WO2018066281A1 - Ceramic lattice - Google Patents

Ceramic lattice Download PDF

Info

Publication number
WO2018066281A1
WO2018066281A1 PCT/JP2017/031646 JP2017031646W WO2018066281A1 WO 2018066281 A1 WO2018066281 A1 WO 2018066281A1 JP 2017031646 W JP2017031646 W JP 2017031646W WO 2018066281 A1 WO2018066281 A1 WO 2018066281A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
intersection
linear
filament
lattice body
Prior art date
Application number
PCT/JP2017/031646
Other languages
French (fr)
Japanese (ja)
Inventor
哲宗 黒村
峻 有馬
光司 本田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020197006732A priority Critical patent/KR102227122B1/en
Priority to JP2017560645A priority patent/JP6284693B1/en
Priority to CN201780054879.XA priority patent/CN109689594B/en
Publication of WO2018066281A1 publication Critical patent/WO2018066281A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge

Definitions

  • the present invention relates to a ceramic lattice.
  • Patent Literature As a conventional technology related to ceramic setters, for example, a heat setter setter made of a porous plate made of ceramics mainly composed of aluminum nitride and having a large number of holes penetrating the front and back is known (Patent Literature). 1). According to this document, by using aluminum nitride as ceramics, the maximum usable temperature is higher than that of oxide ceramics typified by alumina and magnesia, and the thermal conductivity is large. The resistance to heat shock is said to increase.
  • Patent Document 2 describes a ceramic firing kiln tool plate in which at least uneven shapes are provided on the front surface side and the back surface side on which the object to be fired is placed and an opening is formed. According to this document, according to this kiln tool plate, the heat capacity can be reduced and the cost can be reduced, and the contact area with the fired product is reduced, so that the escape of gas is improved and the atmosphere is uniform. It describes that a to-be-fired body can be manufactured uniformly by conversion.
  • an object of the present invention is to provide a ceramic lattice body that can eliminate the various drawbacks of the above-described prior art.
  • the present invention includes a plurality of first filaments made of ceramics extending in one direction, and a plurality of second filaments made of ceramics extending in a direction intersecting with the first filaments.
  • a ceramic lattice body having The intersection of the first filament and the second filament is the second filament on the first filament at any intersection.
  • the first striated portion has a shape in which a cross section thereof is configured by a straight portion and a convex curved portion having both ends of the straight portion as ends at a portion other than the intersection.
  • the second striated portion has a circular or oval shape in cross section at a portion other than the intersection
  • the ceramic lattice body has a straight side portion in at least a part of the outline in plan view
  • the present invention provides a ceramic lattice body in which the first and second linear portions and the linear side portion intersect each other independently at an angle of not less than 10 degrees and not more than 170 degrees.
  • the ceramic lattice of the present invention has high strength and excellent spalling resistance.
  • FIG.1 (a) is a top view which shows one Embodiment of the ceramic lattice body of this invention
  • FIG.1 (b) is a principal part enlarged plan view of the ceramic lattice body shown to Fig.1 (a).
  • 2A is a perspective view of the ceramic lattice body shown in FIGS. 1A and 1B
  • FIG. 2B shows the ceramic lattice body shown in FIG. 2A from the opposite side.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a projection view of the vicinity of the intersection point as seen from the second filament part side in the ceramic lattice shown in FIG.
  • FIG. 8 is a projection view of the vicinity of the intersection point as seen from the first filament part side in the ceramic lattice shown in FIG.
  • FIG. 9 is a schematic diagram showing the shape of the through hole in the ceramic lattice shown in FIG.
  • FIG. 10 is a plan view showing another embodiment of the ceramic lattice body of the present invention.
  • FIG. 11A and FIG. 11B are schematic views showing still another embodiment of the ceramic lattice body of the present invention.
  • a ceramic lattice body (hereinafter, also simply referred to as “lattice body”) 1 shown in these drawings has a straight side portion in at least a part of a contour in plan view.
  • the lattice body 1 has a rectangular outline having a first side L1 and a second side L2 facing each other, and a third side L3 and a fourth side L4 facing each other. ing.
  • the lattice body 1 has a plurality of ceramic first filaments extending in one direction X. 10 Each 1st filament part 10 is carrying out the straight line, and is mutually extended in parallel.
  • the ceramic lattice body 1 has a plurality of ceramic second linear portions 20 extending in the Y direction, which is a direction different from the X direction. Each of the second linear portions 20 is straight and extends in parallel with each other. Since the X direction and the Y direction are different directions, the first linear portion 10 and the second linear portion 20 intersect each other.
  • the grid body 1 is formed by the plurality of first linear portions 10 and the plurality of second linear portions 20 intersecting each other.
  • the side portions L1 and L2 described above are lines that are virtually formed by connecting the end portions of the plurality of first line portions 10 and the end portions of the plurality of second line portions 20 to each other.
  • the first filament part 10 and / or the second filament part 20 made of ceramics corresponding to the parts L1 and L2 do not necessarily exist. Note that the X direction and the Y direction generally intersect at an angle of 90 degrees.
  • the crossing angle between the first filament part 10 and the second filament part 20 can be set according to the specific application of the ceramic lattice 1.
  • the two linear portions 10 and 20 intersect at 90 degrees (right angle), an angle smaller than 90 degrees, or an angle larger than 90 degrees.
  • the ceramic lattice body 1 has two or more straight side portions, it is preferable that the angular relationship described above is satisfied in any one of the straight portions.
  • the ceramic lattice body 1 of the present embodiment has a pair of side portions L1 and a pair of side portions L2 as linear portions.
  • the first linear portion 10 and the first side In the angle formed with the part L1 the angle formed counterclockwise starting from L1 toward the first linear part is ⁇ 1, and starting from L1, counterclockwise toward the second linear part
  • ⁇ 1 and ⁇ 2 are independently 10 degrees or more and 170 degrees or less.
  • ⁇ 1 and ⁇ 2 may have a complementary angle relationship or may not have a complementary angle relationship.
  • ⁇ 1 and ⁇ 2 can be set at an arbitrary angle, but are preferably orthogonal to obtain the effect of improving thermal shock resistance (spalling resistance) described later.
  • the ceramic lattice body 1 forms a lattice when the first linear portion 10 and the second linear portion 20 intersect, and has a plate-like shape having a plurality of through holes 3 defined by the lattice. is doing.
  • the ceramic lattice body 1 has a first surface 1a and a second surface 1b opposite to the first surface 1a.
  • the 1st line part 10 has fixed width W1 (refer to Drawing 3) in plane view in positions other than intersection 2 of both line parts 10 and 20.
  • the first filament portion 10 has a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction, and is located on the first surface 1 a side of the ceramic lattice body 1.
  • the first surface 10a and the second surface 10b located on the second surface 1b side of the ceramic lattice body 1 are defined.
  • the first linear portion 10 has a straight section 10A and both end portions of the straight section 10A at a portion other than the intersection 2 in a cross section along the thickness direction in a direction orthogonal to the longitudinal direction.
  • the first surface 10 a of the first linear portion 10 has a flat cross section in the thickness direction of the linear portion 10.
  • the flat surface is substantially parallel to the in-plane direction of the ceramic lattice body 1.
  • the second surface 10b of the first linear portion 10 has a convex curved surface shape in which the cross section in the thickness direction of the linear portion 10 is directed from the first surface 1a to the second surface 1b of the ceramic lattice body 1. I am doing.
  • the second filament part 20 Similar to the first filament part 10, the second filament part 20 also has a constant width W2 (see FIG. 6) in a plan view at a position other than the intersection 2 of the filament parts 10, 20. is doing.
  • the width W2 may be the same as or different from the width W1 of the first linear portion 10.
  • the second linear portion 20 has a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction thereof, which is located on the first surface 1 a side of the ceramic lattice body 1.
  • the first surface 20a and the second surface 20b located on the second surface 1b side of the ceramic lattice 1 are defined.
  • the first surface 20a of the second linear portion 20 has a convex curved shape from the second surface 1b of the ceramic lattice body 1 toward the first surface 1a.
  • the second surface 20b of the second linear portion 20 has a convex curved surface shape in which the cross section in the thickness direction of the linear portion 20 is directed from the first surface 1a to the second surface 1b of the ceramic lattice 1. I am doing.
  • the curved surface shape may be the same as or different from the curved surface shape in the first linear portion 10.
  • the first surface 20a and the second surface 20b of the second linear portion 20 are symmetrical, and as a result, the second linear portion 20 is orthogonal to the longitudinal direction.
  • the cross-sectional shape along the thickness direction in the direction is circular or elliptical.
  • the second linear portion 20 when the linear portion 10 ⁇ / b> A of the first linear portion 10, i.e., the first surface 10 a is placed on the plane P as the placement surface, the second linear portion 20 includes two adjacent linear portions 20. The shape is separated from the plane P between the intersection points 2. Accordingly, a space S is formed between the second linear portion 20 and the plane P between two adjacent intersections 2.
  • the 2nd surface 1b in the ceramic lattice body 1 is comprised from the 2nd surface 20b of the 2nd linear part 20 which is a convex curved surface shape, it becomes an uneven surface instead of a flat surface. Yes.
  • the filament portions 10 and 20 are integrated. “Integrated” means that, when the cross section of the intersection 2 is observed, the space between the two linear portions 10 and 20 is a continuous structure as ceramics.
  • the through-holes 3 formed in the ceramic lattice 1 by the intersection of both the line portions 10 and 20 have the same dimensions and the same shape. Each through-hole 3 has a substantially diamond shape. The through holes 3 are regularly arranged.
  • the intersection 2 between the first filament 10 and the second filament 20 is the first line at any intersection 2.
  • a second linear portion 20 is disposed on the linear portion 10. That is, at the intersection 2 between the first linear portion 10 and the second linear portion 20, the first of the two surfaces 1 a and 1 b of the lattice 1 that is relatively located on the first surface 1 a side.
  • the 2nd linear part 20 located relatively on the 2nd surface 1b side is distribute
  • the thickness in the intersection 2 is larger than both the thickness of the 1st filament part in the site
  • the thickness of the first filament 10 at a position other than the intersection 2 between the two filaments 10 and 20 is T1 (see FIG. 3), and the second at a position other than the intersection 2 between the filaments 10 and 20 is the second.
  • T1 the thickness of the linear portion 20
  • Tc the thickness at the intersection
  • the highest position of the second surface 10 b in the first line portion 10 is the first line portion. It is the same along the direction in which the part 10 extends.
  • the highest position of the second surface 20b in the second filament part 20 is the first in any of the position of the intersection point 2 and the position other than the intersection point 2. It is the same along the direction where the linear part 10 extends.
  • the lowest position of the first surface 20 a in the second linear portion 20 is the same along the direction in which the second linear portion 20 extends in parts other than the intersection 2.
  • the projected image in the plan view of the second linear portion 20 is curved outward in the width direction (X direction in FIG. 7) at the intersection 2. It has a bulging shape.
  • the width W2a of the projected image at the intersection 2 is larger than the width W2b of the projected image at a portion other than the intersection 2.
  • the second linear portion 20 has an outline along the longitudinal direction (Y direction in FIG. 7) of the projected image in a plan view, and is outward in the width direction (X direction in FIG. 7) at the intersection 2. Gently convex curves 21 and 21 are drawn.
  • the contour along the longitudinal direction of the projected image in plan view of the second linear portion 20 has a maximum width portion having a width W2a, and the width gradually decreases gradually as the distance from the maximum width portion increases. At a position between the intersections 2, the width becomes W2b.
  • the width W2b is the same as the width W2 described above.
  • the first linear portion 10 has a projected image in plan view directed outward in the width direction (Y direction in FIG. 8) at the intersection 2. It has a curved and bulging shape.
  • the width W1a of the projected image at the intersection 2 is larger than the width W1b of the projected image at a portion other than the intersection 2.
  • the first linear portion 10 has an outline along the longitudinal direction (X direction in FIG. 8) of the projected image in plan view, and the intersection 2 is outward in the width direction (Y direction in FIG. 8). A gentle convex curve 11, 11 is drawn toward.
  • the outline along the longitudinal direction of the projected image of the first linear portion 10 in plan view has a maximum width portion having a width W1a, and the width gradually decreases gradually as the distance from the maximum width portion increases. At a position between the intersections 2, the width becomes W1b.
  • the width W1b is the same as the width W1 described above.
  • FIG. 9 shows a plan view of the ceramic lattice 1.
  • the lattice body 1 has a plurality of substantially rhombic shapes in a plan view of the lattice body by intersecting a plurality of first linear portions 10 and a plurality of second linear portions 20.
  • Through-holes 3 are formed.
  • the through-hole 3 having a substantially rhombus shape has first sides 3a and 3a that are a pair of opposing sides.
  • the through-hole 3 has second sides 3b and 3b which are another set of sides facing each other.
  • the first sides 3 a and 3 a are sides corresponding to both side edges of the first linear portion 10.
  • the second sides 3 b and 3 b are sides corresponding to both side edges of the second linear portion 20.
  • the through hole 3 is defined by these four sides.
  • the opposing first sides 3a, 3a are straight and extend parallel to each other.
  • the opposing second sides 3b, 3b are straight and extend parallel to each other.
  • the through-hole 3 is like the schematic diagram shown in FIG.
  • the corner 30 is a slightly rounded rhombus.
  • the first wire portion 10 and the second wire portion 20 are formed by the first side portion L1 and Since it intersects with the second side L2 at a small acute angle, even if a defect such as a crack occurs in the first side L1 and / or the second side L2, the defect is inward of the lattice 1. Difficult to propagate towards The reason for this is that the place where defects such as cracks are most likely to occur is in the vicinity of the intersection 2 between the first linear portion 10 and the second linear portion 20.
  • the imaginary line connecting the intersection point 2 is not parallel to the first side portion L1 and the second side portion L2
  • a defect such as a crack generated near a certain intersection point 2 propagates to the adjacent intersection point 2 This is because it is blocked.
  • the imaginary line connecting each intersection 2 is the first side portion L1 and the second side portion L1. Since a defect such as a crack generated in the vicinity of an intersection 2 easily propagates to the intersection 2 located next to it, it propagates to the adjacent intersection 2 in a chain. The cracks are likely to occur in the entire lattice body 1.
  • ⁇ 1 and ⁇ 2 are more preferably independently from 10 ° to 170 °, more preferably from 20 ° to 160 °. preferable.
  • ⁇ 1 is preferably 30 ° or more and 150 ° or less
  • ⁇ 2 is preferably 30 ° or more and 150 ° or less.
  • ⁇ 1 and ⁇ 2 is preferably 10 ° to 80 °, or 100 ° to 170 °, more preferably 20 ° to 70 °, or 110 ° to 160 °, and more preferably 30 °. It is 60 degrees or less or 120 degrees or more and 150 degrees or less.
  • between the first linear portion 10 and the second linear portion 20 is not less than 60 degrees and not more than 120 degrees.
  • it is 70 degrees or more and 110 degrees or less, more preferably 80 degrees or more and 100 degrees or less, and the most preferable angle is in the range of 90 degrees ⁇ 3 degrees (in a state of being orthogonal). is there.
  • the thickness direction cross section in the direction orthogonal to the longitudinal direction is not a rectangle in parts other than the intersection 2, but as shown in FIG. Since it has a shape composed of the straight portion 10A and the convex curved portion 10B having both ends of the straight portion 10A as ends, it is difficult for defects such as cracks to occur. Defect propagation is difficult to occur.
  • the second linear portion 20 has a circular or elliptical shape as shown in FIG. 6 in the cross section in the thickness direction in the direction orthogonal to the longitudinal direction at a portion other than the intersection 2 as shown in FIG. This also makes it difficult for defects such as cracks to occur, and to prevent the propagation of defects.
  • the strength and spalling resistance are improved due to the rounded corners 30 of the substantially rhombic through-holes 3.
  • the portion of the ceramic lattice 1 where defects such as cracks are most likely to occur is the corner 30 of the through-hole 3, and the corner 30 is rounded.
  • the corners of the opening are at right angles, so that cracks and the like are likely to occur.
  • the above-described improvement in strength and spalling resistance is achieved by the fact that at least the second linear portion 20 at the intersection point 2 between the first linear portion 10 and the second linear portion 20 has a projected image in plan view. If the contour along the longitudinal direction has the convex curve 21 described above, this is sufficiently achieved. In particular, when both the first linear portion 10 and the second linear portion 20 have the convex curves 11 and 21 on the contour along the longitudinal direction of the projected image in plan view, Strength and spalling resistance are further improved.
  • the first surface 1a of the lattice body 1 having the above configuration is used as, for example, a setter for firing a body to be fired
  • the first surface 1a can be obtained by placing the body to be fired on the first surface 1a of the lattice body 1. Since it is a flat surface, it is suitable for mounting a fired body that requires flatness.
  • required small chip-shaped electronic components, such as a multilayer ceramic capacitor, etc. are mentioned, for example. Since these small electronic components are required not to be caught by the setter in the firing process, it is advantageous that the first surface 1a of the lattice body 1 is flat.
  • the to-be-fired body contacts only the 1st filament part 10 which is the member which comprises the 1st surface 1a, the contact area of the grid
  • the lattice body 1 is formed by the intersection of the first and second linear portions 10 and 20 and the plurality of through holes 3 are formed, the heat capacity is small. Easy heating and cooling.
  • the lattice body 1 has good air permeability due to the presence of the plurality of through holes 3, this also facilitates rapid cooling of the fired body. Good air permeability becomes more remarkable by the fact that the second linear portion 20 is floating between the adjacent intersections 2.
  • the first and second linear portions 10 and 20 are integrated at the intersection point 2, and therefore have sufficient strength.
  • the second surface 1b is an uneven surface caused by the curved surface of the second linear portion 20, and the electronic component of this order size has an uneven surface on which it is placed. This is because it is advantageous from the viewpoint of enhancing the performance. Further, among the objects to be fired in the order of mm, a long and thin object that can be placed on the upper surface of the first linear portion 10 and between the second linear portions 20 is placed. It is also advantageous from the viewpoint of improving the degreasing property while fixing the body to be fired.
  • the lattice body 1 of the present embodiment has one surface that is flat and the other surface is an uneven surface, so that the mounting surface can be properly used according to the type of the body to be fired. This is advantageous.
