充分混匀后 , 在 55 ℃水浴中孵育 20min ;
( 7 )将样品置于 95 ℃中加热 5min ;
( 8 ) 13000 × g 离心 5min 后,取 5μl 上清作为模板, 25μlPCR 反应体系为: ddH20 6.5μl 、 Myco Mix 1μl 、 2x Taq Plus Mix Master (Dye Plus) 12.5μl 、模板 5μl ; PCR 循环条件为: 95 ℃ 30sec ,( 95 ℃ 30sec , 56 ℃ 30sec , 72 ℃ 30sec ) *30cycle , 72 ℃ 5min 。
( 9 )支原体检测结果显示(如图 10 和表 7 所示),重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 均不含支原体。
PCR 模版 PCR 产物 判定说明
阳性对照 有280bp和150bp条带 阳性成立
无或者只有一条带 阳性不成立
阴性对照 150bp 条带 阴性成立
无或有两条带以上 阴性不成立
样品 有280和150条带 支原体污染
只有280条带 支原体严重污染
只有150bp 无支原体污染
无条带 细胞量过少或PCR反应被抑制
表 7 支原体检测结果
实施例 3 重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 的功能检测。
一、 CAR 基因的细胞水平表达检测:
( 1 )重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 和对照病毒 MOCK 感染 PBMC 细胞后,收集细胞采用 RT-PCR 进行 CAR mRNA 转录水平的检测,验证 CAR 基因的表达,如果 CAR mRNA 转录水平增高,则说明 CAR 基因的转录水平表达成功;
( 2 )重组慢病毒载体 lvCAR19-1761~lvCAR19-1769 和对照病毒 MOCK 感染 PBMC 细胞后,收集细胞采用 western blot 进行 CAR 蛋白表达水平的检测,验证 CAR 基因的表达,如果 CAR 蛋白表达水平增高,则说明 CAR 基因的翻译水平表达成功;
( 3 )分别将 MOI=15 的 lvCAR19-1761~lvCAR19-1769 和对照病毒 MOCK 感染细胞, 48h 后提取 6 孔板中细胞的总 RNA 和总蛋白分别进行荧光定量 PCR 实验和免疫印迹实验。具体步骤:包被 6 孔板的四个孔,每个孔加入相应的 PBS 和 RN , 4 ℃ 过夜。 12 小时后按 MOI=15 包被病毒, 37 ℃ 培养箱放置 5h ;取出的 6 孔板,弃掉病毒上清,用 PBS 洗两遍,按 1*106/ 孔,包被 PBMC (用淋巴细胞分离液从人血中分离),加入 500ul 培养基(含 10% 血清、 20U/ml IL-2 、 Polybrene 8ug/ml )。静置 20min , 1000g 20 ℃离心 30min , 37 ℃ 培养 48h 。
( 4 ) Trizol 法提取 6 孔板中 PBMC 细胞的总 RNA ,逆转录扩增 cDNA, 用 QPCR 引物(序列为 SEQ ID NO.63---SEQ ID NO.64 )进行荧光定量 PCR 实验,反应体系见表 8 ,以内参 Actin 为对照组,验证其 mRNA 的转录情况。
试剂 体积( μl )
SYBR premix ex taq: 10 μl
ROX Reverse Dye(50x) 0.4μl
上游引物( 2.5μM ): 0.5μl
下游引物( 2.5μM ): 0.5μl
cDNA 1.0μl
ddH2O 7.6μl
表 8 20μl qPCR 反应体系
( 5 )蛋白 免疫印迹 ( Western Blot) 通过聚丙烯酰胺凝胶电泳将从 PBMC 中提取的总蛋白质按相对分子质量分离。采用湿转( 4 ℃ , 400 mA , 120min ),将蛋白转移到 PVDF 膜上。用封闭液(含 5% 脱脂牛奶的 TBST 溶液)室温封闭 PVDF 膜 1h ,封闭液 1:1000 稀释 Biotinylated protein L ,然后 与封闭好的 PVDF 膜室温孵育 4 ℃ 过夜。 TBST 洗膜 3 次,每次 10min 。封闭液 1:500 稀 释相应的 SA-HRP ,室温 下孵育 PVDF 膜 2h , TBST 洗膜 3 次,每次 10min 。采用 Amersham 公司 ECL+plusTM Western blotting system 试剂盒进行显色。 X 光显影获得显示条带的胶片。
( 6 ) RT-QPCR 检测显示,重组慢病毒载体感染 PBMC 后的 CAR 基因的转录水平比对照病毒 MOCK 和空细胞有明显升高(如图 11 和表 9 所示),说明 CAR 基因的转录水平表达成功。
Sample name Actin(CT) CAR(CT) - ΔCt -ΔΔCt 2-ΔΔCt
lv CAR19-1761 19.51814 29.58243 -10.0643 5.91976 60.53753
lv CAR19-1762 19.15714 29.11395 -9.9568 6.02725 65.22033
lv CAR19-1763 19.20232 29.19465 -9.99233 5.99172 63.6338
lv CAR19-1764 19.26301 29.27989 -10.0169 5.96717 62.55993
lv CAR19-1765 19.29964 29.35456 -10.0549 5.92914 60.93236
lv CAR19-1766 19.3805 29.55666 -10.1762 5.8079 56.02099
lv CAR19-1767 19.52714 29.39926 -9.87212 6.11194 69.16335
lv CAR19-1768 19.75407 29.71702 -9.96295 6.02111 64.94329
lv CAR19-1769 19.48712 29.36486 -9.87774 6.10631 68.89426
MOCK 19.31164 35.11353 -15.8019 0.18217 1.134585
Blank 19.94915 35.93321 -15.9841 0 1
表 9
( 7 )蛋白 免疫印迹 (Western Blot) 的结果表明,重组慢病毒载体感染 PBMC 后 CAR 蛋白的表达水平比对照病毒 MOCK 和空细胞有明显升高(如图 12 所示),说明 CAR 基因的翻译水平表达成功。
二、 IL-6 敲减效果评估( mRNA 转录水平和上清中 IL-6 的表达水平)。
( 1 )分别培养 CD19+K562 细胞和 PBMC 细胞;
( 2 )实验开始前 4 天, MOI=15 的 lvCAR19-1761~lvCAR19-1769 的病毒感染 PBMC 细胞,培养 72-96h 后可安排开始实验;
( 3 )收集靶细胞( CD19+K562 )4x105cells和效应细胞(lvCAR19-1761-PBMC~lvCAR19-1769-PBMC 细胞) 2.8x106cells , 800g , 6min 离心,弃上清;
( 4 )用 1ml 1xPBS 溶液分别重悬靶细胞和效应细胞, 800g , 6min 离心,弃上清;
( 5 )重复步骤 4 一次;
( 6 )用 700ul 培养基( 1640 培养基 +10% FBS )重悬效应细胞,用 2ml 培养基( 1640 培养基 +10% FBS )重悬靶细胞;
( 7 )设置效靶比为 10:1 的实验孔,并设置对照组;
( 8 ) 250xg , 5min 平板离心;
( 9 ) 37 ℃ 5%CO2 培养箱中共培养 4 小时,收集 100ul 共培养上清,做 CBA 检测 IL-6 含量;
( 10 )继续 37 ℃ 5%CO2 培养箱中共培养至 24 小时, 1000xg , 2min 平板离心,收集 100ul 共培养上清做 CBA 检测 IL-6 含量,收集细胞检测 IL-6 mRNA 转录水平;
( 11 ) CBA 检测 IL-6 含量的步骤为, IL-6 标准品管、样品管、阴性对照管中各加入 50ul IL-6 捕获微球悬液,加样前混匀微球;各管分别加入 50ul PE 信号抗体; IL-6 标准品管加入 IL-6 标准品稀释液;样品管、阴性对照管中分别加入稀释后样品和阴性对照液;室温避光孵育 3h ;各管加入 1ml 洗液, 200 xg 离心 5min ;弃上清;各管加入 300ul 洗液,重新悬浮微球;使用 Attune® NxT 流式细胞仪分析样本,当日上机,上机前充分混匀 3-5s ;
( 12 ) Trizol 法提取上述混合细胞的总 RNA ,逆转录扩增 cDNA, 用 QPCR 引物(序列为 SEQ ID NO.65---SEQ ID NO.66 )进行荧光定量 PCR 实验,反应体系见表 6 ,以内参 Actin 为对照组,验证其 mRNA 的转录情况。
( 13 ) 4h 和 24h 的 CBA 检测结果(如图 13 所示), IL-6 敲减重组慢病毒载体感染 PBMC 并与靶细胞孵育后, IL-6 基因的上清含量比对照病毒 lvCAR19-1761 和空细胞有明显降低(如图 14 所示),说明 IL-6 基因的表达水平明显降低。
( 14 ) RT-QPCR 检测结果显示, IL-6 敲减重组慢病毒载体感染 PBMC 并与靶细胞孵育后, IL-6 基因的 mRNA 比对照病毒 lvCAR19-1761 和空细胞有明显降低(如图 15 所示),说明 IL-6 基因的转录水平明显降低。
三、细胞杀伤实验效果评估。
( 1 )分别培养 CD19+K562 细胞和 PBMC 细胞;
( 2 )实验开始前 4 天, MOI=15 的 lvCAR19-1761~lvCAR19-1769 的病毒感染 PBMC 细胞,培养 72-96h 后可安排开始实验;
( 3 )收集靶细胞( CD19+K562 ) 4x105cells 和效应细胞( CART 细胞) 2.8x106cells , 800g , 6min 离心,弃上清;
( 4 )用 1ml 1xPBS 溶液分别重悬靶细胞和效应细胞, 800g , 6min 离心,弃上清;
( 5 )重复步骤 3 一次;
( 6 )用 700ul 培养基( 1640 培养基 +10% FBS )重悬效应细胞,用 2ml 培养基( 1640 培养基 +10% FBS )重悬靶细胞;
( 7 )设置效靶比为 1:1 、 5:1 、 10:1 的实验孔,并设置对照组,每组 3 个复孔;
( 8 ) 250xg , 5min 平板离心;
( 9 ) 37 ℃ 5%CO2 培养箱中培养 4 小时;
( 10 ) 250xg , 5min 平板离心;
( 11 )取每个孔的 50ul 上清到新 96 孔板中,并且每孔加入 50ul 底物溶液(避光操作);
( 12 )避光孵育 25 分钟;
( 13 )每孔加入 50ul 终止液;
( 14 )酶标仪检测 490nm 吸光度;
( 15 )将 3 个复孔取平均值;将所有实验孔、靶细胞孔和效应细胞孔的吸光值减去培养基背景吸光值的均值;将靶细胞最大值的吸光值减去体积校正对照吸光值的均值。
( 16 )将步骤 15 中获得的经过校正的值带入下面公式,计算每个效靶比所产生的细胞毒性百分比。结果如图 16 所示,, IL-6 敲减重组慢病毒载体转导的 PBMC 细胞在 10:1 效靶比条件下杀伤效率明显高于 PBMC 空细胞,低于对照病毒 lvCAR19-1761 转导的 PBMC 细胞;其中 lvCAR19-1763-PBMC 杀伤效率略低于对照病毒 lvCAR19-1761-PBMC ,但是 IL-6 的表达水平下降超过 70% ,将来可以在杀伤肿瘤细胞的同时,释放较少的 IL-6 ,有效缓解 CRS 。
杀伤效率 = (实验孔 − 效应细胞孔 − 靶细胞孔) / (靶细胞最大孔 − 靶细胞孔) X100%
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。
工业实用性
本发明所述的 IL-6 敲减 siRNA 表达框及其 siRNA 表达产物,不仅可以应用于 CAR19-T 治疗急性 B 淋巴细胞白血病 (ALL) 中用于消除或减轻 CRS 的症状,还可应用于缓解 CAR-T 治疗诸如 B 淋巴瘤、胰腺癌、脑胶质瘤、骨髓瘤等等所有类型肿瘤时引起的 CRS 症状,甚至还可以应用于缓解其他类型的治疗引起的 CRS 。
序列表自由内容
序列表
<110> 上海优卡迪生物医药科技有限公司
<120> 人源白细胞介素6的siRNA、重组表达CAR-T载体及其构建方法和应用
<130> HJPCT16-1218
<160> 66
<170> PatentIn version 3.3
<210> 1
<211> 861
<212> DNA
<213> 人工序列
<400> 1
atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct 60
gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 120
cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc 180
gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc 240
cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg 300
gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta 360
tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc 420
ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt 480
gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg 540
cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct 600
tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc 660
tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct 720
cgcggtatca ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac 780
acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 840
tcactgatta agcattggta a 861
<210> 2
<211> 674
<212> DNA
<213> 人工序列
<400> 2
cccgtagaaa agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc 60
ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca 120
actctttttc cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta 180
gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct 240
ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg 300
gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc 360
acacagccca gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta 420
tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg 480
gtcggaacag gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt 540
cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg 600
cggagcctat ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg 660
ccttttgctc acat 674
<210> 3
<211> 147
<212> DNA
<213> 人工序列
<400> 3
atcccgcccc taactccgcc cagttccgcc cattctccgc cccatggctg actaattttt 60
tttatttatg cagaggccga ggccgcctcg gcctctgagc tattccagaa gtagtgagga 120
ggcttttttg gaggcctaga cttttgc 147
<210> 4
<211> 228
<212> DNA
<213> 人工序列
<400> 4
gtagtcttat gcaatactct tgtagtcttg caacatggta acgatgagtt agcaacatgc 60
cttacaagga gagaaaaagc accgtgcatg ccgattggtg gaagtaaggt ggtacgatcg 120
tgccttatta ggaaggcaac agacgggtct gacatggatt ggacgaacca ctgaattgcc 180
gcattgcaga gatattgtat ttaagtgcct agctcgatac aataaacg 228
<210> 5
<211> 180
<212> DNA
<213> 人工序列
<400> 5
ggtctctctg gttagaccag atctgagcct gggagctctc tggctaacta gggaacccac 60
tgcttaagcc tcaataaagc ttgccttgag tgcttcaagt agtgtgtgcc cgtctgttgt 120
gtgactctgg taactagaga tccctcagac ccttttagtc agtgtggaaa atctctagca 180
<210> 6
<211> 234
<212> DNA
<213> 人工序列
<400> 6
tgctagagat tttccacact gactaaaagg gtctgaggga tctctagtta ccagagtcac 60