  • the value of T1 is preferably 50 ⁇ m or more and 5000 ⁇ m or less, and more preferably 200 ⁇ m or more and 2000 ⁇ m or less.
  • the value of T2 is preferably 50 ⁇ m or more and 5000 ⁇ m or less, and more preferably 200 ⁇ m or more and 2000 ⁇ m or less.
  • the thickness Tc at the intersection 2 is preferably 0.1 mm or more and 2 mm or less, and more preferably 0.3 mm or more and 1.5 mm or less.
  • the thickness Tc at the intersection 2 is smaller than T1 + T2, which is the sum of T1 and T2.
  • an elliptical short axis corresponds to the thickness direction of the grid
  • the major axis / minor axis ratio is preferably 1 or more and 3 or less, and more preferably 1 or more and 2.5 or less.
  • the fact that the cross-sectional shape in the thickness direction of the second linear portion 20 is an ellipse or a circle contributes to an improvement in the strength of the lattice 1.
  • the through hole 3 formed in the ceramic lattice body 1 has an area of 100 ⁇ m 2 or more and 100 mm 2 or less, particularly 2500 ⁇ m 2 or more and 1 mm 2 or less, which reduces the heat capacity of the lattice body 1 and improves air permeability. This is preferable from the viewpoint of maintaining the strength of the grid body 1. Further, the ratio of the total area of the through holes 3 to the apparent area of the ceramic lattice 1 in plan view is preferably 1% or more and 80% or less, and more preferably 3% or more and 70% or less, More preferably, it is 10% or more and 70% or less.
  • This ratio is obtained by cutting the ceramic lattice body 1 into a rectangular shape in plan view, calculating the sum of the areas of the through holes 3 included in the rectangle, and dividing the sum by the rectangular area. Calculated by multiplying by Moreover, the area of each through-hole 3 can be measured by image analysis of the microscope observation image of the lattice 1.
  • the width W1 of the first linear portion 10 is preferably 50 ⁇ m or more and 10 mm or less, and more preferably 75 ⁇ m or more and 5 mm or less.
  • the width W2 of the second linear portion 20 is preferably 50 ⁇ m or more and 10 mm or less, and more preferably 75 ⁇ m or more and 5 mm or less.
  • the pitch P1 between the adjacent first linear portions 10 is preferably 100 ⁇ m or more and 10 mm or less, and 150 ⁇ m or more and 5 mm. More preferably, it is as follows.
  • the pitch P2 between the adjacent second linear portions 20 is preferably 100 ⁇ m or more and 10 mm or less, and more preferably 150 ⁇ m or more and 5 mm or less.
  • the 1st surface 10a is smooth among the surfaces of the 1st filament part 10.
  • the surface roughness Ra of the first surface 10a of the first filament portion 10 is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, more preferably 0.02 ⁇ m or more and 10 ⁇ m or less, Most preferably, it is 1 ⁇ m or more and 1 ⁇ m or less.
  • the surface roughness Ra of the second surface 20b of the second linear portion 20 is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, more preferably 0.02 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more. Most preferably, it is 1 ⁇ m or less.
  • the surface roughness Ra is measured by the following method. Using a color 3D laser microscope (manufactured by Keyence Co., Ltd., VK-8710), the measurement magnification was 200 times. For the first surface 10a of the first filament 10, the surface roughness was measured along the middle line of the first surface 10a, and an average value was calculated from the 20 measured values, which was Ra. On the other hand, on the second surface 20b of the second striated portion 20, the surface roughness was measured along the middle line of the striated portion 20, and an average value was calculated from the 20 measured values, which was Ra.
  • the first surface 10a and / or the second surface 10b of the ceramic lattice body 1 may be polished and processed to have a predetermined surface roughness.
  • the ceramic material constituting the ceramic lattice body various materials can be used. Examples thereof include alumina, silicon carbide, silicon nitride, zirconia, mullite, zircon, cordierite, aluminum titanate, magnesium titanate, magnesia, titanium diboride, boron nitride and the like. These ceramic materials can be used singly or in combination of two or more. In particular, it is preferably made of a ceramic containing alumina, mullite, cordierite, zirconia or silicon carbide. When the ceramic lattice body 1 is subjected to rapid heating and cooling, it is particularly preferable to use silicon carbide as the ceramic material.
  • the ceramic material constituting the first filament part 10 and the ceramic material constituting the second filament part 20 may be the same or different. From the viewpoint of increasing the integrity of the first and second linear portions 10 and 20 at the intersection point 2, it is preferable that the ceramic materials constituting both the linear portions 10 and 20 are the same. Further, from the viewpoint of enhancing the integrity of the first and second linear portions 10 and 20 and strengthening the ceramic lattice 1, the first linear portion 10 and the second linear portion 10 are intersected at the intersection 2.
  • the member that joins the linear portion 20 is preferably the same as the ceramic material that constitutes the linear portions 10 and 20.
  • the joining of the first and second linear portions 10 and 20 can be performed, for example, by firing a lattice-shaped precursor formed by two types of linear coated bodies, as shown in a manufacturing method described later. it can.
  • raw material powder of a ceramic material is prepared, and the raw material powder is mixed with a medium such as water and a binder to prepare a paste for manufacturing a filament portion.
  • the binder As the binder, the same ones conventionally used for this type of paste can be used. Examples include polyvinyl alcohol, polyethylene glycol, polyethylene oxide, dextrin, sodium lignin sulfonate and ammonium, carboxymethylcellulose, ethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, sodium and ammonium alginate, epoxy resin, phenol Resins, gum arabic, polyvinyl butyral, acrylic polymers such as polyacrylic acid and polyacrylamide, thickening polysaccharides such as xanthan gum and guar gum, gelling agents such as gelatin, agar and pectin, vinyl acetate resin emulsion, wax emulsion, And inorganic binders such as alumina sol and silica sol Etc., and the like. Two or more of these may be mixed and used.
  • the viscosity of the paste is preferably high at the temperature at the time of application from the viewpoint that the lattice body 1 having the structure of this embodiment can be successfully manufactured.
  • the viscosity of the paste is preferably more than 1.5 MPa ⁇ s and not more than 10.0 MPa ⁇ s, more than 1.5 MPa ⁇ s and not more than 5.0 MPa ⁇ s at the temperature at the time of application. Is more preferable.
  • As the viscosity of the paste a measured value at a time point of 4 minutes after the start of measurement was used at a rotation speed of 0.3 rpm using a cone plate type rotary viscometer or a rheometer.
  • a paste having a relatively low viscosity can also be used.
  • the lattice precursor after producing the lattice precursor described later, before subjecting the lattice precursor to the firing step, the lattice precursor is dried to remove the liquid component, It is preferable to perform firing after increasing the shape retention of the lattice precursor.
  • the viscosity is preferably 10 kPa ⁇ s or more and 1.5 MPa ⁇ s or less, and 0.5 MPa ⁇ s or more and 1.3 MPa ⁇ s or less at the temperature during application. More preferably.
  • the ratio of the raw material powder of the ceramic material in the paste is 30% by mass or more and 75% by mass or less. It is preferably 40% by mass or more and 60% by mass or less.
  • the ratio of the medium in the paste is preferably 15% by mass to 60% by mass, and more preferably 20% by mass to 55% by mass.
  • the proportion of the binder in the paste is preferably 1% by mass or more and 40% by mass or less, and more preferably 5% by mass or more and 25% by mass or less.
  • the paste can contain a thickener, a flocculant, a thixotropic agent, etc. as a viscosity modifier.
  • a thickener examples include polyethylene glycol fatty acid ester, alkylallyl sulfonic acid, alkyl ammonium salt, ethyl vinyl ether / maleic anhydride copolymer, fumed silica, albumin and other proteins.
  • the binder may be classified as a thickener because it has a thickening effect. However, if more precise viscosity adjustment is required, a thickener that is not classified separately as a binder. An agent can be used.
  • flocculant examples include polyacrylamide, polyacrylic acid ester, aluminum sulfate, and polyaluminum chloride.
  • thixotropic agents include fatty acid amides, oxidized polyolefins, polyether ester type surfactants, and the like.
  • a solvent for preparing the paste in addition to water, alcohol, acetone, ethyl acetate, and the like are used, and two or more of these may be mixed.
  • a plasticizer, a lubricant, a dispersant, a sedimentation inhibitor, a pH adjuster, or the like may be added.
  • plasticizer examples include glycols such as trimethylene glycol and tetramethylene glycol, glycerin, butanediol, phthalic acid, adipic acid, and phosphoric acid.
  • lubricant examples include hydrocarbons such as liquid paraffin, micro wax, and synthetic paraffin, higher fatty acids, fatty acid amides, and the like.
  • dispersant examples include sodium polycarboxylate or ammonium salt, acrylic acid type, polyethyleneimine, and phosphoric acid type.
  • precipitation inhibitor examples include polyamide amine salts, bentonite, and aluminum stearate.
  • pH adjusting agent examples include sodium hydroxide, aqueous ammonia, oxalic acid, acetic acid, hydrochloric acid and the like.
  • the filament first coating body corresponds to the first filament portion 10 in the target lattice body 1.
  • Various coating apparatuses can be used for forming the first filament coated body.
  • a small extruder can be used.
  • the diameter of the nozzle in the small extruder can be, for example, 0.2 mm or more and 5 mm or less.
  • the filament second coated body corresponds to the second filament portion 20 in the target lattice body 1.
  • a coating device similar to the first filament coated body can be used.
  • the grid body 1 in which the 2nd filament part 20 is located on the 1st filament part 10 is succeeded by forming a filament 1st coating body and a filament 2nd coating body sequentially.
  • the second filament coated body is appropriately applied at the intersection of the filament first coated body and the second filament coated body. It sinks into the body, whereby the side edges of these coated bodies bulge out outward in the width direction.
  • the filament second coating body is in a bridging state (that is, in a floating state).
  • a lattice-shaped precursor formed by two types of filament coated bodies is obtained.
  • the viscosity of the paste used for producing the lattice precursor is relatively low, it is preferable to dry the lattice precursor to develop shape retention.
  • the second coated body of the filaments is prevented from excessively sinking into the first coated body of the filaments, and the side edges of these coated bodies are appropriately curved and expanded toward the outside in the width direction. Put out.
  • a filament 2nd coating body bends downward with dead weight between adjacent intersections, and the bridging state of a filament 2nd coating body is maintained. Drying is performed, for example, by heating the lattice precursor at a temperature of 40 ° C. or higher and 80 ° C.
  • the heating time can be, for example, 0.5 hours or more and 12 hours or less.
  • the dried grid-like precursor is peeled off from the substrate and placed in a firing furnace for firing.
  • a firing furnace for firing.
  • the target ceramic lattice body 1 in which the two linear portions 10 and 20 are integrated at the intersection 2 is obtained.
  • Baking can generally be performed in air.
  • the firing temperature may be selected appropriately depending on the type of raw material powder of the ceramic material. The same applies to the firing atmosphere temperature.
  • This ceramic lattice body 1 can be suitably used as a setter for degreasing or firing ceramic products such as shelf boards and floorboards, and can also be used as a kiln tool other than a setter, such as a firewood or beam. Furthermore, it can also be used as various jigs and various structural materials such as filters and catalyst carriers other than kiln tools. In this case, it is common to place the body to be fired on the second surface 1b, which is an uneven surface in the lattice body 1, but depending on the type of body to be fired, the second line on the second surface 1b side.
  • a to-be-fired body may be mounted between the strips, and the to-be-fired body may be placed on the first surface 1a which is a flat surface.
  • the body to be fired it is preferable to place the body to be fired on the first surface 1a which is a flat surface, and for the purpose of fixing the MLCC, You may mount a to-be-fired body between 1st filament parts by the 1st surface 1a side.
  • the ceramic lattice body 1 of the above embodiment has a rectangular outline in plan view, but the outline of the lattice body 1 is not limited to this, and may be other shapes such as a polygon such as a triangle or a hexagon. Also good.
  • the lattice body 1 should just have a linear side part in at least one part of the outline, for example, the outline may be comprised from the combination of a linear side part and a curved side part.
  • the crossing angles ⁇ ⁇ b> 1 and ⁇ ⁇ b> 2 between the straight side portion and the first linear portion 10 and the second linear portion 20 may satisfy the above-described values.
  • a linear side part, a curved side part, etc. may be formed in these outlines with ceramics.
  • the ceramic lattice body 1 of the said embodiment used two types of line
  • the ceramic lattice body may have a structure in which the second linear portion 20 is stacked on the first linear portion 10 and the first linear portion 10 is further stacked thereon.
  • the angle ⁇ 1 formed by the lowermost first linear portion 10 and the straight side portion may be the same as or different from the angle ⁇ 1 formed by the uppermost first linear portion 10 and the linear side portion. May be.
  • the shape and thickness of the lowermost first linear portion 10 and the shape and thickness of the uppermost first linear portion 10 may be the same or different.
  • an outer frame 40 may be provided on the outer periphery of the lattice body 1 as shown in FIG.
  • the outer frame 40 may be integrally formed from the same material as that of the grid body 1 or may be manufactured separately from the grid body 1 and bonded by a predetermined bonding means.
  • the above-described angles ⁇ 1 and ⁇ 2 are angles formed by the first linear portion 10 and the second linear portion 20 and the outer frame 40.
  • the ceramic lattice body 1 of the above embodiment has a single-layer structure, but instead of this, a plurality of the lattice bodies 1 are used, for example, as shown in FIGS. 11 (a) and 11 (b). Multiple layers may be used.
  • a first lattice body 1 ′ composed of a first linear portion 10 ′ and a second linear portion 20 ′, a first linear portion 10 ′′ and a second linear portion 10 ′.
  • the first linear portion 10 'in the first lattice body 1' and the second lattice body 1 are laminated. Are arranged so as to have the same pitch.
  • the second linear portion 20 ′ in the first grid 1 ′ and the second grid 1 ” It is arranged so as to have the same pitch as the second linear portion 20 ′′.
  • the strip portion 10 ′′ is not limited to an embodiment in which the strips are arranged to have the same pitch, and the body to be fired is placed on the upper surface of the ceramic lattice body or between each strip portion. It can be designed with an arbitrary pitch ratio in accordance with the mode to be placed.
  • the second filament 20 ′ in the first grid 1 ′ and the second filament in the second grid 1 ′′ can be designed with an arbitrary pitch ratio in accordance with the mode to be placed.
  • the portion 20 ′′ is not limited to an embodiment in which the pitch is set to be the same pitch, and an arbitrary pitch according to an embodiment in which the object to be fired is placed on the upper surface of the ceramic lattice body or between each linear portion. Can be designed in proportion.
  • the first filament 10 'in the first grid 1' and the first filament 10 "in the second grid 1" are half pitch. It is arranged so as to be displaced.
  • the second filament 20 'in the first grid 1' and the second filament 20 "in the second grid 1” are arranged so as to be shifted by a half pitch.
  • the second linear portion 20 ′ in the first grid 1 ′ and the second linear portion 20 ′′ in the second grid 1 ′′ are arranged so as to be shifted by a half pitch (1/2 pitch).
  • the pitch can be designed with an arbitrary pitch ratio according to the mode of placing the object to be fired, such as 1/3 pitch to 1/10 pitch.
  • the second filament 20 'in the first grid 1' and the second filament 20 "in the second grid 1" are arranged so as to be shifted by a half pitch (1/2 pitch).
  • the pitch can be designed with an arbitrary pitch ratio according to the mode of placing the object to be fired, such as 1/3 pitch to 1/10 pitch.
  • the pitch ratio in accordance with, for example, the size of the MLCC, the MLCC is fitted between the single-layer or multiple-layer first linear portion and the single-layer or multiple-layer second linear portion.
  • part means “part by mass”.
  • Example 1 Preparation of a paste for forming a filament coated body 65.3 parts of 8 mol% yttria-added fully stabilized zirconia powder having an average particle diameter of 0.8 ⁇ m, 5.0 parts of a methylcellulose binder as an aqueous binder, As a plasticizer, 2.5 parts of glycerin, 1.1 parts of a polycarboxylic acid-based dispersant (molecular weight 12000) and 26.1 parts of water were mixed and defoamed to prepare a paste. The viscosity of the paste was 1.6 MPa ⁇ s at 25 ° C. (2) Formation of a linear coated body A linear coated first body is formed on a resin substrate in a 25 ° C.
  • hole diagonal lengths Q1, Q2 are the diagonal lengths of the hole diagonal portions of the network structure as shown in FIG.
  • the corners of the rhomboid through-holes were rounded.
  • ⁇ 1 (see FIG. 1B) was 45 degrees, and ⁇ 2 was 135 degrees (the value of
  • Example 2 ⁇ 1 is 10 degrees, and ⁇ 2 (see FIG. 1B) is 60 degrees (the value of
  • a ceramic lattice body was obtained in the same manner as in Example 1 except for the angles ⁇ 1 and ⁇ 2 and the angles at which they intersect. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • Example 3 ⁇ 1 is 30 degrees and ⁇ 2 (see FIG. 1B) is 120 degrees (the value of
  • a ceramic lattice body was obtained in the same manner as in Example 1 except for the angles ⁇ 1 and ⁇ 2 and the angles at which they intersect. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • Example 4 ⁇ 1 was 10 degrees, and ⁇ 2 (see FIG. 1B) was 170 degrees (the value of
  • a ceramic lattice body was obtained in the same manner as in Example 1 except for the angles ⁇ 1 and ⁇ 2 and the angles at which they intersect. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • Example 5 ⁇ 1 is 45 degrees and ⁇ 2 (see FIG. 1B) is 135 degrees (the value of
  • the nozzle diameter was 0.4 mm.
  • a ceramic lattice body was obtained in the same manner as in Example 1 except for the angles ⁇ 1 and ⁇ 2 and the angles at which they crossed each other and the nozzle diameter. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • Example 6 ⁇ 1 is 45 degrees and ⁇ 2 (see FIG. 1B) is 135 degrees (the value of
  • the nozzle diameter was 1.0 mm.
  • a ceramic lattice body was obtained in the same manner as in Example 1 except for these angles and nozzle diameters. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • Example 7 As in Example 2, ⁇ 1 was set to 10 degrees and ⁇ 2 (see FIG. 1B) was set to 60 degrees (the value of
  • Example 8 As in Example 7, ⁇ 1 was 10 degrees, ⁇ 2 (see FIG. 1B) was 60 degrees, and ⁇ 3 was 10 degrees (the value of
  • the filament 3rd coating body was formed in the position which overlaps, when planarly viewed with the filament 1st coating body. Otherwise, a ceramic lattice was obtained in the same manner as in Example 7. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • Example 9 ⁇ 1 is 45 degrees, ⁇ 2 (see FIG. 1B) is 135 degrees, and ⁇ 3 is 45 degrees (the value of
  • the filament 3rd coating body was formed in the position which overlaps, when planarly viewed with the filament 1st coating body. Otherwise, a ceramic lattice was obtained in the same manner as in Example 7. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • Example 10 ⁇ 1 is 45 degrees, ⁇ 2 (see FIG. 1B) is 135 degrees, and ⁇ 3 is 45 degrees (the value of
  • the line third coated body was formed at a position between the adjacent first line coated bodies parallel to and adjacent to the line first coated body when viewed in plan. Otherwise, a ceramic lattice was obtained in the same manner as in Example 7. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  • ⁇ 1 is 5 degrees and ⁇ 2 (see FIG. 1B) is 95 degrees (the value of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Resistance Heating (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A ceramic lattice (1) comprises a plurality of first linear parts (10) and a plurality of second linear parts (20). At every intersection between the first linear parts (10) and the second linear parts (20), a second linear part (20) is provided on and above a first linear part (10). The ceramic lattice (1) has straight-line side portions (L1), (L2) in at least a portion of the contour of the ceramic lattice (1) as viewed from above. The first linear parts (10) and the second linear parts (20) each independently intersect the straight-line side portions (L1), (L2) at angles of 10-170 degrees.