acaacagacg ggcacacact acttgaagca ctcaaggcaa gctttattga ggcttaagca 120
gtgggttccc tagttagcca gagagctccc aggctcagat ctggtctaac cagagagacc 180
cagtacaagc aaaaagcaga tcttattttc gttgggagtg aattagccct tcca 234
<210> 7
<211> 353
<212> DNA
<213> 人工序列
<400> 7
atgggtgcga gagcgtcagt attaagcggg ggagaattag atcgcgatgg gaaaaaattc 60
ggttaaggcc agggggaaag aaaaaatata aattaaaaca tatagtatgg gcaagcaggg 120
agctagaacg attcgcagtt aatcctggcc tgttagaaac atcagaaggc tgtagacaaa 180
tactgggaca gctacaacca tcccttcaga caggatcaga agaacttaga tcattatata 240
atacagtagc aaccctctat tgtgtgcatc aaaggataga gataaaagac accaaggaag 300
ctttagacaa gatagaggaa gagcaaaaca aaagtaagac caccgcacag caa 353
<210> 8
<211> 233
<212> DNA
<213> 人工序列
<400> 8
aggagctttg ttccttgggt tcttgggagc agcaggaagc actatgggcg cagcctcaat 60
gacgctgacg gtacaggcca gacaattatt gtctggtata gtgcagcagc agaacaattt 120
gctgagggct attgaggcgc aacagcatct gttgcaactc acagtctggg gcatcaagca 180
gctccaggca agaatcctgg ctgtggaaag atacctaaag gatcaacagc tcc 233
<210> 9
<211> 489
<212> DNA
<213> 人工序列
<400> 9
tggggatttg gggttgctct ggaaaactca tttgcaccac tgctgtgcct tggaatgcta 60
gttggagtaa taaatctctg gaacagattg gaatcacacg acctggatgg agtgggacag 120
agaaattaac aattacacaa gcttaataca ctccttaatt gaagaatcgc aaaaccagca 180
agaaaagaat gaacaagaat tattggaatt agataaatgg gcaagtttgt ggaattggtt 240
taacataaca aattggctgt ggtatataaa attattcata atgatagtag gaggcttggt 300
aggtttaaga atagtttttg ctgtactttc tatagtgaat agagttaggc agggatattc 360
accattatcg tttcagaccc acctcccaac cccgagggga cccgacaggc ccgaaggaat 420
agaagaagaa ggtggagaga gagacagaga cagatccatt cgattagtga acggatctcg 480
acggttaac 489
<210> 10
<211> 119
<212> DNA
<213> 人工序列
<400> 10
ttttaaaaga aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat 60
agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc aaaatttta 119
<210> 11
<211> 696
<212> DNA
<213> 人工序列
<400> 11
atggcccagt ccaagcacgg cctgaccaag gagatgacca tgaagtaccg catggagggc 60
tgcgtggacg gccacaagtt cgtgatcacc ggcgagggca tcggctaccc cttcaagggc 120
aagcaggcca tcaacctgtg cgtggtggag ggcggcccct tgcccttcgc cgaggacatc 180
ttgtccgccg ccttcatgta cggcaaccgc gtgttcaccg agtaccccca ggacatcgtc 240
gactacttca agaactcctg ccccgccggc tacacctggg accgctcctt cctgttcgag 300
gacggcgccg tgtgcatctg caacgccgac atcaccgtga gcgtggagga gaactgcatg 360
taccacgagt ccaagttcta cggcgtgaac ttccccgccg acggccccgt gatgaagaag 420
atgaccgaca actgggagcc ctcctgcgag aagatcatcc ccgtgcccaa gcagggcatc 480
ttgaagggcg acgtgagcat gtacctgctg ctgaaggacg gtggccgctt gcgctgccag 540
ttcgacaccg tgtacaaggc caagtccgtg ccccgcaaga tgcccgactg gcacttcatc 600
cagcacaagc tgacccgcga ggaccgcagc gacgccaaga accagaagtg gcacctgacc 660
gagcacgcca tcgcctccgg ctccgccttg ccctga 696
<210> 12
<211> 575
<212> DNA
<213> 人工序列
<400> 12
gcccctctcc ctcccccccc cctaacgtta ctggccgaag ccgcttggaa taaggccggt 60
gtgcgtttgt ctatatgtta ttttccacca tattgccgtc ttttggcaat gtgagggccc 120
ggaaacctgg ccctgtcttc ttgacgagca ttcctagggg tctttcccct ctcgccaaag 180
gaatgcaagg tctgttgaat gtcgtgaagg aagcagttcc tctggaagct tcttgaagac 240
aaacaacgtc tgtagcgacc ctttgcaggc agcggaaccc cccacctggc gacaggtgcc 300
tctgcggcca aaagccacgt gtataagata cacctgcaaa ggcggcacaa ccccagtgcc 360
acgttgtgag ttggatagtt gtggaaagag tcaaatggct cacctcaagc gtattcaaca 420
aggggctgaa ggatgcccag aaggtacccc attgtatggg atctgatctg gggcctcggt 480
gcacatgctt tacatgtgtt tagtcgaggt taaaaaacgt ctaggccccc cgaaccacgg 540
ggacgtggtt ttcctttgaa aaacacgatg ataat 575
<210> 13
<211> 592
<212> DNA
<213> 人工序列
<400> 13
aatcaacctc tggattacaa aatttgtgaa agattgactg gtattcttaa ctatgttgct 60
ccttttacgc tatgtggata cgctgcttta atgcctttgt atcatgctat tgcttcccgt 120
atggctttca ttttctcctc cttgtataaa tcctggttgc tgtctcttta tgaggagttg 180
tggcccgttg tcaggcaacg tggcgtggtg tgcactgtgt ttgctgacgc aacccccact 240
ggttggggca ttgccaccac ctgtcagctc ctttccggga ctttcgcttt ccccctccct 300
attgccacgg cggaactcat cgccgcctgc cttgcccgct gctggacagg ggctcggctg 360
ttgggcactg acaattccgt ggtgttgtcg gggaaatcat cgtcctttcc ttggctgctc 420
gcctgtgttg ccacctggat tctgcgcggg acgtccttct gctacgtccc ttcggccctc 480
aatccagcgg accttccttc ccgcggcctg ctgccggctc tgcggcctct tccgcgtctt 540
cgccttcgcc ctcagacgag tcggatctcc ctttgggccg cctccccgcc tg 592
<210> 14
<211> 256
<212> DNA
<213> 人工序列
<400> 14
ccccttcacc gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc 60
tgttagagag ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac 120
gtgacgtaga aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat 180
ggactatcat atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt 240
gtggaaagga cgaaac 256
<210> 15
<211> 1178
<212> DNA
<213> 人工序列
<400> 15
gctccggtgc ccgtcagtgg gcagagcgca catcgcccac agtccccgag aagttggggg 60
gaggggtcgg caattgaacc ggtgcctaga gaaggtggcg cggggtaaac tgggaaagtg 120
atgtcgtgta ctggctccgc ctttttcccg agggtggggg agaaccgtat ataagtgcag 180
tagtcgccgt gaacgttctt tttcgcaacg ggtttgccgc cagaacacag gtaagtgccg 240
tgtgtggttc ccgcgggcct ggcctcttta cgggttatgg cccttgcgtg ccttgaatta 300
cttccacctg gctgcagtac gtgattcttg atcccgagct tcgggttgga agtgggtggg 360
agagttcgag gccttgcgct taaggagccc cttcgcctcg tgcttgagtt gaggcctggc 420
ctgggcgctg gggccgccgc gtgcgaatct ggtggcacct tcgcgcctgt ctcgctgctt 480
tcgataagtc tctagccatt taaaattttt gatgacctgc tgcgacgctt tttttctggc 540
aagatagtct tgtaaatgcg ggccaagatc tgcacactgg tatttcggtt tttggggccg 600
cgggcggcga cggggcccgt gcgtcccagc gcacatgttc ggcgaggcgg ggcctgcgag 660
cgcggccacc gagaatcgga cgggggtagt ctcaagctgg ccggcctgct ctggtgcctg 720
gcctcgcgcc gccgtgtatc gccccgccct gggcggcaag gctggcccgg tcggcaccag 780
ttgcgtgagc ggaaagatgg ccgcttcccg gccctgctgc agggagctca aaatggagga 840
cgcggcgctc gggagagcgg gcgggtgagt cacccacaca aaggaaaagg gcctttccgt 900
cctcagccgt cgcttcatgt gactccactg agtaccgggc gccgtccagg cacctcgatt 960
agttctcgag cttttggagt acgtcgtctt taggttgggg ggaggggttt tatgcgatgg 1020
agtttcccca cactgagtgg gtggagactg aagttaggcc agcttggcac ttgatgtaat 1080
tctccttgga atttgccctt tttgagtttg gatcttggtt cattctcaag cctcagacag 1140
tggttcaaag tttttttctt ccatttcagg tgtcgtga 1178
<210> 16
<211> 63
<212> DNA
<213> 人工序列
<400> 16
atggccttac cagtgaccgc cttgctcctg ccgctggcct tgctgctcca cgccgccagg 60
ccg 63
<210> 17
<211> 321
<212> DNA
<213> 人工序列
<400> 17
gacatccaga tgacacagac tacatcctcc ctgtctgcct ctctgggaga cagagtcacc 60
atcagttgca gggcaagtca ggacattagt aaatatttaa attggtatca gcagaaacca 120
gatggaactg ttaaactcct gatctaccat acatcaagat tacactcagg agtcccatca 180
aggttcagtg gcagtgggtc tggaacagat tattctctca ccattagcaa cctggagcaa 240
gaagatattg ccacttactt ttgccaacag ggtaatacgc ttccgtacac gttcggaggg 300
gggaccaagc tggagatcac a 321
<210> 18
<211> 45
<212> DNA
<213> 人工序列
<400> 18
ggtggcggtg gctcgggcgg tggtgggtcg ggtggcggcg gatct 45
<210> 19
<211> 360
<212> DNA
<213> 人工序列
<400> 19
gaggtgaaac tgcaggagtc aggacctggc ctggtggcgc cctcacagag cctgtccgtc 60
acatgcactg tctcaggggt ctcattaccc gactatggtg taagctggat tcgccagcct 120
ccacgaaagg gtctggagtg gctgggagta atatggggta gtgaaaccac atactataat 180
tcagctctca aatccagact gaccatcatc aaggacaact ccaagagcca agttttctta 240
aaaatgaaca gtctgcaaac tgatgacaca gccatttact actgtgccaa acattattac 300
tacggtggta gctatgctat ggactactgg ggccaaggaa cctcagtcac cgtctcctca 360
<210> 20
<211> 141
<212> DNA
<213> 人工序列
<400> 20
accacgacgc cagcgccgcg accaccaaca ccggcgccca ccatcgcgtc gcagcccctg 60
tccctgcgcc cagaggcgtg ccggccagcg gcggggggcg cagtgcacac gagggggctg 120
gacttcgcct gtgatatcta c 141
<210> 21
<211> 66
<212> DNA
<213> 人工序列
<400> 21
atctgggcgc ccttggccgg gacttgtggg gtccttctcc tgtcactggt tatcaccctt 60
tactgc 66
<210> 22
<211> 126
<212> DNA
<213> 人工系列
<400> 22
aaacggggca gaaagaaact cctgtatata ttcaaacaac catttatgag accagtacaa 60
actactcaag aggaagatgg ctgtagctgc cgatttccag aagaagaaga aggaggatgt 120
gaactg 126
<210> 23
<211> 336
<212> DNA
<213> 人工序列
<400> 23
agagtgaagt tcagcaggag cgcagacgcc cccgcgtaca agcagggcca gaaccagctc 60
tataacgagc tcaatctagg acgaagagag gagtacgatg ttttggacaa gagacgtggc 120
cgggaccctg agatgggggg aaagccgaga aggaagaacc ctcaggaagg cctgtacaat 180
gaactgcaga aagataagat ggcggaggcc tacagtgaga ttgggatgaa aggcgagcgc 240
cggaggggca aggggcacga tggcctttac cagggtctca gtacagccac caaggacacc 300
tacgacgccc ttcacatgca ggccctgccc cctcgc 336
<210> 24
<211> 123
<212> DNA
<213> 人工序列
<400> 24
aggagtaaga ggagcaggct cctgcacagt gactacatga acatgactcc ccgccgcccc 60
gggcccaccc gcaagcatta ccagccctat gccccaccac gcgacttcgc agcctatcgc 120
tcc 123