Description

セラミックス格子体Ceramic lattice
 本発明はセラミックス製の格子体に関する。 The present invention relates to a ceramic lattice.
 セラミックス製の電子部品やガラスを焼成するときには、被焼成物を棚板や敷板などとも呼ばれるセッター上に載置して焼成を行うことが一般的である。被焼成物の脱脂・焼成時間を短くして、単位時間当たりの製造個数を増加させるためには、焼成工程を急熱及び急冷することが必要であるところ、従来のセラミックス製セッターはこれを急熱及び/又は急冷すると、割れ等の欠陥が生じやすくなる。また、繰り返しの使用によっても割れ等の欠陥が生じやすくなる。また、金属製セッターを用いた場合には、酸化雰囲気では使用できないという問題や、1200℃以上の高温領域では、繰り返し使用すると、大きく変形するという問題が指摘されている。 When firing ceramic electronic parts and glass, it is common to place the object to be fired on a setter, also called a shelf board or a floor board, and perform firing. In order to shorten the degreasing and firing time of the material to be fired and increase the number of products manufactured per unit time, it is necessary to rapidly heat and cool the firing process. When heated and / or rapidly cooled, defects such as cracks are likely to occur. Moreover, it becomes easy to produce defects, such as a crack, by repeated use. In addition, it has been pointed out that when a metal setter is used, it cannot be used in an oxidizing atmosphere, and when it is repeatedly used in a high temperature region of 1200 ° C. or more, it is greatly deformed.
 セラミックス製セッターに関する従来の技術としては、例えば窒化アルミニウムを主成分とするセラミックスより作られ、且つ表裏を貫通する多数の孔を持つ多孔板からなる加熱成型加工用セッターが知られている(特許文献1参照)。同文献によれば、セラミックスとして窒化アルミニウムを用いることで、その使用可能な最高温度がアルミナやマグネシアに代表される酸化物セラミックスに比べて高く、且つ熱伝導率も大きいので、急熱や急冷の熱ショックに対して抵抗力が大きくなるとされている。 As a conventional technology related to ceramic setters, for example, a heat setter setter made of a porous plate made of ceramics mainly composed of aluminum nitride and having a large number of holes penetrating the front and back is known (Patent Literature). 1). According to this document, by using aluminum nitride as ceramics, the maximum usable temperature is higher than that of oxide ceramics typified by alumina and magnesia, and the thermal conductivity is large. The resistance to heat shock is said to increase.
 特許文献2には、被焼成物を載置する表面側、及び裏面側に少なくとも凹凸形状が付与されているとともに、開口部が形成されているセラミックス焼成用窯道具板が記載されている。同文献には、この窯道具板によれば、熱容量の低減化とコスト削減化を図ることができ、焼成物との接触面積が減少することで、ガスの抜けが良化し、更に雰囲気の均一化によって被焼成体が均一に製造できると記載されている。 Patent Document 2 describes a ceramic firing kiln tool plate in which at least uneven shapes are provided on the front surface side and the back surface side on which the object to be fired is placed and an opening is formed. According to this document, according to this kiln tool plate, the heat capacity can be reduced and the cost can be reduced, and the contact area with the fired product is reduced, so that the escape of gas is improved and the atmosphere is uniform. It describes that a to-be-fired body can be manufactured uniformly by conversion.
特開平6-207785号公報JP-A-6-207785 再表2009/110400号公報No. 2009/110400
 しかし、前記の各特許文献に記載の技術を用いても、被焼成物の急速な加熱及び冷却を行うときに、セッターに割れ等が発生することを、満足できるレベルにまで防止することは容易でない。 However, even when the techniques described in the above patent documents are used, it is easy to prevent the setter from cracking or the like to a satisfactory level when rapidly heating and cooling the object to be fired. Not.
 したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得るセラミックス格子体を提供することにある。 Therefore, an object of the present invention is to provide a ceramic lattice body that can eliminate the various drawbacks of the above-described prior art.
 本発明は、一方向に向けて延びるセラミックス製の複数の第1の線条部と、該第1の線条部と交差する方向に向けて延びるセラミックス製の複数の第2の線条部とを有するセラミックス格子体であって、
 第1の線条部と第2の線条部との交点は、いずれの該交点においても、第1の線条部上に第2の線条部が配されており、
 第1の線条部は、その断面が、前記交点以外の部位において、直線部と、該直線部の両端部を端部とする凸形の曲線部とから構成される形状を有しており、
 第2の線条部は、その断面が、前記交点以外の部位において、円形又は楕円形の形状を有しており、
 前記セラミックス格子体は、平面視での輪郭の少なくとも一部に直線辺部を有しており、
 第1の線条部及び第2の線条部と前記直線辺部とがそれぞれ独立に10度以上170度以下の角度で交わっている、セラミックス格子体を提供するものである。
The present invention includes a plurality of first filaments made of ceramics extending in one direction, and a plurality of second filaments made of ceramics extending in a direction intersecting with the first filaments. A ceramic lattice body having
The intersection of the first filament and the second filament is the second filament on the first filament at any intersection.
The first striated portion has a shape in which a cross section thereof is configured by a straight portion and a convex curved portion having both ends of the straight portion as ends at a portion other than the intersection. ,
The second striated portion has a circular or oval shape in cross section at a portion other than the intersection,
The ceramic lattice body has a straight side portion in at least a part of the outline in plan view,
The present invention provides a ceramic lattice body in which the first and second linear portions and the linear side portion intersect each other independently at an angle of not less than 10 degrees and not more than 170 degrees.
 本発明のセラミックス格子体は、高強度で且つ耐スポーリング性に優れたものである。 The ceramic lattice of the present invention has high strength and excellent spalling resistance.
図1(a)は、本発明のセラミックス格子体の一実施形態を示す平面図であり、図1(b)は、図1(a)に示すセラミックス格子体の要部拡大平面図である。Fig.1 (a) is a top view which shows one Embodiment of the ceramic lattice body of this invention, FIG.1 (b) is a principal part enlarged plan view of the ceramic lattice body shown to Fig.1 (a). 図2(a)は、図1(a)及び図1(b)に示すセラミックス格子体の斜視図であり、図2(b)は、図2(a)に示すセラミックス格子体を反対側から見た斜視図である。2A is a perspective view of the ceramic lattice body shown in FIGS. 1A and 1B, and FIG. 2B shows the ceramic lattice body shown in FIG. 2A from the opposite side. FIG. 図3は、図2におけるIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、図2におけるIV-IV線断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 図5は、図2におけるV-V線断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 図6は、図2におけるVI-VI線断面図である。6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、図2に示すセラミックス格子体における第2の線条部側から見た交点付近の投影図である。FIG. 7 is a projection view of the vicinity of the intersection point as seen from the second filament part side in the ceramic lattice shown in FIG. 図8は、図2に示すセラミックス格子体における第1の線条部側から見た交点付近の投影図である。FIG. 8 is a projection view of the vicinity of the intersection point as seen from the first filament part side in the ceramic lattice shown in FIG. 図9は、図2に示すセラミックス格子体における貫通孔の形状を示す模式図である。FIG. 9 is a schematic diagram showing the shape of the through hole in the ceramic lattice shown in FIG. 図10は、本発明のセラミックス格子体の別の実施形態を示す平面図である。FIG. 10 is a plan view showing another embodiment of the ceramic lattice body of the present invention. 図11(a)及び図11(b)はそれぞれ、本発明のセラミックス格子体の更に別の実施形態を示す模式図である。FIG. 11A and FIG. 11B are schematic views showing still another embodiment of the ceramic lattice body of the present invention.
 以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1(a)及び図1(b)には、本発明のセラミックス格子体の一実施形態が示されている。これらの図に示すセラミックス格子体(以下、単に「格子体」ともいう。)1は、平面視での輪郭の少なくとも一部に直線辺部を有している。詳細には、格子体1は、対向する第1の辺部L1及び第2の辺部L2と、対向する第3の辺部L3及び第4の辺部L4とを有する矩形の輪郭を有している。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. 1 (a) and 1 (b) show an embodiment of the ceramic lattice body of the present invention. A ceramic lattice body (hereinafter, also simply referred to as “lattice body”) 1 shown in these drawings has a straight side portion in at least a part of a contour in plan view. Specifically, the lattice body 1 has a rectangular outline having a first side L1 and a second side L2 facing each other, and a third side L3 and a fourth side L4 facing each other. ing.
 図1(a)及び図1(b)並びに図2(a)及び図2(b)に示すとおり、格子体1は、一方向Xに向けて延びるセラミックス製の複数の第1の線条部10を有する。それぞれの第1の線条部10は、直線をしており互いに平行に延びている。またセラミックス格子体1は、X方向と異なる方向であるY方向に向けて延びるセラミックス製の複数の第2の線条部20を有する。それぞれの第2の線条部20は、直線をしており互いに平行に延びている。X方向とY方向とは異なる方向なので、第1の線条部10と第2の線条部20とは交差している。複数の第1の線条部10と、複数の第2の線条部20とが交差していることによって格子体1が形成される。上述した辺部L1及びL2は、複数の第1の線条部10の端部及び複数の第2の線条部20の端部を連ねて仮想的に形成される線のことであり、辺部L1及びL2に対応するセラミックス製の第1の線条部10及び/又は第2の線条部20が必ずしも存在する訳ではない。なお、X方向とY方向とは一般に90度の角度で交差している。 As shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) and 2 (b), the lattice body 1 has a plurality of ceramic first filaments extending in one direction X. 10 Each 1st filament part 10 is carrying out the straight line, and is mutually extended in parallel. The ceramic lattice body 1 has a plurality of ceramic second linear portions 20 extending in the Y direction, which is a direction different from the X direction. Each of the second linear portions 20 is straight and extends in parallel with each other. Since the X direction and the Y direction are different directions, the first linear portion 10 and the second linear portion 20 intersect each other. The grid body 1 is formed by the plurality of first linear portions 10 and the plurality of second linear portions 20 intersecting each other. The side portions L1 and L2 described above are lines that are virtually formed by connecting the end portions of the plurality of first line portions 10 and the end portions of the plurality of second line portions 20 to each other. The first filament part 10 and / or the second filament part 20 made of ceramics corresponding to the parts L1 and L2 do not necessarily exist. Note that the X direction and the Y direction generally intersect at an angle of 90 degrees.
 第1の線条部10及び第2の線条部20との交差角度は、セラミックス格子体1の具体的な用途に応じて設定することができる。本実施形態においては、両線条部10,20は、90度(直角)又は90度よりも小さな角度若しくは90度よりも大きな角度で交差している。更に、第1の線条部10及び第2の線条部20と、セラミックス格子体1における直線辺部とはそれぞれ独立に10度以上170度以下の角度で交わっていることが好ましい。セラミックス格子体1に直線辺部が2箇所以上ある場合には、いずれか1箇所の直線部において上述の角度関係が満たされることが好ましい。本実施形態のセラミックス格子体1は、直線部として一対の辺部L1及び一対の辺部L2を有するところ、例えば図1(b)に示すとおり、第1の線条部10と第1の辺部L1とのなす角度において、L1から出発して第1の線条部に向けて反時計回りになす角度をθ1とし、L1から出発して第2の線条部に向けて反時計回りになす角度をθ2とすると、θ1及びθ2はそれぞれ独立に10度以上170度以下であることが好ましい。θ1とθ2とは互いに補角の関係であってもよく、あるいは補角の関係でなくともよい。また、θ1とθ2とは任意の角度とすることができるが、後述する耐熱衝撃性(耐スポーリング性)向上の効果を得るには、直交していることが好ましい。 The crossing angle between the first filament part 10 and the second filament part 20 can be set according to the specific application of the ceramic lattice 1. In the present embodiment, the two linear portions 10 and 20 intersect at 90 degrees (right angle), an angle smaller than 90 degrees, or an angle larger than 90 degrees. Furthermore, it is preferable that the 1st filament part 10 and the 2nd filament part 20, and the linear side part in the ceramic lattice body 1 cross | intersect independently at an angle of 10 to 170 degree | times independently. When the ceramic lattice body 1 has two or more straight side portions, it is preferable that the angular relationship described above is satisfied in any one of the straight portions. The ceramic lattice body 1 of the present embodiment has a pair of side portions L1 and a pair of side portions L2 as linear portions. For example, as shown in FIG. 1B, the first linear portion 10 and the first side In the angle formed with the part L1, the angle formed counterclockwise starting from L1 toward the first linear part is θ1, and starting from L1, counterclockwise toward the second linear part When the angle formed is θ2, it is preferable that θ1 and θ2 are independently 10 degrees or more and 170 degrees or less. θ1 and θ2 may have a complementary angle relationship or may not have a complementary angle relationship. Θ1 and θ2 can be set at an arbitrary angle, but are preferably orthogonal to obtain the effect of improving thermal shock resistance (spalling resistance) described later.
 セラミックス格子体1は、第1の線条部10と第2の線条部20とが交差することによって格子をなし、該格子によって画成される複数の貫通孔3を有する板状の形状をしている。セラミックス格子体1は、第1面1aと、これに対向する第2面1bとを有している。 The ceramic lattice body 1 forms a lattice when the first linear portion 10 and the second linear portion 20 intersect, and has a plate-like shape having a plurality of through holes 3 defined by the lattice. is doing. The ceramic lattice body 1 has a first surface 1a and a second surface 1b opposite to the first surface 1a.
 第1の線条部10は、両線条部10,20の交点2以外の位置において、平面視して一定の幅W1(図3参照)を有している。第1の線条部10は、その長手方向に直交する方向での厚み方向に沿った断面形状が、図3及び図4に示すとおり、セラミックス格子体1の第1面1a側に位置する第1面10aと、セラミックス格子体1の第2面1b側に位置する第2面10bとで画成される。詳細には、第1の線条部10は、その長手方向に直交する方向での厚み方向に沿った断面が、交点2以外の部位において、直線部10Aと、該直線部10Aの両端部を端部とする凸形の曲線部10Bとから構成される形状を有している。その結果、第1の線条部10の第1面10aは、該線条部10の厚み方向での断面が平坦面になっている。該平坦面は、セラミックス格子体1の面内方向と略平行になっている。一方、第1の線条部10の第2面10bは、該線条部10の厚み方向での断面が、セラミックス格子体1の第1面1aから第2面1bに向けた凸の曲面形状をしている。 1st line part 10 has fixed width W1 (refer to Drawing 3) in plane view in positions other than intersection 2 of both line parts 10 and 20. As shown in FIGS. 3 and 4, the first filament portion 10 has a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction, and is located on the first surface 1 a side of the ceramic lattice body 1. The first surface 10a and the second surface 10b located on the second surface 1b side of the ceramic lattice body 1 are defined. Specifically, the first linear portion 10 has a straight section 10A and both end portions of the straight section 10A at a portion other than the intersection 2 in a cross section along the thickness direction in a direction orthogonal to the longitudinal direction. It has a shape constituted by a convex curve portion 10B as an end portion. As a result, the first surface 10 a of the first linear portion 10 has a flat cross section in the thickness direction of the linear portion 10. The flat surface is substantially parallel to the in-plane direction of the ceramic lattice body 1. On the other hand, the second surface 10b of the first linear portion 10 has a convex curved surface shape in which the cross section in the thickness direction of the linear portion 10 is directed from the first surface 1a to the second surface 1b of the ceramic lattice body 1. I am doing.
 第1の線条部10と同様に、第2の線条部20も、両線条部10,20の交点2以外の位置において、平面視して一定の幅W2(図6参照)を有している。幅W2は、第1の線条部10の幅W1と同じであってもよく、あるいは異なっていてもよい。第2の線条部20は、その長手方向に直交する方向での厚み方向に沿った断面形状が、図5及び図6に示すとおり、セラミックス格子体1の第1面1a側に位置する第1面20aと、セラミックス格子体1の第2面1b側に位置する第2面20bとで画成される。第2の線条部20の第1面20aは、セラミックス格子体1の第2面1bから第1面1aに向けた凸の曲面形状になっている。一方、第2の線条部20の第2面20bは、該線条部20の厚み方向での断面が、セラミックス格子体1の第1面1aから第2面1bに向けた凸の曲面形状をしている。この曲面形状は、第1の線条部10における曲面形状と同じであってもよく、あるいは異なっていてもよい。本実施形態においては、第2の線条部20の第1面20aと第2面20bとは対称形になっており、その結果、第2の線条部20は、その長手方向に直交する方向での厚み方向に沿った断面形状が、円形又は楕円形になっている。 Similar to the first filament part 10, the second filament part 20 also has a constant width W2 (see FIG. 6) in a plan view at a position other than the intersection 2 of the filament parts 10, 20. is doing. The width W2 may be the same as or different from the width W1 of the first linear portion 10. As shown in FIGS. 5 and 6, the second linear portion 20 has a cross-sectional shape along the thickness direction in a direction orthogonal to the longitudinal direction thereof, which is located on the first surface 1 a side of the ceramic lattice body 1. The first surface 20a and the second surface 20b located on the second surface 1b side of the ceramic lattice 1 are defined. The first surface 20a of the second linear portion 20 has a convex curved shape from the second surface 1b of the ceramic lattice body 1 toward the first surface 1a. On the other hand, the second surface 20b of the second linear portion 20 has a convex curved surface shape in which the cross section in the thickness direction of the linear portion 20 is directed from the first surface 1a to the second surface 1b of the ceramic lattice 1. I am doing. The curved surface shape may be the same as or different from the curved surface shape in the first linear portion 10. In the present embodiment, the first surface 20a and the second surface 20b of the second linear portion 20 are symmetrical, and as a result, the second linear portion 20 is orthogonal to the longitudinal direction. The cross-sectional shape along the thickness direction in the direction is circular or elliptical.
 図4及び図5に示すとおり、第1の線条部10における直線部10A、すなわち第1面10aを載置面として平面P上に載置したとき、各第1面10aはすべて平面P上に位置する。第1面10aは、セラミックス格子体1における第1面1aをなすものであるから、各第1面10aがすべて平面P上に位置することは、該格子体1における第1面1aが平坦面になっていることを意味する。したがってセラミックス格子体1を、その第1面1aが、平坦な載置面と当接するように載置した場合には、該第1面1aの全域が載置面と接することとなる。 As shown in FIGS. 4 and 5, when the linear portion 10 </ b> A in the first linear portion 10, i.e., the first surface 10 a is placed on the plane P as the placement surface, all the first surfaces 10 a are all on the plane P. Located in. Since the first surface 10a forms the first surface 1a of the ceramic lattice body 1, the fact that each of the first surfaces 10a is all on the plane P means that the first surface 1a of the lattice body 1 is a flat surface. Means that Therefore, when the ceramic lattice body 1 is placed such that the first surface 1a is in contact with the flat placement surface, the entire area of the first surface 1a is in contact with the placement surface.
 図4に示すとおり、第1の線条部10における直線部10A、すなわち第1面10aを載置面として平面P上に載置したとき、第2の線条部20は、隣り合う2つの交点2の間において平面Pから離間する形状をしている。したがって、隣り合う2つの交点2の間において、第2の線条部20と平面Pとの間には空間Sが形成される。 As shown in FIG. 4, when the linear portion 10 </ b> A of the first linear portion 10, i.e., the first surface 10 a is placed on the plane P as the placement surface, the second linear portion 20 includes two adjacent linear portions 20. The shape is separated from the plane P between the intersection points 2. Accordingly, a space S is formed between the second linear portion 20 and the plane P between two adjacent intersections 2.
 一方、セラミックス格子体1における第2面1bは、凸の曲面形状になっている第2の線条部20の第2面20bから構成されているので、平坦面ではなく、凹凸面となっている。 On the other hand, since the 2nd surface 1b in the ceramic lattice body 1 is comprised from the 2nd surface 20b of the 2nd linear part 20 which is a convex curved surface shape, it becomes an uneven surface instead of a flat surface. Yes.
 セラミックス格子体1における第1の線条部10と第2の線条部20との交点2において、両線条部10,20は一体化している。「一体化している」とは、交点2の断面を観察において、両線条部10,20間が、セラミックスとして連続した構造体となっていることをいう。両線条部10,20の交差によってセラミックス格子体1に形成されている各貫通孔3は同寸法であり、且つ同形をしている。各貫通孔3は略菱形をしている。貫通孔3は規則的に配置されている。 At the intersection 2 between the first filament portion 10 and the second filament portion 20 in the ceramic lattice 1, the filament portions 10 and 20 are integrated. “Integrated” means that, when the cross section of the intersection 2 is observed, the space between the two linear portions 10 and 20 is a continuous structure as ceramics. The through-holes 3 formed in the ceramic lattice 1 by the intersection of both the line portions 10 and 20 have the same dimensions and the same shape. Each through-hole 3 has a substantially diamond shape. The through holes 3 are regularly arranged.
 図1(b)、図2、図4及び図5に示すとおり、第1の線条部10と第2の線条部20との交点2は、いずれの交点2においても、第1の線条部10上に第2の線条部20が配されている。つまり、第1の線条部10と第2の線条部20との交点2においては、格子体1の2つの面1a,1bのうち、相対的に第1面1a側に位置する第1の線条部10上に、相対的に第2面1b側に位置する第2の線条部20が配されている。そして、交点2における厚みが、該交点以外の部位における第1の線条部の厚み及び第2の線条部の厚みのいずれよりも大きくなっている。つまり、両線条部10,20の交点2以外の位置における第1の線条部10の厚みをT1とし(図3参照)、両線条部10,20の交点2以外の位置における第2の線条部20の厚みをT2とし(図6参照)、更に交点における厚みをTcとしたとき(図4及び図5参照)、Tc>T1であり、Tc>T2である。したがって、セラミックス格子体1の第2面1bにおいては、両線条部10,20の交点の位置が最も高くなっている。 As shown in FIGS. 1B, 2, 4, and 5, the intersection 2 between the first filament 10 and the second filament 20 is the first line at any intersection 2. A second linear portion 20 is disposed on the linear portion 10. That is, at the intersection 2 between the first linear portion 10 and the second linear portion 20, the first of the two surfaces 1 a and 1 b of the lattice 1 that is relatively located on the first surface 1 a side. The 2nd linear part 20 located relatively on the 2nd surface 1b side is distribute | arranged on the linear part 10 of this. And the thickness in the intersection 2 is larger than both the thickness of the 1st filament part in the site | parts other than this intersection, and the thickness of the 2nd filament part. That is, the thickness of the first filament 10 at a position other than the intersection 2 between the two filaments 10 and 20 is T1 (see FIG. 3), and the second at a position other than the intersection 2 between the filaments 10 and 20 is the second. When the thickness of the linear portion 20 is T2 (see FIG. 6) and the thickness at the intersection is Tc (see FIGS. 4 and 5), Tc> T1 and Tc> T2. Therefore, on the second surface 1 b of the ceramic lattice body 1, the position of the intersection of the two linear portions 10 and 20 is the highest.
 図5に示すとおり、第1の線条部10は、交点2以外の部位において、該第1の線条部10における第2面10bの最高位置、すなわち頂部の位置が、第1の線条部10の延びる方向に沿って同じになっている。第2の線条部20に関しては、図4に示すとおり、第2の線条部20における第2面20bの最高位置は、交点2の位置及び交点2以外の位置のいずれにおいても、第1の線条部10の延びる方向に沿って同じになっている。第2の線条部20における第1面20aの最低位置は、交点2以外の部位において、第2の線条部20の延びる方向に沿って同じになっている。 As shown in FIG. 5, in the first line portion 10, the highest position of the second surface 10 b in the first line portion 10, that is, the position of the top portion of the first line portion 10 is the first line portion. It is the same along the direction in which the part 10 extends. With respect to the second filament part 20, as shown in FIG. 4, the highest position of the second surface 20b in the second filament part 20 is the first in any of the position of the intersection point 2 and the position other than the intersection point 2. It is the same along the direction where the linear part 10 extends. The lowest position of the first surface 20 a in the second linear portion 20 is the same along the direction in which the second linear portion 20 extends in parts other than the intersection 2.
 図2(a)及び図7に示すとおり、第2の線条部20は、その平面視での投影像が、交点2において、幅方向(図7におけるX方向)の外方に向けて湾曲膨出した形状になっている。それによって交点2における投影像の幅W2aが、交点2以外の部位における投影像の幅W2bよりも大きくなっている。詳細には、第2の線条部20は、平面視での投影像の長手方向(図7におけるY方向)に沿う輪郭が、交点2において、幅方向(図7におけるX方向)の外方に向けて緩やかな凸の曲線21,21を描いている。第2の線条部20の平面視での投影像の長手方向に沿う輪郭は、幅W2aを有する最大幅部を有し、その最大幅部から離れるに連れて幅が漸次緩やかに減少していき、交点2どうしの間の位置では幅W2bになる。幅W2bは、先に述べた幅W2と同じである。 As shown in FIG. 2A and FIG. 7, the projected image in the plan view of the second linear portion 20 is curved outward in the width direction (X direction in FIG. 7) at the intersection 2. It has a bulging shape. As a result, the width W2a of the projected image at the intersection 2 is larger than the width W2b of the projected image at a portion other than the intersection 2. Specifically, the second linear portion 20 has an outline along the longitudinal direction (Y direction in FIG. 7) of the projected image in a plan view, and is outward in the width direction (X direction in FIG. 7) at the intersection 2. Gently convex curves 21 and 21 are drawn. The contour along the longitudinal direction of the projected image in plan view of the second linear portion 20 has a maximum width portion having a width W2a, and the width gradually decreases gradually as the distance from the maximum width portion increases. At a position between the intersections 2, the width becomes W2b. The width W2b is the same as the width W2 described above.
 一方、第1の線条部10は、図2(b)及び図8に示すとおり、その平面視での投影像が、交点2において、幅方向(図8におけるY方向)の外方に向けて湾曲膨出した形状になっている。それによって交点2における投影像の幅W1aが、交点2以外の部位における投影像の幅W1bよりも大きくなっている。詳細には、第1の線条部10は、平面視での投影像の長手方向(図8におけるX方向)に沿う輪郭が、交点2において、幅方向(図8におけるY方向)の外方に向けて緩やかな凸の曲線11,11を描いている。第1の線条部10の平面視での投影像の長手方向に沿う輪郭は、幅W1aを有する最大幅部を有し、その最大幅部から離れるに連れて幅が漸次緩やかに減少していき、交点2どうしの間の位置では幅W1bになる。幅W1bは、先に述べた幅W1と同じである。 On the other hand, as shown in FIGS. 2B and 8, the first linear portion 10 has a projected image in plan view directed outward in the width direction (Y direction in FIG. 8) at the intersection 2. It has a curved and bulging shape. As a result, the width W1a of the projected image at the intersection 2 is larger than the width W1b of the projected image at a portion other than the intersection 2. Specifically, the first linear portion 10 has an outline along the longitudinal direction (X direction in FIG. 8) of the projected image in plan view, and the intersection 2 is outward in the width direction (Y direction in FIG. 8). A gentle convex curve 11, 11 is drawn toward. The outline along the longitudinal direction of the projected image of the first linear portion 10 in plan view has a maximum width portion having a width W1a, and the width gradually decreases gradually as the distance from the maximum width portion increases. At a position between the intersections 2, the width becomes W1b. The width W1b is the same as the width W1 described above.
 図9には、セラミックス格子体1の平面図が示されている。同図に示すとおり、格子体1には、複数の第1の線条部10と複数の第2の線条部20とが交差することで、該格子体の平面視において略菱形状の複数の貫通孔3が形成されている。略菱形状をなす貫通孔3は、対向する一組の辺である第1辺3a,3aを有している。これとともに貫通孔3は、対向する別の一組の辺である第2辺3b,3bを有している。第1辺3a,3aは、第1の線条部10の両側縁に対応する辺である。一方、第2辺3b,3bは、第2の線条部20の両側縁に対応する辺である。貫通孔3は、これらの四辺によって画定されている。対向する第1辺3a,3aどうしは直線になっており互いに平行に延びている。同様に、対向する第2辺3b,3bどうしも直線になっており互いに平行に延びている。そして、第1の線条部10及び第2の線条部20が、それらの交点2において上述した湾曲膨出形状を有することによって、貫通孔3は、図9に示す模式図のように、隅部30がやや丸みを帯びた菱形となる。 FIG. 9 shows a plan view of the ceramic lattice 1. As shown in the figure, the lattice body 1 has a plurality of substantially rhombic shapes in a plan view of the lattice body by intersecting a plurality of first linear portions 10 and a plurality of second linear portions 20. Through-holes 3 are formed. The through-hole 3 having a substantially rhombus shape has first sides 3a and 3a that are a pair of opposing sides. At the same time, the through-hole 3 has second sides 3b and 3b which are another set of sides facing each other. The first sides 3 a and 3 a are sides corresponding to both side edges of the first linear portion 10. On the other hand, the second sides 3 b and 3 b are sides corresponding to both side edges of the second linear portion 20. The through hole 3 is defined by these four sides. The opposing first sides 3a, 3a are straight and extend parallel to each other. Similarly, the opposing second sides 3b, 3b are straight and extend parallel to each other. And when the 1st filament part 10 and the 2nd filament part 20 have the curve bulging shape mentioned above in those intersections 2, the through-hole 3 is like the schematic diagram shown in FIG. The corner 30 is a slightly rounded rhombus.
 以上の構成を有するセラミックス格子体1は、これを例えば被焼成体の焼成用セッターとして用いた場合、第1の線条部10及び第2の線条部20が、第1の辺部L1及び第2の辺部L2と小さな鋭角で交わっているので、第1の辺部L1及び/又は第2の辺部L2にクラック等の欠陥が発生したとしても、その欠陥が格子体1の内方に向けて伝播しづらい。この理由は、クラック等の欠陥が最も発生しやすい箇所は第1の線条部10と第2の線条部20との交点2の付近であるところ、本実施形態の格子体1では、各交点2を結ぶ仮想線が、第1の辺部L1及び第2の辺部L2と平行にならないので、ある交点2の付近で発生したクラック等の欠陥が、その隣りに位置する交点2へ伝播することが阻止されるからである。これとは対照的に、仮に第1の線条部10と第2の線条部20とが直交している場合には、各交点2を結ぶ仮想線が第1の辺部L1及び第2の辺部L2と平行になるので、ある交点2の付近で発生したクラック等の欠陥が、その隣りに位置する交点2へ容易に伝播し、それが連鎖的に隣りの交点2に伝播して、格子体1の全体に割れが発生しやすい。 When the ceramic lattice body 1 having the above configuration is used as, for example, a setter for firing an object to be fired, the first wire portion 10 and the second wire portion 20 are formed by the first side portion L1 and Since it intersects with the second side L2 at a small acute angle, even if a defect such as a crack occurs in the first side L1 and / or the second side L2, the defect is inward of the lattice 1. Difficult to propagate towards The reason for this is that the place where defects such as cracks are most likely to occur is in the vicinity of the intersection 2 between the first linear portion 10 and the second linear portion 20. Since the imaginary line connecting the intersection point 2 is not parallel to the first side portion L1 and the second side portion L2, a defect such as a crack generated near a certain intersection point 2 propagates to the adjacent intersection point 2 This is because it is blocked. In contrast, if the first linear portion 10 and the second linear portion 20 are orthogonal to each other, the imaginary line connecting each intersection 2 is the first side portion L1 and the second side portion L1. Since a defect such as a crack generated in the vicinity of an intersection 2 easily propagates to the intersection 2 located next to it, it propagates to the adjacent intersection 2 in a chain. The cracks are likely to occur in the entire lattice body 1.
 以上のクラック等の欠陥の伝播を効果的に阻止する観点から、上述したθ1及びθ2はそれぞれ独立に10度以上170度以下であることが更に好ましく、20度以上160度以下であることが一層好ましい。また、θ1が30度以上150度以下であることが好ましい場合、θ2は、30度以上150度以下であることが好ましい。 From the viewpoint of effectively preventing the propagation of defects such as cracks as described above, the above-described θ1 and θ2 are more preferably independently from 10 ° to 170 °, more preferably from 20 ° to 160 °. preferable. When θ1 is preferably 30 ° or more and 150 ° or less, θ2 is preferably 30 ° or more and 150 ° or less.
 同様の観点から、上述した第1の線条部10及び第2の線条部20が第1の辺部L1及び第2の辺部L2と小さな鋭角で交わるようにするためには、θ1及びθ2はそれぞれ独立に10度以上80度以下、又は100度以上170度以下であることが好ましく、より好ましくは、20度以上70度以下、又は110度以上160度以下、更にこの好ましくは30度以上60度以下又は120度以上150度以下である。 From the same point of view, in order for the first and second linear portions 10 and 20 to intersect the first side L1 and the second side L2 at a small acute angle, θ1 and θ2 is preferably 10 ° to 80 °, or 100 ° to 170 °, more preferably 20 ° to 70 °, or 110 ° to 160 °, and more preferably 30 °. It is 60 degrees or less or 120 degrees or more and 150 degrees or less.
 クラック等の欠陥の伝播をより一層効果的に阻止する観点から、第1の線条部10と第2の線条部20との交差角|θ1-θ2|は、60度以上120度以下であることが好ましく、70度以上110度以下であることがより好ましく、80度以上100度以下であることが更に好ましく、最も好ましい角度は90度±3度の範囲(直交している状態)である。 From the viewpoint of more effectively preventing the propagation of defects such as cracks, the crossing angle | θ1-θ2 | between the first linear portion 10 and the second linear portion 20 is not less than 60 degrees and not more than 120 degrees. Preferably, it is 70 degrees or more and 110 degrees or less, more preferably 80 degrees or more and 100 degrees or less, and the most preferable angle is in the range of 90 degrees ± 3 degrees (in a state of being orthogonal). is there.
 また、本実施形態の格子体1においては、第1の線条部10は、交点2以外の部位において、その長手方向と直交する方向での厚み方向断面が矩形ではなく、図3に示すとおり、直線部10Aと、該直線部10Aの両端部を端部とする凸形の曲線部10Bとから構成される形状を有しているので、これによってもクラック等の欠陥が発生しづらく、また欠陥の伝播が起こりづらい。更に、第2の線条部20は、交点2以外の部位において、その長手方向と直交する方向での厚み方向断面が矩形ではなく、図6に示すとおり、円形又は楕円形になっているので、このことによってもクラック等の欠陥が発生しづらく、また欠陥の伝播が起こりづらい。 Moreover, in the grid | lattice body 1 of this embodiment, as for the 1st filament part 10, the thickness direction cross section in the direction orthogonal to the longitudinal direction is not a rectangle in parts other than the intersection 2, but as shown in FIG. Since it has a shape composed of the straight portion 10A and the convex curved portion 10B having both ends of the straight portion 10A as ends, it is difficult for defects such as cracks to occur. Defect propagation is difficult to occur. Further, the second linear portion 20 has a circular or elliptical shape as shown in FIG. 6 in the cross section in the thickness direction in the direction orthogonal to the longitudinal direction at a portion other than the intersection 2 as shown in FIG. This also makes it difficult for defects such as cracks to occur, and to prevent the propagation of defects.
 更に、本実施形態の格子体1においては、略菱形をした貫通孔3の隅部30が丸みを帯びていることに起因して、強度及び耐スポーリング性が向上する。この理由は、セラミックス格子体1のうち、クラック等の欠陥が最も発生しやすい部位は貫通孔3の隅部30であるところ、該隅部30が丸みを帯びていることに起因して、該隅部30にクラック等が生じにくいからである。これとは対照的に、例えば上述した特許文献2に記載されている開口部を有する窯道具板では、該開口部の隅部が直角になっているので、クラック等が生じやすい。 Furthermore, in the lattice body 1 of the present embodiment, the strength and spalling resistance are improved due to the rounded corners 30 of the substantially rhombic through-holes 3. This is because the portion of the ceramic lattice 1 where defects such as cracks are most likely to occur is the corner 30 of the through-hole 3, and the corner 30 is rounded. This is because cracks and the like are hardly generated in the corner 30. In contrast to this, for example, in the kiln tool plate having the opening described in Patent Document 2 described above, the corners of the opening are at right angles, so that cracks and the like are likely to occur.