<210> 25
<211> 36
<212> DNA
<213> 人工序列
<400> 25
attcaaaatt ttatcgatgc tccggtgccc gtcagt 36
<210> 26
<211> 22
<212> DNA
<213> 人工序列
<400> 26
tcacgacacc tgaaatggaa ga 22
<210> 27
<211> 42
<212> DNA
<213> 人工序列
<400> 27
ggtgtcgtga ggatccgcca ccatggcctt accagtgacc gc 42
<210> 28
<211> 31
<212> DNA
<213> 人工序列
<400> 28
gtgtcatctg gatgtccggc ctggcggcgt g 31
<210> 29
<211> 41
<212> DNA
<213> 人工序列
<400> 29
cacgccgcca ggccggacat ccagatgaca cagactacat c 41
<210> 30
<211> 20
<212> DNA
<213> 人工序列
<400> 30
tgtgatctcc agcttggtcc 20
<210> 31
<211> 82
<212> DNA
<213> 人工序列
<400> 31
caagctggag atcacaggtg gcggtggctc gggcggtggt gggtcgggtg gcggcggatc 60
tgaggtgaaa ctgcaggagt ca 82
<210> 32
<211> 21
<212> DNA
<213> 人工序列
<400> 32
tgaggagacg gtgactgagg t 21
<210> 33
<211> 33
<212> DNA
<213> 人工序列
<400> 33
agtcaccgtc tcctcaacca cgacgccagc gcc 33
<210> 34
<211> 23
<212> DNA
<213> 人工序列
<400> 34
gtagatatca caggcgaagt cca 23
<210> 35
<211> 33
<212> DNA
<213> 人工序列
<400> 35
cgcctgtgat atctacatct gggcgccctt ggc 33
<210> 36
<211> 39
<212> DNA
<213> 人工序列
<400> 36
tctttctgcc ccgtttgcag taaagggtga taaccagtg 39
<210> 37
<211> 21
<212> DNA
<213> 人工序列
<400> 37
aaacggggca gaaagaaact c 21
<210> 38
<211> 40
<212> DNA
<213> 人工序列
<400> 38
tgctgaactt cactctcagt tcacatcctc cttcttcttc 40
<210> 39
<211> 22
<212> DNA
<213> 人工序列
<400> 39
agagtgaagt tcagcaggag cg 22
<210> 40
<211> 34
<212> DNA
<213> 人工序列
<400> 40
ggagaggggc gtcgacttag cgagggggca gggc 34
<210> 41
<211> 54
<212> DNA
<213> 人工序列
<400> 41
ccggttctcc gaacgtgtca cgtctcgaga cgtgacacgt tcggagaatt tttg 54
<210> 42
<211> 54
<212> DNA
<213> 人工序列
<400> 42
aattcaaaaa ttctccgaac gtgtcacgtc tcgagacgtg acacgttcgg agaa 54
<210> 43
<211> 59
<212> DNA
<213> 人工序列
<400> 43
ccgggtgaag ctgagttaat ttatgctcga gtaaattaac tcagcttcac atttttttg 59
<210> 44
<211> 59
<212> DNA
<213> 人工序列
<400> 44
aattcaaaaa aatgtgaagc tgagttaatt tactcgagca taaattaact cagcttcac 59
<210> 45
<211> 59
<212> DNA
<213> 人工序列
<400> 45
ccgggcacag aacttatgtt gttctctcga gaacaacata agttctgtgc ccttttttg 59
<210> 46
<211> 59
<212> DNA
<213> 人工序列
<400> 46
aattcaaaaa agggcacaga acttatgttg ttctcgagag aacaacataa gttctgtgc 59
<210> 47
<211> 59
<212> DNA
<213> 人工序列
<400> 47
ccggctcaga ttgttgttgt taatgctcga gttaacaaca acaatctgag gtttttttg 59
<210> 48
<211> 59
<212> DNA
<213> 人工序列
<400> 48
aattcaaaaa aacctcagat tgttgttgtt aactcgagca ttaacaacaa caatctgag 59
<210> 49
<211> 59
<212> DNA
<213> 人工序列
<400> 49
ccgggcagct ttaaggagtt cctgcctcga gaggaactcc ttaaagctgc gcttttttg 59
<210> 50
<211> 59
<212> DNA
<213> 人工序列
<400> 50
aattcaaaaa agcgcagctt taaggagttc ctctcgaggc aggaactcct taaagctgc 59
<210> 51
<211> 59
<212> DNA
<213> 人工序列
<400> 51
ccgggtgtag gcttacctca aataactcga gatttgaggt aagcctacac ttttttttg 59
<210> 52
<211> 59
<212> DNA
<213> 人工序列
<400> 52
aattcaaaaa aaagtgtagg cttacctcaa atctcgagtt atttgaggta agcctacac 59
<210> 53
<211> 59
<212> DNA
<213> 人工序列
<400> 53
ccggctcaaa taaatggcta acttactcga gagttagcca tttatttgag gtttttttg 59
<210> 54
<211> 59
<212> DNA
<213> 人工序列
<400> 54
aattcaaaaa aacctcaaat aaatggctaa ctctcgagta agttagccat ttatttgag 59
<210> 55
<211> 59
<212> DNA
<213> 人工序列
<400> 55
ccgggatgct tccaatctgg attcactcga gaatccagat tggaagcatc cattttttg 59
<210> 56
<211> 59
<212> DNA
<213> 人工序列
<400> 56
aattcaaaaa atggatgctt ccaatctgga ttctcgagtg aatccagatt ggaagcatc 59
<210> 57
<211> 59
<212> DNA
<213> 人工序列
<400> 57
ccggcttcca atctggattc aatgactcga gattgaatcc agattggaag cattttttg 59
<210> 58
<211> 59
<212> DNA
<213> 人工序列
<400> 58
aattcaaaaa atgcttccaa tctggattca atctcgagtc attgaatcca gattggaag 59
<210> 59
<211> 21
<212> DNA
<213> 人工序列
<400> 59
cctttccggg actttcgctt t 21
<210> 60
<211> 20
<212> DNA
<213> 人工序列
<400> 60
gcagaatcca ggtggcaaca 20
<210> 61
<211> 21
<212> DNA
<213> 人工序列
<400> 61
catgtacgtt gctatccagg c 21
<210> 62
<211> 21
<212> DNA
<213> 人工序列
<400> 62
ctccttaatg tcacgcacga t 21
<210> 63
<211> 21
<212> DNA
<213> 人工序列
<400> 63
gacttgtggg gtccttctcc t 21
<210> 64
<211> 21
<212> DNA
<213> 人工序列
<400> 64
gcagctacag ccatcttcct c 21
<210> 65
<211> 19
<212> DNA
<213> 人工序列
<400> 65
ggattcaatg aggagactt 19
<210> 66
<211> 18
<212> DNA
<213> 人工序列
<400> 66
atctgttctg gaggtact 18