 上述した強度及び耐スポーリング性の向上は、第1の線条部10と第2の線条部20との交点2において、少なくとも第2の線条部20が、平面視での投影像の長手方向に沿う輪郭に、前記の凸の曲線21を有していれば十分に達成される。特に、第1の線条部10及び第2の線条部20の双方が、平面視での投影像の長手方向に沿う輪郭に、前記の凸の曲線11,21を有していると、強度及び耐スポーリング性が更に一層向上する。 The above-described improvement in strength and spalling resistance is achieved by the fact that at least the second linear portion 20 at the intersection point 2 between the first linear portion 10 and the second linear portion 20 has a projected image in plan view. If the contour along the longitudinal direction has the convex curve 21 described above, this is sufficiently achieved. In particular, when both the first linear portion 10 and the second linear portion 20 have the convex curves 11 and 21 on the contour along the longitudinal direction of the projected image in plan view, Strength and spalling resistance are further improved.
 以上の構成を有するセラミックス格子体1は、これを例えば被焼成体の焼成用セッターとして用いた場合、該格子体1の第1面1aに被焼成体を載置すれば、該第1面1aは平坦面であることから、平坦性を求められる被焼成体の載置に好適なものとなる。平坦性を求められる被焼成体としては、例えば積層セラミックスコンデンサ等の小型のチップ状電子部品などが挙げられる。これらの小型電子部品は、焼成工程においてセッターに引っ掛からないことが必要とされるので、格子体1の第1面1aが平坦であることは有利である。また、被焼成体は、第1面1aを構成する部材である第1の線条部10のみ接触するので、格子体1と被焼成体との接触面積が大幅に低減し、それによって被焼成体の急激な加熱及び冷却を行いやすくなる。また、格子体1は第1及び第2の線条部10,20の交差によって形成されており複数の貫通孔3が形成されているので、熱容量が小さく、その点からも被焼成体の急激な加熱及び冷却を行いやすい。更に格子体1は、複数の貫通孔3が存在していることに起因して通気性が良好なので、このことによっても被焼成体の急激な冷却を行いやすい。良好な通気性は、隣り合う交点2どうしの間において第2の線条部20が浮いていることによって一層顕著なものとなる。しかも格子体1においては、第1及び第2の線条部10,20が交点2において一体化しているので、十分な強度を有するものである。 When the ceramic lattice body 1 having the above configuration is used as, for example, a setter for firing a body to be fired, the first surface 1a can be obtained by placing the body to be fired on the first surface 1a of the lattice body 1. Since it is a flat surface, it is suitable for mounting a fired body that requires flatness. As a to-be-fired body from which flatness is calculated | required, small chip-shaped electronic components, such as a multilayer ceramic capacitor, etc. are mentioned, for example. Since these small electronic components are required not to be caught by the setter in the firing process, it is advantageous that the first surface 1a of the lattice body 1 is flat. Moreover, since the to-be-fired body contacts only the 1st filament part 10 which is the member which comprises the 1st surface 1a, the contact area of the grid | lattice body 1 and a to-be-fired body reduces significantly, and, thereby, to-be-fired It becomes easy to perform rapid heating and cooling of the body. Further, since the lattice body 1 is formed by the intersection of the first and second linear portions 10 and 20 and the plurality of through holes 3 are formed, the heat capacity is small. Easy heating and cooling. Furthermore, since the lattice body 1 has good air permeability due to the presence of the plurality of through holes 3, this also facilitates rapid cooling of the fired body. Good air permeability becomes more remarkable by the fact that the second linear portion 20 is floating between the adjacent intersections 2. In addition, in the grid body 1, the first and second linear portions 10 and 20 are integrated at the intersection point 2, and therefore have sufficient strength.
 一方、格子体1の第2面1bには、mmオーダーの被焼成体を載置することが有利である。第2面1bは、第2の線条部20の曲面に起因する凹凸面となっているところ、このオーダーのサイズの電子部品は、それが載置される面に凹凸を有することが、脱脂性を高める観点から有利だからである。また、前記mmオーダーの被焼成体のうち、特に第1の線条部10の上面の上で、且つ第2の線条部20の間に載置可能な、長細い形状のものを載置することも、被焼成体を固定しつつ脱脂性を高める観点から有利である。 On the other hand, it is advantageous to place an object to be fired on the order of mm on the second surface 1b of the lattice body 1. The second surface 1b is an uneven surface caused by the curved surface of the second linear portion 20, and the electronic component of this order size has an uneven surface on which it is placed. This is because it is advantageous from the viewpoint of enhancing the performance. Further, among the objects to be fired in the order of mm, a long and thin object that can be placed on the upper surface of the first linear portion 10 and between the second linear portions 20 is placed. It is also advantageous from the viewpoint of improving the degreasing property while fixing the body to be fired.
 このように本実施形態の格子体1は、その一方の面が平坦であり、他方の面が凹凸面になっていることから、被焼成体の種類に応じて載置面を使い分けることができるという点で有利である。 As described above, the lattice body 1 of the present embodiment has one surface that is flat and the other surface is an uneven surface, so that the mounting surface can be properly used according to the type of the body to be fired. This is advantageous.
 上述した各種の有利な効果を一層顕著なものとする観点から、T1の値は、50μm以上5000μm以下であることが好ましく、200μm以上2000μm以下であることが更に好ましい。一方、T2の値は、50μm以上5000μm以下であることが好ましく、200μm以上2000μm以下であることが更に好ましい。T1とT2の値の大小関係に特に制限はなく、T1>T2であってもよく、逆にT1<T2であってもよく、あるいはT1=T2であってもよい。T1=T2とは、T1とT2とが製造可能な範囲で同一の寸法を有することであり、T1とT2とが完全に同一であることは要せず、寸法の大きい方が小さい方に対して5%以内の範囲で大きい場合も含めるものとする。 From the viewpoint of making the various advantageous effects described above more remarkable, the value of T1 is preferably 50 μm or more and 5000 μm or less, and more preferably 200 μm or more and 2000 μm or less. On the other hand, the value of T2 is preferably 50 μm or more and 5000 μm or less, and more preferably 200 μm or more and 2000 μm or less. The magnitude relationship between the values of T1 and T2 is not particularly limited, and may be T1> T2, conversely, T1 <T2, or T1 = T2. T1 = T2 means that T1 and T2 have the same dimensions within the manufacturable range, and T1 and T2 do not need to be completely the same. Including cases where the size is large within 5%.
 同様の観点から、交点2における厚みTcは0.1mm以上2mm以下であることが好ましく、0.3mm以上1.5mm以下であることが更に好ましい。なお、交点2における厚みTcは、T1及びT2の総和であるT1+T2よりも小さくなっている。 From the same viewpoint, the thickness Tc at the intersection 2 is preferably 0.1 mm or more and 2 mm or less, and more preferably 0.3 mm or more and 1.5 mm or less. The thickness Tc at the intersection 2 is smaller than T1 + T2, which is the sum of T1 and T2.
 また、第2の線条部20の厚み方向での断面形状(図6参照)が楕円形である場合、楕円形の短軸が格子体1の厚み方向に一致し、且つ楕円形の長軸が格子体1の平面方向に一致することが、被焼成体の載置を首尾よく行える点から好ましい。この場合、長軸/短軸の比率は、1以上3以下であることが好ましく、1以上2.5以下であることが更に好ましい。また、第2の線条部20の厚み方向での断面形状が楕円形又は円形であることは、格子体1の強度向上にも寄与している。 Moreover, when the cross-sectional shape (refer FIG. 6) in the thickness direction of the 2nd filament part 20 is an ellipse, an elliptical short axis corresponds to the thickness direction of the grid | lattice body 1, and an elliptical long axis Is preferably coincident with the planar direction of the lattice body 1 from the viewpoint of successfully placing the object to be fired. In this case, the major axis / minor axis ratio is preferably 1 or more and 3 or less, and more preferably 1 or more and 2.5 or less. In addition, the fact that the cross-sectional shape in the thickness direction of the second linear portion 20 is an ellipse or a circle contributes to an improvement in the strength of the lattice 1.
 セラミックス格子体1に形成された貫通孔3は、その面積が100μm以上100mm以下、特に2500μm以上1mm以下であることが、格子体1の熱容量を低下させる点や、通気性を向上させる点、及び格子体1の強度維持の点から好ましい。また、平面視におけるセラミックス格子体1の見かけの面積に対する貫通孔3の面積の総和の割合は、1%以上80%以下であることが好ましく、3%以上70%以下であることが更に好ましく、10%以上70%以下であることが一層好ましい。この割合は、セラミックス格子体1を平面視して、任意の大きさの矩形に切り取り、その矩形内に含まれる貫通孔3の面積の総和を算出し、その総和を矩形の面積で除し100を乗じて算出される。また、各貫通孔3の面積は、格子体1の顕微鏡観察像を画像解析することで測定できる。 The through hole 3 formed in the ceramic lattice body 1 has an area of 100 μm 2 or more and 100 mm 2 or less, particularly 2500 μm 2 or more and 1 mm 2 or less, which reduces the heat capacity of the lattice body 1 and improves air permeability. This is preferable from the viewpoint of maintaining the strength of the grid body 1. Further, the ratio of the total area of the through holes 3 to the apparent area of the ceramic lattice 1 in plan view is preferably 1% or more and 80% or less, and more preferably 3% or more and 70% or less, More preferably, it is 10% or more and 70% or less. This ratio is obtained by cutting the ceramic lattice body 1 into a rectangular shape in plan view, calculating the sum of the areas of the through holes 3 included in the rectangle, and dividing the sum by the rectangular area. Calculated by multiplying by Moreover, the area of each through-hole 3 can be measured by image analysis of the microscope observation image of the lattice 1.
 貫通孔3の面積に関連して、第1の線条部10の幅W1は50μm以上10mm以下であることが好ましく、75μm以上5mm以下であることが更に好ましい。一方、第2の線条部20の幅W2は50μm以上10mm以下であることが好ましく、75μm以上5mm以下であることが更に好ましい。W1とW2の値の大小関係に特に制限はなく、W1>W2であってもよく、逆にW1<W2であってもよく、あるいはW1=W2であってもよい。 In relation to the area of the through-hole 3, the width W1 of the first linear portion 10 is preferably 50 μm or more and 10 mm or less, and more preferably 75 μm or more and 5 mm or less. On the other hand, the width W2 of the second linear portion 20 is preferably 50 μm or more and 10 mm or less, and more preferably 75 μm or more and 5 mm or less. There is no particular limitation on the magnitude relationship between the values of W1 and W2, W1> W2 may be satisfied, W1 <W2 may be conversely, or W1 = W2.
 第1及び第2の線条部10,20の幅W1,W2との関連において、隣り合う第1の線条部10間のピッチP1は、100μm以上10mm以下であることが好ましく、150μm以上5mm以下であることが更に好ましい。一方、隣り合う第2の線条部20間のピッチP2は、100μm以上10mm以下であることが好ましく、150μm以上5mm以下であることが更に好ましい。 In relation to the widths W1 and W2 of the first and second linear portions 10 and 20, the pitch P1 between the adjacent first linear portions 10 is preferably 100 μm or more and 10 mm or less, and 150 μm or more and 5 mm. More preferably, it is as follows. On the other hand, the pitch P2 between the adjacent second linear portions 20 is preferably 100 μm or more and 10 mm or less, and more preferably 150 μm or more and 5 mm or less.
 第1の線条部10は、その表面のうち第1面10aが平滑であることが好ましい。線条部10の第1面10aが平滑であることによって、セラミックス格子体1上に被焼成体を載置したときに、該被焼成体に傷がつきにくくなるという利点がある。また被焼成体の焼成によって得られた焼成体が、セラミックス格子体1に引っ掛かりにくくなり、取り出し性が良好になるという利点もある。更に、被焼成体が基板などの薄肉のテープ成形体であれば、第1面10aの表面状態が被焼成体の底面に転写されるため、被焼成体底面がより平滑に仕上がりやすくなるメリットもある。一方で、表面粗さが大きいと、被焼成体を載置したときに、被焼成体の下部におけるガスの流れがよくなるため、脱脂がスムーズに進みやすくなるという利点がある。これらの観点から、第1の線条部10の第1面10aの表面粗さRaは、0.01μm以上20μm以下であることが好ましく、0.02μm以上10μm以下であることが更に好ましく、0.1μm以上1μm以下であることが最も好ましい。一方、第2の線条部20の第2面20bの表面粗さRaは、0.01μm以上20μm以下であることが好ましく、0.02μm以上10μm以下であることが更に好ましく、0.1μm以上1μm以下であることが最も更に好ましい。表面粗さRaは、具体的には、次の方法で測定される。カラー3Dレーザー顕微鏡((株)キーエンス製、VK―8710)を用いて、撮影倍率を200倍として測定した。第1の線条部10の第1面10aに関しては、第1面10aの中線に沿って、表面粗さを測定し、20個の測定値から平均値を算出し、Raとした。一方、第2の線条部20の第2面20bでは、線条部20の中線に沿って表面粗さを測定し、20個の測定値から平均値を算出し、Raとした。 It is preferable that the 1st surface 10a is smooth among the surfaces of the 1st filament part 10. FIG. Since the first surface 10a of the linear portion 10 is smooth, there is an advantage that when the object to be fired is placed on the ceramic lattice body 1, the object to be fired is hardly damaged. In addition, there is an advantage that the fired body obtained by firing the body to be fired is not easily caught by the ceramic lattice body 1 and the take-out property is improved. Furthermore, if the body to be fired is a thin tape molded body such as a substrate, the surface state of the first surface 10a is transferred to the bottom surface of the body to be fired, so that the bottom surface of the body to be fired can be finished more smoothly. is there. On the other hand, when the surface roughness is large, there is an advantage that when the object to be fired is placed, the flow of gas in the lower part of the object to be fired is improved, so that the degreasing easily proceeds smoothly. From these viewpoints, the surface roughness Ra of the first surface 10a of the first filament portion 10 is preferably 0.01 μm or more and 20 μm or less, more preferably 0.02 μm or more and 10 μm or less, Most preferably, it is 1 μm or more and 1 μm or less. On the other hand, the surface roughness Ra of the second surface 20b of the second linear portion 20 is preferably 0.01 μm or more and 20 μm or less, more preferably 0.02 μm or more and 10 μm or less, and more preferably 0.1 μm or more. Most preferably, it is 1 μm or less. Specifically, the surface roughness Ra is measured by the following method. Using a color 3D laser microscope (manufactured by Keyence Co., Ltd., VK-8710), the measurement magnification was 200 times. For the first surface 10a of the first filament 10, the surface roughness was measured along the middle line of the first surface 10a, and an average value was calculated from the 20 measured values, which was Ra. On the other hand, on the second surface 20b of the second striated portion 20, the surface roughness was measured along the middle line of the striated portion 20, and an average value was calculated from the 20 measured values, which was Ra.
 線条部10、20の表面粗さRaの値を小さくするためには、例えば、該線条部の形成に用いられるペーストを塗布する基板として表面粗さの小さいものを用いたり、あるいは該ペーストとして低粘度のものを用いたりすればよい。一方、線条部10、20の表面粗さRaの値を大きくするためには、例えば、該ペーストとして、高粘度のものを用いたり、吐出させるノズル直径を大きくしたりすればよい。場合によっては、セラミックス格子体1の第1面10a及び/又は第2面10bを研磨して所定の表面粗さとなるように加工してもよい。 In order to reduce the value of the surface roughness Ra of the linear portions 10 and 20, for example, a substrate having a small surface roughness is used as a substrate on which the paste used for forming the linear portions is applied, or the paste A low-viscosity material may be used. On the other hand, in order to increase the value of the surface roughness Ra of the linear portions 10 and 20, for example, a high-viscosity paste may be used or the diameter of the nozzle to be discharged may be increased. In some cases, the first surface 10a and / or the second surface 10b of the ceramic lattice body 1 may be polished and processed to have a predetermined surface roughness.
 セラミックス格子体1を構成するセラミックス素材としては、種々のものを用いることができる。例えば、アルミナ、炭化ケイ素、窒化ケイ素、ジルコニア、ムライト、ジルコン、コージェライト、チタン酸アルミニウム、チタン酸マグネシウム、マグネシア、二硼化チタン、窒化ホウ素などが挙げられる。これらのセラミックス素材は、1種を単独で又は2種以上を組み合わせて用いることができる。特に、アルミナ、ムライト、コージェライト、ジルコニア又は炭化ケイ素を含むセラミックスからなることが好ましい。セラミックス格子体1を急激な加熱及び冷却に付す場合には、セラミックス素材として炭化ケイ素を用いることが特に好ましい。なお炭化ケイ素は、被焼成体との反応の懸念があることから、セラミックス素材として炭化ケイ素を用いる場合には、表面をジルコニア等の反応性の低いセラミックス素材でコートすることが好ましい。第1の線条部10を構成するセラミックス素材と、第2の線条部20を構成するセラミックス素材とは同じでもよく、あるいは異なっていてもよい。交点2における第1及び第2の線条部10,20の一体性を高くする観点からは、両線条部10,20を構成するセラミックス素材は同じであることが好ましい。更に第1及び第2の線条部10,20を、一体性を高くして、セラミックス格子体1を強固なものとする観点から、交点2において、第1の線条部10と第2の線条部20とを接合する部材は、両線条部10,20を構成するセラミックス素材と同じものであることが好ましい。第1及び第2の線条部10,20の接合は、例えば後述する製造方法に示すように、2種類の線条塗工体によって形成された格子状前駆体を焼成することによって行うことができる。 As the ceramic material constituting the ceramic lattice body 1, various materials can be used. Examples thereof include alumina, silicon carbide, silicon nitride, zirconia, mullite, zircon, cordierite, aluminum titanate, magnesium titanate, magnesia, titanium diboride, boron nitride and the like. These ceramic materials can be used singly or in combination of two or more. In particular, it is preferably made of a ceramic containing alumina, mullite, cordierite, zirconia or silicon carbide. When the ceramic lattice body 1 is subjected to rapid heating and cooling, it is particularly preferable to use silicon carbide as the ceramic material. In addition, since silicon carbide has a concern about a reaction with a to-be-fired body, when using silicon carbide as a ceramic material, it is preferable to coat the surface with a low-reactivity ceramic material such as zirconia. The ceramic material constituting the first filament part 10 and the ceramic material constituting the second filament part 20 may be the same or different. From the viewpoint of increasing the integrity of the first and second linear portions 10 and 20 at the intersection point 2, it is preferable that the ceramic materials constituting both the linear portions 10 and 20 are the same. Further, from the viewpoint of enhancing the integrity of the first and second linear portions 10 and 20 and strengthening the ceramic lattice 1, the first linear portion 10 and the second linear portion 10 are intersected at the intersection 2. The member that joins the linear portion 20 is preferably the same as the ceramic material that constitutes the linear portions 10 and 20. The joining of the first and second linear portions 10 and 20 can be performed, for example, by firing a lattice-shaped precursor formed by two types of linear coated bodies, as shown in a manufacturing method described later. it can.
 次に、本実施形態のセラミックス格子体1の好適な製造方法について説明する。本製造方法においては、まずセラミックス素材の原料粉を用意し、該原料粉を、水等の媒体及び結合剤と混合して線条部製造用のペーストを調製する。 Next, a preferred method for manufacturing the ceramic lattice 1 of the present embodiment will be described. In this manufacturing method, first, raw material powder of a ceramic material is prepared, and the raw material powder is mixed with a medium such as water and a binder to prepare a paste for manufacturing a filament portion.
 結合剤としては、この種のペーストに従来用いられたものと同様のものを用いることができる。その例としてはポリビニルアルコール、ポリエチレングリコール、ポリエチレンオキシド、デキストリン、リグニンスルホン酸ソーダ及びアンモニウム、カルボキシメチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、アルギン酸ナトリウム及びアンモニウム、エポキシ樹脂、フェノール樹脂、アラビアゴム、ポリビニルブチラール、ポリアクリル酸及びポリアクリルアミドなどのアクリル系ポリマー、キサンタンガム及びグアガムなどの増粘多糖体類、ゼラチン、寒天及びペクチンなどのゲル化剤、酢酸ビニル樹脂エマルジョン、ワックスエマルジョン、並びにアルミナゾル及びシリカゾルなどの無機バインダーなどが挙げられる。これらのうちの2種類以上を混合して用いてもよい。 As the binder, the same ones conventionally used for this type of paste can be used. Examples include polyvinyl alcohol, polyethylene glycol, polyethylene oxide, dextrin, sodium lignin sulfonate and ammonium, carboxymethylcellulose, ethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, sodium and ammonium alginate, epoxy resin, phenol Resins, gum arabic, polyvinyl butyral, acrylic polymers such as polyacrylic acid and polyacrylamide, thickening polysaccharides such as xanthan gum and guar gum, gelling agents such as gelatin, agar and pectin, vinyl acetate resin emulsion, wax emulsion, And inorganic binders such as alumina sol and silica sol Etc., and the like. Two or more of these may be mixed and used.
 ペーストの粘度は、塗布時の温度において高粘度であることが、本実施形態の構造を有する格子体1を首尾よく製造し得る点から好ましい。詳細には、ペーストの粘度は、塗布時の温度において、1.5MPa・sを超え10.0MPa・s以下であることが好ましく、1.5MPa・sを超え5.0MPa・s以下であることが更に好ましい。ペーストの粘度は、コーンプレート型回転式粘度計又はレオメーターを用いて、回転数0.3rpmにて測定開始後4分時点での測定値を用いた。 The viscosity of the paste is preferably high at the temperature at the time of application from the viewpoint that the lattice body 1 having the structure of this embodiment can be successfully manufactured. Specifically, the viscosity of the paste is preferably more than 1.5 MPa · s and not more than 10.0 MPa · s, more than 1.5 MPa · s and not more than 5.0 MPa · s at the temperature at the time of application. Is more preferable. As the viscosity of the paste, a measured value at a time point of 4 minutes after the start of measurement was used at a rotation speed of 0.3 rpm using a cone plate type rotary viscometer or a rheometer.
 ペーストとして比較的低粘度のものを用いることもできる。低粘度のペーストを用いる場合には、後述する格子状前駆体を製造した後、該格子状前駆体を焼成工程に付す前に、該格子状前駆体を乾燥させて液体分を除去し、該格子状前駆体の保形性を高めてから焼成を行うことが好ましい。比較的低粘度のペーストを用いる場合、その粘度は、塗布時の温度において、10kPa・s以上1.5MPa・s以下であることが好ましく、0.5MPa・s以上1.3MPa・s以下であることが更に好ましい。 A paste having a relatively low viscosity can also be used. In the case of using a low-viscosity paste, after producing the lattice precursor described later, before subjecting the lattice precursor to the firing step, the lattice precursor is dried to remove the liquid component, It is preferable to perform firing after increasing the shape retention of the lattice precursor. When using a paste having a relatively low viscosity, the viscosity is preferably 10 kPa · s or more and 1.5 MPa · s or less, and 0.5 MPa · s or more and 1.3 MPa · s or less at the temperature during application. More preferably.
 ペーストが高粘度のものである場合、及び比較的低粘度のものである場合のいずれの場合であっても、ペーストにおけるセラミックス素材の原料粉の割合は、30質量%以上75質量%以下であることが好ましく、40質量%以上60質量%以下であることが更に好ましい。ペーストにおける媒体の割合は、15質量%以上60質量%以下であることが好ましく、20質量%以上55質量%以下であることが更に好ましい。ペーストにおける結合剤の割合は、1質量%以上40質量%以下であることが好ましく、5質量%以上25質量%以下であることが更に好ましい。 Whether the paste has a high viscosity or a relatively low viscosity, the ratio of the raw material powder of the ceramic material in the paste is 30% by mass or more and 75% by mass or less. It is preferably 40% by mass or more and 60% by mass or less. The ratio of the medium in the paste is preferably 15% by mass to 60% by mass, and more preferably 20% by mass to 55% by mass. The proportion of the binder in the paste is preferably 1% by mass or more and 40% by mass or less, and more preferably 5% by mass or more and 25% by mass or less.
 ペーストには、粘性調整剤として、増粘剤、凝集剤、チクソトロピック剤などを含有させることができる。増粘剤の例としては、ポリエチレングリコール脂肪酸エステル、アルキルアリルスルホン酸、アルキルアンモニウム塩、エチルビニルエーテル・無水マレン酸コポリマー、フュームドシリカ、アルブミンなどのタンパク質などが挙げられる。多くの場合、結合剤は、増粘効果があるため、増粘剤に分類されることがあるが、更に厳密な粘性調整が必要とされる場合には、別途、結合剤に分類されない増粘剤を用いることができる。凝集剤の例として、ポリアクリルアミド、ポリアクリル酸エステル、硫酸アルミニウム、ポリ塩化アルミニウムなどが挙げられる。チクソトロピック剤の例として、脂肪酸アマイド、酸化ポリオレフィン、ポリエーテルエステル型界面活性剤などが挙げられる。ペースト調製用の溶媒としては、水以外にも、アルコール、アセトン及び酢酸エチルなどが用いられ、これらを2種類以上混合してもよい。また吐出量を安定させるために、可塑剤、潤滑剤、分散剤、沈降抑制剤、PH調整剤などを添加してもよい。可塑剤には、トリメチレングリコール、テトラメチレングリコールなどのグリコール系、グリセリン、ブタンジオール、フタル酸系、アジピン酸系、リン酸系などが挙げられる。潤滑剤には、流動パラフィン、マイクロワックス、合成パラフィンなどの炭化水素系、高級脂肪酸、脂肪酸アミドなどが挙げられる。分散剤には、ポリカルボン酸ナトリウム若しくはアンモニウム塩、アクリル酸系、ポリイチレンイミン、リン酸系などが挙げられる。沈降抑制剤には、ポリアマイドアミン塩、ベントナイト、ステアリン酸アルミニウムなどが挙げられる。PH調整剤には、水酸化ナトリウム、アンモニア水、シュウ酸、酢酸、塩酸などが挙げられる。 The paste can contain a thickener, a flocculant, a thixotropic agent, etc. as a viscosity modifier. Examples of the thickener include polyethylene glycol fatty acid ester, alkylallyl sulfonic acid, alkyl ammonium salt, ethyl vinyl ether / maleic anhydride copolymer, fumed silica, albumin and other proteins. In many cases, the binder may be classified as a thickener because it has a thickening effect. However, if more precise viscosity adjustment is required, a thickener that is not classified separately as a binder. An agent can be used. Examples of the flocculant include polyacrylamide, polyacrylic acid ester, aluminum sulfate, and polyaluminum chloride. Examples of thixotropic agents include fatty acid amides, oxidized polyolefins, polyether ester type surfactants, and the like. As a solvent for preparing the paste, in addition to water, alcohol, acetone, ethyl acetate, and the like are used, and two or more of these may be mixed. In order to stabilize the discharge amount, a plasticizer, a lubricant, a dispersant, a sedimentation inhibitor, a pH adjuster, or the like may be added. Examples of the plasticizer include glycols such as trimethylene glycol and tetramethylene glycol, glycerin, butanediol, phthalic acid, adipic acid, and phosphoric acid. Examples of the lubricant include hydrocarbons such as liquid paraffin, micro wax, and synthetic paraffin, higher fatty acids, fatty acid amides, and the like. Examples of the dispersant include sodium polycarboxylate or ammonium salt, acrylic acid type, polyethyleneimine, and phosphoric acid type. Examples of the precipitation inhibitor include polyamide amine salts, bentonite, and aluminum stearate. Examples of the pH adjusting agent include sodium hydroxide, aqueous ammonia, oxalic acid, acetic acid, hydrochloric acid and the like.
 得られたペーストを用い、平坦な基板上に、複数条の線条第1塗工体を互いに平行に且つ直線状に形成する。線条第1塗工体は、目的とする格子体1における第1の線条部10に対応するものである。線条第1塗工体の形成には、種々の塗布装置を用いることができる。例えば小型押し出し機を用いることができる。小型押し出し機におけるノズルの直径は、例えば0.2mm以上5mm以下にすることができる。 Using the obtained paste, a plurality of linear first coated bodies are formed in parallel and linearly on a flat substrate. The filament first coating body corresponds to the first filament portion 10 in the target lattice body 1. Various coating apparatuses can be used for forming the first filament coated body. For example, a small extruder can be used. The diameter of the nozzle in the small extruder can be, for example, 0.2 mm or more and 5 mm or less.
 線条第1塗工体が形成されたら、次いで、該線条第1塗工体と交差するように、複数条の線条第2塗工体を互いに平行に且つ直線状に形成する。線条第2塗工体は、目的とする格子体1における第2の線条部20に対応するものである。線条第2塗工体の形成には、線条第1塗工体と同様の塗布装置を用いることができる。このように線条第1塗工体と線条第2塗工体とを順次形成することで、第1の線条部10上に第2の線条部20が位置する格子体1が首尾よく得られる。この場合、ペーストとして高粘度のものを用いることで、線条第1塗工体と線条第2塗工体との交点において、線条第2塗工体が適度に線条第1塗工体内に沈み込み、それによって、これらの塗工体の側縁が幅方向の外方に向けて湾曲膨出する。更に、隣り合う交点の間において、線条第2塗工体が橋渡し状態(つまり浮いた状態)になる。 When the first filament coated body is formed, a plurality of filament second coated bodies are then formed in parallel and linearly so as to intersect the first filament coated body. The filament second coated body corresponds to the second filament portion 20 in the target lattice body 1. For the formation of the second filament coated body, a coating device similar to the first filament coated body can be used. Thus, the grid body 1 in which the 2nd filament part 20 is located on the 1st filament part 10 is succeeded by forming a filament 1st coating body and a filament 2nd coating body sequentially. Well obtained. In this case, by using a high-viscosity paste as the paste, the second filament coated body is appropriately applied at the intersection of the filament first coated body and the second filament coated body. It sinks into the body, whereby the side edges of these coated bodies bulge out outward in the width direction. Furthermore, between the adjacent intersections, the filament second coating body is in a bridging state (that is, in a floating state).
 このようにして、2種類の線条塗工体によって形成された格子状前駆体が得られる。格子状前駆体を製造するときに用いたペーストの粘度が比較的低い場合には、この格子状前駆体を乾燥させて、保形性を発現させることが好ましい。それによって、線条第2塗工体が過度に線条第1塗工体内に沈み込むことが防止されて、これらの塗工体の側縁が幅方向の外方に向けて適度に湾曲膨出する。また、隣り合う交点の間において、線条第2塗工体が自重で下方に向けて撓むことが防止されて、線条第2塗工体の橋渡し状態が維持される。乾燥は、例えば大気下に40℃以上80℃以下の温度で格子状前駆体を加熱することで行われる。加熱時間は、例えば0.5時間以上12時間以下とすることができる。ペーストの粘度が高い場合には、格子状前駆体の乾燥は必要がない場合が多く、そのときには格子状前駆体を直接に以下に述べる焼成工程に付すことができる。 In this way, a lattice-shaped precursor formed by two types of filament coated bodies is obtained. When the viscosity of the paste used for producing the lattice precursor is relatively low, it is preferable to dry the lattice precursor to develop shape retention. Thereby, the second coated body of the filaments is prevented from excessively sinking into the first coated body of the filaments, and the side edges of these coated bodies are appropriately curved and expanded toward the outside in the width direction. Put out. Moreover, it is prevented that a filament 2nd coating body bends downward with dead weight between adjacent intersections, and the bridging state of a filament 2nd coating body is maintained. Drying is performed, for example, by heating the lattice precursor at a temperature of 40 ° C. or higher and 80 ° C. or lower in the atmosphere. The heating time can be, for example, 0.5 hours or more and 12 hours or less. When the viscosity of the paste is high, it is often unnecessary to dry the lattice precursor, and in that case, the lattice precursor can be directly subjected to the firing step described below.
 乾燥後の格子状前駆体は、これを基板から剥離して焼成炉内に載置して焼成を行う。この焼成によって、両線条部10,20間が交点2で一体化した、目的とするセラミックス格子体1が得られる。焼成は一般に大気下で行うことができる。焼成温度は、セラミックス素材の原料粉の種類に応じて適切な温度を選択すればよい。焼成雰囲気温度に関しても同様である。 The dried grid-like precursor is peeled off from the substrate and placed in a firing furnace for firing. By this firing, the target ceramic lattice body 1 in which the two linear portions 10 and 20 are integrated at the intersection 2 is obtained. Baking can generally be performed in air. The firing temperature may be selected appropriately depending on the type of raw material powder of the ceramic material. The same applies to the firing atmosphere temperature.
 以上の方法によって、目的とするセラミックス格子体1が得られる。このセラミックス格子体1は、棚板や敷板など、セラミックス製品の脱脂又は焼成用セッターとして好適に用いられるほか、セッター以外の窯道具、例えば匣やビームとしても用いることができる。更に、窯道具以外の用途、例えばフィルター、触媒担体などの各種の治具や各種構造材として用いることもできる。この場合、格子体1における凹凸面である第2面1b上に被焼成体を載置することが一般的であるが、被焼成体の種類によっては、第2面1b側で第2の線条部の間に被焼成体を載置してもよく、平坦面である第1面1a上に被焼成体を載置してもよい。例えば積層セラミックスコンデンサ(MLCC)の製造過程における焼成工程を行う場合には、被焼成体を、平坦面である第1面1a上に載置することが好ましく、更にはMLCCを固定する目的で、第1面1a側で第1の線条部の間に被焼成体を載置してもよい。 By the above method, the target ceramic lattice 1 is obtained. This ceramic lattice body 1 can be suitably used as a setter for degreasing or firing ceramic products such as shelf boards and floorboards, and can also be used as a kiln tool other than a setter, such as a firewood or beam. Furthermore, it can also be used as various jigs and various structural materials such as filters and catalyst carriers other than kiln tools. In this case, it is common to place the body to be fired on the second surface 1b, which is an uneven surface in the lattice body 1, but depending on the type of body to be fired, the second line on the second surface 1b side. A to-be-fired body may be mounted between the strips, and the to-be-fired body may be placed on the first surface 1a which is a flat surface. For example, when performing the firing step in the manufacturing process of the multilayer ceramic capacitor (MLCC), it is preferable to place the body to be fired on the first surface 1a which is a flat surface, and for the purpose of fixing the MLCC, You may mount a to-be-fired body between 1st filament parts by the 1st surface 1a side.
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態のセラミックス格子体1は、平面視での輪郭が矩形であったが、格子体1の輪郭はこれに限られず、他の形状、例えば三角形や六角形などの多角形であってもよい。また、格子体1はその輪郭の少なくとも一部に直線辺部を有していればよく、例えば輪郭が直線辺部と曲線辺部との組み合わせから構成されていてもよい。その場合には、直線辺部と、第1の線条部10及び第2の線条部20との交差角度θ1及びθ2が上述の値を満たせばよい。
 また、これらの輪郭にはセラミックスにより直線辺部と曲線辺部などが形成されていてもよい。
As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, the ceramic lattice body 1 of the above embodiment has a rectangular outline in plan view, but the outline of the lattice body 1 is not limited to this, and may be other shapes such as a polygon such as a triangle or a hexagon. Also good. Moreover, the lattice body 1 should just have a linear side part in at least one part of the outline, for example, the outline may be comprised from the combination of a linear side part and a curved side part. In that case, the crossing angles θ <b> 1 and θ <b> 2 between the straight side portion and the first linear portion 10 and the second linear portion 20 may satisfy the above-described values.
Moreover, a linear side part, a curved side part, etc. may be formed in these outlines with ceramics.
 また、前記実施形態のセラミックス格子体1は、第1の線条部10及び第2の線条部20の2種類の線条部を用いていたが、これに加えて第3の線条部(図示せず)を用いてもよい。例えばセラミックス格子体を、第1の線条部10上に第2の線条部20を重ね、更にその上に第1の線条部10を重ねた構造とすることができる。この場合、最下部の第1の線条部10が直線辺部となす角度θ1と、最上部の第1の線条部10が直線辺部となす角度θ1とは同じでもよく、あるいは異なっていてもよい。また、最下部の第1の線条部10の形状や太さと、最上部の第1の線条部10の形状や太さとは同じでもよく、あるいは異なっていてもよい。 Moreover, although the ceramic lattice body 1 of the said embodiment used two types of line | wire parts, the 1st line | wire part 10 and the 2nd line | wire part 20, in addition to this, it is the 3rd line | wire part. (Not shown) may be used. For example, the ceramic lattice body may have a structure in which the second linear portion 20 is stacked on the first linear portion 10 and the first linear portion 10 is further stacked thereon. In this case, the angle θ1 formed by the lowermost first linear portion 10 and the straight side portion may be the same as or different from the angle θ1 formed by the uppermost first linear portion 10 and the linear side portion. May be. Further, the shape and thickness of the lowermost first linear portion 10 and the shape and thickness of the uppermost first linear portion 10 may be the same or different.