Claims (1)

  1. 1 、 一种人源白细胞介素 6 的 siRNA ,所述 siRNA 选自下述中的 a-h 中的任一对:
    a. SEQ ID NO.43 和 SEQ ID NO.44 所示的核苷酸序列;
    b. SEQ ID NO.45 和 SEQ ID NO.46 所示的核苷酸序列;
    c. SEQ ID NO.47 和 SEQ ID NO.48 所示的核苷酸序列;
    d. SEQ ID NO.49 和 SEQ ID NO.50 所示的核苷酸序列;
    e. SEQ ID NO.51 和 SEQ ID NO.52 所示的核苷酸序列;
    f. SEQ ID NO.53 和 SEQ ID NO.54 所示的核苷酸序列;
    g. SEQ ID NO.55 和 SEQ ID NO.56 所示的核苷酸序列;
    h. SEQ ID NO.57 和 SEQ ID NO.58 所示的核苷酸序列。
    2 、如权利要求 1 所述的 siRNA 在制备 治疗缓解细胞因子释放综合症药物中的应用。
    3 、一种包含权利要求 1 所述的 siRNA 的重组表达载体。
    4 、如权利要求 3 所述的重组表达载体,其特征在于:所述表达载体为慢病毒表达载体、逆转录病毒表达载体、腺病毒表达载体、腺相关病毒表达载体或质粒。
    5 、如权利要求 4 所述的重组表达载体,其特征在于:所述的慢病毒表达载体包括:用于质粒复制的原核复制子 pUC Ori 序列,如 SEQ ID NO.2 所示;用于目的菌株大量扩增的含氨苄青霉素抗性基因 AmpR 序列,如 SEQ ID NO.1 所示;用于增强真核细胞内的复制的病毒复制子 SV40 Ori 序列,如 SEQ ID NO.3 所示;用于慢病毒包装的慢病毒包装顺式元件;用于真核细胞表达绿色荧光的 ZsGreen1 绿色荧光蛋白,如 SEQ ID NO.11 所示;用于共同转录表达蛋白质的 IRES 核糖体结合序列,如 SEQ ID NO.12 所示;用于嵌合抗原受体基因的真核转录的人 EF1 α 启动子,如 SEQ ID NO.14 所示;用于组成集识别、传递、启动于一体的二代 CAR 或三代 CAR 的抗 CD19 嵌合抗原受体的编码基因,如 SEQ ID NO.52 或 SEQ ID NO.53 所示;用于增强转基因的表达效率的 eWPRE 增强型土拨鼠乙肝病毒转录后调控元件,如 SEQ ID NO.13 所示; 用于胞内转录 siRNA 的 人 RNA 聚合酶 III 启动子 hU6 ,如 SEQ ID NO.14 所示。
    6 、如权利要求 5 所述的重组表达载体,其特征在于:所述慢病毒包装顺式元件采用第二代慢病毒载体包括:如 SEQ ID NO.5 所示的慢病毒 5 terminal LTR 、如 SEQ ID NO.6 所示的慢病毒 3 terminal Self-Inactivating LTR 、如 SEQ ID NO.7 所示的 Gag 顺式元件、如 SEQ ID NO.8 所示的 RRE 顺式元件、如 SEQ ID NO.9 所示的 env 顺式元件、如 SEQ ID NO.10 所示的 cPPT 顺式元件。
    7 、如权利要求 5 所述的重组表达载体,其特征在于:所述慢病毒包装顺式元件采用第三代慢病毒载体包括:如 SEQ ID NO.5 所示的慢病毒 5 terminal LTR 、如 SEQ ID NO.6 所示的慢病毒 3 terminal Self-Inactivating LTR 、如 SEQ ID NO.7 所示的 Gag 顺式元件、如 SEQ ID NO.8 所示的 RRE 顺式元件、如 SEQ ID NO.9 所示的 env 顺式元件、如 SEQ ID NO.10 所示的 cPPT 顺式元件所述慢病毒包装顺式元件,以及如 SEQ ID NO.4 所示的 RSV 启动子。
    8 、如权利要求 5 所述的重组表达载体,其特征在于:所述 eWPRE 增强型土拨鼠乙肝病毒转录后调控元件有 6 个核苷酸的增强突变,具体为: g.396G>A 、 g.397C>T 、 g.398T>C 、 g.399G>A 、 g.400A>T 、 g.411A>T 。
    9 、如权利要求 5 所述的重组表达载体,其特征在于:所述抗 CD19 嵌合抗原受体,包括依次串联的如 SEQ ID NO.16 所示的 CD8 leader 嵌合受体信号肽、如 SEQ ID NO.17 所示的 CD19 单链抗体轻链 VL 、如 SEQ ID NO.18 所示的 Optimal Linker C 、如 SEQ ID NO.19 所示的 CD19 单链抗体重链 VH 、如 SEQ ID NO.20 所示的 CD8 Hinge 嵌合受体铰链、如 SEQ ID NO.21 所示的 CD8 Transmembrane 嵌合受体跨膜区、如 SEQ ID NO.22 所示的 CD137 嵌合受体共刺激因子,以及如 SEQ ID NO.23 所示的 TCR 嵌合受体 T 细胞激活域。
    10 、如权利要求 5 所述的重组表达载体,其特征在于:所述抗 CD19 嵌合抗原受体,包括依次串联的如 SEQ ID NO.16 所示的 CD8 leader 嵌合受体信号肽、、如 SEQ ID NO.17 所示的 CD19 单链抗体轻链 VL 、如 SEQ ID NO.18 所示的 Optimal Linker C 、如 SEQ ID NO.19 所示的 CD19 单链抗体重链 VH 、如 SEQ ID NO.20 所示的 CD8 Hinge 嵌合受体铰链、如 SEQ ID NO.21 所示的 CD8 Transmembrane 嵌合受体跨膜区、如 SEQ ID NO.24 所示的 CD28 嵌合受体共刺激因子、如 SEQ ID NO.22 所示的 CD137 嵌合受体共刺激因子以及如 SEQ ID NO.23 所示的 TCR 嵌合受体 T 细胞激活域。
    11 、一种包含权利要求 1 所述的 siRNA 的慢病毒表达载体的构建方法,包括以下步骤:
    ( 1 )将含氨苄青霉素抗性基因 AmpR 序列(如 SEQ ID NO.1 所示)、原核复制子 pUC Ori 序列(如 SEQ ID NO.2 所示)、病毒复制子 SV40 Ori 序列(如 SEQ ID NO.3 所示)、用于慢病毒包装的慢病毒包装顺式元件、 ZsGreen1 绿色荧光蛋白(如 SEQ ID NO.11 所示)、 IRES 核糖体结合序列(如 SEQ ID NO.12 所示)、 eWPRE 增强型土拨鼠乙肝病毒转录后调控元件(如 SEQ ID NO.13 所示)、 人 RNA 聚合酶 III 启动子 hU6 (如 SEQ ID NO.14 所示) 存储于慢病毒骨架质粒上;
    ( 2 )将人 EF1 α 启动子(如 SEQ ID NO.15 所示)、用于组成集识别、传递、启动于一体的二代 CAR 或三代 CAR 的抗 CD19 嵌合抗原受体组合成二代 CAR 或三代 CAR 设计方案,经过酶切、连接、重组反应克隆至慢病毒骨架质粒中,得到二代 CAR 或三代 CAR 设计的重组慢病毒质粒;
    ( 3 )将上述 siRNA 以及如 SEQ ID NO.41 和 SEQ ID NO.42 所示的 negative control 序列,分别克隆至步骤( 2 )所得的重组慢病毒质粒中,得到 IL-6 敲减重组慢病毒质粒;
    ( 4 )将步骤( 3 )得到的重组慢病毒质粒分别与慢病毒包装质粒 pPac-GP 、 pPac-R 以及膜蛋白质粒 pEnv-G 共同转染 HEK293T/17 细胞,在 HEK293T/17 细胞中进行基因转录表达后,包装成功重组慢病毒载体会释放到细胞培养上清中,收集包含的重组慢病毒载体的上清液;
    ( 5 )将得到的重组慢病毒上清采用抽滤、吸附、洗脱的离子交换方式进行纯化,分别得到重组慢病毒载体。
    12 、如权利要求 11 所述的构建方法,其特征在于: 步骤( 4 )中,所述抽滤步骤控制上清体积在 200ml~2000ml ,真空度控制在 -0.5MPA~-0.9MPA ,防止由于堵孔带来的载体损失;所述吸附步骤控制溶液的 PH 值在 6~8 ,防止 PH 的变化导致载体失活;所述洗脱步骤控制洗脱液的离子强度在 0.5M~1.0M ,防止离子强度的变化导致洗脱不完全或者载体失活。
    13 、如权利要求3-10任一项所述的重组表达载体在制备 CAR-T 治疗过程中由 IL6 释放引起的炎症细胞因子综合症药物中的应用。
    14 、一种 CART 细胞,所述的 CAR-T 细胞是由上述 siRNA 修饰的 T 淋巴细胞。
    15 、根据权利要求 14 所述的 CAR-T细胞在制备 B淋巴瘤、胰腺癌、脑胶质瘤、骨髓瘤治疗药物中的应用。
PCT/CN2016/105263 2016-10-11 2016-11-10 人源白细胞介素 6 的 siRNA 、重组表达 CAR-T 载体及其构建方法和应用 WO2018068354A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019538547A JP6903305B2 (ja) 2016-10-11 2016-11-10 ヒト由来インターロイキン6のsiRNA、組換え発現CAR−Tベクターおよびその構築方法と使用
EP16918621.0A EP3505629A4 (en) 2016-10-11 2016-11-10 SIRNA FROM HUMANEM INTERLEUKIN 6, CAR-T VECTOR WITH RECOMBINANT EXPRESSION, PRODUCTION METHOD AND USE THEREOF
US16/331,142 US10702552B2 (en) 2016-10-11 2016-11-10 SiRNA of human IL-6 and recombinant expression CAR-T vector and their construction methods and applications
KR1020197007212A KR102266755B1 (ko) 2016-10-11 2016-11-10 인간 인터류킨 6의 siRNA, 재조합 발현 CAR-T 벡터 및 그의 제조 방법 및 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610887703.XA CN106636090B (zh) 2016-10-11 2016-10-11 人源白细胞介素6的siRNA、重组表达CAR-T载体及其构建方法和应用
CN201610887703.X 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018068354A1 true WO2018068354A1 (zh) 2018-04-19

Family

ID=58855172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105263 WO2018068354A1 (zh) 2016-10-11 2016-11-10 人源白细胞介素 6 的 siRNA 、重组表达 CAR-T 载体及其构建方法和应用

Country Status (6)

Country Link
US (1) US10702552B2 (zh)
EP (1) EP3505629A4 (zh)
JP (2) JP6903305B2 (zh)
KR (1) KR102266755B1 (zh)
CN (1) CN106636090B (zh)
WO (1) WO2018068354A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076489A1 (en) * 2017-10-19 2019-04-25 Cellectis TARGETED GENE INTEGRATION OF CRS INHIBITORY GENES FOR ENHANCED CELL IMMUNOTHERAPY
WO2019232425A1 (en) * 2018-06-01 2019-12-05 Washington University Suppression of cytokine release syndrome in chimeric antigen receptor cell therapy

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108148863B (zh) * 2016-12-05 2019-12-17 上海优卡迪生物医药科技有限公司 一种封闭il6r的用于缓解crs的car-t转基因载体及其构建方法和应用
CN107245500B (zh) * 2017-05-27 2019-05-17 上海优卡迪生物医药科技有限公司 一种基于octs技术的淋系白血病car-t治疗载体及其构建方法和应用
CN107916269B (zh) * 2017-11-17 2020-12-11 山东兴瑞生物科技有限公司 靶向cd19的tcr基因、制备方法、具有该基因的质粒、试剂盒及应用
CN108753774B (zh) * 2018-05-03 2021-03-30 山东省齐鲁细胞治疗工程技术有限公司 干扰il-6表达的cd19-car-t细胞及其应用
CN108949759B (zh) * 2018-07-23 2021-06-01 合肥一兮生物科技有限公司 敲减人IL-15的siRNA、CD19 CAR表达载体、CAR-T细胞及构建方法和应用
CN110317808B (zh) * 2019-06-10 2022-11-18 纳肽得(青岛)生物医药有限公司 肝细胞癌相关基因的siRNA分子及其应用
CN112430579A (zh) * 2019-08-26 2021-03-02 深圳宾德生物技术有限公司 靶向Her2并干扰IL-6表达的嵌合抗原受体T细胞及其制备方法和应用
CN112430577A (zh) * 2019-08-26 2021-03-02 深圳宾德生物技术有限公司 靶向EGFRvⅢ并干扰IL-6表达的嵌合抗原受体T细胞及其制备方法和应用
TWI758171B (zh) 2021-04-28 2022-03-11 沛爾生技醫藥股份有限公司 慢病毒包裝系統及使用其以提高宿主細胞之慢病毒產量的方法
CN117402902B (zh) * 2023-12-11 2024-04-16 温氏食品集团股份有限公司 引物组合物及其在制备t载体上的应用
CN117567650B (zh) * 2024-01-15 2024-04-02 中国人民解放军东部战区总医院 共表达细胞间黏附分子icam2的car-t细胞及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011984A1 (en) * 2012-07-13 2014-01-16 The Trustees Of The University Of Pennsylvania Toxicity management for anti-tumor activity of cars