 また、前記実施形態のセラミックス格子体1の強度を向上させる目的で、図10に示すとおり、該格子体1の外周に外枠40を設けてもよい。この外枠40は該格子体1と同じ材料から一体的に形成してもよく、あるいは該格子体1とは別途製造しておき、所定の接合手段で接合してもよい。本実施形態においては、上述した角度θ1及びθ2とは、第1の線条部10及び第2の線条部20と外枠40とのなす角度である。 Further, for the purpose of improving the strength of the ceramic lattice body 1 of the embodiment, an outer frame 40 may be provided on the outer periphery of the lattice body 1 as shown in FIG. The outer frame 40 may be integrally formed from the same material as that of the grid body 1 or may be manufactured separately from the grid body 1 and bonded by a predetermined bonding means. In the present embodiment, the above-described angles θ1 and θ2 are angles formed by the first linear portion 10 and the second linear portion 20 and the outer frame 40.
 また、前記実施形態のセラミックス格子体1は単層構造のものであったが、これに代えて該格子体1を複数用い、それらを例えば図11(a)及び図11(b)に示すように複数段積層して用いてもよい。図11(a)に示す実施形態においては、第1の線条部10’及び第2の線条部20’からなる第1格子体1’と、第1の線条部10”及び第2の線条部20”からなる第2格子体1”とが積層されて格子体1が形成されている。第1格子体1’における第1の線条部10’と、第2格子体1”における第1の線条部10”とは同ピッチになるように配置されている。同様に、第1格子体1’における第2の線条部20’と、第2格子体1”における第2の線条部20”とも同ピッチになるように配置されている。なお、第1格子体1’における第1の線条部10’と、第2格子体1”における第1の線条部10”とは、同ピッチとなるように配置される態様に限定されず、セラミックス格子体の上面、あるいは各線条部の間等に被焼成体を載置する態様に合わせて、任意のピッチ比率で設計することができる。同様に、第1格子体1’における第2の線条部20’と、第2格子体1”における第2の線条部20”とは、同ピッチとなるように配置される態様に限定されず、セラミックス格子体の上面、あるいは各線条部の間等に被焼成体を載置する態様に合わせて、任意のピッチ比率で設計することができる。 Further, the ceramic lattice body 1 of the above embodiment has a single-layer structure, but instead of this, a plurality of the lattice bodies 1 are used, for example, as shown in FIGS. 11 (a) and 11 (b). Multiple layers may be used. In the embodiment shown in FIG. 11 (a), a first lattice body 1 ′ composed of a first linear portion 10 ′ and a second linear portion 20 ′, a first linear portion 10 ″ and a second linear portion 10 ′. Are laminated to form a lattice body 1. The first linear portion 10 'in the first lattice body 1' and the second lattice body 1 are laminated. Are arranged so as to have the same pitch. Similarly, the second linear portion 20 ′ in the first grid 1 ′ and the second grid 1 ” It is arranged so as to have the same pitch as the second linear portion 20 ″. The first linear portion 10 ′ in the first lattice 1 ′ and the first line in the second lattice 1 ″. The strip portion 10 ″ is not limited to an embodiment in which the strips are arranged to have the same pitch, and the body to be fired is placed on the upper surface of the ceramic lattice body or between each strip portion. It can be designed with an arbitrary pitch ratio in accordance with the mode to be placed. Similarly, the second filament 20 ′ in the first grid 1 ′ and the second filament in the second grid 1 ″. The portion 20 ″ is not limited to an embodiment in which the pitch is set to be the same pitch, and an arbitrary pitch according to an embodiment in which the object to be fired is placed on the upper surface of the ceramic lattice body or between each linear portion. Can be designed in proportion.
 一方、図11(b)に示す実施形態においては、第1格子体1’における第1の線条部10’と、第2格子体1”における第1の線条部10”とは半ピッチずれるように配置されている。同様に、第1格子体1’における第2の線条部20’と、第2格子体1”における第2の線条部20”とも半ピッチずれるように配置されている。なお、第1格子体1’における第2の線条部20’と、第2格子体1”における第2の線条部20”とは、半ピッチ(1/2ピッチ)ずれるように配置される態様に限定されず、例えば1/3ピッチ~1/10ピッチ等のように、被焼成体を載置する態様に合わせて、任意のピッチ比率で設計することができる。同様に、第1格子体1’における第2の線条部20’と、第2格子体1”における第2の線条部20”とは、半ピッチ(1/2ピッチ)ずれるように配置される態様に限定されず、例えば1/3ピッチ~1/10ピッチ等のように、被焼成体を載置する態様に合わせて、任意のピッチ比率で設計することができる。このように、ピッチ比率を例えばMLCCの寸法に合わせて設計することにより、単層又は複数層の第1線条部と、単層又は複数層の第2線条部との間にMLCCをはめ込むように載置することで、MLCCの落下を防ぎ、安定してMLCCを載置することが可能となる。 On the other hand, in the embodiment shown in FIG. 11 (b), the first filament 10 'in the first grid 1' and the first filament 10 "in the second grid 1" are half pitch. It is arranged so as to be displaced. Similarly, the second filament 20 'in the first grid 1' and the second filament 20 "in the second grid 1" are arranged so as to be shifted by a half pitch. Note that the second linear portion 20 ′ in the first grid 1 ′ and the second linear portion 20 ″ in the second grid 1 ″ are arranged so as to be shifted by a half pitch (1/2 pitch). For example, the pitch can be designed with an arbitrary pitch ratio according to the mode of placing the object to be fired, such as 1/3 pitch to 1/10 pitch. Similarly, the second filament 20 'in the first grid 1' and the second filament 20 "in the second grid 1" are arranged so as to be shifted by a half pitch (1/2 pitch). For example, the pitch can be designed with an arbitrary pitch ratio according to the mode of placing the object to be fired, such as 1/3 pitch to 1/10 pitch. In this way, by designing the pitch ratio in accordance with, for example, the size of the MLCC, the MLCC is fitted between the single-layer or multiple-layer first linear portion and the single-layer or multiple-layer second linear portion. By placing the MLCC in this manner, it is possible to prevent the MLCC from falling and stably place the MLCC.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「部」は「質量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “part” means “part by mass”.
  〔実施例1〕
(1)線条塗工体形成用のペーストの調製
 平均粒径0.8μmの8モル%イットリア添加完全安定化ジルコニア粉65.3部と、水系結合剤としてメチルセルロース系バインダー5.0部と、可塑剤として、グリセリン2.5部と、ポリカルボン酸系分散剤(分子量12000)1.1部と、水26.1部とを混合し、脱泡してペーストを調製した。ペーストの粘度は25℃において1.6MPa・sであった。
(2)線条塗工体の形成
 前記のペーストを原料とし、直径0.8mmのノズルを有する小型押し出し機を用いて25℃の環境下、樹脂基板上に線条第1塗工体を形成し、引き続きそれに交差する線条第2塗工体を形成した。両線条塗工体の交差角度は90度とした。このようにして格子状前駆体を得た。
(3)焼成工程
 乾燥後の格子状前駆体を樹脂基板から剥離した後、大気焼成炉内に載置した。この焼成炉内で脱脂及び焼成を行い、図1ないし図9に示す形状のセラミックス格子体を得た。焼成温度は1600℃とし、焼成時間は3時間とした。得られた格子体における諸元を以下の表1ないし表3に示す。これらの表中、「孔対角長さQ1,Q2」とは、図9に示すとおり網目構造の孔対角部の対角線長さのことである。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。また、θ1(図1(b)参照)は45度、θ2は135度であった(|θ1-θ2|値は90度)。
[Example 1]
(1) Preparation of a paste for forming a filament coated body 65.3 parts of 8 mol% yttria-added fully stabilized zirconia powder having an average particle diameter of 0.8 μm, 5.0 parts of a methylcellulose binder as an aqueous binder, As a plasticizer, 2.5 parts of glycerin, 1.1 parts of a polycarboxylic acid-based dispersant (molecular weight 12000) and 26.1 parts of water were mixed and defoamed to prepare a paste. The viscosity of the paste was 1.6 MPa · s at 25 ° C.
(2) Formation of a linear coated body A linear coated first body is formed on a resin substrate in a 25 ° C. environment using a small extruder having a 0.8 mm diameter nozzle using the paste as a raw material. Then, a second filament coated body that intersected with it was formed. The crossing angle between the two filament coated bodies was 90 degrees. Thus, a lattice precursor was obtained.
(3) Firing step After the dried lattice precursor was peeled from the resin substrate, it was placed in an atmospheric firing furnace. Degreasing and firing were performed in this firing furnace to obtain a ceramic lattice body having the shape shown in FIGS. The firing temperature was 1600 ° C., and the firing time was 3 hours. The specifications of the obtained lattice are shown in Tables 1 to 3 below. In these tables, “hole diagonal lengths Q1, Q2” are the diagonal lengths of the hole diagonal portions of the network structure as shown in FIG. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded. Further, θ1 (see FIG. 1B) was 45 degrees, and θ2 was 135 degrees (the value of | θ1−θ2 | was 90 degrees).
  〔実施例2〕
 θ1を10度、θ2(図1(b)参照)を60度とした(|θ1-θ2|値は50度)。これらのθ1、θ2及びそれぞれが交わる角度以外は実施例1と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
[Example 2]
θ1 is 10 degrees, and θ2 (see FIG. 1B) is 60 degrees (the value of | θ1-θ2 | is 50 degrees). A ceramic lattice body was obtained in the same manner as in Example 1 except for the angles θ1 and θ2 and the angles at which they intersect. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例3〕
 θ1を30度、θ2(図1(b)参照)を120度とした(|θ1-θ2|値は90度)。これらのθ1、θ2及びそれぞれが交わる角度以外は実施例1と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 3
θ1 is 30 degrees and θ2 (see FIG. 1B) is 120 degrees (the value of | θ1-θ2 | is 90 degrees). A ceramic lattice body was obtained in the same manner as in Example 1 except for the angles θ1 and θ2 and the angles at which they intersect. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例4〕
 θ1を10度、θ2(図1(b)参照)を170度とした(|θ1-θ2|値は160度)。これらのθ1、θ2及びそれぞれが交わる角度以外は実施例1と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 4
θ1 was 10 degrees, and θ2 (see FIG. 1B) was 170 degrees (the value of | θ1−θ2 | was 160 degrees). A ceramic lattice body was obtained in the same manner as in Example 1 except for the angles θ1 and θ2 and the angles at which they intersect. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例5〕
 θ1を45度、θ2(図1(b)参照)を135度とした(|θ1-θ2|値は90度)。またノズル直径を0.4mmとした。これらのθ1、θ2及びそれぞれが交わる角度とノズル直径以外は実施例1と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 5
θ1 is 45 degrees and θ2 (see FIG. 1B) is 135 degrees (the value of | θ1-θ2 | is 90 degrees). The nozzle diameter was 0.4 mm. A ceramic lattice body was obtained in the same manner as in Example 1 except for the angles θ1 and θ2 and the angles at which they crossed each other and the nozzle diameter. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例6〕
 θ1を45度、θ2(図1(b)参照)を135度とした(|θ1-θ2|値は90度)。またノズル直径を1.0mmとした。これらの角度やノズル直径以外は実施例1と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 6
θ1 is 45 degrees and θ2 (see FIG. 1B) is 135 degrees (the value of | θ1-θ2 | is 90 degrees). The nozzle diameter was 1.0 mm. A ceramic lattice body was obtained in the same manner as in Example 1 except for these angles and nozzle diameters. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例7〕
 実施例2と同様にθ1を10度、θ2(図1(b)参照)を60度とした(|θ1-θ2|値は50度)。更に線条第2塗工体の上に交差するように線条第3塗工体を形成し格子状前駆体を得た。線条第3塗工体のθ3は20度とした。それ以外は実施例1と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 7
As in Example 2, θ1 was set to 10 degrees and θ2 (see FIG. 1B) was set to 60 degrees (the value of | θ1−θ2 | was 50 degrees). Furthermore, a filament 3rd coating body was formed so that it might cross | intersect on a filament 2nd coating body, and the lattice-shaped precursor was obtained. The θ3 of the third filament coated body was 20 degrees. Otherwise, a ceramic lattice was obtained in the same manner as in Example 1. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例8〕
 実施例7と同様にθ1を10度、θ2(図1(b)参照)を60度、θ3を10度とした(|θ1-θ2|値は50度)。線条第3塗工体は線条第1塗工体と平面視したときに重なる位置に形成した。それ以外は実施例7と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 8
As in Example 7, θ1 was 10 degrees, θ2 (see FIG. 1B) was 60 degrees, and θ3 was 10 degrees (the value of | θ1−θ2 | was 50 degrees). The filament 3rd coating body was formed in the position which overlaps, when planarly viewed with the filament 1st coating body. Otherwise, a ceramic lattice was obtained in the same manner as in Example 7. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例9〕
 θ1を45度、θ2(図1(b)参照)を135度、θ3を45度とした(|θ1-θ2|値は90度)。線条第3塗工体は線条第1塗工体と平面視したときに重なる位置に形成した。それ以外は実施例7と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 9
θ1 is 45 degrees, θ2 (see FIG. 1B) is 135 degrees, and θ3 is 45 degrees (the value of | θ1−θ2 | is 90 degrees). The filament 3rd coating body was formed in the position which overlaps, when planarly viewed with the filament 1st coating body. Otherwise, a ceramic lattice was obtained in the same manner as in Example 7. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔実施例10〕
 θ1を45度、θ2(図1(b)参照)を135度、θ3を45度とした(|θ1-θ2|値は90度)。線条第3塗工体は平面視したときに線条第1塗工体と平行で且つ隣接する線条第1塗工体の間位置に形成した。それ以外は実施例7と同様にセラミックス格子体を得た。得られた格子体においては、図9に示すとおり、菱形の貫通孔における隅部が丸みを帯びていた。
Example 10
θ1 is 45 degrees, θ2 (see FIG. 1B) is 135 degrees, and θ3 is 45 degrees (the value of | θ1−θ2 | is 90 degrees). The line third coated body was formed at a position between the adjacent first line coated bodies parallel to and adjacent to the line first coated body when viewed in plan. Otherwise, a ceramic lattice was obtained in the same manner as in Example 7. In the obtained lattice, as shown in FIG. 9, the corners of the rhomboid through-holes were rounded.
  〔比較例1〕
 θ1を5度、θ2(図1(b)参照)を95度とした(|θ1-θ2|値は90度)。それ以外は実施例1と同様にセラミックス格子体を得た。
[Comparative Example 1]
θ1 is 5 degrees and θ2 (see FIG. 1B) is 95 degrees (the value of | θ1-θ2 | is 90 degrees). Otherwise, a ceramic lattice was obtained in the same manner as in Example 1.
  〔比較例2〕
 θ1を0度、θ2(図1(b)参照)を90度とした(|θ1-θ2|値は90度)。それ以外は実施例1と同様にセラミックス格子体を得た。
[Comparative Example 2]
θ1 is 0 degree and θ2 (see FIG. 1B) is 90 degrees (the value of | θ1-θ2 | is 90 degrees). Otherwise, a ceramic lattice was obtained in the same manner as in Example 1.
  〔比較例3〕
 本比較例では、ゼラチンを湯に溶解させて得られた溶液(ゼラチンの濃度は水に対して3%)を用意し、この溶液を、予め調製しておいたイットリア完全安定化ジルコニアスラリーと混合した。混合は、混合液におけるイットリア完全安定化ジルコニアと水との体積比が10:90になるように行った。この混合液を冷蔵庫内に静置してゲル化させた。このゲルをエタノール凍結機によって凍結させた。凍結させたゲルを乾燥(凍結乾燥)した後、得られた乾燥体を脱脂し、1600℃にて3時間焼成した。このようにして得られた格子体は、気孔率は79%、気孔径は95μmで、厚み方向に気孔が配向した構造が形成されたものであった。
[Comparative Example 3]
In this comparative example, a solution obtained by dissolving gelatin in hot water (the gelatin concentration is 3% with respect to water) is prepared, and this solution is mixed with a yttria fully stabilized zirconia slurry prepared in advance. did. The mixing was performed so that the volume ratio of yttria fully stabilized zirconia to water in the mixed solution was 10:90. This mixed solution was allowed to stand in a refrigerator to be gelled. The gel was frozen with an ethanol freezer. After the frozen gel was dried (lyophilized), the obtained dried product was degreased and baked at 1600 ° C. for 3 hours. The lattice body thus obtained had a porosity of 79%, a pore diameter of 95 μm, and a structure in which pores were oriented in the thickness direction.
  〔評価〕
 実施例及び比較例で得られた格子体について、スポーリング性の評価を以下の方法で行った。それらの結果を以下の表1ないし表3に示す。
[Evaluation]
About the lattice body obtained by the Example and the comparative example, the spalling evaluation was performed with the following method. The results are shown in Tables 1 to 3 below.
  〔耐スポーリング性の評価〕
 縦150mm×横150mm×厚さ0.8~1.5mmのサンプルの上に、MLCCなど小型電子部品を想定した疑似ワークとして、500から1000μmに整粒したアルミナ粒子を、端5mmを空けて、全体として、0.35g/cmになるように、均質に敷いた。用意したムライト質足付きラック形状窯道具(外寸が165mm×165mmであり、中央にある十字形状幅寸法が15mmであり、外枠と十字の間には60mm×60mmの4つの中空構造を有する)を台板に載せ、そのラック上に疑似ワークを積載したサンプルをセットし、大気焼成炉にて高温加熱して1時間以上所望の温度に保持した後に、電気炉から取り出して室温に晒し、肉眼にてサンプルの割れの有無を評価した。設定温度を200℃から950℃まで50℃ずつ昇温させながら変更し、割れの生じない温度の上限を「耐スポーリング性」とした。
[Evaluation of spalling resistance]
As a pseudo work assuming a small electronic component such as MLCC on a sample of 150 mm in length × 150 mm in width × 0.8 to 1.5 mm in thickness, alumina particles sized to 500 to 1000 μm are opened with a 5 mm edge, As a whole, it was spread uniformly so as to be 0.35 g / cm 2 . Prepared rack-shaped kiln tool with mullite foot (external size is 165 mm x 165 mm, cross-shaped width in the center is 15 mm, and there are four hollow structures of 60 mm x 60 mm between the outer frame and the cross ) Is placed on a base plate, a sample loaded with a pseudo work is set on the rack, heated at high temperature in an atmospheric baking furnace and held at a desired temperature for 1 hour or more, then taken out from the electric furnace and exposed to room temperature, The presence or absence of cracking of the sample was evaluated with the naked eye. The set temperature was changed from 200 ° C. to 950 ° C. while increasing the temperature by 50 ° C., and the upper limit of the temperature at which no cracks occurred was defined as “spoling resistance”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1ないし表3に示す結果から明らかなとおり、各実施例で得られた格子体は、各比較例に比べて耐スポーリング性が高いことが判る。
 
As is clear from the results shown in Tables 1 to 3, it can be seen that the lattice bodies obtained in each Example have higher spalling resistance than each Comparative Example.

Claims (8)

  1.  一方向に向けて延びるセラミックス製の複数の第1の線条部と、該第1の線条部と交差する方向に向けて延びるセラミックス製の複数の第2の線条部とを有するセラミックス格子体であって、
     第1の線条部と第2の線条部との交点は、いずれの該交点においても、第1の線条部上に第2の線条部が配されており、
     第1の線条部は、その断面が、前記交点以外の部位において、直線部と、該直線部の両端部を端部とする凸形の曲線部とから構成される形状を有しており、
     第2の線条部は、その断面が、前記交点以外の部位において、円形又は楕円形の形状を有しており、
     前記セラミックス格子体は、平面視での輪郭の少なくとも一部に直線辺部を有しており、
     第1の線条部及び第2の線条部と前記直線辺部とがそれぞれ独立に10度以上170以下の角度で交わっている、セラミックス格子体。
    A ceramic lattice having a plurality of first filaments made of ceramics extending in one direction and a plurality of second filaments made of ceramics extending in a direction intersecting the first filaments Body,
    The intersection of the first filament and the second filament is the second filament on the first filament at any intersection.
    The first striated portion has a shape in which a cross section thereof is configured by a straight portion and a convex curved portion having both ends of the straight portion as ends at a portion other than the intersection. ,
    The second striated portion has a circular or oval shape in cross section at a portion other than the intersection,
    The ceramic lattice body has a straight side portion in at least a part of the outline in plan view,
    A ceramic lattice body in which the first and second linear portions and the linear side portion intersect each other independently at an angle of not less than 10 degrees and not more than 170.
  2.  前記セラミックス格子体が、対向する第1の辺部及び第2の辺部と、対向する第3の辺部及び第4の辺部とを有する矩形の輪郭を有しており、
     第1の線条部及び第2の線条部と、第1の辺部及び第2の辺部とがそれぞれ独立に10度以上170度以下の角度で交わっている請求項1に記載のセラミックス格子体。
    The ceramic lattice body has a rectangular outline having first and second side portions facing each other and third and fourth side portions facing each other;
    2. The ceramic according to claim 1, wherein the first and second linear portions and the first and second side portions independently intersect at an angle of 10 degrees to 170 degrees. Lattice body.
  3.  第2の線条部は、その平面視での投影像が、前記交点において、幅方向外方に向けて湾曲膨出した形状になっており、それによって前記交点における投影像の幅が、前記交点以外の部位における投影像の幅よりも大きくなっている請求項1又は2に記載のセラミックス格子体。 The second linear portion has a shape in which the projected image in plan view is curved and bulged outward in the width direction at the intersection, whereby the width of the projected image at the intersection is The ceramic lattice body according to claim 1 or 2, wherein the ceramic lattice body is larger than a width of a projected image at a portion other than the intersection.
  4.  第1の線条部における前記直線部を載置面として平面上に載置したとき、第2の線条部が、隣り合う2つの前記交点の間において該平面から離間する形状をしている請求項1ないし3のいずれか一項に記載のセラミックス格子体。 When the linear portion of the first linear portion is placed on a plane as a placement surface, the second linear portion is shaped to be separated from the plane between two adjacent intersections. The ceramic lattice body according to any one of claims 1 to 3.
  5.  第1の線条部は、その平面視での投影像が、前記交点において、幅方向外方に向けて湾曲膨出した形状になっており、それによって前記交点における投影像の幅が、前記交点以外の部位における投影像の幅よりも大きくなっている請求項1ないし4のいずれか一項に記載のセラミックス格子体。 The first linear portion has a shape in which the projected image in plan view is curved and bulged outward in the width direction at the intersection, whereby the width of the projected image at the intersection is The ceramic lattice body as described in any one of Claims 1 thru | or 4 larger than the width | variety of the projection image in site | parts other than an intersection.
  6.  アルミナ、ムライト、コージェライト、ジルコニア、窒化ケイ素又は炭化ケイ素を含むセラミックスからなる請求項1ないし5のいずれか一項に記載のセラミックス格子体。 The ceramic lattice body according to any one of claims 1 to 5, comprising a ceramic containing alumina, mullite, cordierite, zirconia, silicon nitride, or silicon carbide.
  7.  表面にジルコニアがコートされている請求項6に記載のセラミックス格子体。 The ceramic lattice body according to claim 6, wherein the surface is coated with zirconia.
  8.  セラミックス製品の焼成用セッターとして用いられる請求項1ないし7のいずれか一項に記載のセラミックス格子体。 The ceramic lattice body according to any one of claims 1 to 7, which is used as a setter for firing ceramic products.
PCT/JP2017/031646 2016-10-06 2017-09-01 Ceramic lattice WO2018066281A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197006732A KR102227122B1 (en) 2016-10-06 2017-09-01 Ceramic grating
JP2017560645A JP6284693B1 (en) 2016-10-06 2017-09-01 Ceramic lattice
CN201780054879.XA CN109689594B (en) 2016-10-06 2017-09-01 Ceramic grid body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-198524 2016-10-06
JP2016198524 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066281A1 true WO2018066281A1 (en) 2018-04-12

Family

ID=61830925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031646 WO2018066281A1 (en) 2016-10-06 2017-09-01 Ceramic lattice

Country Status (5)

Country Link
JP (1) JP6284693B1 (en)
KR (1) KR102227122B1 (en)
CN (1) CN109689594B (en)
TW (1) TWI780068B (en)
WO (1) WO2018066281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353526B1 (en) * 2023-03-28 2023-09-29 株式会社ノリタケカンパニーリミテド Baking jig

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174893A1 (en) * 2019-02-28 2020-09-03 三井金属鉱業株式会社 Ceramic structure
KR102644725B1 (en) * 2020-08-28 2024-03-06 엔지케이 인슐레이터 엘티디 ceramics material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149072A (en) * 1990-10-11 1992-05-22 Murata Mfg Co Ltd Production of ceramics base plate
EP1457999A1 (en) * 2003-03-12 2004-09-15 ABC Taiwan Electronics Corporation Micromesh material and micromesh mono-crystal high frequency capacitor and its producing method
WO2016117207A1 (en) * 2015-01-19 2016-07-28 三井金属鉱業株式会社 Ceramic lattice

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207785A (en) 1992-07-03 1994-07-26 Tohoku Ceramic Kk Setter for heating and molding working and manufacture thereof
JP5230903B2 (en) * 2006-02-06 2013-07-10 東京窯業株式会社 Setter for firing
KR100878859B1 (en) 2007-11-27 2009-01-15 주식회사 아크로이엔지 Ceramic goods fire ceramic coating nickel mesh crosspiece and making method
EP2251628B1 (en) * 2008-03-05 2016-01-27 NGK Insulators, Ltd. Kiln tool plate for firing ceramic
KR20090110400A (en) 2008-04-18 2009-10-22 (주)기즈모생각 System for issuing charge free and discount coupon and method for practicing the same
DE102009037293B4 (en) * 2009-08-14 2013-05-23 Gtd Graphit Technologie Gmbh Improved workpiece carrier
KR101355119B1 (en) 2012-07-16 2014-01-24 에스케이씨 주식회사 Ceramic setter of plate type
KR101680835B1 (en) * 2014-10-10 2016-11-29 박민정 Setter for ceramic heat treatment
JP6410758B1 (en) * 2016-05-24 2018-10-24 三井金属鉱業株式会社 Ceramic lattice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149072A (en) * 1990-10-11 1992-05-22 Murata Mfg Co Ltd Production of ceramics base plate
EP1457999A1 (en) * 2003-03-12 2004-09-15 ABC Taiwan Electronics Corporation Micromesh material and micromesh mono-crystal high frequency capacitor and its producing method
WO2016117207A1 (en) * 2015-01-19 2016-07-28 三井金属鉱業株式会社 Ceramic lattice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353526B1 (en) * 2023-03-28 2023-09-29 株式会社ノリタケカンパニーリミテド Baking jig

Also Published As

Publication number Publication date
TW201823185A (en) 2018-07-01
KR102227122B1 (en) 2021-03-12
JP6284693B1 (en) 2018-02-28
CN109689594B (en) 2022-03-25
JPWO2018066281A1 (en) 2018-10-04
KR20190058470A (en) 2019-05-29
CN109689594A (en) 2019-04-26
TWI780068B (en) 2022-10-11

Similar Documents

Publication Publication Date Title
JP6410758B1 (en) Ceramic lattice
JP6259943B1 (en) Ceramic lattice
JP6564401B2 (en) Ceramic lattice
JP6462102B2 (en) Ceramic lattice
JP6284693B1 (en) Ceramic lattice
JP6608499B2 (en) Ceramic lattice
JP6952170B2 (en) Ceramic structure
JP6666990B2 (en) Ceramic lattice
JP6883680B2 (en) Ceramic lattice
JP6746827B1 (en) Ceramic structure
JP2020073432A (en) Ceramic lattice body
JP2024137274A (en) Boron nitride ceramic sheet sintered body and its manufacturing method
WO2024127845A1 (en) Firing jig comprising setter and bottom plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017560645

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006732

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858120

Country of ref document: EP

Kind code of ref document: A1