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010547A1 (de) * 2004-03-03 2005-11-17 Beiersdorf Ag Oligoribonukleotide zur Behandlung von irritativen und/oder entzündlichen Hauterscheinungen durch RNA-Interferenz
US20070036773A1 (en) * 2005-08-09 2007-02-15 City Of Hope Generation and application of universal T cells for B-ALL
JP2009518008A (ja) * 2005-11-30 2009-05-07 イントラディグム コーポレイション 遺伝子発現をノックダウンするため、そして固形臓器および細胞の移植を改善するためにsiRNAを使用する組成物および方法
JP2009522303A (ja) * 2005-12-30 2009-06-11 ウェイ−ウー ヒー, 瘢痕を生じない皮膚創傷治癒を促進するsiRNA組成物および創傷処置の方法
WO2008109350A2 (en) * 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting il6 gene expression and uses thereof
JP6853514B2 (ja) * 2015-12-27 2021-03-31 国立大学法人東海国立大学機構 炎症性サイトカインの産生が抑制されるキメラ抗原受容体遺伝子改変リンパ球
CN105602992B (zh) * 2016-03-17 2019-06-21 上海优卡迪生物医药科技有限公司 一种基于复制缺陷性重组慢病毒的car-t转基因载体及其构建方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011984A1 (en) * 2012-07-13 2014-01-16 The Trustees Of The University Of Pennsylvania Toxicity management for anti-tumor activity of cars

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEREMU, AZIGULI ET AL.: "The Construction of Rat IL -6 Gene siRNA Expression Vector", JOURNAL OF XINJIANG MEDICAL UNIVERSITY, vol. 29, no. 9, 30 September 2007 (2007-09-30), pages 932 - 934, XP009512579, ISSN: 1009-5551 *
See also references of EP3505629A4 *
T EOH, H.K. ET AL.: "Small Interfering RNA Silencing of Interleukin-6 in Mesenchymal Stromal Cells Inhibits Multiple Myeloma Cell Growth", LEUKEMIA RESEARCH, vol. 40, 31 January 2016 (2016-01-31), pages 44 - 53, XP029375396, ISSN: 0145-2126, DOI: doi:10.1016/j.leukres.2015.10.004 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076489A1 (en) * 2017-10-19 2019-04-25 Cellectis TARGETED GENE INTEGRATION OF CRS INHIBITORY GENES FOR ENHANCED CELL IMMUNOTHERAPY
WO2019232425A1 (en) * 2018-06-01 2019-12-05 Washington University Suppression of cytokine release syndrome in chimeric antigen receptor cell therapy
CN112533942A (zh) * 2018-06-01 2021-03-19 华盛顿大学 嵌合抗原受体细胞疗法中细胞因子释放综合征的抑制
JP2021525530A (ja) * 2018-06-01 2021-09-27 ワシントン・ユニバーシティWashington University キメラ抗原受容体細胞治療薬を用いたサイトカイン放出症候群の抑制

Also Published As

Publication number Publication date
CN106636090A (zh) 2017-05-10
EP3505629A4 (en) 2020-01-01
JP6903305B2 (ja) 2021-07-14
KR20190038645A (ko) 2019-04-08
JP6996779B2 (ja) 2022-02-15
JP2020188777A (ja) 2020-11-26
US10702552B2 (en) 2020-07-07
JP2019532673A (ja) 2019-11-14
EP3505629A1 (en) 2019-07-03
KR102266755B1 (ko) 2021-06-23
US20190201445A1 (en) 2019-07-04
CN106636090B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2018068354A1 (zh) 人源白细胞介素 6 的 siRNA 、重组表达 CAR-T 载体及其构建方法和应用
KR102266751B1 (ko) 인간 PD-1를 녹다운시킨 siRNA, 재조합발현 CAR-T 벡터 및 그의 제조방법과 용도
CN108148863B (zh) 一种封闭il6r的用于缓解crs的car-t转基因载体及其构建方法和应用
KR102157197B1 (ko) 일종의 pdl1 차단을 통한 면역회피 억제에 사용되는 car-t 형질전환 벡터 및 그의 구축방법과 용도
CN107325185B (zh) 基于octs-car的抗psca及pdl1双靶向嵌合抗原受体、编码基因及表达载体
CN107267555B (zh) 一种基于octs技术的恶性胶质瘤car-t治疗载体及其构建方法和应用
Pereira et al. Molecular analysis of the En/Spm transposable element system of Zea mays
CN107245500B (zh) 一种基于octs技术的淋系白血病car-t治疗载体及其构建方法和应用
WO2011056005A2 (ko) 안티센스 가닥에 의한 오프-타겟 효과를 최소화한 신규한 siRNA 구조 및 그 용도
CN108018312B (zh) 一种t淋巴细胞白血病的car-t治疗载体及其构建方法和应用
FR2708288A1 (fr) Procédé d&#39;amplification d&#39;acides nucléiques par transcription utilisant le déplacement, réactifs et nécessaire pour la mise en Óoeuvre de ce procédé.
Owens et al. Site-specific mutagenesis of potato spindle tuber viroid cDNA: alterations within premelting region 2 that abolish infectivity
CN107287207B (zh) 一种用于体内示踪和人工清除car-t细胞的标签和应用
CN107299110B (zh) 一种基于octs技术的胰腺癌、恶性间皮瘤car-t治疗载体及其构建方法和应用
WO2019117671A1 (ko) 5&#39;-이노신산을 생산하는 미생물 및 이를 이용한 5&#39;-이노신산의 생산 방법
WO2018040537A1 (zh) 人pd-1基因敲除的cldn18.2 特异性嵌合抗原受体t细胞的制备方法以及应用
CN106957859A (zh) 一种用于拯救麻疹病毒、重组麻疹病毒的系统以及方法
Duarte et al. Characterization of TRBP1 and TRBP2: stable stem-loop structure at the 5′ end of TRBP2 mRNA resembles HIV-1 TAR and is not found in its processed pseudogene
CN107177632B (zh) 一种基于octs技术的髓系白血病car-t治疗载体及其构建方法和应用
CN107164410B (zh) 一种基于octs技术的前列腺癌car-t治疗载体及其构建方法和应用
Bosselman et al. Genome organization of retroviruses. VI. Heteroduplex analysis of ecotropic and xenotropic sequences of Moloney mink cell focus-inducing viral RNA obtained from either a cloned isolate or a thymoma cell line
Stavnezer et al. Switch recombination in a transfected plasmid occurs preferentially in a B cell line that undergoes switch recombination of its chromosomal Ig heavy chain genes
WO2022225353A1 (ko) 타겟 유전자 조절을 위한 다기능성 핵산 구조체 및 이의 용도
Boccard et al. Infectious in vitro transcripts from amplified cDNAs of the Y and Kin strains of cucumber mosaic virus
WO2022131876A1 (ko) 유전자 침묵 활성이 증가된 핵산 분자 및 이의 이용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007212

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019538547

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016918621

Country of ref document: EP

Effective date: 20190327

NENP Non-entry into the national phase

Ref country code: DE